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Abstract

GNUnet is an alternative network stack for building secure, decentralized and
privacy-preserving distributed applications. Our goal is to replace the old inse-
cure Internet protocol stack. Starting from an application for secure publication
of files, it has grown to include all kinds of basic protocol components and ap-
plications towards the creation of a GNU internet.

This habilitation provides an overview of the GNUnet architecture, including
the development process, the network architecture and the software architecture.
The goal of Part 1 is to provide an overview of how the various parts of the
project work together today, and to then give ideas for future directions. The
text is a first attempt to provide this kind of synthesis, and in return does not
go into extensive technical depth on any particular topic. Part 2 then gives
selected technical details based on eight publications covering many of the core
components. This is a harsh selection; on the GNUnet website there are more
than 50 published research papers and theses related to GNUnet, providing
extensive and in-depth documentation. Finally, Part 3 gives an overview of
current plans and future work.



3

Acknowledgements

Anne-Marie Kermarrec, Tanja Lange, George Danezis, Joe Cannataci and Sad-
dek Bensalem have accepted to participate on the jury for my habilitation. I
feel very lucky and honored, and thank them for that. I especially thank Tanja
Lange for detailed and constructive comments.

I am grateful to and for the GNU project, in particular Richard Stallman and
Werner Koch, for their long-standing and loud support for me and my projects.
I thank all of the Free Software developers, in particular the hundreds of people
that have contributed directly to GNUnet over the years.

All parts of this document stem from some type of collaboration and the text
is based on the respective papers written with various co-authors, in particu-
lar my PhD students Nathan Evans, Matthias Wachs, Sree Harsha Totakura,
Bartlomiej Polot, Alvaro Garcia-Recuero and Florian Dold. I thank Hernâni
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Chapter 1

Introduction

Internet protocols need a general overhaul to make them suitable as the main
communication infrastructure for a sustainable civil liberal society. When the
US military created the Internet, the fundamental goal was to interconnect
existing networks, which was a simple practical objective. What is more lasting
were the second level goals in order of importance as elaborated by David Clark
in [Cla88]:

1. Internet communication must continue despite loss of networks or gate-
ways.

2. The Internet must support multiple types of communications service.

3. The Internet architecture must accommodate a variety of networks.

4. The Internet architecture must permit distributed management of its re-
sources.

5. The Internet architecture must be cost-effective.

6. The Internet architecture must permit host attachment with a low level
of effort.

7. The resources used in the internet (sic) architecture must be accountable.

We note that the only security-related goals relate to availability and usability.
While some Internet architects were aware of encryption due to their proximity
to the NSA, encryption was classified and thus could not even legally be included
in the emerging Internet design that was deliberately non-classified.

As a result of these 1970 design goals, the lack of data protection remains
visible at all layers of the Internet architecture today. Figure 1.1 shows the
design of the IPv4 header from 1981, which is still in use today. It unnecessar-
ily leaks information about the sender address and the encapsulated transport
protocol. Additionally, the checksum is insufficient to provide authenticity, and
it is difficult to prove ownership of a destination address.

11
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Version HDL ToS Length
Identification Flags Fragment offset

TTL T. Protocol Checksum
Source IP address

Destination IP address
Options (optional)

Data (Length–HDL bytes)

Figure 1.1: The IPv4 header (Sept. 1981)

1.1 The need for private communication

Today, the actual use and thus the social requirements for a global network
differs widely from those goals of 1970. While the Internet remains suitable for
military use, where the network equipment is operated by a command hierarchy
and when necessary isolated from the rest of the world, the situation is less
tenable for civil society.

Due to fundamental Internet design choices, Internet traffic can be misdi-
rected, intercepted, censored and manipulated by hostile routers on the net-
work. And indeed, the modern Internet has evolved exactly to the point where,
as Matthew Green put it, “the network is hostile”.1

1.1.1 Authenticated encryption

With the emergence of e-commerce, a throughly broken [TP11] cryptographic
protocol called “Secure Sockets Layer” (SSL) was introduced to provide a mini-
mum of authenticity and confidentiality. The rushed deployment and lack of un-
derstanding of cryptography by the designers resulted in a complex design that
took the Internet community 20 years to sufficiently understand and thereby ob-
solete. The surviving complex cryptographic libraries, like OpenSSL, GnuTLS
and libnss, remain a treasure trove for vulnerabilities.

While we could probably eventually provide good authenticated encryption
on the existing Internet, this is by far not sufficient. Most schemes for authenti-
cated encryption require the use of a public key infrastructure (PKI), and thus
we need to consider the vulnerabilities of the PKI when assessing the security
of the system. In particular, the dominant X.509 PKI fails to provide adequate
protections against attacks by large corporations or governments, which has re-
sulted in a series of proposed security extensions and monitors to work around
the broken paradigm of certificate authorities [Hol14]. As modernist proposals
for opportunistic encryption [Duk14] without a PKI simply blank out the ex-
istence of active adversaries, a new security architecture is required to provide
even just this most basic level of security.

1http://blog.cryptographyengineering.com/2015/08/the-network-is-hostile.html

http://blog.cryptographyengineering.com/2015/08/the-network-is-hostile.html
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1.1.2 Metadata

However, even if we consistently deployed authenticated encryption on the In-
ternet, the network would still learn way too much. Authenticated encryption
does not obfuscate sender and receiver, and also discloses the times, frequency
and volume of the communication, which enables reverse engineering of the set
of pages visited via traffic analysis [MHJT14]. How revealing this information
actually is becomes clear if one considers research on website fingerprinting in
the Tor network. Here, the user is assumed to use Tor [DMS04b] to hide the
IP address of the sender and receiver from the network. As Tor provides a
low-latency non-padding anonymizing proxy, the adversary now only learns the
time, frequency and volume of the communication. However, based solely on
this information researchers were able to correctly classify 97% of requests on a
sample of 775 sites and 300,000 real-world traffic dumps [HWF09].

Metadata is by definition data about data, and thus provides a higher level
abstraction of the underlying data. Therefore, leaking metadata is not a cos-
metic issue. As Michael Hayden, the former head of both NSA and CIA ex-
plained, the US government “kills based on metadata”. The democide [Rum07]
that has resulted from the NSA’s application of statistics and machine learning
to metadata leaked by information networks [EG15] is thus partially the respon-
sibility of computer scientists, as we have failed to build and deploy systems that
adequately protect this critical information.

1.1.3 The client-server architecture

A second crucial issue with modern network architecture is the client-server
paradigm. The client-server paradigm is about resource-strapped clients com-
municating with high-powered servers. The clients are expected to obey by the
(protocol) rules of the server, which provides a service to the client. The server
is in control of either the critical data for storage or messaging applications, or
the critical computation for transaction processing. The paradigm has the ad-
vantage that it scales well: the roles in the protocol are well-defined, the clients
are (relatively) simple and most of the administrative effort is concentrated at
the data centers operating the servers. It also provides simple business models
for the service providers, who can either sell the service to the client or the
client’s data to other businesses.

Authenticated encryption is of limited utility against the client-server paradigm.
While it is practical to encrypt data before uploading it to a storage service,
this rarely applies to other types of network services. Consequently, the NSA’s
PRISM program was used to systematically access citizen’s data at providers of
messaging services, including most popular online social networking application
providers. Here, the hunger for data by the government is paralleled by the
hunger for data by the advertising-based service providers.

However, even if the service provider did not have this inherent incentive
to collect as much information as possible, the mere existence of easily identi-
fiable large service providers is problematic, as for most computational appli-
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cations the service provider needs to learn crucial information to even provide
the service. Researchers have frequently proposed that the servers should per-
form their computation on encrypted data. However, despite recent theoretical
advances in fully-homomorphic encryption [Gen09] and private information re-
trieval [BDG14], the concrete realization of scalable network services using this
paradigm remains elusive for the foreseeable future.

The client-server paradigm is dangerous to a liberal society for at least two
fundamental reasons. First, it results in client systems that are virtually useless
without the service provided by large service providers operating servers. The
Android operating system is a key example, as most of it only operates in
conjunction with services provided exclusively by Google’s data centers. Such
systems are a clear violation of the user’s autonomy and they unduly restrict
how citizens can cooperate amongst themselves.

The second problem with servers is that it is hard to design client-server
systems in such a way that the server does not learn sensitive information about
the clients. In fact, often the business model of the server operator is to collect
and monetize client information. Thus, privacy and data protection issues will
continue as long as the dominant paradigm on the Internet is client-server.

We note that outside of TCP, the client-server relationship is often described
using the terms “master” and “slave”. These terms more aptly describe the
social roles the client-server paradigm produces.

1.2 Decentralized Peer-to-Peer networks

The peer-to-peer (P2P) paradigm is the alternative to the client-server paradigm
for multi-party systems. In P2P systems, the participants interact with each
other on equal terms, with the peers jointly providing a service to each other.
There can still be roles in the system, such as the initiator of a handshake or the
sender or receiver or the resource provider, but by design all peers may assume
any role at any time.

Naturally, some peers tend to be better at providing resources, which some-
times gives rise to designs that distinguishes peers and “super-peers” [BYGM03].
What distinguishes super-peers from servers is that any peer can decide to as-
sume the role of a super-peer. Thus, these super-peers are merely “special”
because they typically provide more resources and thus can be used by the de-
signer in particular ways to improve performance, but do not exert control. In
contrast, in the client-server paradigm the server is authoritarian [Alt06].

Shifting from a client-server architecture to a decentralized peer-to-peer ar-
chitecture liberates participants from the dictatorial rule of the server, but does
not inherently improve security and privacy. In fact, unless the protocols are
carefully designed, the result of moving from client-server to peer-to-peer creates
additional data leakage: instead of just the server and the network learning sen-
sitive information, it is now possible that arbitrary peers may obtain sensitive
information. For example, hosting files on a public FTP server allows the FTP
server to see who is downloading the files. Hosting files on BitTorrent [Coh03]
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enables all peers participating in the transmission of the Torrent to observe the
download, and not just the FTP server and the network.

We also note that it is both almost trivially easy to ensure privacy and se-
curity with a trusted third party and entirely inadequate. The introduction of
a trusted third party makes it relatively easy to provide a public key infrastruc-
ture, reliable storage, authentication and a host of other core security features.
However, the reliance on a trusted third party also ensures that this party be-
comes extremely powerful and thus is likely to be either inherently evil or a
victim for high-profile attacks, and most likely both. As a result, designs with
a trusted third party are likely to eventually fundamentally fail at least some of
their users.

Thus, liberal societies need a network architecture that uses the anti-au-
thoritarian decentralized peer-to-peer paradigm and privacy-preserving crypto-
graphic protocols. The goal of the GNUnet project is to provide a Free Software
realization of this ideal.

1.3 Objectives for the GNUnet

The fundamental goal of the GNUnet is to lessen the threat of networks sup-
porting totalitarian control over the population. This includes both control over
their networking and computing, as well as ensuring that the network protects
privacy. To clarify this, we propose the following ten objectives for the design
of the GNUnet in this order:

1. The GNUnet must be implemented as Free Software, to ensure that citi-
zens enjoy the four essential freedoms of Free Software [Sta02].

2. The GNUnet must only disclose the minimal amount of information nec-
essary, to second and especially third parties. Each user decides what
information can be shared and with whom.

3. The GNUnet must be decentralized and survive Byzantine failures in any
position in the network. Increased malicious participation may cause se-
curity and privacy assurances to deteriorate commensurate with the re-
sources expended by the adversary.

4. The GNUnet must make it explicit to the user which entities must be
trustworthy when establishing secured communications.

5. The GNUnet must use compartmentalization to isolate sensitive informa-
tion against Byzantine failures even among layers of the implementation
on the same device.

6. The GNUnet must be open and permit new peers to join.

7. The GNUnet must be self-organizing and not depend on administrators.

8. The GNUnet must support a diverse range of applications and devices.
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9. The GNUnet must scale and be cost-effective.

10. The GNUnet must provide incentives for peers to contribute more re-
sources than they consume.

As with the Internet architecture, the order of these objectives matters. For
example, a proprietary solution (violating (1)) may disclose less information
simply (improving (2)) by forcing an adversary to reverse engineer the protocol,
but this is not acceptable as it violates the four essential freedoms. Another
example would be a user who decides that they do not want to disclose that
they are even participating in the network (improving (2)). Thus, GNUnet
optionally allows peers to restrict connections to “friends-only”, even though
this may prevent new peers from joining the network (violating objective (6)).

We note that many of Clark’s original Internet design goals correspond to
design goals at the bottom of the prioritized list for the GNUnet: enabling
host attachment, diversity of use, cost-effectiveness and accountability remain
important, but need to fall behind the need for data protection and Byzantine
fault tolerance.

GNUnet’s objectives also goes beyond the simple slogan of “privacy-by-
design” [Cav09]. While objective (2) is enshrining data protection as a key
goal, privacy-by-design only calls for respect for the user’s privacy, while objec-
tives (1) and (3) are more broadly protecting the user’s autonomy. In contrast
to privacy-by-design, in GNUnet the use of proprietary software or centralized
service providers is not acceptable, as they make citizens dependent on software
vendors or service providers.

Structure

The next chapter will give a high-level description of the GNUnet architecture,
followed by a summary of the key contributions in Chapter 3. Challenges for
ongoing and future work are discussed in Chapter 7.



Chapter 2

Architecture

This chapter will present the architecture of GNUnet. We will consider the ar-
chitecture from four different angles. The software architecture gives an overview
of how the GNUnet software is supposed to operate from the point of view of
a single computer implementing a peer participating in the GNUnet. The soft-
ware architecture strongly relates to the security architecture which describes
the various architectural means used to improve the security of the system. The
process architecture covers the architecture of the development process, that is
how designers and developers contribute towards building the system. Finally,
the network architecture describes the structure of the overlay network, that is
how the various peers structure their communication.

2.1 Software architecture

When introducing network architectures, educators typically begin by describing
a layered design. The numbering differs depending on the model, but the design
typically ranges from the physical layer to the application layer. In this section,
we will follow this method and leave the higher human, organizational and
political layers to Section 2.3. Figure 2.1 illustrates how the various layers of
GNUnet relate to well-known layers in the TCP/IP stack.

The use of layers to describe a software architecture is usually a drastic
simplification. “IP/BGP” absolutely understates the complexity at the routing
layer for the modern Internet, and of course the BGP protocol runs above
TCP/UDP, but at the same time is really part of the IP layer. Recent IETF
proposals to run DNSSEC over TLS [HZH+15] to ultimately secure the exchange
of TLSA records over DNSSEC [Wel00] illustrate that real networks do not
follow a simple layered design, and that the layers are merely an illustration to
provide a first orientation.

What Figure 2.1 shows is that there is some high-level resemblance between
the GNUnet architecture and the Internet: there is an underlying communica-
tion mechanism (“TRANSPORT”) with very weak capabilities, semantics and
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Physical Layer TRANSPORT

Figure 2.1: Layers in the Internet and GNUnet architectures (simplified)

assurances, a first link-level mechanism to facilitate a fundamental level of ser-
vice (“CORE”), followed by routing (“DHT”), reliable end-to-end communica-
tion (“CADET”), a system for reliably naming objects on the network (“GNS”),
a messaging protocol (“PSYC”) and finally applications.

However, this is just a first rough orientation to highlight similarities with
the Internet architecture. Figure 2.2 shows a more realistic, but still simplified
picture of the interdependencies between GNUnet subsystems. The different
styles used for the components indicate whether it is a simple library (route), a
simple binary (rectangle), a service exporting an API (oval) or an application
visible to the user (house). We note that this figure does form a directed acyclic
graph, which is necessary because it literally corresponds to the interdependen-
cies during compilation of the various independent compilation units.

Figure 2.2 is still a simplification, as certain common subsystems are omitted,
such as the “UTIL” library which provides a library with basic functions that
virtually all subsystems depend on, or the “STATISTICS” which is a subsystem
used by most other subsystems to track performance data. The figure also does
not even show all of the over 60 subsystems available today, and instead focuses
on those most relevant for an understanding of the overall architecture and the
key contributions that will be presented in Chapter 3.

We note that even a complete picture of all subsystems implemented or even
planned today would not describe the GNUnet of the future, as the most im-
portant point of the architecture is that it is extensible. As shown in Figure 2.2,
it is quite common for one layer to have various higher layers build on it, and in
general each service is designed to be used and extended by anyone who finds
the provided API to be useful. Thus, we need to think about GNUnet primar-
ily as a collection of APIs providing various core functions for future Internet
applications. Over time, additional abstractions will be added, and the existing
60 APIs are just the beginning.

Currently, the following GNUnet subsystems are relevant for understanding
the overall architecture and key contributions:

util Library with general utility functions, all GNUnet binaries link against
this library. Anything from memory allocation and data structures to
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Figure 2.2: Dependencies between GNUnet subsystems (simplified). Houses
represent applications. Dashed lines represent components that are still incom-
plete at the time of this writing.
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cryptography and inter-process communication. The goal is to provide an
OS-independent interface and more “secure” or convenient implementa-
tions of commonly used primitives. The API is spread over more than a
dozen headers, developers should study those closely to avoid duplicating
existing functions.

block The DHT and other components of GNUnet store information in units
called blocks. Each block has a type and the type defines a particular
format and how that binary format is to be linked to the key for the
DHT. The block library is a wrapper around block plugins which provide
the necessary functions for each block type.

statistics The statistics service enables associating values (of type uint64 t)
with a component name and a string. The main uses are debugging by
counting events, performance tracking and user entertainment, as users
like information about what their computer does.

arm The automatic restart manager (ARM) service is the GNUnet master
service. Its role is to start gnunet-services, to restart them when they
crashed and finally to shut down the system when requested.

peerinfo The peerinfo service keeps track of which peers are known to the
local peer and also tracks the validated addresses for each peer in the
form of a “HELLO message” for each of those peers. The peer is not
necessarily connected to all peers known to the peerinfo service. Peerinfo
provides persistent storage for peer identities — peers are not forgotten
just because of a system restart.

ats The automatic transport selection (ATS) service is responsible for deciding
which address, i.e. which transport plugin, should be used for communi-
cation with other peers, and at what bandwidth. [WOG14]

nat Library that provides basic functions for NAT traversal. The library sup-
ports NAT traversal with manual hole-punching by the user, UPnP and
ICMP-based autonomous NAT traversal. The library also includes an API
for testing if the current configuration works and the gnunet-nat-server
which provides an external service to test the local configuration. [MEGK10]

transport The transport service is responsible for managing the basic P2P
communication. It uses plugins to support P2P communication over
TCP, UDP, HTTP, HTTPS and other protocols. The transport service
validates peer addresses, enforces bandwidth restrictions, limits the to-
tal number of connections and enforces connectivity restrictions, such as
friends-only. [FGR03]

core The core service is responsible for establishing encrypted, authenticated
connections with other peers, encrypting and decrypting messages and
forwarding messages to higher-level services that are interested in them.
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testing The testing library allows starting and stopping peers for writing test
cases. It also supports automatic generation of configurations for peers
ensuring that the TCP ports and file system paths are disjoint. lib-

gnunettesting is also the foundation for the testbed service.

testbed The testbed service is used for creating small or large scale deploy-
ments of GNUnet peers for evaluation of protocols. It facilitates peer
deployments on multiple hosts (for example, in a cluster) and establishing
various network topologies (both underlay and overlay). [Tot13a]

nse The network size estimation (NSE) service implements a protocol for se-
curely estimating the current size of the P2P network. [EPG12]

dht The distributed hash table (DHT) service provides a distributed imple-
mentation of a hash table to store blocks under hash keys in the P2P
network. [EG11b]

hostlist The hostlist service allows learning about other peers in the network
by downloading HELLO messages from an HTTP server, can be config-
ured to run such an HTTP server and also implements a P2P protocol
to advertise and automatically learn about other peers that offer a public
hostlist server. [GG08]

topology The topology service is responsible for maintaining the overlay topol-
ogy. It tries to maintain connections to friends and also tries to ensure
that the peer has a decent number of active connections at all times. If
necessary, new connections are added. Peers generally need at least one
service that demands connections to ensure that they remain connected
with the network. Enabling the topology service is thus one way to ensure
that connectivity is maintained. If friend-to-friend networking is enabled
in the configuration, the topology service also tells the transport service
which connections are allowed or forbidden.

cadet The CADET service [PG14] provides a general-purpose routing abstrac-
tion to create end-to-end encrypted tunnels on top of a DHT like R5N .

fs The file sharing (FS) service implements GNUnet’s file sharing application.
Both anonymous file sharing using the gap routing protocol [BG03] and
non-anonymous file sharing using CADET are supported. [BGHP02]

dns Service that allows intercepting and modifying DNS requests of the lo-
cal machine. Currently used for IPv4-IPv6 protocol translation (DNS-
ALG) [STAH99] as required by PT and GNS. The service can also be
configured to offer an exit service for DNS traffic.

vpn The virtual public network (VPN) service provides a virtual tunnel inter-
face (VTUN) for IP routing over GNUnet. Needs some other peers to run
an EXIT service to work. Can be activated using the ”gnunet-vpn” tool
or integrated with DNS using the pt daemon.
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exit Daemon to allow traffic from the VPN to exit this peer to the Internet or
to specific IP-based services of the local peer. Currently, an exit service
can only be restricted to IPv4 or IPv6, not to specific ports and or IP
address ranges. If this is not acceptable, additional firewall rules must
be added manually. exit currently only works for normal UDP, TCP and
ICMP traffic; DNS queries need to leave the system via a DNS service.

pt protocol translation daemon. This daemon enables 4-to-6, 6-to-4, 4-over-6
or 6-over-4 transitions for the local system. It essentially uses the DNS
service to intercept DNS replies and then maps results to those offered by
the VPN, which then sends them using cadet to some daemon offering
an appropriate exit service.

identity Management of egos (alter egos) of a user; identities are essentially
named ECC private keys and used for zones in the GNU name system and
for namespaces in file sharing, but might find other uses later.

set Efficient two-party set operations (union or intersection) using (invertible)
Bloom filters [EGUV11].

revocation Key revocation service, can be used to revoke the private key of
an identity if it has been compromised. [WSG14]

gns GNU name system (GNS), a GNU approach to name resolution and public
key infrastructure. [WSG13, WSG14]

dv A plugin for routing based on (bounded) distance-vector (DV). DV consists
of a service and a transport plugin to provide peers with the illusion of a
direct P2P connection for connections that use multiple (typically up to
3) hops in the actual underlay network.

regex Service for the distributed evaluation of regular expressions. [Sze12]

scalarproduct The scalar product service offers an API to perform a secure
multi party computation which calculates a scalar product between two
peers without exposing the private input vectors of the peers to each other.

consensus The consensus service allows a set of peers to agree on a set of
values via a distributed set union computation. [DG16]

rest The rest API allows access to GNUnet services using RESTful interaction.
The services provide plugins that can exposed by the rest server.

Many of these subsystems are described in research publications or theses
relating to the development of the GNUnet. Chapter 3 will go into details on
some of the most important technical contributions.
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2.1.1 Evolution

Thinking in APIs for subsystems is key for GNUnet development as it allows
us to evolve the implementation. GNUnet may use one particular type of rout-
ing mechanism or authenticated encryption today, and tomorrow research may
provide us with a significantly better option. As long as the API provided
by the improved design is the same, we can evolve subsystems independently.
Naturally, transitioning a network to a new version of the protocol may create
interoperability issues, but the use of APIs allows developers to often separate
the evolution into two types of evolution: improvements to the API and im-
provements to the protocol. While these are sometimes interdependent, we are
often able to involve or investigate improvements to one without impacting the
other, thus maximizing our chances of preserving compatibility while supporting
the system’s continuous evolution.

2.2 Security architecture

When building a complex new network architecture, a key consideration is how
to engineer the architecture to minimize the impact of bugs. While the software
development process (described in Section 2.3) is supposed to minimize the
existence of bugs, the GNUnet security architecture tries to minimize the impact
of bugs.

The first key choice in this context was to implement GNUnet outside of
the operating system kernel. While this almost ensures that GNUnet will never
be as fast as say TCP/IP, we remind the reader that data security and com-
partmentalization are objectives that trump scalability and cost-effectiveness
for GNUnet (Section 1.3). In fact, GNUnet not only does not live in the ker-
nel, but generally uses a separate process for each subsystem. These processes
then communicate via IPC, typically UNIX domain sockets, providing strong
isolation of components from each other.

Programming with GNUnet components thus is a bit like playing with legos:
each component itself is (presumably) an “indestructible” self-contained “brick”
which exposes APIs to the outside, and itself sits on top of APIs provided by
other components (Figure 2.3). In practice, there are always two APIs: a (C
or Java) library exposing a language-specific API, and the component itself
exposing an API in the form of an IPC protocol. We note that GNUnet did not
really invent this architecture: remote procedure calls [Mic88] predate GNUnet
by about two decades. However, we are not aware of other networking projects
atomizing their stack into small components to the extend done by GNUnet.

2.2.1 Access control

Because components run as separate processes, they can also be easily subjected
to different security policies at the system call API. For example, a subsys-
tem performing routing may not have write access to the disk, or a database
backend might not have access to the network. On Linux, GNUnet provides
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Figure 2.3: GNUnet: Programming with legos.

Apparmor [Inc15] profiles to restrict the various processes accordingly. When
subsystems communicate with each other, they are expected to perform input
validation just as if the communication came over an insecure network. Subsys-
tems providing services thus always need to validate inputs, and, if applicable,
rate-limit requests from clients.

Typically, subsystems running on one host execute either as the system-
user “gnunet” or under the rights of the respective user. Some subsystems
require even stronger isolation. GNUnet uses a few processes that need to run
with administrator (“root”) privileges or otherwise elevated rights. Thus, when
configured with stringent policies, a GNUnet installation consists of subsystems
that fall into one of four categories of privileges:

User interfaces User interfaces are not security sensitive and are supposed
to be run and used by normal system users. The GTK GUIs and most
command-line programs fall into this category. Some command-line tools
(like gnunet-transport) should be excluded as they offer low-level access
that normal users should not need.

System services and support tools System services should always run and
offer services that can then be accessed by the normal users. System
services do not require special permissions, but as they are not specific to
a particular user, they probably should not run as a particular user. Also,
there should typically only be one GNUnet peer per host.

Privileged helpers Some GNUnet components require administrative rights
to open raw sockets or perform other special operations. These “gnunet-
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helper-*” binaries are typically installed SUID and run from services or
daemons.

Critical services Some GNUnet services, in particular the DNS service, can
manipulate the system in deep and possibly highly security sensitive ways.
In particular, the DNS service can be used to intercept and alter any DNS
query originating from the local machine. Access to the APIs of these
critical services and their privileged helpers must be tightly controlled.

To achieve the latter, our installation guidelines recommend the creation of a
special group gnunetdns to control access to the gnunet-helper-dns. The bi-
nary should then be owned by root and be in group gnunetdns and be installed
SUID and only be group-executable (2750). Note that the group gnunetdns

should have no users in it at all, ever. The gnunet-service-dns program should
be executed by user gnunet with the binary owned by the user root and the
group gnunetdns and be SGID (2700). This way, only gnunet-service-dns can
change its group to gnunetdns and execute the helper, and the helper can then
run as root (as per SUID). Access to the API offered by gnunet-service-dns

is in turn restricted to the user gnunet (not the group!), which means that only
“benign” services can manipulate DNS queries using gnunet-service-dns.

