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Abstract
Data locality and memory safety are important goals for high-
performance programming languages targeting multi-core systems
with non-uniform memory. The data locality aspect is important for
distributed algorithms running on high-performance systems where
remote data access can both be costly and require the language sys-
tem to generate different and expensive code. This paper presents
a core language and a type system that achieves memory safety in-
cluding locality of access for distributed arrays. A well-typed pro-
gram cannot violate the in-bounds or locality requirements when
accessing an array.

The type system integrates dependent types with a new class of
constraints over points, regions of points, and places. The key oper-
ation during type checking is constraint entailment; type checking
is co-NP-complete.

We have implemented a prototype compiler for a variant of X10,
a new language for high-performance computing, that extends the
standard object-oriented type system of X10 with the dependent
types of the core language. The paper presents encouraging exper-
imental results that show that the type system can be used to ef-
fectively eliminate dynamic checks and statically ensure memory
safety and locality of access.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms languages, performance, theory, verification

Keywords dependent types, distributed memory, high perfor-
mance computing, X10

1. Introduction
Current object-oriented language facilities for concurrent and dis-
tributed programming are inadequate for addressing the needs of
modern parallel machines (SMPs and clusters) that feature a com-
plex memory hierarchy and possibly non-uniform memory access.
Given the likelihood that the majority of desktop systems in the fu-
ture will be multi-core SMP designs and that the majority of server
systems will be configured as tightly-coupled clusters, there is a
need for new language systems that simplify the deployment of
computations spanning multiple nodes. In order to be able to give
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a sufficiently simple and adequate cost model to programmers, a
new language should require that basic read and write operations
are local with respect to the place of execution. If all basic read and
write operations are guaranteed to be local by the language, pro-
grammers will continue to be able to reason about the performance
of their algorithms with respect to memory accesses.

Our work is heavily influenced by X10 [11]. X10 is a new lan-
guage for high performance computing (HPC). X10 uses the model
of a partitioned global address space. The language features the ab-
stract notion of a place to denote the location at which computa-
tions are executed. Each partition of the global address space is as-
sociated with a particular place, and X10 mandates that all accesses
to mutable data be place-local. Furthermore, X10 features language
constructs for explicit parallel and distributed computations. Nat-
urally, supporting parallel distributed computations requires sup-
port for distributed data structures – for arrays, in particular. X10’s
requirement that all accesses to mutable data must be place-local
includes distributed arrays. Consequently, accesses to X10 arrays
must not only in-bounds (X10 is memory-safe) but also be exe-
cuted locally (X10 is place-safe) at the respective place associated
with the index by the distribution of the array.

X10 is different from previous HPC languages in that it requires
the programmer to write code that ensures data locality and enables
programmers to ensure data locality by providing constructs to
programatically shift the place of execution. programatically shift
the place of execution. Having a general place-shifting mechanism
is good news for application programmers, since it affords them a
great deal of flexibility. However, it does make it more difficult for
the language system to generate fast, safe code for these general
distributed parallel computations.

A central problem in this context is to statically check that mem-
ory accesses are local in the presence of distributed arrays and
place-shifting computations. This paper shows how to solve this
problem using a new type system which employs dependent types
over a particular vocabulary of constraints. There is a variety of
constraint systems that can be chosen for this purpose; for the core
language presented in this paper, we chose a small operational al-
gebra for illustration which is sufficient to cover several fundamen-
tal examples. Changes to the constraint system would impact the
complexity of the type checker, but do not change the core ideas
necessary for the type soundness proof.

The results of this paper are the establishment of an applied
dependently-typed lambda calculus [3] that can be used to establish
locality of access for distributed arrays in a computation with place-
shifting operations. We have proven type soundness and settled
the complexity of the key decision problems. The paper illustrates
the type system with various examples. Our results substantially
generalize the pioneering work of Pfenning and Xi [28, 29] on
dependently typed programming languages (by applying them to
a clustered setting and extending the constraint domain to include
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regions) and the work of Aiken and Liblit [20] (by covering place-
shifting operations).

We have implemented the type system in an experimental com-
piler for X10 called XTC-X10. We have measured how many dy-
namic checks can be eliminated with this extension as a result of the
static proof for several programs. The reduction in checks is sub-
stantial. In future work we plan to explicitly study richer constraint
systems that can represent the particularities of specific program-
ming idioms. Our existing prototype already supports an extended
constraint algebra beyond that used in the core calculus. In particu-
lar, the algebra includes support for arithmetic constraints. The ex-
tended algebra is needed in order to type check common constructs
in actual applications. The underlying principles of the type sys-
tem presented in this paper are independent of the particular choice
of constraint algebra, which we expect to evolve in step with the
power of constraint solvers and the needs of application develop-
ers.

2. Related Work
Modern high performance computing (HPC) languages must con-
tain a rich language for arrays, a dominant data-structure in the
HPC space. Chamberlain et al. [8, 6, 10, 13] proposed regions as a
construct for specifying array operations in languages for parallel
programming. A region is a set of points, rather than an interval or a
product of intervals, and enables the programmer to define an array
over a region and to write a loop that iterates over a region. Regions
were later adopted in Titanium [16] and X10 [11]; in X10, regions
are a first-class values. All of ZPL, Titanium, and X10 provide the
programmer with a rich algebra of region operators to manipulate
arrays. A programmer can use regions to specify computations on
dense or sparse, multidimensional and hierarchical arrays. While
convenient, regions do not eliminate the risk of array bounds viola-
tions. Until now, language implementations have resorted to check-
ing array accesses dynamically or to warning the programmer that
bounds violations lead to undefined behavior. For performance and
productivity, it is preferable that array computations are statically
checked to be safe.

Our type system is inspired by that of Xi and Pfenning [28, 29].
Like Xi and Pfenning, we use dependent types to avoid array-
bounds checks. Xi and Pfenning use a decision procedure based
on Pressburger arithmetic [25] in order to show the safety of ar-
ray accesses. In contrast to Xi and Pfenning’s language and type
system, we study a programming model and type system based on
regions. Our type system uses types that are parameterized over re-
gions. Operations on region values are mapped to corresponding
operations on region types. The mapping is defined such that sub-
set relations for regions values corresponds to subtyping of their
respective types. Establishing that an index is in-bounds for a par-
ticular array is equivalent to establishing that region over which
the index may range is a subset of the region over which the array
is defined. A subtyping relationship between the respective region
types implies the desired subset relationship and can thus be used
to statically prove the safety of the access.

Furthermore, our type system needs to take data locality into
account. For this purpose the type system supports the notion of
distributions, functions from array indices to places. Distributions
are used to determine how data stored in arrays is distributed among
the places of the computation. The core language features various
operations on distributions that are used to ensure locality of ac-
cess. In this respect, our work generalizes the work of Aiken and
Liblit [20] which introduces a type-system for distributed objects.
In contrast to their work, our type-system covers place-shifting op-
erations and includes distributed arrays.

An alternative to using types to eliminate bounds checks is the
use of static analysis. Early work on using static analysis to elimi-

nate bounds checks investigated the use of theorem proving [26] to
eliminate checks. Our work is related in that we use types to guide
a decision procedure, a technique which is also used in proof car-
rying code [22]. For just-in-time compiled languages such as Java
where compile time is crucial, the ABCD algorithm [4] describes a
light-weight analysis based on interval constraints that is capable of
eliminating on average 45% of the array bounds checks. However,
the results range from 0 to 100% for the various individual bench-
marks, which may make it hard for programmers to write code that
achieves consistently good performance.

When speed is of utmost concern, a language designer may
decide to not require any bounds checks altogether. For example,
the reference manual for Titanium [16], a modern language for
high-performance computing, defines that operations which cause
bounds violations result in the behavior of the rest of the program
being undefined. The semantics of our core language is similar:
a violation of locality or accesses out of bounds result in the se-
mantics getting stuck. The contribution of our paper is a type sys-
tem which guarantees statically that these violations cannot occur.
Thus, our type system enables us to have both memory safety and
high performance.

2.1 The core of six languages for high-performance
computing

Computations with arrays using distributed memory are fundamen-
tal to high-performance computing (HPC). Recent proposals for
languages for HPC, such as X10 [11], Chapel [5], and Titanium
[16] are increasingly adopting ZPL-style regions [7, 9, 8] to achieve
better performance and programmer productivity for array com-
putations. Similarly, there is a trend towards exposing the mem-
ory hierarchy of modern systems to the programmer. Languages
like X10 and Fortress [2] allow or even force the programmer to
specify data distributions. Even HPC languages that present the
programmer with a flat, uniform memory model must deal with
data distribution and communication issues in their implementa-
tion. For these languages, research into algorithms that try to deter-
mine good data distributions to eliminate or reduce communication
is important [12]. While the distribution aspect of our core lan-
guage is clearly not useful for source-level type-checking of these
languages, the core language does represent a potential type-system
for a typed intermediate representation to be used by compilers for
those languages. Given the challenges inherent in automatic data
distribution [15, 19, 17, 14], another possible use would be the use
of automated algorithms to suggest data distributions which could
then be manually tuned for improved performance. Regardless of
the level at which the language system captures information about
arrays and data distributions, a type-system modeled around the
core concepts presented in this paper can be used to give static cor-
rectness guarantees.

Table 2 gives an overview of the terminology used by different
HPC language designs. Often these developing languages use dif-
ferent terms for the same or very similar abstractions. In the rest of
this paper, we will use the terminology used by X10. Table 1 com-
pares the features of various HPC languages with respect to arrays
and memory. We say that the model of distributed memory is uni-
form if from the programmers point of view there is only one kind
of memory. The model is flat if different partitions of the memory
exist, but they have no structured relationship between them. The
model is hierarchical if the partitions represent a memory hierar-
chy with multiple levels. Access is uniform if the the programmer
does not need to distinguish between accesses to different parti-
tions. With global/local access, the programmer is able to access
remote memory using specific constructs. In X10, programmers
cannot directly access mutable remote memory – the computation
must move. In other words, in X10, non-value access must be local
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with respect to the computation. Note that some of the listed HPC
languages are still experimental. We base our statements on the lim-
ited documentation available at this time, which often reflects the
state of early prototypes. When the language description does not
seem to use a term or if it does not seem to specify the behavior,
the respective entry in the table lists unknown. If the concept does
not apply to the language, the table lists n/a.

3. Example Programs
We will present our core language and type system via six example
programs which we show in Figure 1. The first five example pro-
grams all type check, while the sixth program (shift) does not.
We use functions of the form λ•x.e which run at the place where
they are defined. Our core language also has functions λx.e which
run at the place where they are called. Similarly, we use dependent
expressions lam•α.e for which the body will be evaluated at the
place the dependent expression was defined. Additionally, our core
language has dependent expressions lam x.e which are evaluated
at the place they are called.

The function init initializes all points in an array to 1. The
function init takes two arguments, namely a region α and an
array over region α. The use of the dependent type α makes init
polymorphic: init can initialize any array without the need for
any bounds checking. The expression a.reg has type reg α, and
p which ranges over a.reg has type pt (σ, α), where α is the
important part and σ can be ignored here. At the time of the
assignment to a[p], we have that the type of p matches the type of
the region of a. The loop body uses at(a.reg[@p]) { a[p]-1
} to do the computation of a[p]-1 at the place of a[p], a common
idiom in the benchmarks we have studied.