GNUnet is not the only component in our overall system that goes to this
extreme to isolate faults. The GNU libextractor [Gro05] library is used by the
GNUnet file sharing subsystem to extract meta data, such as ID3 tags, previews
or EXIV image information, from published files. GNU libextractor uses a wide
range of standard libraries, such as libavcodec, libjpeg or libexiv2 to obtain
this meta data. As these libraries are complex parsers operating on potentially
malicious inputs, GNU libextractor isolates the parsing logic in a restricted pro-
cess that literally is only allowed to load its code, allocate memory, compute
(for a finite amount of time), read from a shared memory segment and com-
municate with its parent via an inherited pair of file descriptors. Consequently,
even arbitrary code execution vulnerabilities in the parser libraries would be
harmless as long as mere computation does not expose access to vulnerabilities
in the operating system or hardware.

The complex multi-process, multi-user, multi-group setup provides GNUnet
superior fault isolation, at the expense of a significantly more difficult installa-
tion process. However, while there is hope that such an installation process can
be sufficiently automated, there is much less hope for monolithic architectures
like modern browsers or in-kernel network stacks where vulnerabilities are much
harder to contain.

2.2.2 Secure APIs

Another key part of GNUnet’s security architecture is the provisioning of APIs
that make it harder to write buggy code. While most of GNUnet is currently
written in C, many of C’s security nightmares are rare because the APIs make
it harder to run into the respective problems. For example:
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� GNUNET malloc() checks for allocation failures and prohibits large alloca-
tions (≥ 40 MB) which might be the result of an integer underflow.

� GNUNET asprintf() provides an alternative to sprintf() which allocates
a buffer of the appropriate size for the user, thereby making it impossible
to supply a buffer of insufficient size.1

� The GNUNET TIME API provides routines for manipulating time stamps
and units of time and internally protects against overflows or underflows
in the computations.

� In the GNUnet C code, the use of threads is categorically forbidden, thus
eliminating the possibility of deadlocks and data races.

Naturally, these are only some limited techniques to address some C-specific
issues. However, the basic rule to provide abstractions that are safe to use, or at
least hard to use badly, applies both to the design of new APIs and to GNUnet
components written in other languages.

2.3 Process architecture

Developers rarely join the team as part of a formal hiring process. Most often,
developers are volunteers that freely decide what issues they want to work on,
and when to do the work. This common structure for Free Software projects
dictates many choices for the process architecture: volunteers cannot be forced
to do something, they can only be reasoned with. Thus, the GNUnet develop-
ment process rarely tries to prevent undesirable changes, and instead strives to
inform about inadequacies.

As with virtually any modern software development, the central place for all
development activity is the version control system. Here, developers can inspect
the current code and propose or directly make changes. Version control also
allows us to easily undo problematic changes, thus it is not so critical that every
change is consistently perfect. Read-access to the main repository is available
to anyone. Write-access to the main version control system is granted to all
developers that have convinced the maintainer that they are able to contribute
constructively to the project.

The development process architecture described in the rest of the document
is an attempt to “control” the development, given the constraint that we need
to facilitate development performed by volunteers. In particular, the process
cannot simply try to restrict the activities of volunteers. Instead, it must be
constructive, inform about opportunities for contributions, and give feedback
about the benefits or problems that may have resulted from the work of the
volunteers.

1The API naturally is named after and corresponds to the GNU libc extension asprintf(),
except that allocation failures are dealt with more harshly.
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2.3.1 Responsible disclosure

The first process any modern software should have is a method to support re-
sponsible disclosure. GNUnet is a GNU package, thus the GNU project provides
some basic infrastructure for development, including a global security team that
can act as a point-of-contact as a last resort.2 This has so far never been neces-
sary, but in the theoretical case that everyone else is unreachable this is a good
fallback to have.

In general, GNUnet has a public bug tracker, but submitters can also mark
a sensitive bug report as “private”, thereby restricting its visibility to registered
developers. For more urgent or highly sensitive reports, it is also possible to
reach most developers and the maintainer via GnuPG-encrypted email.

2.3.2 Peer review

GNUnet uses peer review in three ways. First, when applicable new interest-
ing designs are documented in the form of research papers and submitted to
appropriate academic conferences for review. If applicable, feedback obtained
from the reviews is then addressed in the design and implementation. A second
type of review is the direct discussion of the design with interested researchers,
developers or activists. In practice, this less formal review tends to be more
productive, likely because of the higher qualifications and attention span of the
parties involved. Finally, any change in the code is automatically sent via email
to an archived, global public mailing list, and many developers are subscribed to
that list. This typically leads to a review of small changes, as they are fast and
easy to do, and larger architectural changes, as they create curiosity as to what
on earth is going on. However, speaking from personal experience, this process
also allows medium-sized complex changes confined to a particular subsystem
to go through without any attention.

On occasion, be it because a component is “finished”, particularly sensitive
or particularly buggy, the team organizes code reviews where one or more team
members review the code of a subsystem with its author. These tend to be par-
ticularly productive with inexperienced students that often fail to use existing
APIs correctly.

2.3.3 Verification

We have subjected the GNUnet code base to various static analysis tools over
the years. The most regularly used tool is the C compiler itself, as developers
typically compile with warnings enabled (-Wall). Using a variety of C compilers,
in particular gcc, but also clang and cparser from Firm [Lin02] can sometimes
give additional relevant warnings.

The LLVM framework used for clang also provides the foundation for the
Clang static analyzer3, which has occasionally been useful to identify minor

2https://www.gnu.org/security/
3http://clang-analyzer.llvm.org/

https://www.gnu.org/security/
http://clang-analyzer.llvm.org/
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issues. Another tool which finds stylistic bugs — but rarely significant issues —
is cppcheck4.

We also have experimented with various commercial tools, but the licensing
typically imposes serious restrictions, including on publishing comparisons be-
tween the tools. The main difference is that the commercial tools tend to be
better at analyzing the control- and data-flow graph across compilation units.

Given that GNUnet is largely written in C, the guarantees that these tools
can provide in terms of which types of bugs are no longer present are rather
weak. However, they do tend to do a reasonable job at informing developers
that return values are unchecked and can be helpful at quickly finding missing
logic to clean up resources, especially in error-handling routines.

2.3.4 Testing

As with any large software project, systematic testing is part of the GNUnet
development process. Comparatively speaking, GNUnet has rather few unit
tests in which the functionality of individual functions is tested. Most tests in
the existing system focus on the subsystems, as they provide and export well-
defined APIs. This both facilitates testing and gives the test a reasonably stable
abstraction to work against. Also, given the use of event-loops and callbacks
and many static functions to limit the scope of symbols, testing individual
functions using unit tests is generally more difficult and often less meaningful.

The TESTBED subsystem [Tot13a] of GNUnet provides the foundation for
integration tests. With TESTBED, it is easy to start a number of peers, con-
nect them into a particular overlay topology and run experiments against the
exported APIs. TESTBED also facilitates collecting results, including perfor-
mance data. GNUnet uses the TESTBED subsystem both for integration tests
as well as for large-scale performance evaluation. Here, TESTBED can manage
experiments run across a cluster of machines or even an HPC system, potentially
running experiments where a million peers are emulated.

The quality of the test suite is evaluated using lcov5, a code coverage analy-
sis tool which integrates with gcc to highlight which functions, lines or branches
of the code are not covered by existing tests. This way, developers and man-
agement can quickly identify which parts of the code still ought to be tested.
Given good code coverage, most typical C-specific bugs relating to memory
management are then easily found using valgrind6.

To verify that the code works on various platforms (both hardware and
operating systems), GNUnet uses the Buildbot continuous integration tool7.
Buildbot uses “slave” machines which connect to the Buildbot “master” server
to receive information about jobs to be executed. Typical job descriptions in-
clude downloading the latest version of the code, compiling it and running the
test suite. The results of the test are then visualized on the GNUnet website.

4http://sourceforge.net/projects/cppcheck/
5http://ltp.sourceforge.net/coverage/lcov.php
6http://valgrind.org/
7http://buildbot.net/

http://sourceforge.net/projects/cppcheck/
http://ltp.sourceforge.net/coverage/lcov.php
http://valgrind.org/
http://buildbot.net/
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This makes it easy for developers and management to identify which subsystems
have failed tests on which platforms. Many of the buildslaves are run as virtual
machines, but the team also operates buildslaves directly on Sparc64, PowerPC
and ARM hardware. These buildslaves often highlight issues relating to timing,
endianness or memory alignment.

Performance can also sometimes be a correctness issue. However, especially
across platforms it is generally difficult to set hard performance requirements.
Thus, the approach for GNUnet has been to track and visualize performance per
platform. This allows developers to spot performance regressions. For this, we
developed the cross-language Gauger tool [PG11]. Gauger collects performance
data, which is typically submitted by Buildbot slaves as part of their test suite
runs, and allows users to group data by machine or metric over time. Gauger
does not group by submission time, but by the respective revision numbers in
the version control system, thus allowing developers to identify which changes
in the code resulted in performance regressions or improvements.

2.3.5 Deployment

The various metrics provided by the systems described in the previous sections
inform the release manager about the quality of the current code and its readi-
ness for release. If the code is ready, a version number is decided based on
backwards-compatibility considerations. If the network protocols are incom-
patible, the major version is updated, otherwise the minor version. Similar
considerations apply for the versioning of the libraries included in the system,
where the current:revision:age tuple must be updated based on symbol
compatibility.8

Once the versions have been decided, the release manager creates a release
file following the GNU Autotools process, and in particular by using the make

dist command. Following the GNU maintainer guide, the resulting source file
is signed using GnuPG and uploaded together with a directive file to the GNU
FTP upload server. From there, it is automatically distributed to all GNU FTP
mirrors worldwide. Then, a notification about the new release is posted on the
mailing lists and the website.

Various GNU/Linux distributions then package the source file for the re-
spective distribution. The resulting packages, often containing binary code for
a particular platform, are then distributed to the mirrors of the respective dis-
tribution, and then made available via the package manager of the distribution
to the respective user base.

2.3.6 Monitoring

Once deployed, users or developers can monitor the running peer using various
tools. In particular, the STATISTICS subsystem collects ongoing metrics about
the execution of the peer, but other subsystems also generally export custom

8https://www.gnu.org/software/libtool/manual/html_node/Updating-version-info.
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information about their execution. For example, TRANSPORT and CORE
can be asked about the active connections of the peer. GNUnet includes both
command-line tools and GUIs to display and visualize the resulting streams of
information.

2.4 Network architecture

In this section we describe the network architecture of GNUnet, that is how
peers are expected to communicate with each other. GNUnet is special in that
instead of falling into one of the usual categories, it typically falls into all of
them.

2.4.1 Overlay or underlay?

GNUnet is an overlay network, as it is initially supposed to primarily operate
over the existing Internet network. However, GNUnet does not assume that
this is always the case. For example, GNUnet can also operate directly over
WLAN or Bluetooth to create an ad-hoc wireless mesh network, and with the
GNUnet “PT/VPN” subsystems we can run TCP/IP over GNUnet. So in
this configuration, GNUnet would be an underlay network, a bit like MPLS or
B.A.T.M.A.N. [NAL07]. In reality, we in fact expect to see both at the same
time: some peers will run over the existing Internet, while others may connect
to GNUnet on Layer 2. And IP traffic initially run over GNUnet may use the
EXIT subsystem to cross to the Internet at other peers where GNUnet runs over
IP. The situation is thus more related to that of IPv6, where IPv6 can run over
IPv4 and IPv4 can run over IPv6 and protocol translation can convert between
the two. Naturally, GNUnet also runs over both IPv4 or IPv6 and the GNUnet
protocol translation (“PT”) service supports providing protocol translation for
IPv4/IPv6 traffic that runs over GNUnet.

2.4.2 Structured or unstructured?

Given that a GNUnet peer may be connected via any kind of communication
mechanism to some subset of the network (Figure 2.4), the lowest layers in
the GNUnet stack cannot make any hard assumptions about the structure of
the underlying network. Thus, the most basic characterization of the GNUnet
topology is unstructured. However, for performance evaluation, we generally
impose some restrictions, such as a small-world assumption which states that
short (O(log n)) paths exist to all other nodes in the network.

Some GNUnet protocols operate directly over the unstructured topology.
Examples include the gap anonymous query protocol [BG03], the protocols for
network size estimation [EPG12] and key revocation [WSG14]. The TOPOL-
OGY subsystem is used to maintain a “random” mesh topology. Here, the goal
is simply to try to connect to a “reasonable” number of peers, where the defi-
nition of “reasonable” is proportional to the total bandwidth available. Beyond
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Figure 2.4: GNUnet peers may use different physical communication mech-
anisms below, and thus cannot expect universal connectivity or support for
particular network topologies from the underlay.

that, no particular structure is imposed by TOPOLOGY. However, the user
may require that the underlay restricts its connections to certain friends, which
are nodes explicitly designated by the user to be trusted. The result is then a
friend-to-friend network. However, the constraint that a peer should only talk
to friends is not transitive.

Routing protocols provide structure on top of the underlay. Routing pro-
tocols include the bounded distance vector (“DV”) subsystem and the R5N
DHT [EG11b]. The DHT may request that the ATS service establish particu-
lar links, i.e. because they are close in the distance metric used by the DHT,
but the TRANSPORT service maybe unable to do so as the physical network
underlay may not support a direct connection. Thus, in combination with the
DHT the network is semi-structured: there is a desired structure, but the DHT
has to handle arbitrary constraints. Various applications are built on top of the
DHT, including in particular the GNU Name System [WSG14].

Using the DHT to discover routes, the CADET subsystem then composes
routes to provide a global end-to-end transport. Thus, applications working
above the CADET layer see the network through an abstraction that provides
a virtual clique as the overlay structure. Finally, subsystems like MULTICAST
then build additional more complex network topologies (trees, forests, etc.) on
top of CADET.
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2.4.3 Bootstrapping

A central question in topology construction is bootstrapping, that is how a
peer can join the network and find its place in the overlay. Fully decentralized
methods are generally quite expensive [GG08], especially for small emergent
networks. GNUnet instead uses a diverse set of techniques to bootstrap:

� addresses of well-known peers are shipped with the software, and once
connected, peers gossip addresses of other peers

� URLs with HTTP servers offering lists of peers are included with the
software, and once connected, can be learned from gossip with other peers

� UDP IPv4 broadcast in the LAN is used to discover peers in the vicinity

� UDP IPv6 multicast in the LAN is used to discover peers in the vicinity

� WLAN broadcast is used to discover peers in range

� users can manually export and import addresses of peers via the command-
line tool gnunet-peerinfo



Chapter 3

Key contributions

In this chapter, we will briefly present some of the key technical contributions
used in the GNUnet system. The chapter is selective; overall, there are over 45
research papers and theses related to GNUnet listed on the GNUnet website1,
and that list is incomplete. To facilitate understanding, we again describe the
GNUnet system bottom-up, starting with the transport layer.

3.1 Transport underlay abstraction

GNUnet was (probably) the first P2P overlay network that supported more
than two methods of communication between peers as a way to bypass firewalls
and censorship [FGR03]. This is achieved by the use of transport plugins. A
transport plugin must implement an API that allows GNUnet’s transport sub-
system to exchange messages with another peer. The transport plugin defines
the address format (i.e. an email address, or an IPv6 address and a port) as well
as methods for sending and receiving messages using the respective addresses.

As different transport mechanisms have different semantics, the transport
subsystem expects rather weak semantics from the plugin and also only offers
the same weak semantics to the higher layers. Specifically, message delivery is
allowed to be unordered and unreliable, but must be bi-directional.

3.1.1 Automatic selection and resource allocation

A given peer can support many transport mechanisms at the same time, and
each mechanism can have zero or more addresses associated with it. A mech-
anism offering zero addresses might be an HTTP client: it can establish bi-
directional connections to an HTTP server, but the client itself is not address-
able. Given this, the transport subsystem must decide which transport plugins
and which address(es) should be used for communication with which peers. Fur-

1https://gnunet.org/bibliography?f[keyword]=2
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thermore, given resource limits, such as bandwidth, the peer needs to allocate
resources to each connection.

We have implemented three different strategies for transport selection and
resource allocation [WOG14]: a greedy heuristic, a linear program, and a ma-
chine learner using reinforcement learning. The greedy heuristic is very cheap
and provides adequate solutions by assigning bandwidth proportional to the
needs from the application, and selecting transport mechanisms primarily by
latency. The linear solver can take significant CPU time on larger problems in-
volving hundreds of connected peers, but by allowing for approximate solutions
(i.e. within 95% of optimal) and by re-using the previous solution as a starting
point the execution time becomes practical. However, the linear solver is unable
to predict trends as it only uses the current state of the peer and thus is not
forward-looking. Using reinforcement learning was attempted as a strategy to
be both more predictive and less predictable for an adversary. However, so far
the reinforcement learner is very slow to learn and to adapt to changing net-
work conditions. Furthermore, our higher-level applications generally do not yet
provide feedback. Even if they do, it is inherently challenging to compare the
LP-solver with the reinforcement learner as they use different metrics (feedback
vs. current performance goals set by the applications), and thus differences be-
tween the two approaches may be due to differences in the nature of the inputs
provided by the applications and not due to qualitative differences between the
methods.

3.1.2 Autonomous NAT traversal

Another challenge shared by virtually all modern P2P networks is NAT traver-
sal. Various transport mechanisms support the most simple techniques for hole
punching (manual via configuration, or using UPnP or PMP). NAT traversal
using STUN [RWHM03] is not used so far, as it requires a trusted third party.
Instead, we implemented autonomous NAT traversal which can traverse about
50% of the NAT devices we studied using ICMP error codes [MEGK10] and
without a trusted third party. The main limitation of autonomous NAT traver-
sal is that it typically only works to initiate a connection to a peer behind NAT
if the initiator is not behind NAT.

3.2 Byzantine fault-tolerant routing

Routing algorithms are at the heart of any network. Like the Internet, GNUnet
uses more than one routing algorithm. At the transport layer, bounded-distance
distance-vector routing can be used to provide the illusion of higher connectivity,
similar to the use of RIP [Mal93] in LANs. In this chapter, we will focus on
global routing using GNUnet’s DHT, which somewhat corresponds to routing
with BGP [LR91] on the Internet. However, a DHT obviously does not provide
a routing protocol in the style required by IP, so in Section 3.2.3 we will discuss
how GNUnet realizes a transport in the style of SCTP [OY02] on top of the
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DHT.

3.2.1 Secure network size estimation

Various P2P algorithms [BGK+09, EG11b] require estimates on the network
size, that is the number of peers participating in the network. An estimate is gen-
erally sufficient, as the exact number fluctuates rapidly due to peers joining or
leaving. Centralised networks can trivially provide the number of participants.
A decentralized method for gossip-based counting is described in [vdBKM12],
but like previous methods [MKM06, KPG+05, BJBS+08] it fails in the presence
of malicious participants.

GNUnet provides an efficient, Byzantine fault-tolerant mechanism to esti-
mate the size of the network [EPG12]. The first idea is to use the current time
(rounded to, say, the hour) as the seed to generate a predictable but otherwise
random hash shared across the network without prior communication. The time
is rounded so that some clock skew between peers is easily tolerated. Next, each
peer is identified by a public key, and the peers check how many leading bits of
the hash of their public key are identical to the leading bits of the hash of the
current time.

The key idea here is that the chance that the maximum number of matching
leading bits across the network will increase with the size of the network: if the
network doubles in size, there will on average be one peer with an additional
leading bit matching. Thus, we can estimate the size of the network from the
maximum number of leading bits that match. By repeating the protocol (e.g.
once an hour) and averaging the last k-values, the peers can derive a reasonably
good estimate of the network size.

But how can peers learn the maximum number of overlapping bits? To
determine this global value, the peers2 with the most overlapping bits must
flood the network with a message saying how many bits they have overlapping,
providing their peer identity as proof. But how can a peer know that he has the
maximum number of overlapping bits and thus start the flood? The answer is
that the number of bits is also used to determine when a peer should start the
broadcast. The largest number (i.e. 256 bits) goes first, and a peer with 0 bits
goes at the end of the time allotted for the round. Once a peer has received
a flood message (usually with a larger number of overlapping bits than he has
himself), he knows not to initiate the flood for this round and instead forwards
the message he received.

To thwart malicious peers, peers will not forward messages that arrive too
early for the number of overlapping bits provided. To limit an adversary per-
forming a Sybil attack, the initiating peer must provide the result of an expen-
sive proof-of-work calculation. This calculation is done by each peer once and
specific to the respective peer’s identity. Thus, only peers that have completed
the proof-of-work are included in the network size estimate. This ensures that
a computationally bounded adversary is limited in how much bigger he can

2There often is more than one peer with the same number of overlapping leading bits.
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make the network appear to be. Malicious peers can also make the network
appear smaller, but only by not participating in the protocol. In the worst case,
an adversary controlling a separator in the overlay can cause the network size
estimates to only count the peers in the subgraphs induced by the separator.

The protocol is highly efficient, as on average about one message needs to
traverse each link in the network. Additionally, randomized small delays are
used to avoid creating traffic spikes when the flood is triggered. We note that
the final calculation of the network size from the number of overlapping bits is
not simply n = 2b, as one might casually expect; for the correct derivation we
refer to [EPG12].

3.2.2 R5N : A secure distributed hash table

R5N is the Byzantine fault-tolerant distributed hash table (DHT) used in
GNUnet [EG11b]. Like Kademlia [MM02], R5N uses the XOR metric to es-
tablish distances between peers, as this way links between peers are used bi-
directionally. Unlike Kademlia, R5N does not make the assumption that the
underlay is well-connected, as in GNUnet peers may be limited by firewalls on
the Internet or use transmissions over a physical layer with limited range where
the underlay thus does not use IP at all. Furthermore, the DHT may be subject
to malicious peers participating in the network.

To address these challenges, R5N changes Kademlia in three significant
ways. First, R5N uses recursive routing instead of the iterative routing from
Kademlia. As a result, the initiating peer learns less about where the query
ends, but also does not have to be able to connect to each hop. Second, Kadem-
lia replicates at the α closest peers at the last hop. In contrast, R5N replication
does not fan-out at the end but during the routing process itself. In particular,
if the network topology is not dense, there will be many locally-closest peers to
a given key, as the α-peers that are closest to the key may be unable to establish
direct connections in the underlay. R5N ’s goal is to replicate at O(

√
n) of these

peers, where n is the size of the network. By controlled branching during the
routing process, a single request can end up at multiple of these local minima.
Finally, R5N is randomized to ensure that repeated requests take different paths.
Specifically, before performing Kademlia-style greedy routing towards the key,
each request must take O(log n) random hops through the neighborhood with
the restriction that loops are forbidden. If the topology is a small-world net-
work [WS98] (and thus O(log n) diameter), this results in R5N finding data in
O(

√
n log n) messages with O(log n) hops per message.

The randomization ensures that eventually a path is found on which there
are no faulty peers, if such a path exists, and as the overall path length is
limited to O(log n) the bandwidth amplification potential of malicious peers is
also limited. As the DHT does not impose any strict structure on the underlay,
churn also does not offer a means to perform denial-of-service attacks. Finally,
the big-O performance is in line with other Byzantine fault-tolerant DHTs of
this type [LLK10, MCB11], but preliminary experiments suggest that absolute
performance is better [Sin14].
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R5N also introduces an improved DHT API. In addition to supporting the
canonical GET and PUT operations, R5N also supports MONITORING to allow
applications to observe GET and PUT operations routed to or via a peer. This is
not merely useful for diagnostics, but also enables new applications to trigger
operations if they, for example, receive a GET and are thus responsible for a
particular data item. In R5N , each block stored in the DHT under a key is
associated with a type, and developers can specify custom logic to be executed
to verify the integrity of a received block based on its type and possibly the
associated key. Thus, if well-formed blocks must have a particular format, be
cryptographically signed, or if data is to be stored under the hash of the block,
the respective custom logic can ensure that invalid blocks do not propagate
through the DHT, and thus that applications will never receive ill-formed replies.
This ability to validate blocks already in the network using custom validation
code is used by both the GNU Name System (Section 3.3) and GNUnet’s file
sharing. R5N can return more than one answer for a given query, and again
the custom validation logic can determine if multiple replies are expected, valid
or redundant. Here, a Bloom filter is used to probabilistically detect redundant
replies. R5N also allows applications to set a flag that triggers the path of
requests to be tracked. If the flag is set, the receiver of a response will be able
to see a possible path through the overlay network to the origin of the data.
This is a key feature for the CADET subsystem presented in the next section.

3.2.3 CADET: Confidential ad-hoc decentralized end-to-
end transport

GNUnet’s confidential ad-hoc decentralized end-to-end transport (CADET) sub-
system uses the R5N DHT to find multiple paths through the overlay, creates an
end-to-end encrypted connection over which applications can run many chan-
nels [PG14]. Each connection provides authenticated encryption and uses Ax-
olotl [PM14] for asynchronous off-the-record messaging. The applications can
set different delivery semantics for each channel, in particular channels can be
out-of-order, in-order, reliable or unreliable.

CADET finds paths to peers by having each peer periodically store a self-
advertisement into the DHT using its own public key to derive the key. As a
value, the peer includes its own public addresses, if it has any. For CADET’s use
of the DHT, it is critical that the path tracking option is always enabled. A peer
that wants to establish a connection to some other peer then performs a GET
for the respective key. By combining the paths from the PUT and the GET,
the initiator can determine one initial path from the source to the destination
through the overlay. CADET also tries to establish a direct link if possible.
Furthermore, each hop is told the remaining hops and the ultimate destination
and can use its local knowledge about the network topology to possibly produce
a shorter path. Local knowledge in particular includes information obtained
from other paths that a peer is supporting. Finally, CADET tries to establish
multiple paths to the destination and uses all of them in parallel to maximize
throughput and resiliency.
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As a result, CADET performs better after the network has been operating for
a while: the peers learn the topology and optimize paths, resulting in subsequent
paths being shorter, connections using a more diverse set of paths and thus
operations becoming more robust.

Latency in CADET is comparable to typical WAN connections, the addi-
tional cryptography and the context switching between GNUnet subsystems
only significantly increases latency within a LAN. However, with respect to
throughput, CADET’s extensive use of cryptography3 imposes a more signifi-
cant limitation as the system can become CPU-bound given good connectivity.
In a LAN setup, we achieved “only” 5–15 MB/s of throughput. While this may
be a serious limit for servers in traditional client-server architectures, we do not
believe that this is problematic in collaborative P2P applications, as decentral-
ization should allow application developers to balance any load across many
peers, and not require one peer to directly handle hundreds of thousands of
clients. Peers operating at the edge of the network also inherently do not have
data center-style high-speed connections, and it will take a long time until the
typical household bandwidth exceeds 40–120 MBit/sec. Thus, the 5–15 MB/s
throughput is unlikely to be a bottleneck for the foreseeable future.

3.3 The GNU name system

The GNU name system (GNS) [WSG14] is used to name network services,
systems or to identify users. GNS’s design was informed by Zooko’s triangle, an
insightful hypothesis that says that name systems like to provide three features:
secure names, global names and memorable names, but that it is only possible
to provide two at the same time. We showed in [WSG13] that Zooko’s triangle
is correct if one defines “secure” to include a participating adversary with the
only computational limitation that the adversary cannot break cryptographic
primitives, and defines memorable names as those that are enumerable. For a
weaker adversary model, NameCoin provides a design that “squares” Zooko’s
triangle [Swa11].

Given this fundamental design limit, GNS simultaneously offers the user all
possible choices: the user can use cryptographic identifiers as names (forgoing
memorable names), the user can stick to hierarchical names (forgoing security
due to the need to trust the hierarchy), or the user can use petnames [Sti05]
(forgoing globality due to the personalization from petnames).

Like in DNS, the owner of a GNS zone can delegate a label to another zone.
However, while in DNS the definition of a zone “is the complete database for
a particular pruned subtree of the domain space” [Moc87], in GNS a zone is
simply a public-private key pair and a set of labeled records.4 The authority
for a GNS zone is simply the owner of the respective private key. Like with
DNSSEC [3rd99], record sets in a zone are cryptographically signed. GNS al-

3We have link-encryption at the CORE layer, and then end-to-end encryption in CADET,
both using AES and TwoFish and SHA-512.

4This makes it trivial to determine zone cuts.
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ways keeps all records under the same label and the same zone in one response.
This avoids the problem of TLSA records being shipped separately from A and
AAAA records for the same host, as is the case with DNSSEC [HS12].

A key feature of GNS is that all public records are stored in the R5N DHT
and not at some authoritative server. To retrieve the record, the requester de-
rives a hash from the label and the public key of the target zone. The DHT
then delivers an encrypted response, which can only be decrypted if one knows
both the label and the public key of the zone. However, while both query and
response are thus not available in the clear, intermediaries (the DHT) can check
that the signature over the record set data is correct and thus the record set
contains the correct response. Thus, unlike DNS [GWE+15] the GNS avoids
leaking meta data about user’s name resolution activities to the network. How-
ever, GNS does allow a confirmation attack, so an adversary who knows the
full request (label and zone) learns everything. Defeating this would require
implementing private information retrieval [CKGS98], which is too expensive to
be practical in this context.

Compared to X.509, the trust paths in GNS are explicit: given a name, it is
obvious which zones operators need to be trusted. With X.509 the certified name
typically bears no (obvious) relationship to the responsible certificate authority.
Similarly, with DNS, out-of-bailiwick NS entries also make it difficult to predict
which set of DNS servers may pose a security threat for a given resolution.

3.3.1 Revocation

GNS supports fully-decentralized and fast key revocation. Basically, when a user
wants to revoke the key for a zone, the private key is used to sign a revocation
message which is then flooded across the network. A proof-of-work is required
to deter adversaries from flooding the network with useless revocation messages.
Whenever two peers connect, Eppstein’s efficient set reconciliation [EGUV11]
is used to quickly compute the union of the two revocation sets. This ensures
that temporary network partitions do not result in permanent divergences of
the sets of revoked keys.

This style of key revocation is significantly more efficient and faster than
X.509 certificate pinning, X.509 online certificate revocation checks [MAM+99]
or even clients shipping with lists of revoked certificates. However, it depends
on the existence of a P2P communication infrastructure across all participants
to execute the flooding.

3.3.2 Conversation

GNUnet conversation uses the GNU Name System (GNS) as a public key infras-
tructure for a telephony application. A GNS zone is used as the phone book, and
a PHONE record is defined in the zone to communicate to the dialer the address
of the callee. Thus, GNUnet conversation demonstrates how to use GNS as a
decentralized PKI.
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GNUnet conversation uses CADET to establish a reliable channel to com-
municate control messages (i.e. to establish, suspend, resume and close con-
nections) and a second unreliable channel for sending voice packets. The voice
packets are encoded using the OPUS codec using a fixed bitrate encoding to
minimize data leakage from packet sizes.

3.3.3 Protocol translation

GNUnet uses CADET’s end-to-end communication ability and the ability to
name hosts and services with GNS to allow users to operate TCP/IP on top
of CADET. For this, the GNUnet VPN service opens a virtual network inter-
face and routes all incoming traffic over CADET. Traffic destined to an IPv4 or
IPv6 address is forwarded to a peer running a compatible EXIT service, where
the traffic is then forwarded onto the normal Internet. This typically hap-
pens in conjunction with the protocol translation (PT) service, which supports
IPv4/IPv6 protocol migration. When a peer receives a DNS reply in an address
family not supported by the host, the PT service transforms the DNS reply to
an IP address in the range of the VPN’s virtual interface and informs the VPN
about the intended destination address. Applications receiving the transformed
DNS packet will then send their traffic to the virtual interface, from where the
VPN forwards them to the intended destination.

Traffic for peers hosting services within the P2P network is handled in a
similar way. When an application requests an A or AAAA-record and GNS
instead obtains a VPN record which states that the desired service is hosted at
a particular peer, GNS requests an IP from the VPN service and instructs the
VPN service to forward the TCP/IP traffic to the hosting peer (based on the
information from the VPN record). GNS then responds to the application with
an A/AAAA record with the IP address from VPN service.
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Chapter 4

Pluggable transports and
resource allocation

This chapter is based on [FGR03, MEGK10, WOG14]. These papers were co-
authored with Ronaldo A. Ferreira, Paul Ruth, Andreas Müller, Nathan Evans,
Samy Kamkar, Matthias Wachs and Fabian Oehlmann.

4.1 Introduction

Reliable connectivity and reasonable application-level throughput (goodput)
with low latency are important for the success of peer-to-peer (P2P) networks.
However, the contemporary Internet rarely provides unrestricted communica-
tion: various parties try to restrict or shape traffic for political [FBH+02], eco-
nomic or technical reasons [BER11].

Modern P2P networks focus on antagonising the restrictions built into the
Internet infrastructure by obfuscating information flows and sending traffic via
routes or mechanisms that are not easily restricted. Leading P2P designs have
started to support multiple “pluggable” transport mechanisms, resulting in ar-
chitectures that can leave a compromised or degraded medium of communication
and switch to a different communication mechanism.

Peer-to-peer networks are typically overlay networks that are built on top of
the existing Internet infrastructure. In an ideal overlay network, every node can
communicate with every other node. However, this is not always the case with
the modern Internet. Firewalls, network-address translation (NAT) devices,
and dynamic IP assignment via DHCP create obstacles that global peer-to-
peer applications need to overcome. One central design goal for a peer-to-peer
framework must thus be to virtualize the network and give the application a
view of a uniform address space and communication model. While it may not
always be possible to guarantee connectivity from every node to every other
node, the details about the implementation of the transport layer should clearly
be hidden from the application.
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It is desirable for a peer-to-peer system to offer transport protocols that can
be used in spite of these circumstances. UDP and TCP can easily be blocked
based on the port number associated with a specific application; on the other
hand, some protocols, such as SMTP or DNS, cannot be conveniently blocked
without entirely interfering with a significant portion of users.

One of the most important design requirements for a peer-to-peer system
is thus the support for a wide variety of transport mechanisms. This can be
achieved using a transport abstraction which supports a wide spectrum of possi-
ble transport mechanisms. For our work, the only requirement we make is that
the mechanisms must offer bidirectional communication. Beyond that, they can
be stream-oriented or record-oriented, reliable or unreliable, and low-latency or
high-latency. Furthermore, two peers A and B may want to use different modes
of communication on the same link. For example, suppose node B is behind a
NAT box and cannot be reached directly via UDP or TCP. In a system with
multiple transport protocols, A could initiate a connection by sending an email
to B (SMTP) and then have B contact A via TCP, allowing A to continue
further communication on a bidirectional TCP connection.

Being able to choose between different communication mechanisms creates
new challenges as peers typically communicate with multiple other peers at the
same time, and allocating resources for one peer may impact the quality of the
connection to the others. Thus, transport selection for pluggable transports
in P2P networks must consider not only performance and availability of the
respective transport mechanisms, but also resource constraints and application-
specific preferences.

This chapter presents solutions to the challenge of transport selection and re-
source allocation with a focus on the specific requirements of censorship-resistant
decentralized networks. For security reasons, we require that peers do not make
their resource allocation decisions based on unreliable information from other
peers; to minimize information leakage, peers also do not exchange information
about their resource limitations, neighbor set or even the results of the resource
allocation process.

We present a formalization of the problem and three different approaches to
solve the problem and evaluate these approaches with respect to usability of the
approach and quality of the resulting solutions. We compare three solutions:
a greedy heuristic, an algorithm based on linear constraint optimisation prob-
lem, and a method using reinforcement learning where agents learn to allocate
resources while maximising social welfare.

4.2 Semantics of the Transport Abstraction

Node to node communication in peer-to-peer networks is inherently unreliable.
In contrast to client-server architectures, node failure is part of the normal mode
of operation. But even if nodes do not fail, the transport layer may be built
on top of an unreliable communication protocol such as IP or UDP. The design
question in this case is whether or not the transport layer implementation should
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hide this fact and guarantee delivery if the other node is reachable. In other
words, the question is whether or not the transport layer or core should provide
reliable communication like TCP and hide the unreliability of the network, or
if all network problems should be exposed to the application.

In peer-to-peer systems, it is better to expose the unreliability of the trans-
port layer to applications or higher-level abstractions that go beyond the scope
of a simple link-level transport. There are multiple reasons for this. Links in a
peer-to-peer overlay network are bound to be even less reliable than the phys-
ical links that IP is concerned with. Connections with asymmetric bandwidth
and P2P protocols that require forwarding messages to multiple other peers fre-
quently force peers to drop messages. Congestion control would be difficult for a
generic transport abstraction that has to deal with one-to-many or even many-
to-many connections. Application specific solutions that can take the specifics
of the protocol and potential security problems into account are needed. An-
other reason is that many applications may not require reliable communications;
for example, a flooding search may send out 12 queries in parallel, and if one
of them is lost on the transport layer, it is still possible that the remaining 11
queries will return a sufficient number of results. Adding retransmission on the
transport layer in these cases merely increases the overhead without providing
any major benefit.

The same rationale applies to the question of ordered delivery. Choosing
the weaker semantics (no guarantee for order of delivery) makes the transport
layer cheaper and more resilient. For example, an adversary that changes the
message order or delays messages would have no impact. Of course, these less
strict semantics also make the implementation of the transport over UDP (no
order preservation) or SMTP (high latency) easier. The transport layer imple-
mentation may still use an underlying protocol such as TCP that has stronger
semantics; this might happen, for example, because the network or the host
configuration does not allow the use of cheaper protocols such as IP or UDP.

In GNUnet, the CADET layer (see Section 5.4) handles congestion con-
trol and can provide reliable and in-order delivery semantics. Applications
and services that do not require these features can either disable reliability
or congestion-control in the CADET layer, or do not use the CADET layer in
the first place.

4.2.1 Security Considerations

An interesting security problem in peer-to-peer networks arises when malicious
nodes advertise invalid or incorrect peer addresses. For example, it would be
possible in Gnutella [Gnu02] to advertise example.com as a peer; even the port
can be freely chosen in the advertisement. If peers spread this advertisement
and frequently attempt to connect to this host, the peer-to-peer network could
become a tool for a distributed denial of service attack as it may enable traffic
amplification. On the other hand, without a central server, the ability of peers
to advertise other peers cannot be avoided.
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:0:

* \^X-mailer: GNUnet

/tmp/gnunet.smtp

:0:

/var/spool/mail/$USER

Figure 4.1: Example procmail configuration with “X-mailer: GNUnet” as the
filter line and “/tmp/gnunet.smtp” as the name of the pipe.

Our solution to this problem is that every peer A that receives an adver-
tisement for another peer B must check that the advertised address is valid by
sending a PING message containing a challenge (a randomly chosen integer)
to the advertised peer B. If B receives the PING, it responds with a PONG
message which also contains the challenge, confirming that it can be reached
under this address. Only after this protocol has been run should A notify other
peers of B’s existence. This prevents a malicious node M from advertising a
non-participating third party T on the network since T would not properly re-
spond to A’s PING. M also cannot easily fabricate a PONG for T because the
message sent to B contains a challenge which is unknown to M . While M has
tricked A into sending a single message (the PING) to T , this cannot be used
to seriously attack T since M had to send a message to A first. If M had sent
the message directly to T , it would have caused an equal amount of traffic. The
only gain that M has potentially achieved is that it was able to hide its identity
from T .

4.3 Example: SMTP Implementation (Historic)

When GNUnet starts running, it loads all the transport modules defined in
its configuration file. During this process, the initialization code of the SMTP
transport opens a connection to an SMTP server (sendmail, qmail, etc.) that
is running either on the local host or remotely; this connection will be used to
send messages to the other peers. Observe that GNUnet does not establish a
direct SMTP connection to the other peers, but relies instead on existing mail
transfer agents (MTAs) to send the messages.

4.3.1 Sending Email

When the SMTP transport service receives a message from the GNUnet core,
the message is extended with a header that contains the node identity of the
sender and the meta-information provided in the parameters of send. The
resulting message is base64 encoded, encapsulated according to the MIME con-
ventions [FB96], and sent to the MTA over the pre-existing TCP connection.
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Most MTAs store the mail on the drive before sending an acknowledgement to
the client in order to ensure guaranteed delivery even after a crash. This disk
I/O created by standard SMTP implementations that we use is a significant
overhead for the SMTP transport, even though is not actually required for the
GNUnet transport (since the GNUnet semantics only require unreliable com-
munications). The MTA then resolves the destination address using DNS (MX
record) and contacts the remote mail server, which again receives the message
via SMTP and initiates delivery.

4.3.2 Receiving Email

In order for GNUnet to receive an inbound email, the mail must first be delivered
to the local machine. If the local machine is the receiving host according to the
MX record for the email address, this step is handled by the SMTP protocol.
But in the case where the GNUnet node runs behind a NAT box, the mail
will typically be stored on the mail server at the ISP. In this case, the host
will periodically poll for new mail, for example using a POP client. Under this
last configuration, the polling interval will be a major contributor to the delay
in the SMTP transport. For GNUnet to work properly, we assume that one
minute is a reasonable interval. Polling with POP can easily be automated
using fetchmail, a tool that is available for most UNIX systems.

In many cases, this is not the only problem. Normally users will have only
one email account available. Thus it is necessary to filter the inbound GNUnet
messages from the other messages that are destined for the user. Since we do
not want to tag all GNUnet emails with a uniform header (this would make
it too easy for adversaries to filter and effectively censor GNUnet traffic), the
advertisement for the SMTP address of the peer does not only contain an email
address but also a filter line. The sender is required to add this line to the
header. Since the receiver of the email specified which filter to use, procmail
can be used to distinguish mails that have the appropriate filter line. The user
can change the filter line whenever he wants; it will, of course, take some time
to propagate the new address information into the network.

Finally, procmail needs to be informed of how to deliver the GNUnet mail
to the GNUnet process. The easiest way is to use a named pipe (fifo). The
user specifies in the GNUnet configuration the name of the pipe, and procmail

writes the filtered mail into that pipe. The SMTP transport then reads the mail,
decodes the base64 encoded body and forwards the message to the GNUnet core.
An example .procmailrc configuration file is given in Figure 4.1.

4.3.3 Security considerations for SMTP

The primary security problem with SMTP is the potential for harassment of
users. Other transports (UDP, TCP, HTTP) have this problem to a much
lesser extent. While sending massive amounts of traffic can become an attack
with every transport protocol, fairly moderate amounts of data can become a
problem when sent to a user via email, especially if the user is not educated
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enough to filter the spam. Still, it is possible to use SMTP as one possible
transport mechanism for peer-to-peer networking. Since GNUnet is completely
decentralized, a solution to the security challenge requires that peers be able to
advertise email addresses of other peers on the network.

In order to prevent attacks, every peer first validates the advertisements
before using the email address for actual transmission or advertising it further
using the PING/PONG mechanism described before. This validation mecha-
nism ensures that a malicious peer that sends an advertisement for an invalid
(non-GNUnet) email address will trick the receiving peer into sending at most
one small message to that address. The bandwidth that the adversary spends
on sending advertisements is thus proportional to the amount of email that the
victim receives. More importantly, the adversary is not anonymous. While the
victim does not receive the mail directly from the attacker, it is clear that the
attacker is the node sending the advertisements since no honest node will send
advertisements without having received the PONG confirmations. Thus, it is
possible to track down the attacker.

A more sophisticated attack involves mailing lists. The problem here is, that
an adversary could subscribe to a mailing list and then advertise the address of
the mailing list on GNUnet. Peers would send mail to the list and the adversary
could send responses to the PING messages since he is one of the recipients.
Since the peers can confirm that the address is valid, they would now start
advertising the address, causing even more traffic for the list. In this way, an
adversary could anonymously drown any open mailing list in unsolicited traffic.
The solution to this problem is to ensure that GNUnet SMTP traffic will not be
forwarded by any modern mailing list software. This can be achieved by making
every GNUnet email look like a bounce message [MV96]. Bounce messages are
used to notify the sender of an email about an invalid or unavailable receiver
address. Since mailing lists often have the problem that one of its members is
unavailable, it is safe to assume that bounces are always filtered.

4.4 Related Work

Encapsulating one networking protocol in another protocol and tunneling the
traffic is a well-known technique that has been used for a long time (e.g. IP
over X.25 [Kor83]). Asynchrony, high-reliability and universal availability have
made the encapsulation of various services in email a popular choice [Boy02].
The high latency and the low efficiency of SMTP are for many applications not a
problem. Research has instead mostly focused on addressing the security issues
inherent in the protocol, mainly attempting to allow users to filter unwanted
mail [PL98, SDHH98, AKC+00].

Infranet [FBH+02] steganographically hides traffic in HTTP requests to pro-
vide users with a high level of security. While HTTP itself has a fairly low
overhead compared to other protocols, the steganographic encryption increases
the traffic requirements by at least an order of magnitude. The peer-to-peer
framework JXTA [Gon01] is another example of a networking protocol that can
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encapsulate traffic in HTTP requests. JXTA allows the traffic to be encrypted
but does not use steganography. JXTA supports peers that use network address
translation (NAT [SE01]). If two peers that use NAT want to communicate,
their traffic is routed via a peer that is globally addressable.

Another approach to establish connections with machines behind NAT boxes
was described by Dan Kaminsky at DefCon.1 Both hosts synchronously send the
messages of the initial TCP handshake to the other hosts using a very small value
for the TTL in the IP header. The NAT boxes see the outbound connection and
start routing future messages. The small TTLs cause the handshake messages to
be dropped at a router between the NAT boxes and thus the ICMP connection
refused messages are never returned. The problem with this approach is that it
still needs a way for both peers to synchronize. Furthermore, it assumes that
the NAT box ignores ICMP TTL expired messages.

4.5 Autonomous NAT Traversal

Traditional NAT traversal methods require the help of a third party for sig-
nalling. This chapter investigates a new autonomous method for establishing
connections to peers behind NAT. The proposed method for autonomous NAT
traversal uses fake ICMP messages to initially contact the NATed peer. This
chapter presents how the method is supposed to work in theory, discusses some
possible variations, introduces various concrete implementations of the proposed
approach and evaluates empirical results of a measurement study designed to
evaluate the efficacy of the idea in practice.

A large fraction of the hosts in a typical peer-to-peer network are in home
networks. Most home networks use network address translation (NAT) [EF94]
to facilitate multiple computers sharing a single global public IP address, to
enhance security or simply because the provider’s hardware often defaults to
this configuration. Recent studies have reported that up to 70% of users access
P2P networks from behind a NAT system [CF06]. This creates a well-known
problem for peer-to-peer networks since it is not trivial to initiate a connection
to a peer behind NAT. For this chapter, we will use the term server to refer to
a peer behind NAT and the term client for any other peer trying to initiate a
connection to the server.

Unless configured otherwise (protocols such as the Internet Gateway Device
Protocol [IW01] are counted as configuration in this context), almost all NAT
implementations refuse to forward inbound traffic that does not correspond to
a recent matching outbound request. This is not primarily an implementation
issue: if there are multiple hosts in the private network, the NAT is likely
unable to tell which host is the intended recipient. Configuration of the NAT
is not always an alternative; problems range from end-user convenience and
capabilities of the specific NAT implementation to administrative policies that
may prohibit changes to the NAT configuration (for example, due to security
concerns).

1http://www.defcon.org/html/defcon-10/defcon-10-speakers.html#dankaminsky
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Since NAT systems prohibit inbound requests that do not match a previ-
ous outbound request, all existing NAT traversal techniques (aside from those
changing the configuration of the NAT system) that we are aware of require
some amount of active facilitation by a third party [J. 08, RMM10]. The basic
approach in most of these cases is that the server in the private network behind
the NAT is notified by the third party that the client would like to establish a
connection. The server then initiates the connection to the client. This requires
that the server maintains a connection to a third party, that the client is able
to locate the responsible third party and that the third party acts according to
a specific protocol.

The goal of this chapter is autonomous NAT traversal, meaning NAT traver-
sal without a third party. Using third parties increases the complexity of
the software and potentially introduces new vulnerabilities. For example, if
anonymizing peer-to-peer networks (such as GNUnet or Tor [DMS04b]) used
third parties for NAT traversal, an attacker may be able to monitor connec-
tions or even traffic volumes of peers behind NATs which in turn might enable
de-anonymization attacks [MD05, EDG09]. Another problem is that the de-
crease in available globally routable IPv4 addresses [Hus10] will in the near
future sharply reduce the fraction of hosts that would be able to facilitate NAT
traversal.

4.5.1 Technical Approach

The proposed technique assumes that the client has somehow learned the current
external (globally routable) IP address of the server’s NAT. This could be due to
a previous connection between the two systems or a third party having provided
the IP address in a previous exchange. Note that we specifically assume that
no third party is available at the time when the client attempts to connect to
the server behind the NAT.

The first goal of the presented NAT traversal method is to communicate the
public IP address of a client that wants to connect to the server behind the
NAT. After the server is aware of the IP address of the client, it connects to the
client (similar to NAT traversal methods that involve a third party).

The key idea for enabling the server to learn the client’s IP address is for
the server to periodically send a message to a fixed, known IP address. The
simplest approach uses ICMP ECHO REQUEST messages to an unallocated
IP address, such as 1.2.3.4. Since 1.2.3.4 is not allocated, the ICMP REQUEST
will not be routed by routers without a default route; ICMP DESTINATION
UNREACHABLE messages that may be created by those routers can just be
ignored by the server.

As a result of the messages sent to 1.2.3.4, the NAT will enable routing
of replies in response to this request. The connecting client will then fake
such a reply. Specifically, the client will transmit an ICMP message indicating
TTL EXPIRED (Figure 4.2). Such a message could legitimately be transmitted
by any Internet router and the sender address would not be expected to match
the server’s target IP.
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1

2

1.2.3.4

NAT Host

Non-NAT Host

Figure 4.2: This figure diagrams the process of sending and receiving the fake
ICMP messages for the server and client. In step 1, the server sends a fake
ICMP request to 1.2.3.4 and in step 2 the client sends the matching reply. Note
that this is a fake reply since the client never receives the ICMP request sent
to 1.2.3.4 by the server. The important information contained in the actual
packets is displayed for each step. The blue (solid) line shows the ICMP request
path and the dashed (green) line shows the ICMP reply path.
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The server listens for (fake) ICMP replies and upon receipt initiates a con-
nection to the sender IP specified in the ICMP reply. If the client is using a
globally routable IP address, this is entirely unproblematic and both TCP or
UDP can be used to establish a bi-directional connection if the client listens
on a pre-agreed port. In cases where there is no pre-agreed port, a port num-
ber can in most cases be communicated as part of the payload of the ICMP
ECHO RESPONSE, which is typically not checked against the payload of the
corresponding ICMP ECHO REQUEST by NAT implementations.

NAT-to-NAT Communication

Further complications arise if both the client and the server are behind NAT.
In this case, often the client will be unable to transmit a fake ICMP response
to the server due to restrictions imposed by the NAT implementation of the
client. One possible idea for circumventing this problem is for the client to
send the same message that the server is sending except with TTL 1 to its
NAT. If the NAT accepts the packet despite the forged sender IP address it
might theoretically generate the desired ICMP response and forward it to the
external network. However, in practice we did not find NATs where generating
the necessary ICMP message using a TTL of 1 works.

Even if the client is able to transmit the fake ICMP response, the next step
— in which both the client and server are aware of the others IP address and now
intend to establish a TCP or UDP connection — can still be complicated. The
reason is that NAT systems can change the source port numbers of outbound
messages. Without a third party, both client and server would have to guess
matching source and destination port numbers as chosen (possibly at random)
by their respective NAT implementations. Depending on the type of the NAT
implementations (Full cone, restricted cone, port-restricted, symmetric), finding
the correct port may take several messages. Client and server can reduce the
total number of messages required by transmitting and listening on multiple
ports in this phase.

Using UDP packets instead of ICMP ECHO REQUESTs

A possible alternative to having the sender transmit ICMP ECHO REQUESTs
to a fixed, known IP address is having the sender transmit UDP packets to a
fixed, known IP address and port. In this case, the client would again forge
an ICMP TTL EXPIRED message, only this time using the UDP format. The
main disadvantage of this variation is that the sender has to guess the external
UDP sender port number when faking the ICMP response. Since some NAT
implementations randomly change those port numbers, the server might have
to send UDP packets using multiple sender ports in order to give the client a
sufficient chance at guessing correctly.

The main advantage of this technique is that the server no longer needs
to send using RAW sockets, which may reduce the privileges required for the
server. Note that the server still needs to be able to listen for the ICMP reply,
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Table 4.1: Experimental evaluation of autonomous NAT traversal. “Echo-
Server” lists the number of NAT implementations that allows (faked) ICMP
TTL EXPIRED replies to traverse the NAT in response to ICMP ECHO RE-
QUEST messages. “Echo-Client” lists the number of NAT implementations
that allow clients to transmit (faked) ICMP TTL EXPIRED messages. “UDP-
Server” and “ICMP-UDP-Client” give the same numbers when using UDP
packets instead of ICMP ECHO REQUESTs. “Preserves Ports” indicates the
number of implementations that preserve the sender’s local port as the exter-
nal port if possible. “Any server” lists the number of NATs where either the
ECHO-Server or the UDP-Server work. Finally, “Two-Message Success” lists
the number of NATs where autonomous NAT traversal (as a server) succeeds
either with Echo-Server or with UDP with port preservation and hence only two
messages are necessary to reach the server.
The totals differ as not all of the tests were run against all of the devices by the
volunteers.

Echo-Server Echo-Client UDP-Server ICMP-UDP-Cl.

Full cone 0/4 1/4 1/4 1/4

Restricted cone 9/31 5/34 26/40 5/34

Port-restricted 37/56 2/71 82/91 2/71

Symmetric 2/3 2/5 3/5 2/5

Overall 53/103 (51%) 10/123 (8%) 121/149 (81%) 10/123 (9%)

Preserves Ports Any server Two-Message Success

Full cone 0/4 1/4 0/4

Restricted cone 16/43 26/40 9/31

Port-restricted 72/98 83/91 43/56

Symmetric 6/6 3/5 2/3

Overall 100/162 (62%) 122/149 (82%) 62/103 (60%)

which requires RAW sockets on Linux. In the case of a full-cone NAT, using
UDP packets instead of ICMP ECHO REQUESTs also has the advantage of
establishing a port mapping which can then be used as an alternative method
for contacting the peer.

Another difference between the two approaches is the possible payload that
can be embedded in the response. With ICMP ECHO REQUESTs, the pay-
load can be as big as the packet size permits and is hence only limited by the
MTU of the respective physical network. Well-formed ICMP UDP TTL ex-
ceeded replies on the other hand can only contain 32 bits of payload: the ICMP
TTL EXCEEDED response contains the first 64 bits of the payload of the orig-
inal IP packet. In those 64 bits, the 16-bit UDP checksum field and the 16-bit
UDP packet length are unverifiable (for NATs that do not track extensive in-
formation about outgoing UDP packets) and can hence be used to transmit 32
bits of information to the server (in addition to the sender’s IP address). With
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our approach, either of these payload sizes is enough as we only transmit a port
number in addition to the IP address.

4.5.2 Implementations

This section summarizes the three implementations of the proposed method that
we have done so far. All of the presented implementations are freely available
from the web pages of the respective projects.

Implementation in NAT-Tester Framework

Our implementation in the NAT-Tester framework was used to gather the data
for this chapter. It transmits the various packet types (with or without payload)
using raw sockets and uses libpcap to determine which messages were forwarded
by the NAT. The client is currently available for W32 and Linux and must be
run with administrator rights. This implementation is useful for researchers
interested in exploring the various variations of this and other NAT traversal
methods.