The function partialinit allows partial initialization of an
array. It takes two extra arguments, namely a place value h and
a corresponding place type variable γ which represents the same
place as a type. The body of partialinit initializes those points
in the argument array which can be found at the place h. In our
core language, every region comes with a predefined mapping,
called distribution, of points to places. The expression a.reg %s h
denotes those points in a.reg which by the distribution of a.reg
are mapped to the place h. The for loop iterates only over points
in a.reg %s h and since the for loop is wrapped in at(h) {
...}, each access a[p] will happen at the place of a[p]. The
type of a.reg is reg α and the type of h is pl γ. As a result,
the type of a.reg %s h is α %t γ, which illustrates that we use
a type operator to mirror the expression operator. The variable p
then gets the type pt (β, α %t γ), where β is a fresh variable that
denotes the type-level identity of p. When we type check the access
a[p], the region check determines that the region of p, namely
α, is a subset of the region of a, which is also α. For a[p], the
place check determines that the current place of execution is the
same as the place of a[p]. The place of execution is given by
the enclosing at(h) expression, and we have that h has type pl
γ. The type of the place of a[p] is given by the type expression
α[@t(β, α %t γ)], which says that the place is that of a point in
α which has its data locate at place γ. So, we can use the type
equivalence α[@t(β, α %t γ)] ≡ γ to conclude that the place of
execution is indeed the same as the place of the data a[p].

The function copy takes two arrays a and b, both with region
α. The body of copy copies elements from b to a. The body of
copy uses the construct forallplaces h { ...} which iterates
over all places available to the program. For each place, the code
copies elements that reside at that place. Notice that since a and b
have the same region, they also have the same distribution, so for
a given point p in that region, both a[p] and b[p] will be at the
same place.

The function expand takes an array a and region x, where
x must be a superset of the region of a, and creates and returns
a new array b over the region x. The function expand partially
initializes the new array b with values from a at overlapping
points. expand is interesting in that it highlights the importance
of keeping upper and lower bounds for the region of arrays dur-
ing type checking. Notice that argument β comes with the con-
straint α ⊆t β, which means that the region α must be a subset
of the region β. The call partialinit <P>(P)<reg 0:9>(new
int[0:9])<reg 1:8>(reg 1:8) is a good example of the kind
of reasoning that the programmer has to do when programming di-
rectly in the core language; the call satisfies the constraint β ⊆t α
because [0 : 8] ⊆ [0 : 9].

The function shiftleft takes an argument a with region α
and shifts all elements one position to the left, while leaving the
rightmost element unchanged. In more detail, shiftleft first cre-
ates an inner region of α shifting all elements of α by one to the
right (α + 1) and then intersecting the result with α. If α is simply
an interval, this effectively removes the first element from α. Then
shiftleft proceeds with doing a[p-1] = a[p] for each point p
in the inner region. The inner region has type reg ((α+1)∩t α).
The expression p-1 is always within the region of a because p-1
has type pt (((α+1)∩t α)− 1) and therefore also, via subtyping,
the type pt α (because +1 and −1 cancel each other out). Sim-
ilarly, the expression p is always within the region of a because p
has type pt (α+1)∩t α) and therefore also, again via subtyping,
the type pt α

The program shift is a small variation of shiftleft that
contains a bug which would result in an array bounds violation
– and that consequently does not type check. The problem with
shift is that the array access a[p+1] will be out of bounds when
p reaches the end of the array.

4. The Core Language
We now present the syntax, semantics, and type system of our core
language. In the Appendix, we prove type soundness using the
standard technique of Nielson [23] and others that was popularized
by Wright and Felleisen [27].

Syntax. Figure 2 gives the syntax for the core language. We use
c to range over integer constants, p to range over point constants,
R to range over region constants (such as [1:4], which denotes
{1, 2, 3, 4}), l to range over array labels drawn from a set Label, P
to range over place constants, x to range over variable names, and α
to range over type-variable names. In our core language, points are
integers, and we will occasionally write a point constant as c. For
shifting a region by a constant we use the notation {c1, . . . , cn}+
c = {c1 + c, . . . , cn + c}.

The language has seven data types, namely integers, points,
regions, arrays, places, functions, and dependently-typed functions.
We have deliberately avoided having distributions as values, in an
effort to keep the size of the language managable. We assume a
function distribute which maps a region and a point in that region
to a place. When we create an array over a region R, the array
will be distributed according to the function distribute. We make
no assumptions about distribute.

The types are defined in terms of three forms of expressions
which, given an interpretation of the variables, evaluate to sets of
points (regions), points, and places, respectively. Specifically, if
ρ is a mapping from region variables to regions, point variables
to points, and place variables to places, then the meaning of the
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Language X10 Fortress Chapel Titanium Co-Array Fortran ZPL
Distributed memory flat hierarchical flat flat flat uniform
Access model non-value uniform uniform global/local global/local uniform

access local
Array shapes arbitrary rectangular arbitrary rectangular rectangular arbitrary
Array size finite finite finite or inf. finite finite finite
Region algebra rich none small rich none rich
Distribution algebra rich small build-ins none SPMD only n/a
Memory safety yes unknown yes optional no unknown

Table 1. Features of HPC languages.

Language X10 Fortress Chapel Titanium Co-Array Fortran ZPL
Locality Place Region locale demesnes image n/a
set of array indices region n/a domain domain n/a region
array index point index index point index index/direction
immutable data value value unknown immutable n/a n/a
dimensionality rank unknown unknown arity rank, co-rank rank

Table 2. HPC language terminology overview.

expressions is given as follows:

αρ = ρ(α)

Rρ = R

(r1 ∪t r2)ρ = r1ρ ∪ r2ρ

(r1 ∩t r2)ρ = r1ρ ∩ r2ρ

(r +t c)ρ = rρ + c

(r %t π)ρ = { p ∈ rρ | distribute(rρ, p) = πρ }
pρ = p

(r ++tc)ρ = rρ + c

Pρ = P

(r1[@t(σ, r2)])ρ = distribute(r1ρ, σρ).

The expression r %t π evaluates to a subset of r which contains
those points which by distribute are mapped to π. The expression
r[@t(σ, r)] evaluates to the place of the point σ according the
distribution given by distribute .

The type of a point is a pair (σ, r) where σ is a type-level
identity of the point and r is a region that contains the point.
The type of a region is a singleton type consisting of that region
itself. A dependently-typed function lam α : k.e has its argument
constrained by the kind k; its type is Πα : k.t.

The expression language contains syntax for creating and call-
ing functions, for creating, accessing, and updating arrays, for com-
puting with regions, for iterating over regions, for iterating over
all places, and for shifting the place of execution. The expression
e.reg returns the region of an array. The expression e++sc adds a
constant c to the point to which e evaluates. The expression e +s c
adds a constant to each of the points in the region to which e eval-
uates.

We need the set operators to work both on types, expressions,
and actual sets. In order to avoid confusion, we give each operator
on types the subscript t, on expressions the subscript s, and on sets
no subscript at all.

In the example programs earlier in the paper, we used the
syntactic sugar let x = e in { e′ } in order to represent
(λ•x.e′)e. We also used a few other constructs such as p+1 which
are not part of the core language but which could be added easily.
We will use true to denote the tautology ∅ ⊆t ∅.

Semantics. We specify the semantics of the core language using
small-step operational semantics (see page 6). We use H to range
over heaps:

H ∈ Label→ Point→ (Value× Place)

A heap maps labels to array representations. An array representa-
tion maps each point in the region of the array to its value and its
place. Both uses of→ above denote a space of partial functions. We
will use the notation (v, P ) for elements of (Value× Place), and
we will use the operators .1 and .2 to extract the first and second
element of a pair, respectively. We use D(H) to denote the domain
of a partial function H .

A state in the semantics is a pair (H, e). We say that (H, e) can
take a step at place P if we have H ′, e′ such that P ` (H, e)  
(H ′, e′) using the rules below. We say that (H, e) is stuck at place
P if e is not a value and (H, e) cannot take a step at place P . We
say that (H, e) can go wrong at place P if we have H ′, e′ such that
P ` (H, e) ∗ (H ′, e′) and (H ′, e′) is stuck at place P .

We assume that the programmer (externally to the program
text) provides a function default which maps a closed type t
to a value, for each type t used as an element type of an array
in the program. The function default must have the property
that Ψ; ϕ; Γ ` default(t) : t for a Ψ that contains suitable
definitions of the labels used in default(t), and for any ϕ and
Γ. The idea is that we will use default(t) as the initial value at all
points in an array with element type t. While we can easily define
examples of such a function default, we will not show a specific
one, simply because all we need to know about it is the property
Ψ; ϕ; Γ ` default(t) : t.

We also assume a list places of the places available during
the execution of the program. The only thing a program can do
with places is to iterate over the places using the forallplaces
construct.

In order to specify the execution order for the for loop construct,
Rule (29) uses a function order({c1, . . . , cn}) = 〈c1, . . . , cn〉,
where c1 < . . . < cn.

The following rules define a call-by-value semantics and are
mostly standard. The key rules (11) and (13) both have the side
condition that l ∈ D(H) and p ∈ D(H(l)) and P = H(l)(p).2.
The condition p ∈ D(H(l)) is the array-bounds check; p must be
in the region of the array. The condition P = H(l)(p).2 is the
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let init = lam•α : region.λ•a:int[α].
for (p in a.reg) {

at(a.reg[@p]) { a[p]=1 } }
in init<reg 0:9>(new int[0:9])
init: Πα : region. int[α] → int

let partialinit = lam•γ:place.λ•h:pl γ.
lam•α:region.λ•a:int[α].

at(h) { for (p in a.reg %s h) { a[p]=1 } }
in partialinit <P>(P)<reg 0:9>(new int[0:9])
partialinit: Πγ:place.pl γ

→ (Πα:region.int[α] → int)

let copy = lam•α:region.λ•a:int[α].λ•b:int[α].
forallplaces h { at(h) {

for (p in (a.reg % h)) {
a[p] = b[p] } } }

in copy<reg 0:7>(new int[0:7])(new int[0:7])
copy: Πα:region.int[α] → (int[α] → int)

let expand = lam•α:region.λ•a:int[α].
lam•β:region (α ⊆t β).λ•x:reg β.

let b = new int[x]
in { forallplaces h { at(h) {

for (p in a.reg ∩s (b.reg %s h)) {
b[p] = at (a.reg[@p]) { a[p] } }

} } ; b }
in expand<reg 3:7>(new int[3:7])

<reg 0:10>(int[0:10])
expand: Πα:region.int[α]

→ (Πβ:region(α ⊆t β).reg β → int[β])

let shiftleft = lam•α:region.λ•a:int[α].
let inner = (a.reg + 1) ∩s a.reg
in { for (p in inner) { at(a.reg[@p-1]) {

a[p-1] = at(a.reg[@p]) { a[p] } }
} }

in shiftleft<reg 3:7>(new int[3:7])
shiftleft: Πα:region.int[α] → int

let shift = lam•α:region.λ•a:int[α].
let inner = (a.reg + 1) ∩s a.reg
in { for (p in inner) {

at(a.reg[@p+1]) {
a[p+1] = at(a.reg[@p]) { a[p] } }

} }
in ...