Implementation in pwnat tool

The pwnat tool2 is a GNU/Linux-only stand-alone implementation of autonomous
NAT traversal. After contacting the server behind the NAT, it establishes a
channel with TCP semantics using UDP packets. It supports both client and
server behind NAT (if one of the NATs allows the fake ICMP messages to be
transmitted). This implementation targets end-users.

Implementation in the GNUnet Framework

Finally, we have created a re-usable implementation of the presented ICMP-
based NAT traversal method in GNUnet. Since the use of ICMP requires the
use of non-portable and often privileged system calls, this implementation is
split into three main components:

ICMP server
This component is a small program that provides the core ICMP-related
functionality for the server. The code periodically generates the ICMP
ECHO REQUEST message and also listens for incoming ICMP TTL EX-
CEEDED responses. If such a response is received, it simply prints the
IP address of the sender to stdout. If the ICMP also contains the 16 bit
payload, it is interpreted as a port number and also printed.

ICMP client
This component is a small binary which simply sends a single (fake) ICMP
message to the IP address specified at the command-line. An additional

2http://samy.pl/pwnat/

http://samy.pl/pwnat/


4.5. AUTONOMOUS NAT TRAVERSAL 55

argument can be given which will be interpreted as a port number to be
transmitted in the payload of the fake ICMP response message.

Transport plugin
This component implements a GNUnet transport plugin [FGR03] and is
thus specific to the GNUnet peer-to-peer framework. Depending on how
the peer is configured, it controls ICMP servers or clients and ultimately
establishes connections between peers.

Splitting the implementation into these three components has the advantage
of minimizing the amount of code that must run with super-user privileges on
POSIX systems (by installing the ICMP server and client with the SUID bit
set). Furthermore, since the ICMP code is platform-specific, this makes it easier
to manage this part of the code. Finally, this split makes it easy to share the
platform-specific — but peer-to-peer network agnostic — ICMP code so that it
can be used with other peer-to-peer applications. The implementation is thus
suitable as a starting point for developers of any P2P network.

4.5.3 Experimental Results

We have evaluated the proposed autonomous NAT traversal techniques on a
large number of NAT implementations. For this, we used TUM’s NAT-Tester
framework [MKC08a, MKC08b]. The framework consists of a public client that
volunteers download and execute. The client then performs various tests against
the local NAT implementation and reports the results back to the NAT-Tester
server. This enables us to evaluate NAT traversal strategies against a wide range
of NAT implementations. Detailed results are made public on the NAT-Tester
web page.3 In this section we will summarize the results based on the data
available so far.

Table 4.1 summarizes which fractions of the NAT implementations evaluated
so far support the proposed method for autonomous NAT traversal. We distin-
guish between behavior relevant for using autonomous NAT traversal from the
point of view of both clients and servers behind NAT. We consider two cases:
the case where the server uses ICMP ECHO REQUESTs and the case where
the server transmits UDP packets. We also consider the extent of UDP port
randomization which determines how efficient the second stage in the case of
NAT-to-NAT communication would be. NAT implementations are categorized
into the typical four types (full cone, restricted cone, port-restricted, symmetric)
in cases where NAT-Tester is able to determine the type. NAT implementations
that do not seem to fall into any of these categories are only included in the
total.

The data shows that in virtually all cases NATs forward the faked ICMP
messages for UDP (UDP-Server), but only in about half the cases for ICMP
ECHO REQUESTs (Echo-Server). Furthermore, a significant majority of all

3http://nattest.net.in.tum.de/

http://nattest.net.in.tum.de/
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NATs also preserve the source port (when possible), so the additional require-
ment of guessing the port for faking the ICMP response for a UDP message does
not change the overall cost of the approach. Finally, NATs virtually always pre-
vent their clients from transmitting the fake ICMP messages used by our clients
(Echo-Client, ICMP-UDP-Client). Based on what we have seen from inspecting
NAT configurations directly, the reason seems to be that NAT rules typically
only allow ICMP packets for the states “NEW” and “ESTABLISHED” in the
state machine [Pur04] — and the fake response falls into neither category.

4.5.4 Discussion

The proposed method of autonomous NAT traversal works well in the case of
an unrestricted client attempting to initiate a connection to a server behind
NAT. Here, in virtually all cases a single ICMP message by the client would be
followed by traditional connection reversal [SFK08] which then reliably creates
a UDP or TCP connection. In other words, there is no need for third parties to
help initiate connections to NATed servers in this case.

On the other hand, if both systems are behind NAT, the proposed method
rarely works and a third party is required. Assuming 70% of the peers in a
network are behind NAT, this means that roughly 50% of all possible connec-
tions can be established using autonomous NAT traversal. However, even in the
case where both systems are behind NAT a possible advantage of the proposed
method remains; it is easy to create a simple, generic and fully stateless ser-
vice that receives requests from NATed peers and generates fake ICMP replies
to notify the server behind NAT. In this case, the payload of the ICMP reply
would need to contain the original IP address (and likely source port number)
of the client since the IP header of the faked ICMP response would now contain
the IP address of the service.

4.6 The transport selection and resource alloca-
tion problem

Existing P2P networks like I2P [The13], GNUnet, SpovNet [BHMW08] and
Tor [AM14] enable the use of multiple transport mechanisms, but so far they
use rather simplistic processes like heuristics to decide which mechanism to use.
This is problematic, as this decision can clearly have a significant impact on the
quality of communication an application can provide.

In a P2P network, each peer communicates with a set of communication
partners. The network defines a set of transports (e.g. TCP and UDP), peers
can use to communicate with each other, but not every peer must support every
transport. Transports provide addresses indicating how to connect to a peer.
When a peer supports multiple transports, multiple addresses may be available
to connect to this peer and even a single transport can provide multiple addresses
(e.g. IPv4 and IPv6). Addresses can be located in different network scopes
(e.g. LAN and WAN) with different resource restrictions. Resources available
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on a system have to be distributed among communication partners. To not
cannibalize other applications running on the same system, quotas may restrict
the amount of resources available to the application. Different addresses may
have different properties (e.g. delay and loss rate) based on the transport and
the network scope of the address. Therefore metrics are required to compare
and select the “best” address. Applications using the transport underlay to
communicate with other peers have to specify preferences (e.g. low latency and
goodput) to express which properties are important for good performance and
which peers are important to communicate with. Applications should also be
enabled to provide positive or negative feedback to indicate how satisfied they
are with regard to the current performance.

A P2P network using a multi-transport approach should automatically select
the “best” transport available for each communication partner, and continuously
evaluate the performance of the chosen transport. The transport selection op-
eration performed by each participant in the network has to (1) decide on a set
of peers with which it will maintain connectivity, (2) choose a single address for
each peer from the set of available addresses, and (3) allocate a certain amount
of the resources while satisfying the resource constraints. Due to peers joining
and leaving the network, inputs to the problem may change frequently. We ex-
pect peers to join and leave the network at frequencies in the range of seconds,
whereas address properties may change within milliseconds. Whenever inputs
change, the transport selection process may want to adjust the solution. The
output of the address selection and resource allocation process is the set of ad-
dresses to use to communicate with other peers, containing a single address for
each remote peer together with the resources assigned to each address.

4.6.1 Objectives for transport selection

In addition to considering application preferences and address properties, the se-
lection algorithm should consider additional high-level objectives that transcend
the preferences of an individual application. To provide a useful communication
between participants, a minimum amount of resources is required for each con-
nection. Thus, if an address is selected at all, at least a certain minimum amount
of resources has to be assigned (Usability). Communicating with a larger num-
ber of participants increases the resilience of the P2P network. Therefore, the
result should distribute resources over a range of peers instead of preferring
communication with a tiny number of peers (Diversity). Resources should be
allocated to peers according to their relative importance in the communication
as expressed by the applications’ preferences. So if a peer is valuable, it should
get more resources assigned than a peer that does not contribute (Relativity).4

Available resources should be fully allocated to allow participants to achieve
maximum utilization when communicating (Utilization). Transports with high
overhead should be avoided to minimize useless resource consumption and max-
imize application performance (Austerity). Allocations should exhibit some

4Naturally, the transport cannot tell if a peer is valuable, this is something applications
have to determine, ideally in a way that is difficult for an adversary to game.
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stability to minimize transport initialization overheads and provide predictable
performance to applications (Stability). We assume that the P2P framework
assigns specific weights for the sub-objectives to evaluate the overall quality of
the peer selection, address selection and resource allocation.

4.6.2 Scope

For the approach presented in this chapter, we assume that only a single address
per (selected) peer is to be determined, based on the idea that each connection
creates inherent overheads (handshake, socket, buffers) and that establishing
multiple parallel connections is thus inherently wasteful. This restriction is not
a fundamental limitation since our solutions can be easily extended to permit
this behavior. We further assume that the process of deciding which peers to
communicate with is partially covered by the application, and the transport
selection algorithm then decides on the address to use; the address must be ini-
tially provisioned with some minimum amount of resources, but in later rounds
the transport selection algorithm may terminate the connection with the peer.

4.7 Design for Transport Selection and Resource
Allocation

A component for automatic transport selection and resource allocation has to
interact with both the underlying transport infrastructure and the applications
using this transport infrastructure to communicate. We will now sketch three
different solutions to find an “optimal” set of addresses and resource allocation
with respect to the inputs provided by the transport underlay and higher layer
applications and the user defined resource constraints. Each solver satisfies the
requirements of this problem and has distinct advantages and disadvantages.
A detailed analysis about the design and implementation of the solvers can be
found in the thesis of Matthias Wachs [Wac15].

4.7.1 The heuristic solver

The first approach is a fast heuristic based on the idea to distribute resources
roughly proportional to the importance a communication partner has for the
high layer applications. The heuristic solver views the different network scopes
as buckets of bandwidth and distributes the bandwidth in each bucket to peers
in relation to how important this peer is for the applications.

The heuristic selects the “best” address available for a peer by comparing
the performance properties; the focus here is on latency, but the stability of the
choice is also considered. To ensure usable connections, the heuristic activates
an address only if a minimum amount of bandwidth for all active addresses in
this scope can be provided. Resources in the respective scope are distributed
among the selected addresses by first assigning every address a minimum amount
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of bandwidth to ensure diversity of connections and then distributing the re-
maining bandwidth among all addresses relative to the preferences the higher
layer applications have specified (with respect to bandwidth) for peers. If not
enough resources can be provided to maintain a connection, the heuristic may
tell the underlay to disconnect from a peer.

4.7.2 The linear optimisation solver

To combine address selection and resources allocation in an integrated approach,
the linear optimisation solver views the problem as a mathematical optimisation
problem. In linear optimisation, problems are defined using a (linear) objec-
tive function to be maximized under a set of objectives, formulated as linear
(in)equations [Kar72]. The address selection and resource allocation problem
becomes a mixed integer linear problem (MILP) because a binary output is
required to indicate if an address was selected (1) or not (0).

To formulate the problem as a MILP, one has to carefully formulate a set of
linear constraints which ensure that the solution satisfies resource constraints.
In our formulation, we distinguish between feasibility constraints ensuring that
the solution is valid in the given domain and optimality constraints driving the
solution towards the system objectives. As feasibility constraints we define con-
straints enforcing diversity (maintain a minimum number of connections), us-
ability (minimum resources for active addresses), scope (one address per peer),
finite solution (prevent unbounded solutions, quotas must be finite). To obtain
a solution optimal with respect to the objectives defined in 4.6.1, we add opti-
mality constraints optimizing for utilization (use resources available in network
scopes), austerity (prefer transports with smaller overhead), diversity (establish
connections with a larger number of peers), and relativity (distribute according
to application preferences). The solver’s running time can be reduced by ex-
ploiting the fact that the Simplex algorithm used to solve the problem can re-use
an existing solution as a starting point if only the coefficients in the problem
changed. As an output, the optimisation algorithm provides for each address a
binary variable that models the selection of the address, and another with the
amount of inbound and outbound bandwidth that was assigned.

4.7.3 The machine learning solver

The machine learning solver uses reinforcement learning [KLM96] to learn good
address selection and bandwidth allocation strategies. The reinforcement learn-
ing (RIL) solver uses an autonomous agent per requested peer performing ac-
tions to learn or exploit the allocation strategy. To perform actions, the agent
can increase and decrease bandwidth assigned to an address, switch to a different
address or decide to do nothing. Based on the impact actions have with respect
to the objectives defined in 4.6.1 and feedback received from applications, the
agent receives a reward indicating if previously taken actions have improved the
allocation or not. Based on this reward, the agent updates his allocation strat-
egy. To achieve a global optimal solution for all peers, the solver uses a social
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welfare algorithm to achieve good allocations for all peers. Contrary to previous
solvers, this approach also supports over-allocation of the available resources.
However, allocated resources might then ultimately not be used as applications
may not generate enough traffic to fully utilize the allocations. Thus, over-
allocation can be useful even if over-utilization creates significant penalties.

4.8 Implementation

To ensure the applicability of our proposed design for transport selection and
resource allocation in practice, and to validate the design, scalability and perfor-
mance of all proposed solution approaches, we implemented and experimentally
compared the three solvers. The source code and the evaluation tools are avail-
able on our website5.

We implemented the algorithms to execute independently from the trans-
port underlay and the higher-layer applications. Specifically, the solvers run as
separate (operating system) processes and both the transport underlay as well
as the applications can interact with the solver component in a non-blocking
way. This ensures that the rest of the P2P framework can operate indepen-
dently from our component without having to worry about blocking operations
or shared resources. This also facilitates the integration of the implementations
into different P2P applications. The MILP solver relies on the GNU Linear
Programming Kit (GLPK)6, a Free Software package intended for solving linear
optimisation problems.

4.9 Evaluation

To evaluate the proposed solvers, we used the production code in a simulation
environment to evaluate our proposed design under controlled circumstances.

To evaluate the scalability of the solvers, we measured the running time
and memory consumption of each respective solver by incrementally adding
peers and addresses to the problem. Each time a new peer and addresses are
added, our benchmarking tool requests the solver to find an allocation. In
addition to changing the problem size by adding new peers and addresses, the
tool requests incremental solutions after updating properties and preferences
for peers and addresses already existing in the problem. Incremental solutions
are particularly interesting for the linear optimisation solver since the solver
can re-use an existing solution of the problem whenever the problem size does
not change. The results of the solver scalability evaluation are presented in
Section 4.9.1.

To evaluate the quality of the solutions provided by the solvers, we analyzed
the quality of the solutions provided by the three different solver approaches.

5https://gnunet.org/git/
6https://www.gnu.org/software/glpk/

https://www.gnu.org/software/glpk/
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We designed multiple scenarios that peers might experience including fluctu-
ating address properties and application preferences and evaluated the quality
of the address selection and resource allocations produced by the solvers. To
ensure that the heuristics were not somehow tuned specifically to the evalua-
tion scenarios, we did not perform performance tuning of the solvers on the
scenarios used for the evaluation. The results of the solver quality evaluation
are presented in Section 4.9.2.

We used a desktop PC with an Intel Xeon W3520 quad core CPU at 2.67 Ghz
and 24 GiB of memory running Ubuntu 14.04-AMD64 for all of the measure-
ments. GLPK version 4.54 was used to solve the linear optimisation problems.

4.9.1 Solver scalability evaluation

The scalability of the different solvers largely depends on the number of peers,
addresses and network scopes. Asking the MILP solver to produce optimal so-
lutions for larger problems can be problematic — even for problems with just
a few dozen peers and addresses the solver can take gigabytes of memory and
hours of running time to prove the optimality of the solution. We thus allowed
the MILP solver to terminate with an approximate solution of guaranteed qual-
ity (within 2.5% of the optimal solution). We also used a 10 second timeout;
however, that timeout was then never reached in practice. With these restric-
tions, memory consumption for all approaches was relatively small (at the order
of a few megabytes).

Figures 4.3, 4.4, 4.5 and 4.6 show the execution time in relation to the
number of peers in the problem. Each peer always provides ten different ad-
dresses, equally distributed over five different network scopes. Properties of new
addresses are initialized with random values. To evaluate the performance to
solve an updated problem, the properties of 10% of all addresses currently in
the problem are updated.

4.9.2 Solver quality evaluation

To evaluate quality of the solvers we used three different scenarios, modelled to
represent the behavior of a file sharing application, a telephony application, and
the case where both file sharing and telephony execute together. To evaluate the
quality of the solutions provided by the different solvers the simulator collects
information about the selected addresses and allocated bandwidth as well as
the current properties and preferences as specified by the scenario generator.
These inputs are then used to evaluate the quality of the allocation using a goal
function similar to the objective function of the MILP solver. This goal function
includes the utility of the current allocation, if bandwidth is assigned according
to preferences specified by the applications (relativity), if connections to a larger
number of peers are established (diversity) and if the addresses were selected
according to the properties and preferences for these properties. In addition, the
goal function includes a penalty if resource constraints are violated to penalize
the reinforcement learning (RIL) solver for over-allocation.
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Figure 4.3: Execution time for the heuristic solver in relation to the number of
peers.
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Figure 4.4: Execution time for the MILP solver to solve the problem from
scratch in relation to the number of peers.
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Figure 4.5: Execution time for the MILP solver to incrementally solve problem
in relation to the number of peers.
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Figure 4.6: Execution time for the reinforcement learning solver in relation to
the number of peers.
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To evaluate quality of the solvers we used three different scenarios, with two
different durations (to observe the effect of learning). We run the simulations
for 10 seconds in the short variant and 20 seconds in the long variant. We use
two network scopes: scope n0 with a large amount of bandwidth available, and
scope n1 providing only half the bandwidth. We have two neighbors p0 and p1,
each with one address in each of the network scopes.

In the throughput scenario, we emulate an application trying to achieve a
high throughput to one peer, and not caring about other peers. The application
wants to maximize throughput to peer p0, and has no concern for latency at
all. We generate delay values for the addresses in n1 to provide better latency
properties than for the addresses in scope n0, which provides more bandwidth
but worse delay properties. After this setup we then begin to issue preferences
in regular intervals of 500 ms with respect to bandwidth for p0 with linearly
increasing values and for p1 with a constant low value to indicate our disinterest
in this peer.

In the latency scenarios, we emulate an application requiring low latency
values to communicate with both p0 and p1. We generate delay values for the
addresses of neighbor p0 and p1 located in n0 with random values between 20
and 25 ms and better delay values for addresses in scope n1 with delay values
between 10 and 15 ms for p0 and 1 and 30 ms for p1. We then begin to issue
preferences for both peers with respect to latency, linear increasing values for
p0 and sinusoidal for p1.

In the mixed scenario, we simulate two applications issuing conflicting pref-
erences. For the addresses located in n0, we create delay properties for both
addresses with values between 20 and 25 ms, whereas for addresses in scope n1,
we create delay values between 10 and 15 ms for p0 and values linear increasing
between 1 and 30 ms for p1. The values for p1’s address in n1 were particularly
chosen to make the solver switch to p1’s address in scope n0. The application
begins to generate preferences for p0 to prefer maximize throughput and for
peer p1 to minimize delay.

Table 4.2 gives the results for the goal function for the different scenarios.
The values are normalized in relation to the quality of the solutions produced
by the MILP solver. The results show that learning is effective as the RIL
solver’s solution improves for longer runs, and it outperforms the heuristic for
most scenarios.

4.10 Discussion

Our heuristic can compute the address selection and the resource allocation
very fast, which is beneficial given frequent changes in the problem due to peers
joining and leaving and updated address properties and application preferences;
however, the greedy nature limits the quality of the solution and the heuristic
does not benefit from the requirement to solve the problem repeatedly.

Treating the address selection and resource allocation process as an optimi-
sation problem and using optimisation techniques has the advantage that the
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solution found is always an optimal solution and objectives can be weighted ac-
cording to the application’s needs by adapting coefficients within the objective
function. However, having to formulate the problem as MILP requires a careful
design to formulate all constraints and the object function as linear equations.
Requiring the output to contain binary variables makes solving the problem
significantly more expensive since solving a mixed integer problem is NP-hard,
while for linear programming polynomial time algorithms exist. For reasonable
performance, it is important to keep in mind that Simplex typically produces
feasible but suboptimal solutions quickly; thus it is important to bound CPU
time with timeouts or reduce CPU consumption by allowing the MILP solver
to terminate with an approximate solution of guaranteed quality.

An apriori definition of the objectives for address selection and resource al-
location is a difficult task, especially as the requirements of applications may
change over time. Furthermore, some of the constraints that were formulated are
rarely “hard” constraints — an application that sometimes slightly overshoots
bandwidth targets might be more desirable than an application that sticks to
constraints and fails to deliver performance when it is critical. These challenges
can be addressed using reinforcement learning which may predict future devel-
opments. In particular, a learning algorithm has the chance to adapt to the
current observed utilization behavior of the application and can adjust its allo-
cations accordingly. This can then reduce the amount of allocated but unused
resources. However, reinforcement learning takes time for the adaptation, and
thus naturally performs worse if evaluated under the same goal function as the
MILP.

4.11 Conclusion

We have presented the design of a transport abstraction for peer-to-peer sys-
tems. The abstraction can support a wide range of underlying transport mecha-
nisms and we have implemented service modules for UDP, TCP, HTTP, HTTPS,
WLAN and Bluetooth, and historically also supported SMTP. While the bench-
marks clearly show that SMTP is significantly worse in terms of performance,
the service can still be useful to initiate connections and negotiate the use of

Table 4.2: Normalized quality of the solutions produced by the solvers.

Scenario Heuristic MILP RIL
throughput short 0.905 1.00 0.513
throughput long 0.949 1.00 0.690
latency short 0.510 1.00 0.692
latency long 0.506 1.00 0.803
mixed short 0.547 1.00 0.367
mixed long 0.552 1.00 0.969
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a cheaper service. We have addressed security concerns that arise with the
use of SMTP and argued why a peer-to-peer transport abstraction should have
unreliable semantics.

Even with pluggable transports, NAT traversal can remain an issue. We
have shown how fake replies can enable autonomous NAT traversal in a number
of cases. As with most NAT traversal techniques, this approach does not work
for all installations. What is unusual about the presented method is that it
works extremely well if only one peer is behind NAT and virtually never if
both peers are behind NAT. Systems that require high NAT traversal success
rates typically implement a number of traversal techniques and the presented
approach extends the set of available methods by one that, if applicable, is
cheaper and simpler than most of the existing techniques.

Based on an analysis of the challenges arising from the support of multiple
transports under resource constraints, we presented three methods for trans-
port selection and resource allocation for decentralized P2P networks supporting
multiple transport protocols. We demonstrate that both reinforcement learning
and constraint solving methods can deliver significant performance benefits over
ad-hoc heuristics.



Chapter 5

Secure routing

This chapter is based on [EPG12, EG11b, PG14]. These papers were co-
authored with Nathan Evans and Bartlomiej Polot.

5.1 Introduction

Existing IP networks are not suitable for secure, decentralized ad-hoc network-
ing applications. IP routing requires trusted routers to assign structured ad-
dresses to their clients, and at higher levels BGP requires business contracts to
negotiate peering relationships. Ad-hoc community networks require protocols
that avoid the resulting overheads in planning and business negotiation, and
eliminate the insecurities resulting from the dependency of network users on
network operators.

This chapter presents CADET, a new algorithm for establishing robust end-
to-end transport-layer connections in completely self-organized networks with-
out a central authority. Starting with an arbitrary network topology (such as
a wireless mesh, a physical LAN or even the peering relationships between au-
tonomous systems), the algorithm uses the R5N distributed hash table (DHT)
to discover a redundant set of available paths, creates multiple, switched con-
nections between the endpoints and then uses those to create a robust tunnel for
secure, authenticated communication. Multiple applications can then multiplex
TCP- or UDP-like channels over the tunnel.

A fundamental design principle of CADET is key-based routing (KBR).
Addressing systems by their public key eliminates the need to use a network
protocol to obtain a network address, and thus eliminates the use of insecure
protocols like RARP or DHCP, or manual management processes by which
users are assigned addresses out-of-band. A fundamental difference is that a
system can then cryptographically prove its ownership of an address, as only
it has knowledge of the respective private key. However, using public keys as
addresses creates the problem of routing messages to the respective address, as
public keys have no structure.

67
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Many existing overlay networks use distributed hash tables (DHTs) to locate
values by hash. While traditional DHTs assumed an underlying (IP-based)
routing layer, more recent designs operate over an arbitrary mesh topology.
CADET uses the R5N randomized friend-to-friend DHT to discover paths to
the target system. This DHT in turn requires a mechanism for estimating the
size of the network, which we will present first.

The result can be viewed as a peer-to-peer implementation of the TCP/IP
protocol: it allows a node in a decentralized and unstructured P2P network to
find and connect to any other peer in the network, and to confidentially exchange
authenticated data. Like SCTP, CADET supports transmitting multiple reliable
and unreliable channels over a single connection.

5.2 Secure network size estimation

Individual peers participating in unstructured networks, such as Peer-to-Peer
(P2P) networks, ad-hoc wireless networks and sensor networks, can benefit from
knowing the size (total number of participants) of the network. Peers in unstruc-
tured P2P networks which know the network size can make intelligent decisions
with respect to content replication, message routing and forwarding and the
overall cost of operations. Additionally, nodes in a sensor network can use such
data to gauge the health of the overall network, calculate on/off time to save
energy, selectively route messages, and generate alerts.

This section describes the design, implementation and experimental results
of a protocol that provides all peers in a structured or unstructured P2P net-
work with an accurate estimate of the total number of peers in the network. The
primary motivation for our work is the R5N routing protocol presented later
in this chapter; however, there are other P2P routing protocols which also ex-
plicitly require a network size estimate to tune parameters [EGH+03, MNR02].
Also, studies about deployed P2P networks [CCF10] could benefit greatly from
knowing a good estimate of the analyzed network.

The focus of our design is to provide security in the context of an open
and completely decentralized network architecture. While it would be possible
to strengthen the security of our design with trusted centralized services — for
example by preventing a Sybil-attack with a centralized registration requirement
— our design does not require a centralized authority and is intended to provide
security in the presence of actively participating adversaries. A key difference
to existing proposals is that in our design there are no peers with special roles
in the process; this eliminates the possibility of malicious peers abusing such
roles.

A central goal of our design — which is generally not satisfied by many other
network size estimation algorithms [BJBS+08, KPG+05, MLMKG06] — is that
all peers are supposed to participate in calculating a network size estimate
at roughly the same time and obtain the same result. This is achieved by
a controlled flood of the network with the size estimation information, costing
O(|E|) messages per round. In practice, the constant factor is typically between
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one and two; in other words, the algorithm can be expected to only generate
|E| messages per round.

The basic idea behind our algorithm is to flood the network with the identity
of the peer whose identity is closest to a particular key T . Each peer’s identity
is generated when the peer starts the first time. The key T is not chosen by
any peer but instead is generated from the start time S of the current round.
Despite using time, we specifically do not assume that the clocks in the network
are closely synchronized; our protocol ensures that in the worst case individual
peers with significant clock skew only cause a bounded amount of additional
network traffic.

Our protocol considers many other important networking issues as well. The
protocol is very efficient as it requires only O(1) state per peer and does not
require peers to establish new connections (we assume the network graph is
connected). The amount of work required by each node is based only on the
number of edges of the node, so the load between peers is typically balanced.
Given that our protocol floods the network with size estimation information,
peers randomly delay messages to avoid spikes in network traffic. Finally, our
design handles network churn well, and allows the system designer to trade-off
computational efficiency for security and bandwidth for accuracy.