Figure 1. Example programs

place check; the place of execution must equal the place of the data
to be accessed. If the side condition is not met, then the semantics
will get stuck.

Notice that in Rule (19) we evaluate the syntactic expression
R1 ∪s R2 to the value R1 ∪R2.

Rule (29) unrolls the for loop and replaces the loop variable
with an appropriate point in each copy of the body of the loop.
Similarly Rule (30) unrolls the loop and replaces the loop variables
with an appropriate place in each copy of the body of the loop.
The unrolling is specified the way it is to enable the type checker

(Kind) k ::= point ϕ | region ϕ | place
(Type) t ::= int | pt (σ, r) | reg r | t[r]

| pl π | t → t | Πα : k.t
(Region) r ::= α | R | r ∪t r | r ∩t r

| r +t c | r %t π
(Point) σ ::= α | p | σ ++tc
(Place) π ::= α | P | r[@t(σ, r)] | unknown
(Constraint) ϕ ::= r ⊆t r | σ ∈t r | ϕ ∧ ϕ

(Value) v ::= c | p | R | l | P | λx : t.e
| lam α : k.e

(ValOrVar) y ::= v | x
(Expression) e ::= y | e1 e2 | e1<e2>

| λ•x : t.e | lam•α : k.e
| new t[e] | y1[y2] | y1[y2] = e
| e.reg | y1[@sy2]
| e1 ∪s e2 | e1 ∩s e2 | e +s c
| e ++sc | y1 %s y2

| for (x in e1){e2}
| forallplaces x{e}
| e1; e2 | at(y){e}

(Dep Val) w ::= p | R | P

Figure 2. Syntax of the core language.

to assign a type variable as first/only part of the type of the loop
variable and at the same time achieve that each iteration is executed
using the exact value bound to the loop variable.

Rule (7) and Rule (8) express that the body of λ• or lam• must
execute at the place of the definition. Effectively, each of those rules
creates a closure consisting of the function and the current place of
execution.

Satisfiability and Entailment. We use ρ to range over map-
pings from variables to sets. We say that ρ satisfies a constraint ϕ
if for all r1 ⊆t r2 in ϕ we have r1ρ ⊆ r2ρ and for all σ ∈t r in ϕ
we have σρ ∈ rρ. We say that a constraint ϕ is satisfiable if there
exists a satisfying assignment for ϕ.

We say that a constraint is valid if all variable assignments
satisfy the constraint. We say that ϕ entails ϕ′ if the implication
ϕ ⇒ ϕ′ is valid, and write ϕ |= ϕ′.

The satisfiability problem is this: given a constraint ϕ, is ϕ satis-
fiable? The entailment problem is as follows: given two constraints
ϕ, ϕ′, is ϕ |= ϕ′ true?

For our notion of constraints, the satisfiability problem is NP-
complete. To understand this, first note that already for the fragment
of region constraints with just variables, constants, union, and inter-
section, the satisfiability problem is NP-hard [1]. Second, to show
that the satisfiability problem is in NP we must first argue that we
only need to consider sets of polynomial size; we can then guess
a satisfying assignment and check that assignment in polynomial
time. Let us first flatten the constraint by, for each subexpression e,
replacing e with a variable α and adding an extra conjunct α = e.
In the flattened constraint, let n be the number of variables in the
constraint, let u be the largest integer mentioned in any region con-
stant in the constraint, and let k be the largest c used in any e+s +s

or e++s++s expression in the constraint. In any solution, an upper
bound on the largest integer is n × u × k. To demonstrate, notice
that either the constraint system is not satisfiable or else the biggest
integer we can construct is by a sequence of +k operations, each
involving a different variable. Similarly, we have a lower bound on
the smallest integer used in any solution. So, for each region vari-
able can guess a set of polynomial size, for each point variable we
can guess a point in a set of polynomial size, and for each place
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P ` (H, e1) (H ′, e′1)

P ` (H, e1 e2) (H ′, e′1 e2)
(1)

P ` (H, e2) (H ′, e′2)

P ` (H, v e2) (H ′, v e′2)
(2)

P ` (H, (λx : t.e)v) (H, e[x := v]) (3)
P ` (H, e1) (H ′, e′1)

P ` (H, e1<e2>) (H ′, e′1<e2>)
(4)

P ` (H, e2) (H ′, e′2)

P ` (H, v<e2>) (H ′, v<e′2>)
(5)

P ` (H, (lam α : k.e)<w>) (H, e[α := w]) (6)
P ` (H, λ•x : t.e) (H, λx : t.at(P){e}) (7)

P ` (H, lam•α : k.e) (H, lam α : k.at(P){e}) (8)
P ` (H, e) (H ′, e′)

P ` (H, new t[e]) (H ′, new t[e′])
(9)

P ` (H, new t[R]) (H[l 7→ λp ∈ R.(default(t), distribute(R, p))], l) where l is fresh (10)
P ` (H, l[p]) (H, H(l)(p).1) if l ∈ D(H) and p ∈ D(H(l)) and P = H(l)(p).2 (11)

P ` (H, e) (H ′, e′)

P ` (H, v1[v2] = e) (H ′, v1[v2] = e′)
(12)

P ` (H, l[p] = v) (H[l 7→ (H(l))[p 7→ (v, H(l)(p).2)]], v) if l ∈ D(H) and p ∈ D(H(l)) and P = H(l)(p).2 (13)

P ` (H, e) (H ′, e′)

P ` (H, e.reg) (H ′, e′.reg)
(14)

P ` (H, l.reg) (H,D(H(l))) if l ∈ D(H) (15)
P ` (H, l[@sp]) (H, H(l)(p).2) if l ∈ D(H) and p ∈ D(H(l)) (16)

P ` (H, e1) (H ′, e′1)

P ` (H, e1 ∪s e2) (H ′, e′1 ∪s e2)
(17)

P ` (H, e2) (H ′, e′2)

P ` (H, v ∪s e2) (H ′, v ∪s e′2)
(18)

P ` (H, R1 ∪s R2) (H, R1 ∪R2) (19)
P ` (H, e1) (H ′, e′1)

P ` (H, e1 ∩s e2) (H ′, e′1 ∩s e2)
(20)

P ` (H, e2) (H ′, e′2)

P ` (H, v ∩s e2) (H ′, v ∩s e′2)
(21)

P ` (H, R1 ∩s R2) (H, R1 ∩R2) (22)
P ` (H, e) (H ′, e′)

P ` (H, e +s c) (H ′, e′ +s c)
(23)

P ` (H, d +s c) (H, d + c) (24)
P ` (H, e) (H ′, e′)

P ` (H, e ++sc) (H ′, e′ ++sc)
(25)

P ` (H, p ++sc) (H, p + c) (26)
P ` (H, R %s P ′]) (H, R′) where R′ = { p ∈ R | distribute(R, p) = P ′ } (27)

P ` (H, e1) (H ′, e′1)

P ` (H, for (x in e1){e2}) (H ′, for (x in e′1){e2})
(28)

P ` (H, for (x in R){e}) (H, ((lam•α : point(α ∈t R).λ•x : (α, R).e)<c1>)c1; . . . ;
((lam•α : point(α ∈t R).λ•x : (α, R).e)<cn>)cn; 0) where order(R) = 〈c1, . . . , cn〉 (29)

P ` (H, forallplaces x{e}) (H, ((lam•α : place.λ•x : pl α.e)<P1>)P1; . . . ;
((lam•α : place.λ•x : pl α.e)<Pn>)Pn; 0) where places = 〈P1, . . . , Pn〉 (30)

P ` (H, e1) (H ′, e′1)

P ` (H, e1; e2) (H, e′1; e2)
(31)

P ` (H, v; e) (H, e) (32)
P ′ ` (H, e) (H ′, e′)

P ` (H, at(P ′){e}) (H, at(P ′){e′}) (33)

P ` (H, at(P ′){v}) (H, v) (34)
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variable we can guess a place in the list places. We can then check
that assignment in polynomial time.

For our notion of set constraints, the entailment problem is co-
NP-complete. To see that, first note that ϕ |= ϕ′ if and only if ϕ ∧
¬ϕ′ is unsatisfiable. For the fragment of cases where ϕ′ = false
we have that the entailment problem is the question of given ϕ, is
ϕ unsatisfiable, which is co-NP-complete. So, the full entailment
problem is co-NP-hard. Second, note that the entailment problem
is in co-NP; we can easily collect the set of all points mentioned in
the constraints, then guess an assignment, and finally check that the
assignment is not a satisfying assignment, in polynomial time.

Heap Types. We use Ψ to range over maps from array labels
to types of the form t[R]. We use the judgment |= H : Ψ which
holds if (1) D(H) = D(Ψ) and (2) if for each l ∈ D(H) we let
t[R] = Ψ(l), then D(H(l)) = R and for each p ∈ D(H(l)) we
have (i) Ψ; ϕ; Γ; here ` H(l)(p).1 : t and (ii) distribute(R, p) =
H(l)(p).2. We write Ψ C Ψ′ if D(Ψ) ⊆ D(Ψ′) and Ψ, Ψ′ agree
on their common domain.

Type Equivalence. We define type equivalence via the judg-
ments ϕ ` t ≡ t′, ϕ ` r ≡ r′, ϕ ` σ ≡ σ′, and ϕ ` π ≡ π′,
which hold if they can be derived using the rules in Figure 3 The
first three rules use a meta-variable q which ranges over t, r, σ, π.

The complexity of deciding type equivalence is dominated by
the time to check constraint entailment. Given that all other aspects
of type checking for our core language are in polynomial time, we
conclude that type checking is co-NP-complete. In a later section,
our experimental results show that the problem instances for en-
tailment are small for our benchmarks and thus type checking is
fast.

Type Rules. A type judgment is of the form Ψ; ϕ; Γ; here `
e : t, which holds if it is derivable using the following rules. The
type here is the type of the current place of execution. Notice that
the use of entailment is a condition in rules such as Rule (65).
Rule (78) is a key type rule which says that to type check a loop
for (x in e1){e2}, we check that e1 has a type reg r, and then
assign x the type pt (α, r) while checking e2, where α is fresh.
The type rules for array lookup, Rule (69), and array update, Rule
(70), ensure that (1) the point is in bounds by requiring that the type
of the point is a region which is a subset of the region of the array,
and (2) the place of execution equals the location of the array data
by requiring that the type here is equivalent to the type of the place
of the data.

Rules for extracting constraints:

constraint(point ϕ) = ϕ (83)
constraint(region ϕ) = ϕ (84)
constraint(place) = true (85)

We use W to range over regions r and variables α of kind
place.