5.2.1 Related Work

Algorithms for estimating the size of a P2P network can be categorized into al-
gorithms for structured overlays, which typically exploit statistical properties of
an existing routing table from a DHT, and algorithms for unstructured overlays,
which make no assumptions about the structure of the underlying network.

Network Size Estimation for Structured Overlays

Structured overlays construct routing tables at each peer according to particu-
lar rules that enable efficient routing of messages to the peer with the “closest”
identifier with respect to a given key [MM02, RD01]. In these structured over-
lays, the distance to the nearest neighbors in the routing table can be used as a
first network size estimate as it correlates with the network size [Pol10].

As node identifiers are often not perfectly uniform, searching the structured
overlay for the closest node to various randomly selected keys can be used to get
accurate network size estimates [Pol10]. Given a DHT routing algorithm with a
typical cost of O(log n), network size estimation for all nodes using this method
would be O(n log n). When compared to the method presented in this chapter,
a key disadvantage of existing methods for structured networks is that they
rely on the security of the underlying routing algorithm; actively participating
malicious nodes have thus the potential to significantly skew the network size
estimate. Furthermore, for any of the structured methods that we are aware of,
different nodes will virtually always compute somewhat different network size
estimates.
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Network Size Estimation for Unstructured Overlays

Several algorithms for unstructured overlays are based on sampling. Examples
include Sample & Collide, Random Tour and Hops Sampling. In Sample &
Collide [MLMKG06], each peer starts bounded random walks to sample ran-
dom peers in the network and uses the collision information and the birthday
paradox to estimate the size of the network. In Random Tours [MLMKG06],
a message tours the network until it reaches the initiator; the size estimate is
then computed based on a counter in the message that was incremented by each
peer on the tour. Hops Sampling [KPG+05] works by flooding the network with
a message containing a hop count. Peers report back to the initiator with a
probability inverse to the hop count they received. The network size estimate is
then the sum over all distances of the number of replies received for a particular
distance divided by the reply-probability for that distance.

As described, these methods generate results for just one peer in the net-
work, resulting in a high amount of bandwidth used overall (assuming each peer
requires an estimate). Also, different peers will have potentially significantly
different network size estimates. While these approaches do not assume a par-
ticular network structure for routing, they do still make implicit assumptions
about the structure of the overlay topology and may significantly underestimate
the network size if the overlay topology happens to have a structure that is un-
favorable to the algorithm. For example, a circular topology would result in a
network size estimate of n2 for Sample & Collide.

Other algorithms, such as Gossip-based Aggregation [JMB05], achieve a
somewhat more uniform estimate for all participating nodes at the cost of sen-
sitivity to node failures. Gossip-based Aggregation starts with one peer setting
a local state to 1 while all other peers set their local state to 0. Peers contin-
uously connect to randomly selected peers, and exchange states in pairs. Each
peer then replaces its state with the average of both values. After a predefined
number of iterations, all peers are supposed to end up with a value close to 1/n
where n is the size of the network. A method that addresses the problem of
who should set the state to 1 has been proposed [SGH08], but only works in
certain structured networks and retains other shortcomings of this approach,
including high vulnerability to malicious peers. In [vdBKM12] a much more
efficient gossip-based method is introduced which uses aggregation and beacons
to achieve fast convergence, high precision and is able to handle churn; however,
it still offers no security.

A special case is the method proposed in [BJBS+08] which attempts to
produce a network size estimate using only “local” information. The idea behind
this algorithm is to observe the number of new neighbors discovered in a breadth-
first search of the network and estimate the network size based on the growth of
this function. The authors claim to obtain accurate results with a breadth-first
search of depth three, which makes this a “local” method. However, the way
they constructed the topologies for their experiments does not seem to properly
model the structure of actual networks. We were unable to reproduce their
results on other network topologies.
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The accuracy and performance of various size estimation methods for un-
structured networks are compared in [MKM06] using simulation. The authors
identify the Sample & Collide method as the strongest algorithm and state that
it requires about 50 million messages in a random-graph topology of 100,000
nodes for an accuracy of ±4%. It should be noted that this is the overhead for
an individual node to obtain an estimate; if each of the 100,000 nodes were to
run the Sample & Collide protocol, it would take 5 trillion messages to achieve
this degree of accuracy.

None of these papers mention concrete implementations or discuss security
concerns. Furthermore, all of them are clearly vulnerable to malicious par-
ticipants. For example, in the case of sampling-based algorithms, malicious
participants can manipulate walks that pass through them (allowing virtually
unbounded manipulation of the network size estimates) or achieve a significant
multiplier (O(

√
n)) to their network bandwidth in a denial-of-service attack by

continuously initiating size estimation requests. Similarly, an active adversary
can manipulate the exchanged values in gossip-based methods to change the
size estimate in any direction.

5.2.2 Our Approach

We generate node identifiers by hashing the public key of the respective node.
We will assume that the hash is large enough (say 512 bits) for its finite length
to be practically infinite for the purpose of the protocol. Node identifiers for
benign nodes should therefore be statistically equivalent to random numbers
from a uniform distribution. Furthermore, nodes are able to cryptographically
sign messages using their respective private key.

Similar to the network size estimation algorithms for structured overlays,
our network size estimation approach is based on the largest number of leading
overlapping bits between any node identifier and a random key:

Theorem 1. Let p be the expected maximum number of leading overlapping bits
between all n random node identifiers in the network and a random key. Then
the network size n is approximately 2p−0.332747.

Proof. Let X be the random variable for all n identifiers and let Xi be the
number of overlapping bits for an individual random node identifier i.

The probability that a single random node identifier i overlaps with at least
α bits with a random key is

P (Xi ≥ α) = 2−α. (5.1)

Then, the probability that a single random node identifier overlaps with less
than α bits with a random key is

P (Xi < α) = 1− 2−α. (5.2)
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The probability that the maximum number of leading overlapping bits for
all n random nodes is strictly less than α is

Pn(X < α) :=: P

(∧
i

Xi < α

)
= (P (Xi < α))

n
=
(
1− 2−α

)n
. (5.3)

Then En(X), the expected maximum number of leading overlapping bits be-
tween n random node identifiers in the network is:

En(X) :=:

∞∑
α=0

α · Pn(X = α) =

∞∑
α=1

Pn(X ≥ α)

=

∞∑
α=1

(1− Pn(X < α)) =

∞∑
α=1

(
1−

(
1− 2−α

)n)
=

log2 n∑
α=1

(
1−

(
1− 2−α

)n)
+

∞∑
α=log2 n+1

(
1−

(
1− 2−α

)n)
Suppose n is sufficiently large such that we can use limn→∞(1− x

n )
n = e−x. By

substituting β := α− log2 n and γ := log2 n− α we then get:

En(X) = log2 n−
log2 n−1∑

γ=0

(
1− 2γ−log2 n

)n
+

∞∑
β=1

(
1−

(
1− 2−(β+log2 n)

)n)

= log2 n−
log2 n−1∑

γ=0

(
1− 2γ

n

)n

+

∞∑
β=1

(
1−

(
1− 2−β

n

)n)

≈ log2 n−
log2 n−1∑

γ=0

e−2γ +

∞∑
β=1

(
1− e2

−β
)

≈ log2 n− 0.521865 + 0.854613 = log2 n+ 0.332747

Thus, for sufficiently large values of n,

En(X) ≈ log2 n+ 0.332747. (5.4)

Given Theorem 1, the key remaining challenge is thus to efficiently and
securely find a closest node identifier (with distance measured in terms of leading
overlapping bits) to a random key in an unstructured network.

In our design, all nodes in the network periodically participate in a global
network size estimation operation at a frequency of f . Each round results in
all peers learning a discrete approximation p (the number of overlapping lead-
ing bits for a particular random key) for p (the theoretically expected number
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of overlapping leading bits). The specific frequency f is chosen based on the
expected level of network churn and the desired accuracy. f is a design param-
eter and fixed in the implementation. The results from the last k iterations are
averaged locally by each peer to obtain an approximation p̃ for p. A standard
deviation can also be computed if an estimate for the error of the size estimate is
desired. Furthermore, the current p value is used by the protocol as a parameter
to (slightly) improve the performance for the next round. We will refer to the
number of overlapping leading bits from the previous round as p′.

Generating a random “key”

Given a frequency f , the random target key T for each round is generated by
hashing the start time S, which is the absolute UTC time at times that are zero
modulo f . For example, if f = 1h, then a fresh key could be generated every
hour by hashing “DD-MM-YYYY HH:00:00”. Using this method, all peers
will generate exactly the same key at (roughly) the same time. Generating
the key this way has the advantage that it will be known to all peers without
communication and that malicious participants cannot influence the process.
However, it should be noted that while the keys satisfy the statistical properties
of being random and uniform, it is trivial to compute them in advance.

Our method requires all peers to calculate the current key T at the respective
start time S. The network size estimation protocol’s goal is to communicate to
all peers an identity IT of a peer with the largest proximity p with respect to
T . More specifically, all peers are supposed to learn one of the closest peer
identities IT between time S and time S + f . Given IT , each peer can then
calculate p, the average p̃ of the p-values from the last k rounds and finally the
current network size estimate 2p̃−0.332747.

Note that p is a discrete value representing the number of leading matching
bits between the key T and a peer’s identity. As such, it is quite likely that many
peers have identities with the same number of leading matching bits and hence
the same proximity p. Our protocol deliberately ignores all bits after the first
mismatch to improve performance; if multiple peers have the same proximity
score, it does not matter which of these equivalent identities is propagated as
they will all ultimately result in the same proximity estimate p.

Starting the Flood

Our protocol essentially floods the network with the identity of a closest peer IT .
If only the identities of closest peers are propagated, this operation would create
less than 2|E| messages (up to two per edge in the network). The challenge is to
avoid creating significantly more than 2|E| messages, which is difficult since in
an unstructured network a peer with the closest identity IT cannot be certain
that there is no other peer that is closer to T . We address this problem by
delaying the flood based on proximity.

First, each peer evaluates its own proximity x with respect to T . How close
the peer is to T is then used to determine how soon the peer will initiate the
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flood of the network with a message claiming that he is the closest peer. We use
the previous network size estimate as a guide to time the release. Specifically,
given a proximity of x leading overlapping bits and a network size estimate p′

from the previous round, we use the following function to determine the time
when a peer starts to flood the network:

r(x) := S +
f

2
− f

π
· arctan (x− p′) (5.5)

Using this function, if the peer’s proximity x is equal to the proximity of the
last iteration, the peer floods the network at time S+ f

2 . If the peer’s proximity
is 0 bits, the peer floods the network close to time S+f , which is at the end of the
time interval for the current round; if the peer’s proximity is significantly higher
than p′, the peer floods at the beginning of the round, which is close to time S.
It should be noted that since limx→p′

∂r
∂x (x) = 1, Equation 5.5 maximizes the

difference between release times for nodes with proximities that are close to the
previous number of overlapping bits p′ and as such minimizes the chance of two
peers releasing floods for different network size estimates around the same time
— assuming the network size estimate did not change significantly.

Processing the Flood

Peers that receive the resulting network size estimation messages first perform
a series of validation steps before continuing to forward the message. First,
each peer checks if a notification from a closer peer has already been received
for round S. Messages with proximity scores equal to the currently known
best score for the current round are simply discarded. Messages with lower
proximity scores should only occur if there is significant clock skew, and are
answered immediately with a message indicating the higher proximity score.
If the message contains a higher proximity than what was previously known
for the current round, the peer checks if the proximity p of the given message
justifies receiving it at the current time. If not, further processing is delayed
until the local peer’s time is past r(p). Finally, before forwarding and further
processing, the format of the message is validated (this is discussed in more
detail in Section 5.2.2).

Assuming the message validates, the peer then proceeds to forward it to
all of its neighbors. For each neighbor, the message is forwarded with a peer-
specific random delay. If a peer receives a message with an equivalent proximity
score during the delay, the transmission is canceled. As a consequence, the delay
helps to both avoid an explosion of messages on the network in a tiny amount of
time, and to improve the chances of traversing each edge in only one direction
per link (as it decreases the chances of equivalent messages being sent in both
directions at the same time).

The permissible delay L is calculated using the time difference between r(p)
and r(p − 1) divided by an estimate of the network’s diameter. The network
diameter D is estimated using the maximum of the hop counters in the network
size estimation messages from the previous k iterations. For each neighbor, the
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peer then applies a delay chosen uniformly at random from the interval [0, L)
where L is defined as

L :=
r(p− 1)− r(p)

D
. (5.6)

As a result, each peer in the network is expected to receive a proximity
notification with proximity p before any peer with notifications for proximity
p−1 would even begin to flood the network. Naturally, there are various causes
that could increase the number of messages above |E| in a real-world network;
for example, different system times between peers, high network latencies, and
situations in which all peers have unusually high distances to IT can increase
the total number of messages. However, all benign peers that form a connected
component are guaranteed to eventually receive IT . Furthermore, given that
the number of bits in the key is a small constant, the total number of messages
can never exceed O(|E|) per round.

Joining the Network

A peer that is freshly joining the network lacks results from previous rounds for
network size estimation. In order to bootstrap the protocol, each peer starts
with a network size estimate based on its own key in relation to the key T
from the previous round, and a network diameter estimate of one. Whenever
a connection between two peers is established, they exchange the network size
estimation result from the previous round (and the current round if their local
time is past f(p)). As a result, all nodes can always be expected to use the same
value for p′ in Equation (5.5).

If, as a result of this exchange, one side has to increase its network size
estimate for the previous round, it floods its neighbors with the result from that
round as well. If information about the previous round is flooded in this fashion,
the artificial delay limit L is set to an implementation-defined small constant
(we use 50ms). Note that only flooding of information about the current round
S and the previous round S − f is permitted. As a result, all nodes can always
be expected to use the same value for p′ in Equation (5.5).

It is not true that all peers will calculate the same value for L based on
Equation 5.6. The hop counters in the flooded messages can clearly differ be-
tween peers, potentially resulting in a different estimate for D. Furthermore,
since the network size estimate given to applications is based on the last k val-
ues, application-level network size estimates may differ between established and
recently joined peers as well. If the latter is unacceptable, peers establishing
connections could propagate the last k network size estimates.

Proof of Work

The presented design is vulnerable to an adversary that creates fake identities
(Sybil attack [Dou02]). Such an adversary could create identities that are “close”
to the respective key for each time S + Zr. By flooding the network with the
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respective messages at the right time, the adversary can then make the network
appear to be larger than it is.

Our design defends against this attack by requiring a proof of work [SL03]
for the identity of the peer as part of the network size estimation message.
Specifically, we require the originator to produce a value with a W -bit hash
collision with the peer’s identifier, and a cryptographic signature to demonstrate
that the identifier was derived from a valid public-private key pair.

The complete message format for the network size estimation messages is
described in Figure 5.1.

Offset Contents

0 Message header magic code
4 Hop-Count (updated at each peer)

8 Signed data header magic code
16 Time S of the round
24 Proximity p in bits
28 Public key (256 bit EdDSA)
60 Proof-of-work

68 64-byte EdDSA signature (signing bytes 8–67)

Figure 5.1: Message format for the network size estimation messages. The
proof-of-work is a 64-bit number such that the hash of the concatenation of the
public key and the proof ends with W bits of zeros. The claimed proximity p
is redundant (it could be calculated from hashing the public key and S). How-
ever, by including p the moderately expensive cryptographic hash calculation
of checking the proof of work repeatedly can be avoided if p is not larger than
the current local estimate already known to the peer for time S. A signature is
included to ensure that the public key itself is well-formed and derived from a
private key.

5.2.3 Security Analysis

For our security analysis, we assume that an active adversary is participating
in the P2P network. The adversary is allowed to control a certain percentage
of colluding malicious nodes in the network. Individual malicious and benign
nodes are assumed to have the same amount of computational resources; all
nodes are assumed to have sufficient bandwidth to participate in the protocol
in the absence of an attack.

We can imagine three different high-level goals an adversary may pursue with
an attack. First, an adversary may try to cause nodes to significantly underes-
timate the size of the network. Second, an adversary may try to cause nodes
to significantly overestimate the size of the network. Finally, an adversary may
want to use the protocol for a denial-of-service attack where the P2P network
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uses significantly more traffic for network size estimation, possibly causing other
components of the system to be left with insufficient bandwidth.

The best method for an adversary to cause peers to underestimate the size
of the network is to not participate in the protocol. If the adversary controls
X% of the network, that will cause the protocol to underestimate the size of the
network by X%. Furthermore, if the adversary is able to control an ϵ-separator
of the network graph [KL70, KSS08, Mar06] (removing an ϵ-separator from a
graph reduces the size of the largest remaining connected component to ϵn),
then the overall network size estimate would be reduced to less than ϵn for all
nodes in the network. Given that in all of these cases the network size estimate
would correspond to the size of the network after the removal of the adversaries’
nodes, this attack is not particularly disruptive in relation to the strength of
the adversary. Thus, an adversary cannot make the network appear significantly
smaller than it is.

If the adversary wants to make the network look larger by M nodes, it needs
to first compute (and store) M public-private key pairs. Then, at every time in-
terval f , the adversary needs to compute collisions costing an additional O(2W )
to generate the required W -bit collision. Actually joining the network with M
“fake” peers is not required. If W is chosen so large that the adversary cannot
solve the problem at frequency f , it is still possible for the adversary to cause
an increase in the network size estimate by solving the problem every c · f (for
an appropriate choice of c based on the adversaries computational resources),
which would still affect the computed medium-term averages computed for sub-
sequent intervals. Using such an attack, an adversary can make the network
appear significantly larger than it is, as long as the adversary has access to
sufficient computational resources.

Finally, for a denial-of-service attack, an adversary would first generate ad-
ditional identities and generally perform the same steps as for increasing the
estimated network size. Now, suppose the adversary has created m identities
that are closer to the current key than the closest actual peer in the network
by 1 . . .m-bits respectively. Then, just after the identity of the peer that is ac-
tually closest to the key has been broadcast to the network, the adversary can
cause m additional broadcasts by transmitting its m “fake” identities in order
of increasing proximity to the key. Each time, the network will presume that
a closer peer was “late” with its transmission (for example, due to clock-skew
or network latency) and broadcast the update. If the network is already of
size n, the expected one-time cost for the adversary to create m such identities
is O(n2m); the attack then requires an additional O(m2W ) operations for the
hash collisions at frequency f . Therefore, if we neglect the high one-time cost
of computing identities, the adversary can cause |E| traffic on the network at
the cost of O(2W ) computations.

Analytical Worst-Case Analysis

The following scenario describes the theoretical worst case in terms of bandwidth
consumption by the protocol. Without loss of generality, suppose a 512-bit hash
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function is being used. Then, the worst-case network would for µ ∈ [1, 512] have
exactly one peer with µ matching bits with the target key T (in each round); all
other peers in the network would have zero matching bits. The peers that do
have matching bits should be connected to the main network via a long chain
(with larger distances for peers with larger µ), causing the network diameter
D to be large. (As a result, the algorithm will calculate L ≈ 0.) Peers with µ
matching bits should furthermore have (or pretend to have) a late system time
that causes them to transmit effectively at time S+µϵ; all other peers have fast
clocks that cause them to accept any message at any time, causing 512 network-
wide floods per round and creating a total of 1024 · |E| ∈ O(|E|) transmissions.
Note that this scenario covers the worst-case and includes an adversary with
infinite computing power and full control over the network topology.

5.2.4 Experimental Results

We have implemented the presented protocol in the GNUnet P2P framework1,
and evaluated the behavior of the proposed protocol using large-scale emula-
tion [EG11a].

Adaptivity to Churn

To evaluate the network size estimation quality under churn, we show the net-
work size estimate based on an average of the previous 64 rounds. Figure 5.2
shows the evolution of the network size estimate for a random graph topol-
ogy [ER59, EG11a] with approximately 10 edges per peer. The estimate is
calculated with a weighted average over the last 64 readings. It should be noted
that the shape of the network topology has no impact on the size estimate.
The experiment was started with an initial network size of 4,000 nodes for 640
rounds. Then, we decreased the network size to 1,000 nodes for 640 rounds and
finally increased it to 2,000 nodes for another 640 rounds.

Precision vs. Number of Iterations

The number of rounds used to calculate the result has an impact on the precision
of the estimate. The trade-off between more measurements and the resulting
precision is plotted in Figure 5.3. Precision is measured as |p̃ − p|. Averaging
over four rounds gives results with a standard deviation of one. As the network
size is calculated as 2p−0.332747 (Theorem 1), a standard deviation of one means
that the network size estimate is in an interval between half and double the
actual network size 68% of the time and between a quarter and four times the
actual network size 95% of the time. The 64 rounds we used for Figure 5.2
correspond to a standard deviation of under 0.3. This means that 95% of the
time the network size estimate is accurate up to a factor of ≈ 1.5.

1https://gnunet.org/svn/gnunet/src/nse/

https://gnunet.org/svn/gnunet/src/nse/
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Figure 5.2: Network size estimates as actually observed by a node in relation
to the (changing) total network size over time for a random graph topology.
All nodes arrive at the same estimate, except for nodes that recently joined the
network.

Impact of the Network Topology

Figure 5.4 shows the evolution of the network size estimate for various topologies
in relation to the actual network size for a small-world topology [EG11a, Kle00]
(Figure 5.4a) and a random graph topology [ER59, EG11a] (Figure 5.4b). Our
experiments show that the topology has no significant impact on the result. As
we are only using k = 8 rounds for the averaging, the results between rounds still
differ widely. This is the natural cause of using the counter of a discrete number
of matching bits in the exponent: while the standard deviation is typically about
1 bit, this translates to a factor of two for the range of the 68%-confidence
interval for the network size estimate.

Impact of Clock Skew

Figure 5.5 compares network size estimates from a network of 1,000 peers with
and without clock skew. The clock skew can affect the protocol if the closest
peer to the key has a clock so far back that other peers discard that information
as too old. This would cause an underestimate of the size of the network. For
these tests, we created a small-world network with approximately 5,000 total
edges. We used a network size estimate interval of 30 seconds and ran the test
for 96 minutes, averaging over 64 measurements. We skewed the clocks of peers
by ±30 seconds, which is a significant clock skew in light of the short network
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Figure 5.3: Trade-off between the precision of the network size estimate vs the
number of rounds used to calculate p̃. Naturally, this plot assumes that the
network size does not change during the measurement.

size estimation interval of f = 30s. The results from Figure 5.5b generally show
similar results in the size estimate, with minimum estimates around 600 peers.
The experiment with skew has more data points. This is due to the multiple
notifications per round that happen when peers receive delayed messages.

Network-Wide Agreement (under Churn)

Figure 5.6 plots each of the individual estimates calculated by the various peers
in an experiment with clock skew and churn. While the protocol guarantees
that all peers within the same connected component will converge to the same
network size estimate, this is not true for peers that just joined the network,
thus lack some of the previous k proximity values and hence will arrive at a
different average. Furthermore, different proximities and clock skew can cause
some disagreement between peers, especially early in the experiment where the
diameter has not yet been established.

Traffic Cost

Figure 5.7 shows the amount of network traffic generated by the protocol for
each round in relation to the number of edges in the network. As before, the
network size is cut to a fourth in round 10 and is doubled in round 20. Given the
small amount of bandwidth required, it is clearly possible to run this protocol
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(a) small-world Topology
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(b) Random Graph Topology

Figure 5.4: Average network size estimate in relation to actual network size over
time for different topologies.

with small values of f and large values of k in cases where precise network size
estimates are required.

A second round of traffic measurements was performed to demonstrate the
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(a) Static small-world - No Skew
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(b) Static small-world Topology - Skew

Figure 5.5: Data showing effect of clock skew on average network size estimates
for a static network of 1,000 peers. The differences between Figure 5.5a (without
skew) and Figure 5.5b (with skew) are, as expected, small.

impact of clock skew on network bandwidth. For this measurement, the local
times of the different peers were desynchronized; specifically, the local times at
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Figure 5.6: This figure plots the results of all peer’s network size estimates dur-
ing the course of a single experiment. While clock skew causes more estimates,
disagreement among peers is minimal.
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Figure 5.7: Number of messages exchanged in relation to the number of edges
in the network.

the different peers were offset from the actual time using a triangular distribution
with a maximum deviation of one minute.
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Figure 5.8: Number of messages exchanged in relation to the number of edges
in the network if the peers are suffering from clock-skew.

Finally, we evaluated the effect of randomly delaying messages. If we dis-
abled random delays, the overall number of messages exchanged in the network
increased by 25% (in a network with 1,000 peers in a small-world topology with
18,000 edges). This demonstrates that the random delays reduce the number of
cases where an edge is traversed in both directions at the same time. Globally,
the protocol also ensures that the network load is reasonably spread out over
time. Figure 5.9 shows the maximum number of messages generated by the
entire network in 1ms intervals during the experiment. The shape of the first
spikes is different because the network was just started and peers begin their
transmissions starting from very diverse initial network size estimates. The
second spike is significantly offset from the typical period because the initial
estimate (based only on the first round) is far from the typical average for the
network. Without the random delays, spikes in traffic for this network could
theoretically increase by a factor of 180.

Accuracy of Approximations in Theorem 1

In the proof for Theorem 1 we made an approximation that is valid if “n is
sufficiently large”. However, what constitutes a sufficiently large n in practice
is not obvious. Figure 5.10 shows the results of a simulation that determined
p̃ from 50,000 rounds for networks of size n ∈ [1, 224]. The difference p̃ −
log2 n quickly converges to the constant calculated in Theorem 1 (0.332747). It
should be noted that even with 50,000 rounds the values for p̃ still exhibit some
visible fluctuation. Figure 5.10 shows that for a reasonable number of rounds of
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Figure 5.9: Maximum number of messages received per millisecond globally in
a network with 1,000 nodes and 18,000 edges. The result seen here is that while
spikes exist as the nearest peer in a round sends a message, the total number
of messages received is spread out over time due to the built-in message delays.
The peaks are somewhat lower initially (while at the same time generating more
traffic overall) due to the lack of previous network size and diameter estimates.

measurement (≤ 50, 000), the “sufficiently large values of n“ are values larger
than 25.

Comparison with other Methods

A naive version of gossiping using randomly chosen edges with 1,000 peers in
ring topology takes about 70 million interactions to get all 1,000 peers within a
factor of two of the real size (compared to about 4 rounds with 1,000 interactions
each for our protocol). For a 2D torus, naive gossiping still took 180,000 inter-
actions. For a random graph, small world or clique, only about 10–20 thousand
interactions are required (comparable to the protocol presented in this chapter);
thus Gossip efficiency is somewhat dependent on topology and not as efficient
in some cases. A much more efficient and precise gossiping protocol is presented
in [vdBKM12], offering high precision at a cost comparable to the approach
presented in this chapter. However, their protocol is more complex, offers no
security and has not been implemented.

Sample & collide showed to be quite dependent from the topology in our
simulations, as the algorithm is very dependent on a good sampling method
and the topology affects the sampling heavily. A clique of 1,000 nodes provided
good estimations, although at a cost of 40,000 messages per round per peer with
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Figure 5.10: Differences observed between log2 n and the average observed value
for p over 50,000 iterations in relation to the network size. The average difference
was 0.33 ≈ 1/3. Since peer-to-peer networks smaller than 25 = 32 peers are
not really relevant for network size estimation techniques, we use a uniform
correction of 1/3 to compensate for the observed difference when estimating n
from p.

a parameter T = 1 (the higher the degree of the nodes, the longer each sample
message has to travel). After 16 rounds the results are within a factor of 2 of
the real size. If every peer in the network would be to obtain an estimate, the
traffic would amount to 64 million messages, compared to 64,000 messages with
our algorithm.