Rules for kind checking:

` pt (σ, r) : point ϕB σ (86)
` reg r : region ϕB r (87)
` pl π : place B π. (88)

5. Experimental Results
We have implemented our type system in XTC-X10, a pro-
totype implementation of an X10 variant. The prototype ex-
tends X10 v0.4 with parametric types (generics), first-order func-
tions and an extended form of the dependent type system pre-
sented in this paper. The implementation is publically available
at http://grothoff.org/christian/xtc/x10/. Our imple-
mentation can type check and execute the benchmark programs

ϕ ` q ≡ q (35)
ϕ ` q1 ≡ q2

ϕ ` q2 ≡ q1
(36)

ϕ ` q1 ≡ q2 ϕ ` q2 ≡ q3

ϕ ` q1 ≡ q3
(37)

ϕ ` σ ≡ σ′ ϕ ` r ≡ r′

ϕ ` pt (σ, r) ≡ pt (σ′, r′)
(38)

ϕ ` r ≡ r′

ϕ ` reg r ≡ reg r′
(39)

ϕ ` π ≡ π′

ϕ ` pl π ≡ pl π′ (40)

ϕ ` t1 ≡ t′1 ϕ ` t2 ≡ t′2
ϕ ` t1 → t2 ≡ t′1 → t2

(41)

ϕ ` t ≡ t′

ϕ ` Πα : k.t ≡ Πα : k.t′
(42)

ϕ ` R1 ∪t R2 ≡ R1 ∪R2 (43)
ϕ ` r1 ≡ r′1 ϕ ` r2 ≡ r′2

ϕ ` r1 ∪t r2 ≡ r′1 ∪t r′2
(44)

ϕ ` R1 ∩t R2 ≡ R1 ∩R2 (45)
ϕ ` r1 ≡ r′1 ϕ ` r2 ≡ r′2

ϕ ` r1 ∩t r2 ≡ r′1 ∩t r′2
(46)

ϕ ` R +t c ≡ R + c (47)
ϕ ` r ≡ r′

ϕ ` r +t c ≡ r′ +t c
(48)

ϕ ` R %t P ≡ { p ∈ R | distribute(R, p) = P } (49)
ϕ ` r ≡ r′ ϕ ` π ≡ π′

ϕ ` r %t π ≡ r′ %t π′ (50)

ϕ ` p ++tc ≡ p + c (51)
ϕ ` σ ≡ σ′

ϕ ` σ ++tc ≡ σ′ ++tc
(52)

ϕ |= p ∈t r ϕ |= r ⊆t R

ϕ ` R[@t(p, r)] ≡ distribute(R, p)
(53)

ϕ ` r1 ≡ r′1 ϕ ` σ ≡ σ′ ϕ ` r2 ≡ r′2
ϕ ` r1[@t(σ, r2)] ≡ r′1[@t(σ′, r′2)]

(54)

ϕ |= σ ∈t r %t π

ϕ ` r[@t(σ, r %t π)] = π
(55)

Figure 3. Type equivalence rules.

listed below along with the five type-safe example programs from
Section 3. We adapted the benchmarks from code written in X10,
mainly by making the code use regions. We collected our measure-
ments by instrumenting the implementation of our X10 variant.

5.1 The ArrayBench Benchmark Suite
The ArrayBench Benchmark Suite consists of seven benchmark
programs. This section briefly explains the functionality of each
benchmark, the style of parallelism (if any) and the overall amount
of communication.

The X10 language model features two levels of parallelism:
parallel execution on different places and parallel execution at the
same place. Consequently, for each benchmark program we will
give three figures: PP, SP and SW. The figure PP is the amount
of place-parallelism (for a maximum of P places available) and
describes how many places compute in parallel. A value of 1
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Ψ; ϕ; Γ; here ` c : int (56)
Ψ; ϕ; Γ; here ` p : pt (p, R) (where p ∈ R) (57)

Ψ; ϕ; Γ; here ` R : reg R (58)
Ψ; ϕ; Γ; here ` l : Ψ(l) (59)
Ψ; ϕ; Γ; here ` P : pl P (60)

Ψ; ϕ; Γ[x : t1]; unknown ` e : t2
Ψ; ϕ; Γ; here ` λx : t1.e : t1 → t2

(61)

Ψ; ϕ ∧ constraint(k); Γ; unknown ` e : t

Ψ; ϕ; Γ; here ` lam α : k.e : Πα : k.t
(62)

Ψ; ϕ; Γ; here ` x : Γ(x) (63)
Ψ; ϕ; Γ; here ` e1 : t1 → t2 Ψ; ϕ; Γ; here ` e2 : t1

Ψ; ϕ; Γ; here ` e1 e2 : t2
(64)

Ψ; ϕ; Γ; here ` e1 : Πα : k.t1 Ψ; ϕ; Γ; here ` e2 : t2 ` t2 : k B W ϕ |= (constraint(k))[α := W ]

Ψ; ϕ; Γ; here ` e1<e2> : t1[α := W ]
(65)

Ψ; ϕ; Γ[x : t1]; here ` e : t2 here 6= unknown

Ψ; ϕ; Γ; here ` λ•x : t1.e : t1 → t2
(66)

Ψ; ϕ ∧ constraint(k); Γ; here ` e : t here 6= unknown

Ψ; ϕ; Γ; here ` lam•α : k.e : Πα : k.t
(67)

Ψ; ϕ; Γ; here ` e : reg r

Ψ; ϕ; Γ; here ` new t[e] : t[r]
(68)

Ψ; ϕ; Γ; here ` y1 : t[r1] Ψ; ϕ; Γ; here ` y2 : pt (σ, r2)
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2 ϕ ` here ≡ r1[@t(σ, r2)]

Ψ; ϕ; Γ; here ` y1[y2] : t
(69)

Ψ; ϕ; Γ; here ` y1 : t[r1] Ψ; ϕ; Γ; here ` y2 : pt (σ, r2) ϕ |= r2 ⊆t r1

ϕ |= σ ∈t r2 ϕ ` here ≡ r1[@t(σ, r2)] Ψ; ϕ; Γ; here ` e : t

Ψ; ϕ; Γ; here ` y1[y2] = e : t
(70)

Ψ; ϕ; Γ; here ` e : t[r]

Ψ; ϕ; Γ; here ` e.reg : reg r
(71)

Ψ; ϕ; Γ; here ` y1 : t[r1] Ψ; ϕ; Γ; here ` y2 : pt (σ, r2) ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2

Ψ; ϕ; Γ; here ` y1[@sy2] : pl r1[@t(σ, r2)]
(72)

Ψ; ϕ; Γ; here ` e1 : reg r1 Ψ; ϕ; Γ; here ` e2 : reg r2

Ψ; ϕ; Γ; here ` e1 ∪s e2 : reg r1 ∪t r2
(73)

Ψ; ϕ; Γ; here ` e1 : reg r1 Ψ; ϕ; Γ; here ` e2 : reg r2

Ψ; ϕ; Γ; here ` e1 ∩s e2 : reg r1 ∩t r2
(74)

Ψ; ϕ; Γ; here ` e : reg r

Ψ; ϕ; Γ; here ` e +s c : reg r +t c
(75)

Ψ; ϕ; Γ; here ` e : pt (σ, r)

Ψ; ϕ; Γ; here ` e ++sc : pt (σ ++tc, r +t c)
(76)

Ψ; ϕ; Γ; here ` y1 : reg r Ψ; ϕ; Γ; here ` y2 : pl π

Ψ; ϕ; Γ; here ` y1 %s y2 : reg r %t π
(77)

Ψ; ϕ; Γ; here ` e1 : reg r Ψ; ϕ ∧ (α ∈t r); Γ[x : pt (α, r)]; here ` e2 : t here 6= unknown

Ψ; ϕ; Γ; here ` for (x in e1){e2} : int
(where α is fresh) (78)

Ψ; ϕ; Γ[x : pl α]; here ` e : t here 6= unknown

Ψ; ϕ; Γ; here ` forallplaces x{e} : int
(where α is fresh) (79)

Ψ; ϕ; Γ; here ` e1 : t1 Ψ; ϕ; Γ; here ` e2 : t2
Ψ; ϕ; Γ; here ` e1; e2 : t2

(80)

Ψ; ϕ; Γ; here ` y : pl π Ψ; ϕ; Γ; π ` e : t

Ψ; ϕ; Γ; here ` at(y){e} : t
(81)

Ψ; ϕ; Γ; here ` e : t ϕ ` t ≡ t′

Ψ; ϕ; Γ; here ` e : t′
(82)
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name LOC # IR PP SP SW OM OS

Series 87 2018 P 1 n/P 0 0
KMP 74 2407 1 1 m + n 0 0
Reverse 96 3659 P 1 n/P P 2 n
Crypt 250 5759 1 P n/P 0 0
Crypt-2 220 5873 1 P n/P 0 0
SOR 70 1702 1 n n 0 0
DSOR 68 1742 P n/P n n n2

Table 3. Size (in lines of code (LOC) and number of nodes in the
intermediate representation (# IR) of the compiler) and classifica-
tion of parallelism for the benchmarks.

indicates that a computation is not distributed, a value of P is used
for a computation that uses all available places in parallel. The
figure SP is the amount of single-place parallelism, in other words,
how many activities are running in parallel at the same place. In
particular, these places will be able to access the same share of the
global partitioned address space. A value of 1 indicates that there
is only one activity per place involved in the computation. Finally,
the figure SW is the amount of sequential work that each parallel
activity performs. The product of PP, SP and SW gives the total
amount of work required for the benchmark (for example, O(n2)
for SOR and DSOR).

For communication, we give two figures. OM is the number of
messages exchanged. OS is the sum of the size of these messages.
The figures for communication do not include initial distribution of
the computation and data (which for all parallel benchmarks can be
done with OM (P ) messages transmitting OS(n/P ) data with P
being the number of places).

Table 3 gives some fundamental benchmark statistics. The Ar-
rayBench benchmarks implement the following algorithms:

Series: Calculates the first n fourier coefficients of the function
(x + 1)x defined on the interval [0, 2]. Uses one dependent cast in
source code.

KMP: Sequential implementation of Knuth-Morris-Pratt string
searching algorithm (with pattern of size m and string of size n).
Uses six dependent casts in source code.

Reverse: Given an array distributed across places, reverses the
order of the elements. Uses two dependent casts in source code.

Crypt: Implements the IDEA symmetric blockcipher (encrypt
and decrypt) using integer increment operations to iterate over a
stream. Uses 9 dependent casts in source code.

Crypt: Implements the IDEA symmetric blockcipher (encrypt
and decrypt) using region iterators to iterate over a stream. Uses 3
dependent casts in source code.

SOR: Given a 2D array, performs successive over-relaxation [24]
of an n× n matrix. Uses two dependent casts in source code.

DSOR: Given a 2D array, performs distributed successive over-
relaxation of an n× n matrix. Uses no casts.

5.2 Region and Place Casts in the Benchmarks
The region casts and place casts in the benchmarks roughly fall into
three categories:

1. Required casts due to the fact that the type-checker is flow in-
sensitive. The classical Java equivalent for this kind of type
cast is of the form if (a instanceof B) B b = (B) a;
. Here, the cast itself is always guarded by an dominating
branch that yields an assertion that the cast will succeed. These
casts should be considered to be free at runtime since a rea-
sonable compiler should be able to completely eliminate the
check. They could be avoided entirely if the compiler was flow-
sensitive to begin with; however, such a choice is likely to re-

sult in problems with respect to programmers’ understanding of
overloading resolution. In terms of language design, we believe
it is better to require the programmer to put in explicit casts
even if the control-flow already yields equivalent assertions.

2. Casts that are used to cover certain corner cases that could be
avoided (but at the expense of using significantly more com-
plex type constructions). For example, a function may operate
on arrays of arbitrary size as long as they are not empty. Such
a corner case might be covered by requiring the programmer to
supply an additional point and have the array satisfy the condi-
tion that it must contain this point and only points larger than
it. A programmer might choose to instead obtain the minimum
point of the array using the build-in min operator and use a cast
(not-null) to establish that the point exists. Our design allows
the programmer to decide that the simplicity of a cast might be
a better choice than a complex type construction. Typically, the
cost of these casts for corner cases is minimal – programmers
are likely to use them outside of loops, and often the particu-
lar checks themselves are also rather inexpensive. The reason
for this is that if the cast is in a critical section of the code, the
programmer has the option of using more elaborate types.

3. Casts used to produce necesary loop invariants. Some algo-
rithms use loops which make it impossible for the type-system
to establish the loop invariants necessary for checking the loop
or code depending on the result of the computation performed
by the loop. In these cases, the programmers must add casts to
produce the necessary invariants. Naturally, the compiler may
still be able to use flow information to reduce the cost of these
casts; however, eliminating the check completely would require
a theorem-prover that is stronger than what our type-system can
offer.

5.3 Example
For example, function overlap computes the partial match table
(or failure function) of the Knuth-Morris-Pratt string searching
algorithm [18]. The syntax is similar to Java and C++. ValueArray
is an immutable array, which means that accesses are not required
to be local – only in-bounds. The language uses “.” for the type
of a local variable that the compiler is supposed to infer from the
right hand side of the assignment. The type annotation <#1> adds
the requirement that the respective point, region or array is one-
dimensional. The type annotation <:r> specifies that the respective
point must be contained in the region r.

Array<point<#1>> overlap(int m,
ValueArray<int:([0:m-1])#1> pat) {

if (m <= 0)
throw new Exception("Empty pattern!");

. overlap = new Array<point<#1>>([0:m], 0p);
overlap[(point<:([0:m])>)0p] = -1p; // CAST #1
for (p : [1:m]) {
. prev = p - 1p;
overlap[p] = overlap[prev] + 1p;
while ( (overlap[p] > 0p) &&

(pat[prev] !=
pat[(point<:pat.reg>)

(overlap[p]-1p)]) ) // CAST #2
overlap[p] = 1p + overlap

[(point<:pat.reg>)
(overlap[p]-1p)]; // CAST #3

}
}
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name entailment checks dynamic dependent casts
total max. without types with types

number size S L S L
Series 7324 24 12 23 2 2
KMP 11705 42 150 618 124 496
Reverse 48138 46 114 240 12 48
Crypt 24898 24 2684 9980 2591 9887
Crypt-2 65316 31 2684 9980 15 15
SOR 62488 95 192 1200 2 2
DSOR 105374 115 192 1200 0 0

Table 4. Numbers of dynamic checks required for the benchmarks.

Cast #1 (identified by comments in the example) in overlap
falls into both category 1 and 2. The fact that m was checked to
be positive in the first line of the function establishes that 0p is in
the (now non-empty) interval [0 : m]. However, because the type
checker is flow-insensitive, a cast is needed. The programmer might
have chosen to declare m to be strictly positive – a minimal and sane
restriction of the API – and avoided both the cast and the sanity
check in the first line. Capturing such corner cases with types is
often possible, but programmers are likely to use such ”dirty” casts
wherever they fail to find appropriate types.

Cast #2 highlights the problem that the type-system may not
always be able to establish proper loop invariants (category 3).
For the points in the overlap array, the type-system does verify
that all points are one-dimensional. However, it cannot establish
a loop invariant that would show that the assignment of the form
overlap[p] = overlap[q] + 1p never produces points with a
value larger than m+1. Cast #3 is simply repeating the same cast as
cast #2 and could thus be considered falling into both categories 1
and 3.

5.4 Measurements and Assessment
Table 4 table shows the number of dynamic checks required for the
various benchmarks. We ran each benchmark on two input sizes
(marked as “S” for small input, and as “L” for large input).

Using the classification scheme described earlier, the majority
of the static type casts required for the ArrayBench suite falls into
the category (3), followed by casts in category (1). Casts in category
(1) are usually obvious to the programmer and have no runtime
overhead. Determining that a cast falls into category (2) or (3)
is less obvious – the reason for this is that there might be non-
obvious ways to change the structure or typing of the code which
would allow the cast to be eliminated. For ArrayBench, there is on
average one such cast in 50 lines of code. Because these casts are
infrequent, the effort required from the programmer to investigate
possible restructuring of the code to eliminate such casts – should
they be in performance-critical sections of the code – is acceptable.

Using the types, the compiler will verify that all array accesses
are in bounds and local using a decision procedure that tries to de-
termine subset relationships between symbolic expressions. Note
that the XTC-X10 compiler allows overloading of methods based
on dependent typing, resulting in many more invocations of the de-
cision procedure than there are static array accesses in the code. The
heuristic used to determine subset relationships that is implemented
in our prototype has exponential complexity. However, the problem
sizes are relatively small (up to 115 nodes in the symbolic expres-
sion tree for ArrayBench). We expect this to continue to be true
even for larger benchmarks than the ones studied since type check-
ing can be done per method, and individual methods are unlikely to
become extremely large. For the size of the expressions studied in
our experiments, the execution time of our heuristic is so fast that it

cannot be properly measured, especially given that the implemen-
tation is currently in Java where noise from the garbage collector
and JIT compiler interfer with measurements on that scale. The to-
tal compile time of the ArrayBench benchmarks, including parsing
and compilation of 3.000 lines of core X10 runtime libraries, is
about 5s on a modern machine for a cold run of the JVM.

Our prototype does not allow us to gather meaningful runtime
performance data for the generated code. XTC-X10 compiles the
benchmarks into SSA-form which is currently interpreted using a
multi-threaded interpreter which is written in Java and simulates a
distributed runtime. While this does not allow us to give specific
speed-up data, it is possible to count the number of bounds and
place checks that a language without region types would have to
perform and compare it to the number of dynamic region and place
casts (which are equivalent to those bounds and place checks) in the
typed language. We do not distinguish between bounds checks and
place checks because for array locality, any place check is effec-
tively a bounds check for place-adjusted bounds. Consequently, for
some particular checks, the distinction would often not be possible.

As expected, the typed language always outperforms the un-
typed language in terms of the total number of dynamic checks
required. For some benchmarks (KMP, Crypt), the reduction that
can be achieved is rather small – here, most accesses had to be
converted into casts of category (3). For other benchmarks, only
a handful of casts remain, and these are often in code that is run
only once. This is illustrated by running the benchmarks with two
different input sizes. For Series, Crypt2, SOR and DSOR, the total
number of dynamic checks does not change if the problem size is
increased. The reason for this is that the casts here deal with corner
cases, such as initialization. Note that the particular problem sizes
chosen for the benchmarks are tiny – for example, the smaller ver-
sion of Crypt uses a stream of 128 bytes, SOR uses a 6x6 array, and
Series computes 3 Fourier coefficients. For larger benchmark sizes,
the reduction in the number of dynamic checks will clearly be more
dramatic, as shown by the respective second dynamic values.

The Crypt-2 benchmark deserves some further discussion. The
difference between Crypt and Crypt-2 is that most casts were elim-
inated by replacing the integer-arithmetic that was used to walk
over the stream (i++) with iterators over regions. These iterators
are equivalent to the generators of the ordered point list in the op-
erational semantics of the for statement in the core language. In
particular, they are guaranteed to yield only points that are inside
of the region (unlike the i++ statement which, if used in a loop,
does not have an obvious bound). Permitting the programmer to
use the (region-typed) iterators directly instead of a for loop al-
lows preservation of the original structure of the code. Iterators do
have the disadvantage that there is an implicit check – as part of the
iterator logic, the iterator verifies that a next element actually exists.
This check is a range check that could be seen as a bounds check;
however, the check of the iterator is also similar to the bounds check
performed by any for loop. The numbers given for Crypt-2 do not
include the test performed by the iterator, just as the numbers in
all benchmarks do not include tests performed for the execution of
for loops.

6. Future Work and Conclusion
Out-of-bounds array accesses remain a leading cause of security
problems and, according to the National Vulnerability Database [21],
buffer overflows are responsible for 233 out of 863 CERT technical
alerts or vulnerability notes in the years 2004 and 2005. Our type
system can guarantee that no out-of-bounds array accesses will
happen, thereby also obviating the need for doing dynamic checks
of such accesses.
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A. Proof of Type Soundness
LEMMA 1. (Substitution)
If Ψ; ϕ; Γ[x : t1]; here ` e : t2 and Ψ; ϕ; Γ; here ` v : t1, then
Ψ; ϕ; Γ; here ` e[x := v] : t2.

Proof. By induction on the structure of the derivation of
Ψ; ϕ; Γ[x : t1]; here ` e : t2. �

LEMMA 2. (Dependent Substitution)
If Ψ; ϕ; Γ; here ` e : t, then Ψ; ϕ[α := W ]; Γ; here[α := W ] `
e[α := W ] : t[α := W ].

Proof. By induction on the structure of the derivation of
Ψ; ϕ; Γ; here ` e : t. �

LEMMA 3. (Weakening)
If Ψ; ϕ; Γ; here ` e : t and ϕ′ |= ϕ, then Ψ; ϕ′; Γ; here ` e : t.

Proof. By induction on the structure of the derivation of
Ψ; ϕ; Γ; here ` e : t. �

LEMMA 4. (Indifference)
If Ψ; ϕ; Γ; here ` v : t, then Ψ; ϕ; Γ; here ′ ` v : t.

Proof. Immediate from the seven type rules for values. �

LEMMA 5. (Canonical Forms)

• If Ψ; ϕ; Γ; here ` v : int, then v is of the form c.
• If Ψ; ϕ; Γ; here ` v : pt (σ, r), then v is of the form p.
• If Ψ; ϕ; Γ; here ` v : reg r, then v is of the form R.
• If Ψ; ϕ; Γ; here ` v : t[r], then v is of the form l, and

l ∈ D(Ψ).
• If Ψ; ϕ; Γ; here ` v : pl α, then v is of the form P .
• If Ψ; ϕ; Γ; here ` v : t1 → t2, then v is of the form λx : t.e.
• If Ψ; ϕ; Γ; here ` v : Πα : k.t, then v is of the form
lam α : k.e.

Proof. From an examination of the type rules we have that each
form of type is the type of exactly one form of value, namely the
one given in the lemma. �

THEOREM 1. (Type Preservation)
For a place P , let Q ∈ {P, unknown}. If Ψ; ϕ; Γ; Q ` e : t,
|= H : Ψ, and P ` (H, e)  (H ′, e′), then we have Ψ′, t′ such
that ΨCΨ′, Ψ′; ϕ; Γ; Q ` e′ : t′, |= H ′ : Ψ′, and ϕ ` t ≡ t′.