On more restricted topologies the precision was not as good, although the
traffic was also lower, due to the lower average degree of the nodes. On a 1000
nodes random topology with 5000 edges the algorithm showed a tendency to
underestimate the size, converging to an estimate of under 900 even averaging
over 100,000 rounds. The traffic generated was 1,600 messages per peer per
round. To obtain an estimate for every peer would require to transmit 2,5
million messages, compared to 320,000 using our approach.

In our experiments, hops sampling gives an accurate (within 10%) result
with a single round (for random graph with 1,000 nodes and 10,000 edges).
However, already for this small graph hops sampling takes always significantly
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more than 10 million messages regardless of parameter choices and, compared to
the method proposed in this chapter, also requires more state to be kept by all
participating nodes. Given that for a 1,000 node network hops sampling would
thus have to be compared in precision and cost to the algorithm presented in this
chapter averaged over 1,000 rounds, it is still not competitive in performance.
Naturally, compared to hops sampling the network traffic of the protocol de-
scribed in this chapter is also more evenly distributed. Hops sampling is also
much more vulnerable to message loss compared to other methods.

Finally, methods focused on individual estimates are prone to be abused
to perform DoS attacks on the network, allowing a malicious participant to
multiply its bandwidth by several orders of magnitude.

5.2.5 Discussion

The security of the presented scheme is partially based on the assumption that
the adversary cannot calculate W -bit collisions frequently. However, in prac-
tice, we must expect that a dedicated adversary may use specialized hardware
such as GPUs to achieve significantly higher computational power than nor-
mal nodes [LNOM08]. Using a value of W that requires GPUs would exclude
many “normal” users (which may not have access to properly configured modern
GPUs) from participation. So instead of using bit collisions in cryptographic
hash functions — the search for which is easily accelerated with GPUs — one
might want to use computational puzzles that are memory-bound [ABMW05]
and hence less suitable for GPU-based acceleration.

Another key issue is that the adversary can pre-compute the solution to the
next round ahead of time, which makes it trivial for an attacker to parallelize
the computation across multiple systems. Such pre-computations could be pre-
vented if the key of future rounds was unpredictable. This would effectively
force the adversary to either calculate the proof-of-work in an unrealistically
short period of time or to pre-calculate proofs of work for each of the M “fake”
peer identities. Consequently, unpredictable keys would seriously limit the ef-
fectiveness of such an attack.

However, creating and distributing an unpredictable key for the next round
cheaply and securely is difficult. One approach for making the key harder to
predict is to tie the key for the next round to the result from the previous round.
This would require changing the protocol to propagate a unique “closest” peer
identity to all peers. The protocol described herein allows for the possibility
that different areas of the network determine different “closest” peers — as
described, propagation stops if the number of leading matching bits is identical
to that from a previously received message for the current round.

Changing the implementation to flood the entire network with the globally
closest peer would be trivial; however, this has other disadvantages. Without
adversaries, this change increases the expected overall communication cost since
multiple peers with small differences in proximity may start to flood the net-
work at the same time, ultimately causing many edges to be traversed many
times. Furthermore, adversaries that are able to predict the target key for the



88 CHAPTER 5. SECURE ROUTING

next round could then efficiently generate many more “closer” node identifiers,
increasing the effectiveness of denial-of-service attacks: since proximity changes
would no longer be counted in leading bits, causing m rounds of broadcasts
would require pre-computing m closer identifiers (at a cost of O(nm)). In our
current implementation, for m rounds of broadcasts, O(2m) closer identifiers
would have to be pre-computed (at a cost of O(n2m)). Another drawback
to such a design change is that an adversary with “unlimited” computational
power could cause virtually unlimited rounds of broadcasts, whereas the de-
scribed method only allows a small constant number of rounds.

While this change would make it much more difficult for the adversary to
predict the key, it is still conceivable that the adversary may at some point
successfully predict the closest key. At that point, the adversary might be able
to pre-compute proofs-of-work in parallel into the future, dominate the closest
peer estimate for some amount of time, and during that time have the ability
to perform an exponentially more effective denial-of-service attack (due to the
required global consensus on the result of the previous round).

For our implementation, we felt that this choice — making it initially harder
for the adversary to make the network seem bigger vs. reduced traffic costs in
normal operation and an exponentially less effective denial-of-service attack —
should be made in favor of the method described in Section 5.2.2.

Naturally, in a setting that does not have to deal with the possibility of
malicious participants trying to drive up the network size estimate, the entire
proof-of-work, the cryptographic signature, and the public key would not be
needed at all. This might, for example, be the case where developers try to
get approximate usage metrics but are at the same time too concerned about
leaking too much information and are thus unwilling to keep detailed central-
ized records. The Tor Metrics Portal 2 is an example of such a service where
approximate usage counts are actually desired and where it might be unlikely
that participants would deliberately provide false information. Calculating these
metrics based on Theorem 1 might thus serve the privacy-sensitive nature of the
project.

5.3 R5N : Randomized Recursive Routing for Re-
stricted-Route Networks

Distributed Hash Tables (DHTs) [RFH+01, RD01, SMK+01] are a key data
structure for the construction of completely decentralized applications. DHTs
are important because they generally provide a robust and efficient means to
distribute the storage and retrieval of key-value pairs.

In recent years, DHT designs have become increasingly efficient and robust
under churn [LSG+04, OHKY10, RGRK04, SR06] and Sybil attacks [Dou02,
LMSW10, SEnB07a, YKGF06]. Other research has addressed implementa-
tion concerns, such as optimizing network performance. In practice, modern

2http://metrics.torproject.org/

http://metrics.torproject.org/
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DHTs are often not deployed over an entire P2P network and are instead lim-
ited in scope to so-called super-nodes. The primary reason for this is that
virtually all previous DHT routing algorithms (with the notable exception of
Freenet [San06]) are based on the fundamental assumption of universal connec-
tivity between all participating nodes (or rely on unstable NAT traversal).

This assumption means that modern DHTs cannot function properly in
networks with limited connectivity (mobile, ad-hoc wireless, sensor, friend-to-
friend, etc.). Following [San06], we refer to these networks where peers are
not free to directly connect to arbitrary other peers (and therefore route in the
DHT) as restricted-route networks. We need to distinguish between the network
topology created by a peer-to-peer overlay and the underlying network infras-
tructure, so we use the term restricted-route underlay topology to describe the
resultant restrictions imposed on the overlay routing algorithm.

This section introduces a new randomized DHT routing algorithm, R5N ,
which enables our DHT to operate effectively over restricted-route networks
and also increases security and resilience to various attacks compared to existing
algorithms. R5N only assumes that the topology is connected and, in particular,
does not require or use a coordinate system for organizing peers. A primary
goal of R5N is providing an open network where users can join or leave at any
time without approval by a certificate authority or other trusted entity.

The R5N design itself is relatively simple, essentially combining a ran-
dom walk with recursive Kademlia-style [MM02] routing. Our design also in-
cludes topology augmentation using a combination of distance-vector and onion-
routing, a novel replication strategy and an API to verify content integrity.
Using distributed emulation, we demonstrate that this new algorithm has per-
formance comparable to Kademlia if the underlay is unrestricted, and outper-
forms Kademlia and random walks for various restricted-route topologies. We
also show that our algorithm has advantages in terms of availability and fault-
tolerance, especially in the presence of malicious participants. Compared to
Kademlia, we generally see a larger number of replicas and higher success rates
for data retrieval.

5.3.1 Related Work

A DHT imposes a structure upon the network underlay by connecting peers to a
certain subset of all nodes in the network. The size and method of construction
of the routing table is one of the key design choices that distinguish DHTs. For
example, Kademlia [MM02] has routing tables of size O(log n) and can route
requests to the proper destination with O(log n) steps.

Another key design choice for a DHT is the routing or lookup behavior,
which is categorized either as iterative or recursive [HC07]. In iterative routing,
the initiator directly connects to each hop and retrieves information about the
next hop until the initiator has a direct connection to the final destination.
As a result, the initiator of a request has full control over which node(s) the
request is forwarded to at each step — and can possibly tackle problems (such
as node failures or malicious participants) during the propagation (for example,
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by choosing alternative paths).

With recursive routing, the request is forwarded through the network from
the first hop onwards according to the routing algorithm and the initiator is only
involved again as the final destination of the response, if there is any. Recursive
routing is generally faster than iterative routing since fewer connections need to
be established and thus the number of round-trip-times is significantly smaller.
Another key benefit of recursive routing is that the initiator does not have to
be able to connect to each peer that participates in request routing. However,
recursive routing is also less fault-tolerant due to the initiator’s lack of control.

Kademlia

We use a modified version of Kademlia [MM02] as the basis of our routing
algorithm. The Kademlia algorithm has been shown to work well in networks
with common rates of churn [OHKY10] and has, in practice, proven capable of
handling millions of peers [SENB07b]. Kademlia uses XOR to determine the
distance between elements in the key space.

Kademlia’s routing table is structured as an array of k-buckets. Kademlia
uses as many k-buckets as there are bits in the address space. Each k-bucket
can hold up to k peers. The i-th k-bucket stores up to k peers whose identifiers
are between distance 2i and 2i+1 from the local peer. Routing in Kademlia
is iterative; at each step the initiating node picks r closest peers for the next
step. Those r peers are queried and return a set of peers closer to the key,
and routing continues in this fashion until no closer peers are found. Finally,
Kademlia stores data at the r closest peers to the key. Kademlia achieves
O(log n) routing performance: in each step the distance to the destination is at
least halved (Figure 5.11).

One failing of Kademlia is that it has been shown vulnerable to numerous
attacks, such as poisoning [LMSW10] and Sybil [SEnB07a] attacks. For ex-
ample, an adversary may want to deny participants access to a particular key.
This can be achieved by creating r peers with identifiers closer than the clos-
est current peer to the key; afterwards, all requests will effectively end at an
adversary-controlled peer. Access to the data is then under the control of the
adversary.

5.3.2 Restricted-Route Topologies

We use the term “restricted-route topology” to refer to a connected under-
lay topology which prohibits (restricts) direct connections between some of the
nodes. Common DHT routing algorithms show diminished performance or even
arrant failure when operating over a restricted-route underlay. A common so-
lution on the Internet is to restrict participation in the DHT to peers that
are not encumbered by NATs or firewalls. However, this solution limits load-
distribution for P2P applications on the Internet and does not work at all for
physical networks or friend-to-friend networks. For these types of networks,



5.3. R5N 91

0 1

0 1
10 11

0 1
00 01

Connections
Route path

Figure 5.11: Illustration of Kademlia routing for key “00”. Routing in a four-
node Kademlia network (r = 1) with a set of connections that satisfy Kademlia’s
requirements. In this topology, requests for keys starting with “00” terminate
at node “00”.

0 1

0 1
10 11

0 1
00 01

Connections

Connection does not exist
Route path

Figure 5.12: Illustration of Kademlia routing for key “00”, except this time a
single required link is unavailable. Here, requests started at peers “10” and “00”
are routed to the correct node while those started at “01” or “11” are incorrectly
routed to “01”.

some other method of routing must be employed to cope with restrictions on
direct communication.

Freenet

Freenet [San06] is the only efficient DHT design we are aware of which works
well in restricted-route networks without coordinates. Freenet uses location
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swapping between peers in order to structure the overlay topology and is able
to route in O(log n) steps. The main problem with Freenet’s DHT is the in-
herent vulnerability of the critical location swapping operation [EGG07]. This
operation allows an adversary with only a few peers anywhere in the network
to cause massive peer identifier clustering, leading to possible data loss and de-
stroying the load balancing properties of the DHT. Furthermore, natural churn
can cause similar problems even in the absence of malicious peers.

Randomized Designs

One interesting sub-category of restricted-route networks are sparsely connected
networks, where |E| ∼ |V | · log |V |. These can often be modeled quite well
as random graphs, and it has been shown that flooding [LCC+02] or random
walks [ABK+92] are the optimal method for searching such random graphs,
though these unstructured techniques are costly (O(log n

√
n)) compared to

modern structured routing algorithms [FRA+05].
Various so-called “randomized” DHT designs have recently been proposed

to deal with problems associated with the deterministic nature of traditional
DHTs [BBK+10, DLlKA05, MBR03, ZCSY08]. In [BBK+10, MBR03] and
[ZCSY08], the overlay structure is partially randomized, using random peer
sampling (RPS) to select neighbors. The randomization is used to either in-
crease resilience to attacks or to alleviate the impact of high churn rates. In the
design of [DLlKA05], routing behavior is randomized to defend against Sybil
attacks, but it is costly in terms of routing table maintenance. To the best of
our knowledge, none of these designs cope well with restricted-route underlay
topologies, necessitating a truly randomized design such as R5N .

5.3.3 Design of R5N

The basic idea of R5N is to take advantage of the limited connectivity of
restricted-route networks by using the large number of peers that are closer
to a key than any of their neighbors for replication. A PUT operation is used
to store data at a random subset of these peers, and subsequent GETs then
attempt to reach one of the replicas. PUTs are repeated at a certain frequency
to refresh data. Since R5N performs non-deterministic routing, repeated PUTs
are likely to result in data being stored at different peers. Furthermore, since
our design specifies that this refresh period is significantly shorter than the
timeout of content at the replica nodes, this increases the chance of success for
subsequent GET operations.

Naturally, a GET may still fail to find its target value. In this case, R5N
expects peers performing GET to retry a few times. Since GETs are also non-
deterministic, repeating the operation has a high chance of reaching different
peers and hence improves the chance of finding the data. While the design
guarantees that the chance of failing to find existing data declines over time,
the specifics depend on a replication parameter r, the network topology and the
number and behavior of adversaries in the network.
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Since both GET and PUT operations take different paths each time, an
adversary has little chance to successfully place his nodes in the network to block
particular key-value pairs. Depending on how the restricted-route underlay is
constructed, an isolation attack on nodes may still succeed.

The remainder of this section will detail the various components required
for the R5N routing algorithm. Specifically, we will discuss routing table con-
struction, the use of bounded onion-routing to augment the underlay, request
processing, content replication and application-level requirements (specifically
content validation).

The Routing Table

Routing tables in R5N are constructed and maintained in the same manner as
in Kademlia (Section 5.3.1), with the main difference being that R5N expects
that (especially higher numbered) buckets will be empty even though peers with
appropriate identifiers exist in the network — direct connections were simply
not possible or peers were not discovered because lookups failed (where they
would have succeeded in Kademlia). As in Kademlia [MM02], this results in
O(log n) connections to neighbors. It should be noted that a small difference in
routing table maintenance arises indirectly because routing of FIND PEER (in
both Kademlia and R5N) is based on routing of GET and PUT requests, and
R5N ’s routing of GETs and PUTs is slightly different (and hence FIND PEER
requests are also routed differently).

Routing

Routing in R5N is recursive and is performed in two distinct phases. In phase
one, a request for a key is routed for some number of hops using random neigh-
bors from the routing table. In phase two, routing is deterministic using the
peers from the routing table that are closest to the given target. Each request
includes the number of hops h that the request has traversed so far, and each
peer is supposed to increment the counter by one at each hop. Once the hop
counter exceeds a threshold of T ≈ log n where n is the size of the network,
the request enters the second phase. The intuition behind this is that we first
make the starting point in the network independent from the location of the
initiator and then efficiently find a nearest peer. Because the underlay topology
is supposed to be a restricted-route topology, there are many peers that are
nearest to the key as far as their immediate neighborhood is concerned:

Lemma 1 (Number of Nearest Peers in a Random Graph). For a random
network with n peers and c random connections per peer, the expected number
of nearest peers in the network to any random key is approximately n

c+1 .

The optimal number of random hops taken is equal to the mixing time of the
graph [LPW06]. The Markov mixing time for various graphs is well known. In
a full clique, the optimal number of random steps to take is 1; in a completely
random graph, it is closer to O(log2 n) steps [AE07]. For small-world and social
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networks, the mixing time has been shown to be around O(log n) [DaR09]. Since
we expect R5N to be used primarily in network topologies that more or less
conform to small-world topologies, T ≈ log n random hops should be enough to
arrive at a sufficiently random point in the graph.

Each request also contains a unique identifier and a 64-bit bloom filter which
are used to improve efficiency by preventing looping and limiting repeated for-
warding of the same request to the same peer. The bloom filter is updated with
the list of peers selected for forwarding the request to at each hop — those peers
that match the bloom filter are excluded from the selection process.

Processing Requests and Replies

Each peer that receives a routing request performs the same basic sequence
of operations. First, the peer determines whether it is closer to the key of
the request than any of the peers in its routing table. If the current peer is
a nearest peer, PUT requests are not forwarded; instead the data is stored
locally. GET requests where the only possible result is found locally are also
not forwarded. Otherwise, the request is forwarded to neighboring peers; these
are selected from the routing table using random peer selection or the XOR
distance metric depending on the current hop counter. The number of forward
replicas is calculated according to the replication level, network size estimate
and number of hops traversed so far as described in Section 5.3.3.

For handling replies, each peer tracks a bounded number of active requests,
including the respective identity of the preceding peer. Responses are forwarded
along the request paths until they reach the original peer or are discarded by a
peer that lacks path information (due to memory limitations, for example). It
should be noted that most other DHTs do not require this additional state since,
in traditional DHTs, the normal routing mechanism can also be used to route
replies. For R5N , this is not feasible due to path randomization. Were R5N to
use randomization for replies, the success rate for replies to reach the intended
initiator would be rather low. In contrast, randomization for the lookup is
acceptable since many peers are expected to store the data due to replication.

Replication

In R5N , replication is used not only to protect against node failure, but also
to improve the chances of a lookup operation finding the desired datum in the
absence of failures. For R5N , the highest GET success rate would be achieved
if there are n

c+1 replicas in the network (Lemma 1). We use r to describe the

desired replication level and for R5N the target value is r ∼
√

n
c+1 ; this choice

represents a trade-off between the cost for PUTs and the performance for GETs.
If the initiator were to transmit r PUT requests to obtain r replicas, there

would be a good chance of collision in the resulting paths and this might be
a strong burden on the direct neighbors of the initiator, especially since in the
underlay the initiator may not even have r neighbors. Instead, R5N attempts

to have (on average) 1 + (r−1)h
T PUT requests active in the network at hop h.
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Lemma 2. Let h be the number of hops in the network that the query has
already traversed. If the network is large enough that r random paths of length
T are unlikely to merge and if h < T , then the average number of peers to which
a peer forwards a request to should be

Υr,h := 1 +
(r − 1)

T + (r − 1)h
(5.7)

in order to achieve the desired replication level r at T hops.

R5N uses a biased random selection, forwarding to either ⌊Υr,h⌋ or ⌈Υr,h⌉
peers to reach on average Υr,h peers for the next hop. We continue to forward
to Υr,h peers for h ≤ 2 · T (instead of just until h < T ) to compensate for path
collisions, inaccuracies in the network size prediction and not forwarding PUT
requests from nearest neighbors.

Content Validation

A key concern for any DHT is the integrity of the content stored in the system.
R5N provides an application with hooks for integrity checks to detect malformed
key-value pairs. Such pairs are then not forwarded or stored by well-behaved
peers, reducing storage and bandwidth requirements in the presence of faulty
or malicious participants and making DHT pollution more difficult.

Another possible issue is allowing multiple values to be stored under the
same key. Requests in R5N include a bloom filter which matches replies already
known to the requester. While bloom filters offer a compact way to filter replies,
they can also produce false positives. R5N mitigates this problem by having
the requester provide an additional 32-bit mutation value which modifies the
hash function used for testing the bloom filter. By re-issuing the request with
a different mutation value, these false positives can be eliminated.

5.3.4 Experimental Results

Unless stated explicitly otherwise, the presented experiments were done using
a fixed replication level of r = 10 and a fixed network size estimate parameter
T = 4 ensuring that only the shape of the topology and the node degree are
parameters for the evaluation.

Experimental Setup

We have analyzed the expected performance of R5N using mathematical analy-
sis, simulation and emulation. Due to space constraints, the experimental results
presented in this section are only based on our experiments using emulation. For
our emulation experiments, we implemented our DHT routing algorithm on top
of an existing P2P framework. The results presented in this chapter were ob-
tained by emulating 2025 peers on a single desktop, which is close to the limits
of our hardware and since 452 = 2025 this number allows for the construction
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of a clean 2D-torus topology as a starting point for our small-world topology
construction. Our emulation does not model network latencies; however, this is
not a significant problem since R5N currently ignores link latencies in its peer
selection strategy.

Underlay Topologies

For the evaluation of our routing algorithm we use a number of well known
topologies:

Unrestricted All connections allowed up to some upper bound for |E|.

small-world Extends a 2D-torus by adding or rewiring random links. [Kle00]

InterNAT Allows a set of p · n unrestricted peers to connect to any peer and
(1− p) ·n peers to only connect to unrestricted peers (for p ∈ [0, 1]). This
models (1− p) · n peers behind NAT (without traversal ability).

Erdos-Renyi Peers are allowed to connect with a fixed random probabil-
ity. [ER59]

R-Kademlia

We use a variant of Kademlia, which we call R-Kademlia, as a point of com-
parison with our own algorithm. The iterative routing in the original Kademlia
design performs so badly in a restricted-route topology that it is not useful
for comparison. R-Kademlia is a recursive implementation of Kademlia that is
otherwise as faithful to the original design as possible.

The first — and biggest — problem with a recursive implementation of
Kademlia is that r concurrent requests are meant to be kept in flight until no
closer peers are found. R-Kademlia initiates r requests at the first peer. These
requests terminate once a nearest peer is reached; however, the initiator has no
way to guarantee this. Peers in R-Kademlia are responsible for attempting to
forward requests only to peers that have not encountered the request already
using a bloom filter (as explained in 5.3.3). Peers also maintain a limited store
of recent requests; thus, if the same request reaches a peer twice, the bloom
filters are merged. Using these techniques, we mimic the iterative routing of
Kademlia, with the exception that the initiator cannot control the next-hop
decisions.

Worst-Case Network Performance

For networks with few connections, the success rate of R5N is significantly
higher than it is for R-Kademlia. The worst case for R5N when compared to
R-Kademlia is hence an unrestricted underlay topology (clique). In this case,
both R-Kademlia and R5N will always find the data at the nearest peer on the
first attempt, but R5N is expected to take longer. Table 5.1 shows the average
number of hops taken for the two designs in this worst-case scenario for R5N .
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Table 5.1: Average hops for R-Kademlia and R5N in clique underlay topologies
of different sizes. As expected, R5N takes about twice as many hops as R-
Kademlia.

Size of Average hops per PUT Average hops per GET
network R-Kademlia R5N R-Kademlia R5N

100 2.70 ± 0.06 3.96 ± 0.06 2.54 ± 0.03 4.63 ± 0.17
250 3.06 ± 0.10 4.26 ± 0.10 3.10 ± 0.06 5.96 ± 0.27
500 3.08 ± 0.46 4.38 ± 0.45 3.38 ± 0.06 6.17 ± 1.14
750 3.19 ± 0.74 4.37 ± 0.83 3.50 ± 0.04 6.29 ± 1.04

1000 3.63 ± 0.07 4.47 ± 0.93 3.64 ± 0.04 7.29 ± 0.95

Replication Performance

As described in Section 5.3.4, R-Kademlia attempts to achieve a certain repli-
cation level r by starting r requests in parallel from the initiating peer. In
contrast, R5N probabilistically chooses multiple peers to forward the request to
at each hop. Neither approach is able to precisely hit the specified replication
target; however, R5N produces the same number of replicas with significantly
fewer messages when compared to R-Kademlia (Figure 5.13) for the unrestricted
and small-world topologies, and about the same number of total messages for
the other two topologies. This is because sending out many parallel requests
from the same initial peer increases the chance that paths will at times con-
verge, while requests that branch at later hops are likely to be further apart in
the network and carry more information about which peers have already been
routed to and therefore overlap with lower probability. We limit results to 30
total replicas or less; at higher replication levels R5N outperforms R-Kademlia
in all topologies.3

Figure 5.14 compares the total number of replicas after several rounds of
PUT operations for the same key-value pair (without churn or replica expi-
ration). The figure shows the number of replicas that is achieved by either
R-Kademlia and R5N for the case where either the same peer performs the
PUT operation or where the source of the PUT operation is chosen at random
in each round. If the same peer performs the PUT operation using R-Kademlia,
the PUT paths always converge at the same nearest peers and, hence, the num-
ber of replicas remains constant. In contrast, with R5N , random peer selec-
tion achieves significantly higher levels of replication over time. If PUTs in
R-Kademlia are started at a random peer, the resulting replication levels are
only slightly higher, suggesting that the random phase achieves its mixing goal.

3Due to R-Kademlia’s inability to create more replicas than connections.
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Figure 5.13: Average hops required per replica; varying replication level r.
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Figure 5.14: Replication over time; same starting peer vs. randomized starting
peers.
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Robustness Against Active Adversaries

An additional goal for our routing algorithm is to perform well in the presence of
malicious participants. Handling malicious participants well subsumes handling
peer failure due to bugs, churn or misconfiguration. The design of R5N already
explicitly addresses malicious peers that attempt to perform denial of service
(DoS) attacks on the network by bounding the resource multiplier effect of
all operations. Peers cannot send requests that consume significantly more
resources than “normal” requests, so an adversary can only multiply its own
bandwidth by less than the average number of hops for requests multiplied by
the replication level r. Similarly, poisoning attacks can sometimes be mitigated
using content validation hooks (Section 5.3.3). If necessary, we expect values
to be encrypted to protect against adversaries observing values; this can be
compatible with content validation by using techniques such as Freenet’s CHKs.

An active adversary could also join the network with peers that simply
passively drop all requests that are received. This kind of attack is already
quite detrimental to overall operation for deterministic algorithms: any request
that traverses any of the malicious peers fails. R-Kademlia’s redundancy (r-
replication) is a typical mitigation strategy. Figure 5.15 shows the impact of
a dropping adversary on the performance of R5N and R-Kademlia in terms of
success rates for GET operations (initiated at peers selected uniformly at ran-
dom in each round) for various topologies, all generated to have 2025 nodes and
30k edges. The GET operations were performed after a number of rounds of
PUT operations which are initiated at the same peer in each round.

Later GET rounds in R5N have higher success rates because additional PUT
rounds increase availability for R5N as more replicas are created. The benefit
of R5N over R-Kademlia is clearly seen in the randomized underlay topologies;
while the unrestricted topologies are less affected by this type of attack for both
R-Kademlia and R5N . Importantly, the performance of R5N never falls below
that of R-Kademlia.

We now consider an attacker trying to prevent access to a particular key
using an Eclipse attack. The attacker again simply drops all GET and PUT re-
quests; however, this time the µ malicious nodes are not placed into the network
at random but at the µ peers that are closest to the key. This represents an
attacker performing a Sybil attack with free choice of identifier and node place-
ment in a restricted-route topology — the strongest type of Sybil attacker we can
imagine. This attack has a serious impact on Kademlia-based DHTs [SEnB07a].

While additional traditional protections against Sybil attacks could be de-
ployed to make this attack impossible, Figure 5.16 shows that such measures
may often be unnecessary for R5N . Again, as rounds of PUT requests increase
the number of replicas in the network, R5N ’s success rate increases. Again,
R5N outperforms R-Kademlia and is especially strong in the case of a Sybil
attack on the small-world underlay topology, where even the first round of GET
requests succeeds with a much higher rate than R-Kademlia.
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Figure 5.15: Number of malicious peers present at random locations in a network
with 2025 peers vs. percentage of successful GET requests.
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Figure 5.16: Number of malicious peers present at Sybil locations in a network
with 2025 peers vs. percentage of successful GET requests.
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5.3.5 Performance Analysis

To achieve high success rates, R5N needs to create a sufficient number of repli-
cas. A network with n nodes of degree c is expected to have n

c nearest peers.