Proof. We proceed by induction on the structure of the derivation
of Ψ; ϕ; Γ; Q ` e : t. There are now twenty-five subcases
depending on which one of the type rules was the last one used
in the derivation of Ψ; ϕ; Γ; Q ` e : t.

In eight of those cases, e is a either a value or a variable x, and
hence (H, e) cannot take a step. We will now consider each of the
remaining seventeen cases.

• Rule (64): the derivation is of the form:
Ψ; ϕ; Γ; Q ` e1 : t1 → t2 Ψ; ϕ; Γ; Q ` e2 : t1

Ψ; ϕ; Γ; Q ` e1 e2 : t2

We now have three subcases depending on which rule was used
to make (H, e1 e2) take a step.
If Rule (1), that is,

P ` (H, e1) (H ′, e′1)

P ` (H, e1 e2) (H ′, e′1 e2)

was used to take a step, then we have from the induction hypoth-
esis that we have Ψ′ such that ΨCΨ′, Ψ′; ϕ; Γ; Q ` e′1 : t1 →
t2, and |= H ′ : Ψ′. From ΨCΨ′ and Ψ; ϕ; Γ; Q ` e2 : t1 we
have Ψ′; ϕ; Γ; Q ` e2 : t1. From Ψ′; ϕ; Γ; Q ` e′1 : t1 → t2
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and Ψ′; ϕ; Γ; Q ` e2 : t1, and Rule (64), we conclude
Ψ′; ϕ; Γ; Q ` e′1 e2 : t2.
If Rule (2), that is,

P ` (H, e2) (H ′, e′2)

P ` (H, v e2) (H ′, v e′2)

was used to take a step, then we have from the induction hypoth-
esis that we have Ψ′ such that Ψ C Ψ′, Ψ′; ϕ; Γ; Q ` e′2 : t1,
and |= H ′ : Ψ′. From ΨCΨ′ and Ψ; ϕ; Γ; Q ` e1 : t1 → t2
we have Ψ′; ϕ; Γ; Q ` e1 : t1 → t2. From Ψ′; ϕ; Γ; Q ` e1 :
t1 → t2 and Ψ′; ϕ; Γ; Q ` e′2 : t1, and Rule (64), we conclude
Ψ′; ϕ; Γ; Q ` e1 e′2 : t2.
If Rule (3), that is,

P ` (H, (λx : t.e)v) (H, e[x := v])

was used to take a step, then we have from Rule (61) that
Ψ; ϕ; Γ[x : t1]; Q ` e : t2, so we pick Ψ′ = Ψ and we
have from Lemma 1 that Ψ; ϕ; Γ; Q ` e[x := v] : t2.

• Rule (65): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e1 : Πα : k.t1 Ψ; ϕ; Γ; Q ` e2 : t2
` t2 : k B W ϕ |= (constraint(k))[α := W ]

Ψ; ϕ; Γ; Q ` e1<e2> : t1[α := W ]

We now have three subcases depending on which rule was used
to make (H, e1<e2>) take a step.
If Rule (4) or Rule (5) was used to take a step, then the proof is
similar to that given above for the case of function application
(Rule (1)); we omit the details.
If Rule (6), that is,

P ` (H, (lam α : k.e)<w>) (H, e[α := w])

was used to take a step, then we have from Rule (62) that
Ψ; ϕ ∧ constraint(k); Γ; unknown ` e : t. We pick Ψ′ = Ψ.
We pick α such that α does not occur free in ϕ. Let ϕ′ =
constraint(k). From Ψ; ϕ ∧ ϕ′; Γ; Q ` e : t and Lemma 2, we
have Ψ; (ϕ ∧ ϕ′)[α := W ]; Γ; Q ` e[α := W ] : t[α := W ],
which is the same as Ψ; ϕ ∧ (ϕ′[α := W ]); Γ; Q ` e[α :=
W ] : t[α := W ]. From Ψ; ϕ ∧ (ϕ′[α := W ]); Γ; Q ` e[α :=
W ] : t[α := W ], ϕ |= ϕ′[α := W ], and Lemma 3, we have
Ψ; ϕ; Γ; Q ` e[α := W ] : t[α := W ].

• Rule (66): the derivation is of the form:

Ψ; ϕ; Γ[x : t1]; Q ` e : t2 Q 6= unknown

Ψ; ϕ; Γ; Q ` λ•x : t1.e : t1 → t2

If Rule (7), that is,

P ` (H, λ•x : t1.e) (H, λx : t1.at(P){e})

was used to take a step, then from Q ∈ {P, unknown} and
Q 6= unknown , we have Q = P . From Rule (60) we have
Ψ; ϕ; Γ[x : t1]; unknown ` P : pl P . From Ψ; ϕ; Γ[x :
t1]; unknown ` P : pl P and Ψ; ϕ; Γ[x : t1]; P ` e : t2 and
Rule (81), we have Ψ; ϕ; Γ[x : t1]; unknown ` at(P){e} :
t2. From Ψ; ϕ; Γ[x : t1]; unknown ` at(P){e} : t2 and
Rule (61) we have Ψ; ϕ; Γ; Q ` λx : t1.at(P){e} : t1 → t2.

• Rule (67): the derivation is of the form:

Ψ; ϕ ∧ constraint(k); Γ; here ` e : t here 6= unknown

Ψ; ϕ; Γ; here ` lam•α : k.e : Πα : k.t

If Rule (8), that is,

P ` (H, lam•α : k.e) (H, lam α : k.at(P){e})

was used to take a step, then we can prove that Ψ; ϕ; Γ; here `
lam α : k.at(P){e} : Πα : k.t in a manner similar to the
previous case of Rule (66); we omit the details.

• Rule (68): the derivation is of the form:
Ψ; ϕ; Γ; Q ` e : reg r

Ψ; ϕ; Γ; Q ` new t[e] : t[r]

We now have two subcases depending on which rule was used
to make (H, new t[e]) take a step.
If Rule (9) was used to take a step, then the proof is similar to
that given above for the case of function application (Rule (1));
we omit the details.
If Rule (10), that is,

P ` (H, new t[R]) 

(H[l 7→ λp ∈ R.(default(t), distribute(R, p))], l)

where l is fresh

was used to take a step, then we have e = R, so from Rule (58)
we have r = R. We define Ψ′ to be an extension of Ψ[l 7→ t[R]]
such that Ψ C Ψ′ and Ψ′ contains suitable definitions for the
labels used in default(t); we omit the details. Let H ′ be an
extension of H[l 7→ λp ∈ R.(default(t), distribute(R, p))]
such that H ′ contains suitable definitions for the labels used
in default(t); we omit the details. From Rule (59) we have
Ψ′; ϕ; Γ; Q ` l : Ψ′(l). We finally need to show |= H ′ :
Ψ′. From the construction of Ψ′ and H ′ we have that they
extend the domains of Ψ and H , respectively, with the same
labels. From |= H : Ψ we have D(H) = D(Ψ), so we
conclude D(H ′) = D(Ψ′). Moreover, we have R = D(λp ∈
R.(default(t), distribute(R, p))) and we have Ψ′; ϕ; Γ; Q `
default(t) : t. Finally, for each p ∈ R we have H(l)(p).2 =
distribute(R, p).

• Rule (69): the derivation is of the form:

Ψ; ϕ; Γ; Q ` y1 : t[r1] Ψ; ϕ; Γ; Q ` y2 : pt (σ, r2)
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2 ϕ ` Q ≡ r1[@t(σ, r2)]

Ψ; ϕ; Γ; Q ` y1[y2] : t

If Rule (11), that is,

P ` (H, l[p]) (H, H(l)(p).1)
if l ∈ D(H) and p ∈ D(H(l)) and P = H(l)(p).2

was used to take a step, then we have y1 = l and y2 = p. From
Ψ; ϕ; Γ; Q ` l : t[r1] and Rule (59) we have that r1 = R and
Ψ(l) = t[R]. We pick Ψ′ = Ψ and from |= H : Ψ we have
Ψ; ϕ; Γ; Q ` H(l)(p).1 : t.

• Rule (70): the derivation is of the form:

Ψ; ϕ; Γ; Q ` y1 : t[r1] Ψ; ϕ; Γ; Q ` y2 : pt (σ, r2)
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2

ϕ ` Q ≡ r1[@t(σ, r2)] Ψ; ϕ; Γ; Q ` e : t

Ψ; ϕ; Γ; Q ` y1[y2] = e : t

We now have two subcases depending on which rule was used
to make (H, y1[y2] = e3) take a step.
If Rule (12) was used to take a step, then the proof is similar
to that given above for the case of function application and
Rule (1); we omit the details.
If Rule (13), that is,

P ` (H, l[p] = v) (H[l 7→ (H(l))[p 7→ (v, H(l)(p).2)]], v)
if l ∈ D(H) and p ∈ D(H(l)) and P = H(l)(p).2

was used to take a step, then we have y1 = l, y2 = p, e = v.
From Ψ; ϕ; Γ; Q ` l : t[r1] and Rule (59) we have that
r1 = R and Ψ(l) = t[R]. We have Ψ; ϕ; Γ; Q ` v : t so
we need to prove |= H[l 7→ (H(l))[p 7→ (v, H(l)(p).2)]] : Ψ.
From l ∈ D(H) we have D(H[l 7→ (H(l))[p 7→ v]]) =
D(H). Notice that H(l)(p).2 = H[l 7→ (H(l))[p 7→
(v, H(l)(p).2)]](l)(p).2. The remaining thing to prove is

Ψ; ϕ; Γ; Q ` (H[l 7→ (H(l))[p 7→ (v, H(l)(p).2)]])(l)(p).1 : t.
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We have (H[l 7→ (H(l))[p 7→ (v, H(l)(p).2)]])(l)(p).1 = v
and we have Ψ; ϕ; Γ; Q ` v : t.

• Rule (71): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e : t[r]

Ψ; ϕ; Γ; Q ` e.reg : reg r

We now have two subcases depending on which rule was used
to make (H, e.reg) take a step.
If Rule (14) was used to take a step, then the proof is similar
to that given above for the case of function application and
Rule (1); we omit the details.
If Rule (15), that is,

P ` (H, l.reg) (H,D(H(l))) if l ∈ D(H)

was used to take a step, then we have from Ψ; ϕ; Γ; Q ` l : t[r]
and Rule (59) that Ψ(l) = t[r]. Moreover we have that r is
of the form R. From |= H : Ψ and Ψ(l) = t[R], we have
D(H(l)) = R. We pick Ψ′ = Ψ and from Rule (58) we
conclude Ψ; ϕ; Γ; Q ` D(H(l)) : reg R.

• Rule (72): the derivation is of the form:

Ψ; ϕ; Γ; Q ` y1 : t[r1] Ψ; ϕ; Γ; Q ` y2 : pt (σ, r2)
ϕ |= r2 ⊆t r1 ϕ |= σ ∈t r2

Ψ; ϕ; Γ; Q ` y1[@sy2] : pl r1[@t(σ, r2)]

If Rule (16), that is,

P ` (H, l[@sp]) (H, H(l)(p).2)
if l ∈ D(H) and p ∈ D(H(l))

was used to take a step, then we have y1 = l and y2 = p. From
Ψ; ϕ; Γ; Q ` l : t[r1] and Rule (59) we have that r1 = R and
Ψ(l) = t[R]. From Ψ; ϕ; Γ; Q ` p : pt (σ, r2) and Rule (57)
we have that σ = p. We have H ′ = H and we pick Ψ′ = Ψ.
From |= H : Ψ we have H(l)(p).2 = distribute(R, p)
and D(H(l)) = R. From Rule (60) we have that we must
show H(l)(p).2 ≡ r1[@t(σ, r2)]. We have r1[@t(σ, r2)] =
R[@t(p, r2)]. We have H(l)(p).2 = distribute(R, p). We
also have ϕ |= r2 ⊆t R and ϕ ` p ∈t r2 so from
Rule (53) we have ϕ ` R[@t(p, r2)] ≡ distribute(R, p). We
conclude H(l)(p).2 = distribute(R, p) ≡ R[@t(p, r2)] =
r1[@t(σ, r2)], as desired.

• Rule (73): the derivation is of the form:
Ψ; ϕ; Γ; Q ` e1 : reg r1 Ψ; ϕ; Γ; Q ` e2 : reg r2

Ψ; ϕ; Γ; Q ` e1 ∪s e2 : reg r1 ∪t r2

We now have three subcases depending on which rule was used
to make (H, e1 ∪s e2) take a step.
If Rule (17) or Rule (18) was used to take a step, then the proof
is similar to that given above for the case of function application
and Rule (1); we omit the details.
If Rule (19), that is,

P ` (H, R1 ∪s R2) (H, R1 ∪R2)

was used to take a step, then we have from Rule (58) that we
must show ϕ ` R1 ∪t R2 ≡ R1 ∪R2, which is Rule (43).

• Rule (74): the derivation is of the form:
Ψ; ϕ; Γ; Q ` e1 : reg r1 Ψ; ϕ; Γ; Q ` e2 : reg r2

Ψ; ϕ; Γ; Q ` e1 ∩s e2 : reg r1 ∩t r2

We now have three subcases depending on which rule was used
to make (H, e1 ∩s e2) take a step.
If Rule (20) or Rule (21) was used to take a step, then the proof
is similar to that given above for the case of function application
and Rule (1); we omit the details.
If Rule (22), that is,

P ` (H, R1 ∩s R2) (H, R1 ∩R2)

was used to take a step, then we have from Rule (58) that we
must show ϕ ` R1 ∩t R2 ≡ R1 ∩R2, which is Rule (45).

• Rule (75): the derivation is of the form:
Ψ; ϕ; Γ; Q ` e : reg r

Ψ; ϕ; Γ; Q ` e +s c : reg r +t c

We now have two subcases depending on which rule was used
to make (H, e +s c) take a step.
If Rule (23) was used to take a step, then the proof is similar
to that given above for the case of function application and
Rule (1); we omit the details.
If Rule (24), that is,

P ` (H, R +s c) (H, R + c)

was used to take a step, then we have from Rule (58) that we
must show ϕ ` R +t c ≡ R + c, which is Rule (47).

• Rule (76): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e : pt (σ, r)

Ψ; ϕ; Γ; Q ` e ++sc : pt (σ ++tc, r +t c)

We now have two subcases depending on which rule was used
to make (H, e ++sc) take a step.
If Rule (25) was used to take a step, then the proof is similar
to that given above for the case of function application and
Rule (1); we omit the details.
If Rule (26), that is,

P ` (H, p ++sc) (H, p + c)

was used to take a step, then we have from Rule (57) that we
must show ϕ ` p ++tc ≡ p + c, which is Rule (51).

• Rule (77): the derivation is of the form:
Ψ; ϕ; Γ; Q ` y1 : reg r Ψ; ϕ; Γ; Q ` y2 : pl π

Ψ; ϕ; Γ; Q ` y1 %s y2 : reg r %t π

If Rule (27), that is,

P ` (H, R %s P ′]) (H, R′)

where R′ = { p ∈ R | distribute(R, p) = P ′ }
was used to take a step, then we have from Rule (58) that we
must show ϕ ` r %s π ≡ R′, which is Rule (49).

• Rule (78): the derivation is of the form:

Ψ; ϕ; Γ; Q ` e1 : reg r Q 6= unknown
Ψ; ϕ ∧ (α ∈t r); Γ[x : pt (α, r)]; Q ` e2 : t

Ψ; ϕ; Γ; Q ` for (x in e1){e2} : int
(α fresh)

We now have two subcases depending on which rule was used
to make (H, for (x in e1){e2}) take a step.
If Rule (28) was used to take a step, then the proof is similar
to that given above for the case of function application and
Rule (1); we omit the details.
If Rule (29), that is,

P ` (H, for (x in R){e2}) 
(H, ((lam•α : point(α ∈t R).λ•x : (α, R).e2)<c1>)c1; . . . ;

((lam•α : point(α ∈t R).λ•x : (α, R).e2)<cn>)cn; 0)

where order(R) = 〈c1, . . . , cn〉
was used to take a step, then we have r = R. From Ψ; ϕ; Γ[x :
pt (α, R)]; Q ` e2 : t and Q 6= unknown and Rule (66) we
have Ψ; ϕ; Γ; Q ` λ•x : (α, R).e2 : pt (α, R) → t. From
Ψ; ϕ; Γ; Q ` λ•x : (α, R).e2 : pt (α, R) → t and Rule (67)
we have Ψ; ϕ; Γ; Q ` lam•α.λ•x : (α, R).e2 : Πα :
point(α ∈t R).pt (α, R) → t. From Rule (57) and the defi-
nition of order(R) we have Ψ; ϕ; Γ; Q ` ci : pt (ci, R). From
Ψ; ϕ; Γ; Q ` ci : pt (ci, R) and Ψ; ϕ; Γ; Q ` lam•α.λ•x :
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(α, R).e2 : Πα : point(α ∈t R).pt (α, R) → t and `
(ci, R) : point(α ∈t R)Bci and ϕ |= constraint(point)[α :=
ci] and Rule (65) we have Ψ; ϕ; Γ; Q ` (lam•α.λ•x :
(α, R).e2)<ci> : pt (ci, R) → t[α := ci]. From Ψ; ϕ; Γ; Q `
(lam•α.λ•x : (α, R).e2)<ci> : pt (ci, R) → t[α := ci]
and Ψ; ϕ; Γ; Q ` ci : pt (ci, R) and Rule (64) we have
Ψ; ϕ; Γ; Q ` ((lam•α.λ•x : (α, R).e2)<ci>)ci : t[α := ci].
From Rule (80) and Rule (56) we conclude

Ψ; ϕ; Γ; Q ` ((lam•α.λ•x : (α, R).e2)<c1>)c1; . . . ;

((lam•α.λ•x : (α, R).e2)<cn>)cn; 0 : int.

• Rule (79): the derivation is of the form:

Ψ; ϕ; Γ[x : pl α]; Q ` e : t Q 6= unknown

Ψ; ϕ; Γ; Q ` forallplaces x{e} : int
(α fresh)

If Rule (30), that is,

P ` (H, forallplaces x{e}) 
(H, ((lam•α : place.λ•x : pl α.e)<P1>)P1; . . . ;

((lam•α : place.λ•x : pl α.e)<Pn>)Pn; 0)

where places = 〈P1, . . . , Pn〉
was used to take a step, then we can prove that Ψ; ϕ; Γ; here `
((lam•α : place.λ•x : pl α.e)<P1>)P1; . . . ; ((lam•α :
place.λ•x : pl α.e)<Pn>)Pn; 0) : int in a fashion similar
to the case for for-loops and Rule (78) and Rule(29); we omit
the details.

• Rule (80): the derivation is of the form:
Ψ; ϕ; Γ; Q ` e1 : t1 Ψ; ϕ; Γ; Q ` e2 : t2

Ψ; ϕ; Γ; Q ` e1; e2 : t2

We now have two subcases depending on which rule was used
to make (H, e1; e2) take a step.
If Rule (31) was used to take a step, then the proof is similar
to that given above for the case of function application and
Rule (1); we omit the details.
If Rule (32), that is,

P ` (H, v; e) (H, e)

was used to take a step, then we pick Ψ′ = Ψ and we have
Ψ; ϕ; Γ; Q ` e : t2.

• Rule (81): the derivation is of the form:
Ψ; ϕ; Γ; Q ` y : pl π Ψ; ϕ; Γ; π ` e : t

Ψ; ϕ; Γ; Q ` at(y){e} : t

We now have two subcases depending on which rule was used
to make (H, at(x){e}) take a step.
If Rule (33), that is,

P ′ ` (H, e) (H ′, e′)

P ` (H, at(P ′){e}) (H, at(P ′){e′})
was used to take a step, then we have that y = P ′. From
Rule (60) we have that π = P ′. So, we can apply the induction
hypothesis to Ψ; ϕ; Γ; π ` e : t and get that Ψ; ϕ; Γ; π ` e′ :
t. From Rule (81) we conclude that Ψ; ϕ; Γ; Q ` at(y){e′} :
t.
If Rule (34), that is,

P ` (H, at(P ′
){v}) (H, v)

was used to take a step, then we have H ′ = H and we pick
Ψ′ = Ψ. We also have e = v. From Ψ; ϕ; Γ; π ` v : t and
Lemma 4, we have Ψ; ϕ; Γ; here ` v : t.

• Rule (82): the derivation is of the form

Ψ; ϕ; Γ; here ` e : t ϕ ` t ≡ t′

Ψ; ϕ; Γ; here ` e : t′

From the induction hypothesis we have Ψ′, t′′ such that ΨCΨ′,
Ψ′; ϕ; Γ; Q ` e′ : t′′, |= H ′ : Ψ′, and ϕ ` t ≡ t′′. From
ϕ ` t ≡ t′ and ϕ ` t ≡ t′′ and Rule (37) and Rule (36),
we have ϕ ` t′ ≡ t′′. From Rule (82) we conclude that
Ψ; ϕ; Γ; here ` e′ : t′.

�

THEOREM 2. (Progress)
For a place P , let Q ∈ {P, unknown}. If Ψ; true; ∅; Q ` e : t
and |= H : Ψ, then (H, e) is not stuck at place P .

Proof. We proceed by induction on the structure of the derivation
of Ψ; true; ∅; Q ` e : t. There are now twenty-five subcases
depending on which one of the type rules was the last one used
in the derivation of Ψ; true; ∅; Q ` e : t.

In seven of those cases, the derivation is of the form: Ψ; true; ∅; Q `
v : t. where v is a value, hence (H, v) is not stuck at place P . The
derivation cannot be of the form: Ψ; true; ∅; Q ` x : t because
Rule (63) cannot apply. We will now consider each of the remain-
ing seventeen cases.

• Rule (64): the derivation is of the form:

Ψ; true; ∅; Q ` e1 : t1 → t2 Ψ; true; ∅; Q ` e2 : t1
Ψ; true; ∅; Q ` e1 e2 : t2

From the induction hypothesis, we have that (H, e1), (H, e2)
are not stuck at place P . If (H, e1) can take a step at place P ,
then (H, e1 e2) can also take a step at place P using Rule (1).
If e1 is a value and (H, e2) can take a step at place P , then also
(H, e1 e2) can take a step at place P using Rule (2). If e1, e2

are both values, then we have from Lemma 5 that e1 is of the
form λx : t.e, so (H, e1 e2) can take a step at place P using
Rule (3).