Assuming that T is chosen large enough to achieve perfect mixing,
√

n
c replicas

would need to be created in order for a GET request to succeed with about
50% probability according to the birthday paradox. Once individual requests
succeed with this probability, a small constant number of repetitions can be
used to get high overall success rates. As we have shown experimentally, the
relationship between the number of replicas in the network and the number of
hops required for the respective PUT operations is almost linear (Figure 5.14).
Since individual PUT and GET requests have complexity O(log n), routing in
small-world networks using R5N scales with O(

√
n · log n). Note that this does

not hold in sparse graphs with large diameter or graphs that are not expander
graphs (such as a circle) because the routing tables could not be sufficiently
populated.

5.4 CADET: Confidential Ad-hoc Decentralized
End-to-End Transport

We finally now come to the design of CADET, our design to provide end-to-end
connectivity on top of R5N . CADET is expected to operate above a restricted
communication layer with properties similar to those of Ethernet or WLAN, and
in conjunction with the R5N DHT that can operate in the resulting restricted-
route network.

Given these two lower-layer components, the roles of both IP and TCP/UDP
are then fulfilled by CADET. In particular, CADET takes care of the connec-
tivity needs of peers that cannot establish direct connections. CADET uses the
DHT to discover routes, performs authentication, encryption and traffic control
between any two peers in the network — as long as they are in a connected
graph.

CADET itself is organized in three layers. The bottom layer provides connec-
tivity, like IP. The middle layer provides end-to-end authenticated encryption,
similar to TLS. The top layer provides multiplexing, traffic control and other
optional features, such as reliability, in a way similar to TCP, UDP or SCTP.

5.4.1 Connectivity

The bottom layer of CADET provides connectivity between two endpoints. By
endpoints we understand peers that are running the applications that are going
to communicate with each other. All the other peers may function as relays:
peers that participate in a communication but are neither the origin nor the
destination of the traffic. Relays simply forward messages from one neighbor to
another.
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The connectivity layer has two important concepts: paths and connections.
A path is simply a sequence of peers, where each pair of peers from the sequence
is directly connected (on the lower, Ethernet-like layer below CADET). A path is
thus just information about the topology of the network stored at an individual
peer; it does not carry any communication with other peers. It is roughly the
equivalent of a phone number in the telephone system. A connection on the
other hand is similar to a call in progress, similar to a phone circuit. It is a
reserved path. When an origin peer wants to communicate with another peer
in the network to which it cannot connect to directly, the origin peer discovers
a path between the two and notifies all the peers in the path about its intention
to communicate with the destination, thereby creating a connection.

Each connection has a unique 256 bit random ID. Each peer on the path
needs to store the connection ID, together with information about the next and
previous peer it should relay traffic to. Two peers can have more than one
connection between each other; in fact, this is common to improve reliability
and performance. Whenever multiple connections are available, they are used
simultaneously by sending messages on the connection that has the least load
at the time.

Path discovery

In order to discover paths to other peers, CADET uses two sources of informa-
tion:

� Passive monitoring of connections being established by other peers. Here,
CADET simply analyzes the traffic it relays for other peers and incorpo-
rates the topology information contained in connection requests into its
own local view of the network.

� Explicit DHT requests, where the DHT is instructed to record the route
taken by GET and PUT requests. More specifically, each peer periodically
makes a PUT request to the DHT with its ID and information that may
help to establish a direct connection to it (such as lower layer addressing
information). When CADET tries to connect to a peer to which it does
not know any path, CADET issues a GET request using the ID of the
destination peer. By joining the PUT route and the GET route, CADET
obtains a path towards the destination peer. CADET naturally also tries
to make use of the information to try to establish a direct connection.

Connection establishment

When a peer decides to establish a new connection a destination peer, it first
checks if there are any known paths towards the destination. If there are no
paths, the service initiates a DHT query to find them.

When there is at least one known path, the origin peer creates a connection
with a random 256 bit ID and sends a CONNECTION CREATE message
containing a list of all the peers in the path to the first peer on the path. Each
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peer forwards the message to the next peer, while storing the connection details
to be able to forward subsequent messages identified just by the connection ID.
At the same time, each peer uses the path to passively learn potential paths
to reach the origin, the destination, as well as all the intermediate peers in the
connection.

The destination receives the incoming connection and responds to the origin
peer with a CONNECTION ACK message in order to confirm the correctness
of the path. Each peer on the path uses the stored information from the creation
message to send the message in the opposite direction. At the same time,
all the potential paths to peers participating in the connection are considered
confirmed.

The first peer sends another CONNECTION ACK to confirm the receipt
of the first CONNECTION ACK and finish the connection creation. When
a peer is expecting a CONNECTION ACK, it starts a timer to retransmit the
message it sent (either CONNECTION CREATE or CONNECTION ACK)
in case the message or the acknowledgement was lost.

Keepalive

In order to avoid saturating the network with connections, idle connections are
destroyed after a timeout. There are two idle counters, one for each direction,
as any endpoint being down is a reason to tear down the connection. To avoid
this timeout, peers periodically send keepalive traffic on idle connections.

Congestion Control

To avoid saturating intermediate peers with traffic, peers use an ACK mech-
anism for congestion control on each hop of a connection. Each peer has a
dedicated buffer per connection and sends an ACK to the previous peer in the
connection when the buffer has room for new messages. Since the lower layer
does not guarantee reliable delivery, CADET uses a polling system to compen-
sate for lost data or ACK messages.

5.4.2 Security

The second CADET layer, provides authentication and encryption to the com-
munication, encapsulating all traffic in tunnels. A tunnel is a secured commu-
nication session between two peers. The tunnel uses connections to send data
to remote peers, with a target of three connections at once. This redundancy
serves for reliability and performance purposes. The first messages exchanged
by two peers are a key exchange in which they authenticate each other and
use ephemeral keys establish a session key. This session key is cycled periodi-
cally, and once it is changes it becomes impossible to decrypt captured traffic,
even if the endpoints are seized and forensically analyzed. Additionally, each
message uses a random initialization vector, to prevent the same transmitted
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plaintext from rendering the same ciphertext and thus leaking information to
an eavesdropper.

Tunnel establishment

When two peers are first connected, and periodically after that, they perform a
handshake to establish the tunnel’s encryption keys. Every peer in the network
maintains an Ed25519 [BDL+12] ephemeral key signed with its permanent iden-
tity key. The tunnel key material is derived from the ephemeral keys of both
endpoints. The ephemeral key is changed periodically every 12 hours, thus every
tunnel’s keys change on average every 6 hours, once for every peer’s ephemeral
key. Once the ephemeral key changes, all captured traffic that used encryption
keys derived from the old ephemeral keys is no longer decryptable, therefore
providing perfect forward secrecy.

To establish a tunnel, each peer sends the other endpoint an initial ephemeral
key message containing its identity (the peer’s public key), the ephemeral key,
the ephemeral key’s validity period and a signature to validate the data. Both
peers send this in parallel, without waiting for each other.

On receipt of an ephemeral key message, each peer checks the signature
and validity period. If everything is correct, CADET derives the key material
from both ephemeral keys using Elliptic Curve Diffie Hellman [DH76]. This key
material is fed to a key derivation function [Kal00], together with both peers
identities and a salt value to obtain the symmetric keys used to encrypt payload
traffic in the tunnel. The symmetric keys are 512 bits, composed by a 256 bit
AES and a 256 bit Twofish key. CADET uses different sending and receiving
symmetric keys, obtained by feeding the identities in different order in the Key
Derivation Function.

As soon as the symmetric keys are obtained, each peer sends a challenge
PING message to the other peer, encrypted with the new keys containing the
remote peer’s identity and a nonce.

To verify the correctness of the key exchange each peer checks its own identity
in the PING message and if it is correct, sends the PING’s nonce in a response
PONG message.

Upon receipt of the PONG message, CADET checks the nonce and if it’s
correct, considers the tunnel as established.

5.4.3 Multiplexing

CADET uses fast Ed25519 public key cryptography, but it still important to
minimize the use of this operation. To avoid triggering a handshake every
time two applications on a pair of peers communicate, CADET multiplexes all
communication channels for a given pair of endpoints inside one tunnel. A
channel is a communication stream between two applications running on peers
participating in the GNUnet network. They can be on the same or different
peers. In case they are on different peers, the messages sent to each other are
transmitted in a CADET tunnel to the other peers, which demultiplexes them
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and delivers them to the corresponding application. In order to share a tunnel
among multiple channels, each channel has a unique ID. CADET offers optional,
per-channel options, such as out of order delivery and reliability.

Channel establishment

Channel establishment happens in a similar way to the connection establish-
ment. First, the application requests a new channel, with the destination speci-
fied by a peer ID and a port number. It identifies the channel with a sequential
32 bit local ID with the most significant bit set to 1. The local ID is unique per
client and many clients on a computer may use the same local ID.

CADET checks if there already is a tunnel towards the destination peer. If
there is no tunnel, it creates a once as described previously.

Given an existing tunnel, the origin peer creates a channel with a sequential
32 bit ID and sends a CHANNEL CREATE message on the tunnel. The
ID has the most significant bit set to 0 and the second most significant bit
depends of the relation between the public keys of the endpoints to ensure the
IDs generated by the endpoints do not collide with each other.

The destination receives the incoming channel and checks the port number
for local applications listening on that port. If an application is listening, it
sends a CHANNEL ACK message to the origin peer in order to confirm the
channel and notifies the application about an incoming channel. Otherwise it
waits for an application to open a port. CADET does not send any indication
that a port may be closed to make it harder to probe for closed ports.

The first peer sends another CHANNEL ACK to confirm the receipt of
the first CHANNEL ACK and finish the connection creation.

If the first peer receives a CHANNEL NACK it destroys the channel and
notifies the application about the failure.

When CADET is expecting a CHANNEL ACK it starts a timer to retrans-
mit the message it sent (either CHANNEL CREATE or CHANNEL ACK)
in case the message or the acknowledgement was lost.

Flow Control and Reliability

Similar to TCP streams, CADET offers reliable channels. CADET uses message
ACKs for flow control on these channels, with a fixed window size of 64 messages.
If a message is lost but subsequent messages are received, this can be indicated,
since each ACK message has a 64 bit mask to signal “future” received messages.
This allows the sender to retransmit only the messages that are really lost while
sending subsequent messages in the window. ACK’ed packets are freed and the
timing is used to adjust the retransmission delay for subsequent data.

Channels, in a similar fashion to UDP, have no flow control, although they
benefit from the congestion control, since it is done on the connection level.
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Communication session

Now that we have presented all CADET components, we describe how a typical
CADET communication session is established. An example session with all
elements can be seen in Figure 5.17

Unencrypted user data channels
Encrypted redundant connections
Backup paths for new connections

?   ?   ?

Eve

Figure 5.17: Channels inside a tunnel sending messages over two connections
with one known backup path. As all traffic is encrypted, Eve cannot gain any
insight, even if either peer’s keys are later compromised.

First a client application requests a new channel to a certain destination peer
and port number. The destination peer is defined by its public key and the port
number is a 512 bit value. Applications should use port values that are non-
public to ensure that only authorized clients can even connect. For example, a
simple method would be to pick a value at random for services advertised via
the GNU Name System, and to communicate the port number and the peer’s
public key as part of an application-specific GNS record.

CADET receives the request and checks whether there is an existing con-
nection. If there is already an established connection towards the destination
peer, this connection is used. Otherwise a new connection is established.

Then CADET checks for an existing tunnel towards the destination peer. If
there is no tunnel, CADET creates it. Both endpoints use the existing connec-
tions to perform a handshake. In the handshake the peers authenticate each
other and establish the session keys to communicate securely. If there is a tunnel
when the request arrives (for instance, because another application running on
the peer is already communicating with the remote peer, or did so recently),
the existing tunnel is used.

The service creates a new channel inside the tunnel, allocating a unique
number and specifying the destination port. If there is an application on the
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destination peer listening to the given port, the channel is created. On the
network layer, the protocol transmits H(port|destination) where “destination”
is the public key of the destination. Furthermore, the acknowledgement which
confirms that the port is open includes port. This way, both parties prove
to each other that they know the shared secret, in case the port is a secret.
Including the “destination” in the hash ensures that the destination cannot just
forward the request to another peer that has the port open to learn the secret.
We do not include the sender in the hash as this would prevent using an efficient
hash table lookup to handle incoming connections.

Afterwards, the two processes can communicate on the new channel by using
the newly created channel. The tunnel is shared between all channels and each
message sent uses one of the available connections.

If either of the endpoints does not need the channel anymore, it requests
its destruction. The service notifies the other endpoint about the channel’s
destruction.

When the last channel inside a tunnel is destroyed the service starts a timer
for the tunnel. After the timeout, the service destroys the tunnel, deleting the
encryption keys and destroying all established connections.

5.5 Implementation

We have implemented CADET in the GNUnet peer-to-peer framework, using
the R5N DHT for routing GET and PUT requests in the resulting restricted
environment.

5.6 Results

We evaluated CADET using the implementation in GNUnet and GNUnet’s
testbed infrastructure [Tot13a] which can be used to deploy, control and observe
thousands of peers on a workstation PC. For the tests, a small network with 100
peers was used. Each of the experiments was repeated 10 times with a different
random underlay topology being emulated each time. We introduce an artificial
20 ms round-trip delay to simulate a high-speed network.

All experiments were done running the normal GNUnet production code,
including operating system scheduling, crypto operations and network traffic.

5.6.1 Churn Resistance

In the connectivity test we start a network with all peers online and an average of
21 random connections per peer. We select 10% of them to ping other randomly
selected peers. Then we start churning the network stating at 80% and rapidly
decreasing by 10% every 10 seconds until we reach 20%. We just churn non-
participating (relay) peers, we never shut down peers doing or receiving pings.
It is possible that at the end, when only peers sending and receiving pings are
left, some of them might be disconnected from the network.
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We contemplate three different scenarios. In the most favorable, peers are
allowed to freely connect to other peers as they see fit. This would correspond
to internet peers with public IP addresses and no blocking firewall. In a more
restricted scenario we don’t allow peers to establish new connections, but before
starting the test we “warm up” the peers: we establish a random connection
from each peer on the network to another random peer. This allows all peers
to observe the CONNECTION CREATE messages to which they are relays
and better learn the topology of the network. In the most unfavorable scenario,
we start the network and right away we demand that the peers start their
benchmark connections, for what they must discover the routes via DHT and
optimize them later, if possible. We choose to only perform pings with 10%
of the peers, so peers do not learn too much of the topology from each other’s
connections and keep it differentiated from the “warm” case.
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Figure 5.18: Percentage of peers that keep their connections as network is
churned. We only counted connections between peers that remained up under
the simulated churn. The test labelled as “Free” peers are allowed to establish
new connections. In the “Warm” test the peers have time to learn the topology
of the network prior to the churn. In the “Cold” test, peers have to find a route
to their destination as the network is started.

In Figure 5.18 we see that in all three scenarios every peer manages to
find a route to their destination. As we churn the network and peers start to
disconnect, however, the results vary. In the case of “Free” peers, they never lose
connectivity because they manage to quickly establish direct Core connections
to their targets. As they no longer need relays, they remain unaffected by churn.
In the restricted route scenarios, we observe that knowledge about the topology
accumulated during the warm-up phase allow peers in the “warm” scenario to
keep their connectivity much longer, due to knowledge of alternative paths and
the redundant connections that it allows. Even with 80% of the network gone,
more than 50% of peers manage to stay connected to their targets. In the worst
case scenario, almost 40% of peers manage to stay connected after losing 80%
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of the network in just a minute.

Free Warm Cold

Avg 44.26 ms 49.18 ms 53.39 ms

std dev 13.97 ms 17.93 ms 18.64 ms

first round 55.99 ms 55.87 ms 62.38 ms

last round 38.52 ms 35.44 ms 44.98 ms

Table 5.2: Average and standard deviation of latency among peers running
under different network conditions.

Additionally, in Table 5.2 we can see the average latency in the pings the
peers performed. Keep in mind that the test was run with an emulated 20ms
round-trip latency. We can see that, having gathered more information about
the network topology, the peers in the warm scenario achieve to make initial
connections with shorter paths, which leads to lower latency times. In the case of
the free scenario, the lack of initial information is compensated by establishing
new, direct connections. Looking at the latency in the last round, we can
observe why the peers without the extra initial information lost connectivity
more frequently: their average connection is sensibly longer, therefore more
vulnerable to being disrupted by disconnected relay peers.

5.6.2 Latency

In order to measure the impact of the additional layers in latency we measured
the round-trip times to machines running the normal unmodified GNUnet code
on different types of networks, as pictured in Figure 5.19. First we tested
three types of networks with computers with direct connectivity: in a Local
Area Network with a direct cable connection (Peers A-C), in a Wireless Local
Area Network on the same Access Point (Peers A-B) and between a university
network and a typical home 16Mbit/1Mbit ADSL internet connection (Peers
A-D). The fourth scenario involves two computers directly connected with a
cable (A-C), of which only A has internet connectivity. The computer with no
internet connectivity (C) pings the peer only reachable over the internet (D),
using A as a relay. The control results are obtained with a simple ICMP ping.
Each connection is tested over 150 round-trips. The results are presented in
Table 5.3.

The LAN connection has the biggest proportional latency penalty, since the
ICMP case is very close to hardware performance and nearly instantaneous.
Traffic in GNUnet has to traverse multiple layers in userspace and has the
overhead of encryption. This causes the latency to be 14ms compared to the
0.2ms of just ICMP, which is almost a hundred times more. The absolute penalty
is even bigger in a wireless environment. The bigger packet size of the GNUnet
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A

B

C

D

Figure 5.19: The test setup used for performance measurements. Peers B and
C have no internet connectivity, only A can talk to D.

ICMP CADET

Avg Std Dev Avg Std Dev

LAN 0.211 ms 0.042 ms 14.31 ms 4.236 ms

WLAN 5.017 ms 3.854 ms 26.23 ms 15.05 ms

WAN 37.94 ms 1.013 ms 44.66 ms 1.321 ms

Relay N/A N/A 56.38 ms 5.021 ms

Table 5.3: Average latency between systems running GNUnet on different con-
nections. The latency penalty is less relevant over Internet connections.

ping probes causes collisions in the Access Point and the forced retransmissions
increase the latency 21ms over the ICMP case, and the standard deviation
spikes to 15ms. When the test is performed over a home internet connection
the proportional impact is much smaller. In this case the pings over GNUnet
are only 6.5 milliseconds longer with a very similar latency. This reduction in
overhead can be explained by the computing power available: while the Local
Area computers B and C are laptops the computer D is a workstation.

Finally, when we ping the workstation from a computer without internet
connectivity, we obtain 56ms, which is a latency 3ms shorter than the LAN +
Internet latencies combined. This is due to the fact that the relay node does
not need to perform encryption on the traffic.
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5.6.3 Bandwidth

In Table 5.4, we present the results of our bandwidth tests. In the same setup as
the latency measurements we transferred several files between the computers.
For the LAN test the files were 100MB. For Wireless LAN we used 100MB
and 10MB files. For test over the internet, due to the very slow 1Mbps upload
speed of the ADSL line, we used 1MB files. Each transfer was repeated 10
times. Between test repetition the GNUnet tunnels were not torn down, so
only the first transfer is affected by the full handshake (connection and tunnel
establishment). All subsequent transfers benefit from tunnel reuse.

To compare pure TCP speed we used the program netcat, as we wanted to
avoid any overhead from other protocols, like HTTP or FTP. For CADET we
used a netcat-equivalent command-line tool.

TCP CADET

LAN 105 MB/s 15.0 MB/s

WLAN 4.97 MB/s 5.01 MB/s

WAN 114 KB/s 103 KB/s

Relay N/A 110 KB/s

Table 5.4: Average bandwidth in the different network types.

For the high speed LAN test the bandwidth for GNUnet was much smaller
than with raw TCP. This is caused by the high CPU utilization for crypto and
user space overhead. During these tests the CPU was operating at 100% while
for TCP the load was not noticeably higher than idle. A faster CPU would
help GNUnet offer better performance results for LAN speeds. On the Wireless
LAN tests both protocols offer very similar results, as is the case in the internet
results. When the CPU is free we see that GNUnet performs almost as well as
TCP.

We observe that the test for relay traffic yields better bandwidth than the
direct connection. We repeated this test, with similar results. The difference is
small, so it is possible to explain it by fluctuations on the ADSL line.

5.7 Related Work

5.7.1 TCP/IP

TCP/IP [Pos81] shares most of the functionality with CADET. The three dis-
tinct functions (connectivity, state maintenance and multiplexing) are divided
in just two layers, with IP providing connectivity, TCP or UDP multiplexing
and the state maintenance shared between the two, with each connection de-
fined by a 5-tuple of IP addresses, TCP/UDP ports and protocol. This causes
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any change in the connectivity (switch to a different address, for instance) to
break all established communications. In CADET, all application level com-
munication happens in channels inside a tunnel, which is independent from the
connection used to send the data, therefore connections can and do change
constantly without affecting the application.

Regarding the individual components, IP solves the connectivity problem
using hierarchical routing. This requires an authority to assign the addresses
and a coordinated protocol to spread the routing information over the network,
which GNUnet avoids as a design principle. Additionally, besides the security
problems inherent in a trust-requiring environment, needed for the routing algo-
rithms (BGP, OSPF) to work; as the address space is exhausted, fragmentation
causes the routing tables to grow exponentially in size. While IPv6 targets some
of this issues, it is by far not a complete solution.

TCP solves the reliability problem with byte-oriented ACK while CADET
uses per-message ACKs, since GNUnet’s Transport layer does not deliver frag-
mented messages to the Core layer. The biggest difference, however, is the flow
and congestion control. TCP uses a sliding window for flow control and differ-
ent congestion windows for congestion control. The basic mechanism is additive
increase and multiplicative decrease in the window size. The window grows
slowly until a duplicated ACK is received, which means a packet was lost, most
probably due to a router dropping it due to a full buffer. The reaction to this
depends on the implementation, but usually implies reducing the window size
by a big step and resuming the slow increase. Since UDP does not use ACK, it
lacks flow or congestion control. Since CADET uses ACKs for congestion con-
trol, it is guaranteed that it will never drop a message due to full buffers. This
also allows the unreliable, UDP-like mode to benefit from congestion control
and a rudimentary flow control. The extra traffic generated by the hop-by-hop
congestion control ACK is minimized by using very big message sizes, which
minimize the overhead used by the ACKs.

A related transport protocol, SCTP [Ste07], designed as part of the TCP/IP
stack, implements some improvements like message-oriented transmissions, multi-
homing, multi-streaming and individual selection of features like in-order deliv-
ery and reliability. However, it still does not offer payload security and still
suffers from the problems associated with BGP routing.

5.7.2 Tor

While Tor [DMS04a] also uses peer-to-peer relay nodes to forward data between
endpoints, the goals of the systems are totally different. Tor uses forwarding to
achieve anonymity and requires all nodes to be able to communicate with one
another to create random paths among all the peers in the network. CADET
allows environments with limited connectivity and uses forwarding to improve
this connectivity, therefore using the shortest path it can find among a restricted
set of peers. Tor uses onion encryption to hide the full paths from each relay
peer, while CADET keeps them open in the hope that other peers can gain a
better idea of the topology of the network and optimize their own connections.
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5.7.3 net2o

net2o [Pay09] also uses source routing, but instead of establishing a connection
by explicitly allocating resources at every relay peer on the path, net2o uses
a bitmap in the message header to tell every hop which neighbor to send the
message to. Each hop consults this bitmap and retransmits the message to the
neighbor whose number is indicated in the field corresponding to it. This way,
the relay does not need to store any information regarding the connections that
traverse it. On the other hand, the source peer must know all the neighbors of
all the relays on the path, as well as find the path itself, which is not trivial
and the solution proposed by net2o has exponential complexity. While this
method might be possible in an infrastructure setting where the neighbors of
a core router very rarely change, the dynamic nature of Peer-to-Peer scenarios
make this impracticable, as it would require constant updates to the peering
information of each relay.

5.8 Conclusion

We have presented the first protocol for securely and efficiently estimating the
size of a P2P network. Our protocol combines proximity to a deterministic
sequence of (pseudo-)random values, staggered triggering of messages and a
proof-of-work component. The scheme works for structured and unstructured
networks, is inexpensive in terms of bandwidth, perfectly distributed imposing
equal requirements in terms of computation and bandwidth on all nodes, and
is quite accurate even for networks under churn. The protocol is secure against
adversaries trying to make the network appear smaller and makes it computa-
tionally expensive (based on a parameter W ) to make the network appear larger
or to flood the network with unwarranted traffic.

Using the network size estimation algorithm, we have presented a robust
routing algorithm for restricted-route networks. Our R5N algorithm combines
a random walk with a recursive variation of Kademlia and uses forwarding to
multiple targets along the path for replication and redundancy. R5N is ro-
bust against a range of some well-known attacks on DHTs, including poisoning
attacks, Sybil attacks and Eclipse attacks. Its performance is generally compa-
rable to that of a recursive implementation of Kademlia and outperforms other
DHTs in restricted-route topologies.

Finally, using R5N , we have created CADET, a secure decentralized trans-
port for Ad-Hoc networks. CADET provides a secure communication channel
by combining active DHT searches with passive monitoring to achieve good con-
nectivity in most scenarios. We have shown that, while having notably higher
latency and resource utilization than TCP in fast, high-bandwidth networks,
in Internet-like scenarios the practical differences are minimal. We also have
demonstrated that CADET adapts quickly to dramatic changes in the topology
of the network, as it may be the case in peer-to-peer networks.
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Chapter 6

The GNU Name System

This chapter is based on [WSG13, WSG14]. These papers were co-authored
with Matthias Wachs and Martin Schanzenbach.

6.1 Introduction

The Domain Name System (DNS) is a unique distributed database and a vi-
tal service for most Internet applications. While DNS is distributed, it relies
on centralized, trusted registrars to provide globally unique names. As the
awareness of the central role DNS plays on the Internet rises, various insti-
tutions are using their power (including legal means) to engage in attacks on
the DNS, thus threatening the global availability and integrity of information
on the Web [Ess14]. This danger has also been recognized by the European
Parliament, which has emphasized the importance of maintaining free access
to information on the Web in a resolution [Eur11]. Tampering with the DNS
can cause collateral damage, too: a recent study [Ano12] showed that Chinese
censorship of the DNS has had worldwide effects on name resolution. At the
same time, we observe that the Internet’s importance for free communication
has dramatically risen: the events of the Green Revolution in Iran and the Arab
Spring have demonstrated this. Dissidents need communication channels that
provide the easy linking to information that is at the Web’s core. This calls for a
censorship-resistant name system which ensures that names of Internet servers
can always be resolved correctly.

DNS was not designed with security as a goal. This makes it very vulnerable,
especially to attackers that have the technical capabilities of an entire nation-
state at their disposal. The following are some of the most severe weaknesses
that the DNS exhibits even in the presence of the DNS Security Extensions
(DNSSEC). DNSSEC [AAL+05] was designed to provide data integrity and ori-
gin authentication to DNS. DNSSEC maintains the hierarchical structure of
DNS and thus places extensive trust in the root zone and TLD operators. More
importantly, DNSSEC fails to provide any level of query privacy [Ber08]: the
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content of DNS queries and replies can be read by any adversary with access
to the communication channel and can subsequently be correlated with users.
On a technical level, current DNSSEC deployment suffers from the use of the
RSA crypto system, which leads to large key sizes. This can result in mes-
sage sizes that exceed size restrictions on DNS packets, leading to additional
vulnerabilities [HS13]. Finally, DNSSEC is not designed to withstand legal at-
tacks. Depending on their reach, governments, corporations and their lobbies
can legally compel operators of DNS authorities to manipulate entries and cer-
tify the changes, and Soghoian and Stamm have warned that similar actions
might happen for X.509 server certificates [SS11]. There can also be collateral
damage: DNSSEC cannot prevent problems such as the recent brief disappear-
ance of thousands of legitimate domains during the execution of established
censorship procedures, accidentally requested the removal of 8,000 (legitimate)
domain names from DNS and providers complied. The underlying attack vector
in these cases is the same: names in the DNS have owners, and ownership can
be taken away by different means.