• Rule (65): the derivation is of the form:

Ψ; true; ∅; Q ` e1 : Πα : k.t1 Ψ; true; ∅; Q ` e2 : t2
` t2 : k B W true |= (constraint(k))[α := W ]

Ψ; true; ∅; Q ` e1<e2> : t1[α := W ]

From the induction hypothesis, we have that (H, e1) is not
stuck at place P . If (H, e1) can take a step at place P , then
(H, e1<e2>) can take also a step at place P using Rule (4).
If e1 is a value and (H, e2) can take a step at place P , then
(H, e1<e2>) can also take a step at place P using Rule (5). If
e1, e2 are both values, then we have from Lemma 5 that e1 is
of the form lam α : k.e, and we have from ` t2 : k B W and
Lemma 5 that e2 is of the form w, so (H, e1<e2>) can take a
step using Rule (6).

• Rule (66): the derivation is of the form:

Ψ; true; ∅[x : t1]; Q ` e : t2 Q 6= unknown

Ψ; true; ∅; Q ` λ•x : t1.e : t1 → t2

From Rule (7) we have that λ•x : t1.e can take a step.
• Rule (67): the derivation is of the form:

Ψ; ϕ ∧ constraint(k); Γ; Q ` e : t Q 6= unknown

Ψ; ϕ; Γ; here ` lam•α : k.e : Πα : k.t

From Rule (8) we have that lam•α : k.e can take a step.
• Rule (68): the derivation is of the form:

Ψ; true; ∅; Q ` e : reg r

Ψ; true; ∅; Q ` new t[e] : t[r]

From the induction hypothesis we have that (H, e) is not
stuck at place P . If (H, e) can take a step at place P , then
(H, new t[e]) can also take a step at place P using Rule (9). If
e is a value, then we have from Lemma 5 that e is of the form
R, so (H, new t[e]) can take a step using Rule (10).
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• Rule (69): the derivation is of the form:

Ψ; true; ∅; Q ` y1 : t[r1] Ψ; true; ∅; Q ` y2 : pt (σ, r2)
true |= r2 ⊆t r1 ϕ |= σ ∈t r2 ϕ ` Q ≡ r1[@t(σ, r2)]

Ψ; true; ∅; Q ` y1[y2] : t

We have that y1, y2 must be values and we have from Lemma 5
that y1 is of the form l, l ∈ D(Ψ) and y2 is of the form p.
Further we have that Q = P , since unknown is not equivalent
to anything other than itself. Let t[R] denote Ψ(l). From l ∈
D(Ψ) and |= H : Ψ, we have that l ∈ D(H) and R =
D(H(l)). We have r1 = R. From the type rule for point
constants, we have that r2 is of the form R′ and that p ∈ R′.
We have true |= R′ ⊆t R. From true |= R′ ⊆t R, we
have R′ ⊆ R, hence p ∈ R′ ⊆ R. From H |= Ψ we
have distribute(R, p) = H(l)(p).2. From Rule (57) we have
σ = p. We conclude P = r1[@t(σ, r2)] = distribute(R, p) =
H(l)(p).2. So, (H, e1[e2]) can take a step using Rule (11).

• Rule (70): the derivation is of the form:

Ψ; true; ∅; Q ` y1 : t[r1] Ψ; true; ∅; Q ` y2 : pt (σ, r2)
true |= r2 ⊆t r1 true |= σ ∈t r2

true ` Q ≡ r1[@t(σ, r2)] Ψ; true; ∅; Q ` e : t

Ψ; true; ∅; Q ` y1[y2] = e : t

We have that y1, y2 must be values and we have from Lemma 5
that y1 is of the form l, l ∈ D(Ψ) and y2 is of the form p.
Further we have that Q = P , since unknown is not equivalent
to anything other than itself. From the induction hypothesis we
have that (H, e) is not stuck at place P . If (H, e) can take a step
at place P , then (H, y1[y2] = e) can also take a step at place P
using Rule (12). Suppose now that e is a value. The proof that
y1[y2] = e can take a step at place P using Rule (13) is similar
to that given above for the case of array lookup (Rule (69)),
because Rule (11) has the same side condition; we omit the
details.

• Rule (71): the derivation is of the form:

Ψ; true; ∅; Q ` e : t[r]

Ψ; true; ∅; Q ` e.reg : reg r

From the induction hypothesis we have that (H, e) is not stuck.
If (H, e) can take a step at place P , then (H, e.reg) can also
take a step using Rule (14). If e is a value, then (H, e.reg) can
take a step using Rule (15).

• Rule (72): the derivation is of the form:

Ψ; true; ∅; Q ` y1 : t[r1] Ψ; true; ∅; Q ` y2 : pt (σ, r2)
true |= r2 ⊆t r1 true |= σ ∈t r2

Ψ; true; ∅; Q ` y1[@sy2] : pl r1[@t(σ, r2)]

We have that y1, y2 must be values and we have from Lemma 5
that y1 is of the form l, l ∈ D(Ψ) and y2 is of the form p. The
proof that y1[@sy2] can take a step at place P using Rule (16)
is similar to that given above for the case of array lookup and
Rule (69), because Rules (11) and (13) have a stronger side
condition; we omit the details.

• Rule (73): the derivation is of the form:

Ψ; true; ∅; Q ` e1 : reg r1 Ψ; true; ∅; Q ` e2 : reg r2

Ψ; true; ∅; Q ` e1 ∪s e2 : reg r1 ∪t r2

From the induction hypothesis we have that (H, e1), (H, e2)
are not stuck at place P . If (H, e1) can take a step at place
P , then (H, e1 ∪s e2) can also take a step at place P using
Rule (17). If e1 is a value and (H, e2) can take a step at place
P , then (H, e1 ∪s e2) can also take a step at place P using
Rule (18). If e1, e2 are both values, then we have from Lemma 5
that e1 is of the form R1 and that e2 is of the form R2, so
(H, e1 ∪s e2) can take a step at place P using Rule (19).

• Rule (74): the derivation is of the form:

Ψ; true; ∅; Q ` e1 : reg r1 Ψ; true; ∅; Q ` e2 : reg r2

Ψ; true; ∅; Q ` e1 ∩s e2 : reg r1 ∩t r2

From the induction hypothesis we have that (H, e1), (H, e2)
are not stuck at place P . If (H, e1) can take a step at place
P , then (H, e1 ∩s e2) can also take a step at place P using
Rule (20). If e1 is a value and (H, e2) can take a step at place
P , then (H, e1 ∩s e2) can also take a step at place P using
Rule (21). If e1, e2 are both values, then we have from Lemma 5
that e1 is of the form R1 and that e2 is of the form R2, so
(H, e1 ∩s e2) can take a step at place P using Rule (22).

• Rule (75): the derivation is of the form:

Ψ; true; ∅; Q ` e : reg r

Ψ; true; ∅; Q ` e +s c : reg r +t c

From the induction hypothesis we have that (H, e) is not stuck
at place P . If (H, e) can take a step at place P , then (H, e+s c)
can also take a step at place P using Rule (23). If e is a
value, then we have from Lemma 5 that e is of the form R,
so (H, e +s c) can take a step at place P using Rule (24).

• Rule (76): the derivation is of the form:

Ψ; true; ∅; Q ` e : pt (σ, r)

Ψ; true; ∅; Q ` e ++sc : pt (σ ++tc, r +t c)

From the induction hypothesis we have that (H, e) is not stuck
at place P . If (H, e) can take a step at place P , then (H, e++sc)
can also take a step at place P using Rule (25). If e is a
value, then we have from Lemma 5 that e is of the form p, so
(H, e ++sc) can take a step at place P using Rule (26).

• Rule (77): the derivation is of the form:

Ψ; true; ∅; Q ` y1 : reg r Ψ; true; ∅; Q ` y2 : pl π

Ψ; true; ∅; Q ` y1 %s y2 : reg r %t π

We have that y1, y2 must be values and we have from Lemma 5
that y1 is of the form R and y2 is of the form P ′. So,
(H, y1 %s y2) can take a step at place P using Rule (27).

• Rule (78): the derivation is of the form:

Ψ; true; ∅; Q ` e1 : reg r Q 6= unknown
Ψ; (α ∈t r); ∅[x : pt (α, r)]; Q ` e2 : t

Ψ; true; ∅; Q ` for (x in e1){e2} : int
(α fresh)

From the induction hypothesis we have that (H, e1) is not
stuck at place P . If (H, e1) can take a step at place P , then
(H, for (x in e1){e2}) can also take a step at place P using
Rule (28). If e1 is a value, then we have from Lemma 5 that e1

is of the form R, so (H, for (x in e1){e2}) can take a step at
place P using Rule (29).

• Rule (79): the derivation is of the form:

Ψ; ϕ; Γ[x : pl α]; Q ` e : t Q 6= unknown

Ψ; ϕ; Γ; here ` forallplaces x{e} : int
(α fresh)

We have that forallplaces x{e} can take a step using
Rule (30).

• Rule (80): the derivation is of the form:

Ψ; true; ∅; Q ` e1 : t1 Ψ; true; ∅; Q ` e2 : t2
Ψ; true; ∅; Q ` e1; e2 : t2

From the induction hypothesis we have that (H, e1) is not
stuck at place P . If (H, e1) can take a step at place P , then
(H, e1; e2) can also take a step at place P using Rule (31). If
e1 is a value, then (H, e1; e2) can take a step at place P using
Rule (32).
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• Rule (81): the derivation is of the form:

Ψ; true; ∅; Q ` y : pl π Ψ; true; ∅; π ` e : t

Ψ; true; ∅; Q ` at(y){e} : t

We have that y must be a value and we have from Lemma 5
that y must be of the form P ′. From the induction hypothesis
we have that (H, e) is not stuck at place P ′. If (H, e) can take
a step at place P ′, then (H, at(y){e}) can take a step at place
P using Rule (33). If e is a value, then (H, at(y){e}) can take
a step at place P using Rule (34).

• Rule (82): the derivation is of the form

Ψ; true; ∅; Q ` e : t true ` t ≡ t′

Ψ; true; ∅; Q ` e : t′

From the induction hypothesis we have that e is not stuck at
place P .

�

COROLLARY 1. (Type Soundness)
For a place P , let Q ∈ {P, unknown}. If Ψ; true; ∅; Q ` e : t
and |= H : Ψ, then (H, e) cannot go wrong at place P .

Proof. Suppose (H, e) can go wrong at place P , that is, we have
H ′, e′ such that P ` (H, e)  n (H ′, e′) and (H ′, e′) is stuck
at place P . From Theorem 1, Rule (37), and induction on n, we
have Ψ′, t′ such that Ψ′; true; ∅; Q ` e′ : t′, |= H ′ : Ψ′, and
true |= t ≡ t′. From Theorem 2 we have that (H ′, e′) is not stuck
at place P , a contradiction. �
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