To prevent such attacks, we need a censorship-resistant name system ensur-
ing availability and resilience of names. For such a censorship-resistant name
systems, this chapter advocates a solution in line with the ideas of the GNU
project. Richard Stallman, founder of the GNU project, writes [Sta12]: “When
a program has an owner, the users lose freedom to control part of their own
lives.” Similarly, ownership of a name implies the existence of some authority
to exercise control over the property, and thus implies the possibility of coercion
of that authority. Cryptographic identifiers can be created without the need for
an authority; similarly, when users locally assign values to private labels, as done
in petname systems, such personal labels also cannot be owned or confiscated.

This chapter presents the GNU Name System (GNS), a censorship-resistant,
privacy-preserving and decentralized name system designed to provide a secure
alternative to DNS, especially when censorship or manipulation is encountered.
As GNS can bind names to any kind of cryptographically secured token, it
can double in some respects as an alternative to some of today’s Public Key
Infrastructures, in particular X.509 for the Web.

The foundation of the GNS system is a petname system [Sti05], where each
individual user may freely and securely map names to values. In a petname
system, each user chooses a nickname as his preferred (but not necessarily glob-
ally unique) name. Upon introduction, users adopt the nickname by default as
a label to refer to a new acquaintance; however, they are free to select and as-
sign any petname of their choice in place of—or, in addition to—the nickname.
Petnames thus reflect the personal choice of the individual using a name, while
nicknames are the preferred name of the user that is being identified.

The second central idea is to provide users with the ability to securely del-
egate control over a subdomain to other users. This simple yet powerful mech-
anism is borrowed from the design of SDSI/SPKI. With the combination of
petname system and delegation, GNS does not require nor depend on a central-
ized or trusted authority, making the system robust against censorship attempts.
Decentralization and additional censorship-resistance is achieved by using a dis-
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tributed hash table (DHT) to enable the distribution and resolution of key-value
mappings. In theory, any DHT can be used. However, depending on the prop-
erties of the DHT in question, varying degrees of censorship-resistance will be
the result. As such, the choice of the DHT is crucial to the system. Finally,
GNS is privacy-preserving since both key-value mappings as well as queries and
responses are encrypted such that an active and participating adversary can at
best perform a confirmation attack, and can otherwise only learn the expiration
time of a response.

While this combination yields a secure name system, it also violates a fun-
damental assumption prevailing on the Web, namely that names are globally
unique. Thus, together with the working implementation of GNS, another key
contribution of our work is the construction of system components to enable the
use of GNS in the context of the Web. We provide ready-to-use components to
enable existing Web applications to use GNS (and DNS in parallel, if desired)
without any prior modifications and knowledge.

As an alternative public key infrastructure, GNS can also be combined with
existing PKI approaches (such as X.509, DANE [Bar11], Tor’s “.onion” or the
Web-of-Trust) to either provide memorable names or alternative means for ver-
ification with increased trust agility. In combination with TLSA records, GNS
can replace existing X.509 certification authorities as described in Section 6.8.3.

6.2 Requirements Analysis

To analyze the requirements a censorship-resistant name system has to ful-
fill, we start with a practical adversary model and the attacks a system has
to withstand. Based on these, we then develop functional requirements for a
censorship-resistant name system.

6.2.1 Adversary Model

The adversary used in this paper is modeled after nation state trying to limit
access to information on the Internet. Our adversary can participate in any role
in the system and can also assume multiple identities (Sybils) without an upper
bound in relation to the total number of participants. The adversary can take
over control of names using judicial or executive powers and is allowed to have
more computational power then all benign users. This model excludes the use
of a trusted third party.

On the other hand, the adversary cannot break cryptographic primitives
and not prevent the usage of cryptography or encrypted communication. The
adversary is also not able to take direct control of the systems of individual users,
or at least if he does so, the system does not have to protect the users that are
directly affected by such actions. As far as network communication is concerned,
we assume that the adversary cannot generally prevent communication between
benign participants.
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Our adversary’s goal is to prevent access to information on the Web by
affecting the name resolution process, either by making it fail or by changing
the value associated with an existing name. He can do so by influencing or
controlling parties participating in the name system.

Some name systems were designed with a weaker adversary model in mind;
in particular, the assumption that the adversary does not control the majority
of the nodes or the majority of the computing power is a popular model in
computer security in general. However, censorship-resistance is typically an
issue for activists, and thus hardly a topic for the majority of Internet users.
As a result, it is unlikely that any censorship-resistant name system is going to
be used widely enough to compete with the computational power available to
major governments. Thus, we advocate using the assumption that the adversary
might have more computational power than all other participants combined.

6.2.2 Functional Requirements

The basic functionality of a name system for the Internet is to map memo-
rable names to correct values. After all, name resolution provides names for
systems such that human beings can easily remember them, instead of having
to remember the more complicated (and possibly frequently changing) address
values used by the network.

One of the most important Internet services is the Web, and a fundamental
building block for Web services is the ability to link to information hosted
on different systems; as humans often manually create these links, links are
specified using names. Thus, a name system should be designed to support link
resolution: a service provider must be able to link to a foreign resource, and the
users of the service must then be able to resolve the name to an address for the
intended destination.

6.3 Design Space for Name Systems

This section explores the theoretical design space for name systems; we will
structure our discussion on how a name system can be realized using Zooko’s
triangle [WO06], an insightful conjecture on the design space for name systems
(Figure 6.1).

Definition 1 (Memorable). A name is memorable if it is feasible for an attacker
in our adversary model to obtain it by enumerating names (bit strings). In other
words, the number of bits of entropy in a memorable name is insufficient against
enumeration attacks.

Definition 2 (Secure). A secure name system must enable benign participants
to register and retrieve correct name-value mappings while experiencing active,
malicious participants (which are assumed to follow the adversary model de-
scribed in Section 6.2.1).
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Figure 6.1: Illustration of Zooko’s triangle and key approaches to name systems.

Definition 3 (Global). The system supports an unlimited number of partic-
ipants without prior coordination or certification of participants. All benign
participants receive the same (global) values for the same names.

Theorem 2 (Zooko’s triangle). It is impossible to have a name system that
achieves memorable, secure and global names at the same time.

We confirmed with Zooko Wilcox-O’Hearn that these definitions represent
the intended interpretation of his formulation. We show now that Zooko’s tri-
angle is a valid conjecture in our adversary model :

Proof. All participants, including the adversary, are supposed to be able to reg-
ister names under the “secure” property of the name system. As names are
memorable, an adversary can enumerate all possible names. Thus, the adver-
sary can perform a squatting attack by (if necessary) assuming the identities of
name system components that restrict registration and performing the neces-
sary computations (we assumed he is able to do those faster than the rest of the
network combined). The adversary can use this attack to register all memorable
names. As names are global, once the adversary has registered a name, that
name can no longer be registered by anyone else.

Thus, the squatting attack can prevent the registration of memorable names
by normal participants. Thus, in our security model, it is impossible to create
a secure, global name system where memorable names are guaranteed to be
available for registration by normal users.

A trusted authority in control of name assignments would easily prevent such
an attacker from being successful; however, the existence of such an authority
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is outside of our security model. We would like to point out that the proof
given above is controversial in the research community. We have had comments
from reviewers ranging from assertions that the theorem is a trivial (or at least
well-known) fact that does not require proof, to those questioning its veracity.
We believe that this is the first formalization of Zooko’s hypothesis and that
the theorem holds in our security model — and that it is false under weaker
assumptions. Thus, any name system in our security model must deemphasize
one of the properties from Definitions 1–3. Figure 6.1 describes the three major
design approaches in this context. The edges of the triangle represent the three
simple designs, and the arrows towards the middle represent the three main
designs which move toward satisfying all three properties.

6.3.1 Hierarchical Registration

In Zooko’s triangle, a name system using hierarchical registration is a name
system providing global and memorable names; however, in the hierarchical
structure names are owned by organizations. These organizations receive the
power to manage a subspace of the namespace by delegation from an organi-
zation ranked higher in the tree, which enables censorship. The well-known
Domain Name System (DNS) is a distributed database realizing access to a
name system with such an hierarchical structure.

The DNS is an essential part of the Internet as it provides mappings from
host names to IP addresses, providing memorable names for users. DNS is
hierarchical and stores name-value mappings in so-called records in a distributed
database. A record consists of a name, type, value and expiration time. Names
consist of labels delimited by dots. The root of the hierarchy is the empty label,
and the right-most label in a name is known as the top-level domain (TLD).
Names with a common suffix are said to be in the same domain. The record
type specifies what kind of value is associated with a name, and a name can
have many records with various types. The most common record types are “A”
records that map names to IPv4 addresses.

The DNS database is partitioned into zones. A zone is a portion of the
namespace where the administrative responsibility belongs to one particular
authority. A zone has unrestricted autonomy to manage the records in one
or more domains. Very importantly, an authority can delegate responsibility
for particular subdomains to other authorities. This is achieved with an “NS”
record, whose value is the name of a DNS server of the authority for the sub-
domain. The root zone is the zone corresponding to the empty label. It is
managed by the Internet Assigned Numbers Authority (IANA), which is cur-
rently operated by the Internet Corporation for Assigned Names and Numbers
(ICANN). The National Telecommunications and Information Administration
(NTIA), an agency of the United States Department of Commerce, assumes the
(legal) authority over the root zone. The root zone contains “NS” records which
specify names for the authoritative DNS servers for all TLDs.

The Domain Name System Security Extensions (DNSSEC) [AAL+05] add
integrity protection and data origin authentication for DNS records. DNSSEC
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does not add confidentiality nor denial-of-service protection. It adds “DNSKEY”
record types for public keys and for signatures on resource records (“RRSIG”).
DNSSEC relies on a hierarchical public-key infrastructure in which all DNSSEC
operators must participate. It establishes a trust chain from a zone’s authori-
tative server to the trust anchor, which is associated with the root zone. This
association is achieved by distributing the root zone’s public key out-of-band
with, for example, operating systems. The trust chains established by DNSSEC
mirror the zone delegations of DNS. With TLD operators typically subjected to
the same jurisdiction as the domain operators in their zone, these trust chains
are at risk of attacks using legal means.

6.3.2 Cryptographic IDs and Mnemonics

A name system that can securely map globally unique identifiers to values can
be achieved using cryptographic identifiers as names. In such a system security
is achieved by certifying values using the private key associated with the cryp-
tographic identifier. Names are with high probability globally unique. However,
as cryptographic identifiers are long random bitstrings, they are not memorable.
An example for a deployed name system with cryptographic identifiers is Tor’s
“.onion” namespace [DMS04b].

The proposed Tor mnemonic URL system [Sai12] aims to make the “.onion”
names more memorable by encoding the hashes names into “human-meaningful”
sentences. However, the resulting names will not be memorable by our Defini-
tion 1 as the high entropy of the original cryptographic identifiers remains. As
(assuming sufficiently strong cryptographic primitives are used) an adversary
would not be able to enumerate all cryptographic identifiers, Tor’s mnemonic
URL system would not result in memorable names as those names correspond
to cryptographic identifiers and thus could also not be enumerated. Finally, it
is important to note that Tor’s mnemonic URLs are still work in progress; it is
thus difficult to assess the usability of this approach.

6.3.3 Petnames and SDSI

A secure name system with memorable names can be created using so-called
petnames. In a petname system, each user establishes names of his choice for
other entities [Sti05]. Each user or service would be identified using a cryp-
tographic identifier based on a public key; the service provider can then sign
mapping information to certify integrity and authenticity of the data. Mem-
orable names are achieved by mapping petnames to cryptographic identifiers.
While such a system can provide security and memorability, the mappings are
only local and petnames are meaningless (or have a different meaning) for other
users. A simple example of a petname system is the /etc/hosts file that allows
administrators to create a mapping from hostnames to addresses for the local
system.

Extending petname systems with ideas from Rivest’s Simple Distributed
Security Infrastructure (SDSI) [RL96] adds the possibility of (secure) delegation,
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allowing users to reference the petnames of other users. SDSI based delegation
enables users to resolve other participant’s names and thus enables linking to
external resources. Delegation essentially adds another user’s namespace in a
subtree under a specific name. This creates an hierarchical namespace from the
point of view of each user; globally, the resulting structure is simply a directed
graph. While delegation broadens the accessibility of mappings, it does not
achieve global names.

SDSI/SPKI is a merger of the Simple Distributed Security Infrastructure
(SDSI) and the Simple Public Key Infrastructure (SPKI) [RL96]. It defines a
public-key infrastructure that abandons the concept of memorable global names
and does not require certification authorities. SDSI/SPKI has the central notion
of principals, which are globally unique public keys. These serve as namespaces
within which local names are defined. A name in SDSI/SPKI is a public key
and a local identifier, e.g. K−Alice. This name defines the identifier Alice,
which is only valid in the namespace of key K. Thus, K1−Alice and K2−Alice
are different names. SDSI/SPKI allows namespaces to be linked, which results
in compound names: KCarol−Bob−Alice is Carol’s name for the entity which
Bob refers to as KBob−Alice. Bob himself is identified by Carol as KCarol−Bob.
SDSI/SPKI allows assertions about names by issuing certificates1. A name cert
is a tuple of (issuer public key, identifier, subject, validity), together with a
signature by the issuer’s private key. The subject is usually the key to which a
name maps. Compound names are expressed as certificate chains.

6.3.4 Timeline-based Name Systems

Timeline-based name systems, such as the Namecoin system [dot13], manage
to combine global names, memorable names and security. In these systems, a
global timeline with the domain registrations is secured by users performing
proof-of-work computations, which in turn are used as “payment” for name
registration.

Their existence does not contradict Zooko’s triangle as their security de-
pends on the adversary not having more computational power than the honest
nodes; an adversary with sufficient computational power can create an alterna-
tive timeline with different domain registrations and a stronger proof-of-work,
which would ultimately result in the system switching to the adversarial time-
line. Thus, timeline-based systems do not fit the realistic adversary model we
assumed for this paper (Section 6.2.1).

6.4 Practical Considerations

The previous section has outlined the design space for censorship-resistant name
systems. However, implementations of these alternatives will have to address a
range of technical and practical concerns which be will discussed here.

1Ultimately, SDSI/SPKI allows to create authorizations based on certificates and is a
flexible infrastructure in general, but we will focus only on the names here.
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6.4.1 Interoperability with DNS

To be accepted by users, a censorship-resistant name system should respect
user’s usage patterns and integrate with existing technologies. Users should not
have to manually switch between alternative name systems and DNS. Syntax
and semantics of the different name systems should also be similar to not confuse
the user about the meaning of names.

Thus, a central requirement for any alternative name system will be inter-
operability with DNS. Users are used to DNS names and virtually all network
applications today use DNS for name resolution. Thus, being interoperable with
DNS will allow censorship-resistant alternatives to be used with a large body of
legacy applications and facilitate adoption by end-users.

Interoperability with DNS largely implies that alternative name systems
should follow DNS restrictions on names, such as limiting names to 253 ASCII
characters, limiting labels to 63 characters and using Internationalizing Domain
Names in Applications (IDNA) [FHC03] for internationalization. Furthermore,
the name system should be prepared to return standard DNS records (such as
“A” and “AAAA”) to typical applications.

Interoperability with DNS should also include accessing the information of
DNS from within the namespace of the censorship-resistant name system. For
example, it is conceivable that a censor might block access to www.example.com
by removing the nameserver information for example.com in the .com TLD,
without blocking access to the nameserver of example.com. In this case, a
censorship-resistant name system only needs to provide an alternative way to
learn the nameserver for example.com — the lookup of www can then still be
transmitted directly to the authoritative nameserver. In an alternative name
system supporting delegation, this simply requires support for delegating subdo-
mains back to DNS. This allows users to bypass censorship closer to the root of
the DNS hierarchy even if the operators of the censored service do not explicitly
support the censorship-resistant name system.

Finally, for good interoperability users must not be required to exclusively
use an alternative domain name system — alternating between accessing DNS
for domain names that are not censored and using the censorship-resistant name
system should not require the user to reconfigure his system each time!

Interoperability and using multiple name systems with the same configura-
tion can be easily achieved using pseudo-TLDs. A pseudo-TLD is a top level
domain that is not actually participating in the official DNS. For example, using
the pseudo-TLD “.key”, a user might specify “ID.key” to access a name sys-
tem based on cryptographic identifiers, or “NICK.pet” to access a pseudo-TLD
“.pet” for petnames. Naturally, this only works as long as the names chosen for
the pseudo-TLDs are not used by the global DNS.

Once pseudo-TLDs have been selected, the local DNS stub resolver can be
configured (for example, using the Name Service Switch [Fre17]) to apply special
resolution logic for names in the pseudo-TLDs. The special logic can then use
alternative means to obtain and validate mappings, which will work as long as
the final results returned can be again expressed as a DNS response.
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6.4.2 End-to-End Security and Errors

Today, client systems typically only include a DNS stub resolver, delegating
the name resolution process to a DNS resolver operated by their Internet Ser-
vice Provider (ISP). As ISPs might be involved in censorship, they cannot be
trusted to perform proper name resolution. Thus, secure name systems (includ-
ing DNSSEC) must be deployed end-to-end to achieve the desired security.

This may not only require updating operating system resolvers. Existing ap-
plications sometimes implement their own DNS clients, and typical DNS APIs
(such as POSIX’s name resolution functions) do not include error reporting that
incorporates security attributes. Browsers will thus be unable to benefit from
TLSA records [HS12] until they either implement full DNSSEC resolver func-
tions, or until operating system APIs are enhanced to allow returning additional
information. A particularly critical example is the possibility to return unsigned
records even within a DNSSEC deployment. As a result, DNSSEC protections
can easily be disabled by replacing signed valid records with a set of invalid
records without signature information.

6.4.3 Petnames and Legacy Applications

In addition to integration with existing systems an alternative name system also
has to consider assumptions made by applications in higher layers, for exam-
ple existing applications assuming globally unique names. Existing support for
virtual hosting of websites in HTTP-based applications and TLS/SSL certifi-
cate validation both assume that the names given by the client match exactly
the (DNS) name of the respective server. Links to external websites are typi-
cally specified using (globally unique) DNS names; as a result, relative names
involving delegation from a SDSI-based name system would not be properly
understood by today’s browsers.

In lieu of directly modifying legacy applications, it might be possible to per-
form the necessary adaptations using proxies. Proxies might be used to translate
hostnames from websites using delegation, and to perform SSL certificate vali-
dation (for example, by looking at TLSA [HS12] records from the secure name
system instead of hostnames). Reverse proxies could be used to generate the
virtual host names expected by the server, and to translate links with absolute
links to those using the delegation chains provided by a SDSI-based name sys-
tem. Additional records in the name system might be used to aid the conversion
between relative names and legacy names by the proxies. In order to achieve
end-to-end security, these proxies would naturally have to be operated within
the trusted zone of the respective endpoints in the system.

6.4.4 Censorship-Resistant Lookup

Censorship-resistant distributed name systems need to consult name informa-
tion from other participants and thus require a network protocol to perform
censorship-resistant lookups. The most common method for implementing key-
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based searches in decentralized overlay networks is the use of a distributed hash
table (DHT).

Typical attacks on DHTs include poisoning and eclipse attacks. In a poison-
ing attack, the adversary attempts to make interesting mappings hard to find by
placing many invalid mappings into the DHT. A censorship-resistant DHT for
a name system that uses public keys to lookup values signed by the respective
private key can easily defeat this type of attack by checking signatures. In an
eclipse attack, the adversary tries to isolate particular key-value mappings from
the rest of the network. Modern DHTs defend against this type of attack by
replicating values at multiple locations [Pol10].

Some censorship-resistant DHTs such as X-Vine [MCB11] and R5N [EG11b]
additionally accept limited connectivity between the peers in the DHT, making
it harder for the adversary to disrupt DHT operations in the IP layer. Further-
more, this also allows peers to restrict connections to known friends, making
the DHTs more robust against Sybil attacks [Dou02] by building the overlay
topology using existing social relationships.

One important property in this context will be query privacy. In exist-
ing centralized name systems, infrastructure providers can easily observe which
names are used by which users. When the database is decentralized in a DHT,
these central observation points are eliminated; however, now ordinary users can
observe other user’s queries, which maybe even more problematic for some appli-
cations. Thus, it is desirable to have encryption for queries and responses in the
DHT. The encryption could be based on secrets only known to the user perform-
ing the resolution (such as the label and the zone); as a result, other users could
only decrypt the resolution traffic with a confirmation attack where they would
have to guess the label and zone of a query (or response). This would strengthen
censorship-resistance as participants would typically not know which requests
they are routing. Additional query privacy might be achieved by anonymiz-
ing the source of the request, for example by using onion routing [DMS04b].
Naturally, using such anonymization techniques increases latency.

6.4.5 Case study: Usability

Unlike DNS, the user’s experience when using a name system based on SDSI
depends on high-level user behavior: following a link corresponds to traversing
the delegation graph and resolution is fully automatic. However, when users
want to visit a fresh domain that is not discovered via a link, SDSI requires a
trust anchor to be supplied via a registrar or out-of-band mechanisms, such as
QR codes. This raises the question: how often are these inconvenient methods
needed in practice?

To answer this question, we did a survey on surfing behavior. Specifically,
we wanted to find out how often users would typically type in a new domain
name for a site. A domain name is “new” if the user has never visited it before,
and if the user is typing it in the name is also not easily available via some link.
Typed in new domain names are thus the case where a SDSI-based name system
(or PKI) would need to use some external mechanism to obtain the public key
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of the zone.

Based on a limited and most likely biased survey where users volunteered the
output of a simple shell script that inspected their browsers history database,
we determined that given current Internet behavior, approximately 8% of do-
main names would require introduction via some out-of-band exchange. A key
limitation of the survey’s methodology was that we did not attempt to control
who submitted results; we simply used the data of anyone who was willing and
able to download and run the shell script that performed the analysis. This
limited the sample to somewhat more technologically sophisticated users. The
complete results from our survey and details on the methodology can be found
in [Sch12]. Our conclusion is that a name system based on petnames and SDSI-
style delegation stands a chance of being an acceptable choice if communication
is hindered by censorship or strong security assurances (beyond those offered by
the X.509 PKI or DNSSEC) are required.

6.5 Design of the GNU Name System

In the following, we describe the core concepts of GNS that are relevant to
users. The cryptographic protocol used to ensure query privacy is explained in
Section 6.6, and the protocol for key revocation in Section 6.8.5.

6.5.1 Names, Zones and Delegations

GNS employs the same notion of names as SDSI/SPKI: principals are public
keys, and names are only valid in the local namespace defined by that key.
Namespaces constitute the zones in GNS: a zone is a public-private key pair
and a set of records. GNS records consist of a label, type, value and expiration
time. Labels have the same syntax as in DNS; they are equivalent to local
identifiers in SDSI/SPKI. Names in GNS consists of a sequence of labels, which
identifies a delegation path. Cryptography in GNS is based on elliptic curve
cryptography and uses the ECDSA signature scheme with Curve25519 [Ber06].

We realize a petname system by having each user manage his own zones,
including, in particular, his own personal master zone.2 Users can freely manage
mappings for memorable names in their zones. Most importantly, they can
delegate control over a subdomain to another user (which is locally known under
the petname assigned to him). To this end, a special record type is used (see
Section 6.5.5). This establishes the aforementioned delegation path. Each user
uses his master zone as the starting point for lookups in lieu of the root zone from
DNS. For interoperability with DNS, domain names in GNS use the pseudo-TLD
“.gnu”. “.gnu” refers to the GNS master zones (i. e. the starting point of the
resolution). Note that names in the “.gnu” pseudo-TLD are always relative.

Publishing delegations in the DHT allows transitive resolution by simply
following the delegation chains. Records can be private or public, and public

2Each user can create any number of zones, but must designate one as the master zone.
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Figure 6.2: Name resolution graph in GNS. Each user is shown with a fingerprint
of his master zone and the public records from this zone in the format name,
type, value.

records are made available to other users via a DHT. Record validity is estab-
lished using signatures and controlled using expiration values. The records of a
zone are stored in a namestore database on a machine under the control of the
zone owner.

We illustrate the abstract description above with the example shown in Fig-
ure 6.2. The figure shows the paths Alice’s GNS resolver would follow to resolve
the names “www.dave.carol.gnu” and “www.buddy.bob.gnu”, both of which re-
fer to Dave’s server at IP “192.0.2.1”. For Carol, Dave’s server would simply be
“www.dave.gnu”. It is known to Alice only because both Bob and Carol have
published public records indicating Dave, and Alice can resolve the respective
delegation chain via her known contacts. Recall that zones are identified using
public keys and records must be cryptographically signed to ensure authenticity
and integrity.

6.5.2 Zone Management with Nicknames and Petnames

We now explain how the actual management of names is carried out in practice.
Suppose Alice runs a web server and wants to make it available with GNS. In the
beginning she sets up her master zone using GNS. After the public-private key
pair is generated, Alice can create a revocation notice to be able to immediately
revoke her GNS zone in case she gets compromised. Suppose Alice wants to
propose that her preferred nickname is “carol” to other users. She therefore
uses the new “NICK” record that GNS provides. In the value of this record,
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she states that her nickname is “carol”. For her web server, she creates an
appropriate public “A” record under the name “www”. This “A” record is the
same as in DNS. To make it resolvable by other users, this record is marked as
public and published in the DHT.

Now suppose we have a second user, Bob. He performs the same setup
on his system, except that his preferred nickname is just “bob”. Bob gets to
know Alice in real life and obtains her public key. To be able to contact Alice
and access her web server, he then adds Alice to his zone by adding a new
delegation using the new “PKEY” record. Bob can choose any name for Alice’s
zone in his zone. Nevertheless, Bob’s software will default to Alice’s preferences
and suggest “carol”, as long as “carol” has not already been assigned by Bob.
This is important as it gives Alice an incentive to pick a nickname that is
(sufficiently) unique to be available among the users that would delegate to
her zone. By adding Alice’s public key under “carol”, Bob delegates queries to
the “*.carol.gnu” subdomain to Alice. Thus, from Bob’s point of view, Alice’s
web server is “www.carol.gnu”. Note that there is no need for Alice’s nickname
“carol” to be globally unique, they should only not already be in use within
Alice’s social group.

6.5.3 Relative Names for Transitivity of Delegations

Users can delegate control over a subdomain to another user’s zone by indicating
this in a new record, “PKEY”. Suppose Dave is Bob’s friend. Dave has added
a delegation to Bob with a “PKEY” record under the name “buddy”—ignoring
Bob’s preference to be called “bob”. Now suppose Bob wants to put on his
webpage a link to Alice’s webpage. For Bob, Alice’s website is “www.carol.gnu”.
For Dave, Bob website is “buddy.gnu”. Due to delegation, Dave can access
Alice’s website under “www.carol.buddy.gnu”. However, Bob’s website cannot
contain that link: Bob may not even know that he is “buddy” for Dave.

We solve this issue by having Bob use “www.carol.+” when linking to Alice’s
website. Here, the “+” stands for the originating zone. When Dave’s client
encounters “+” at the end of a domain name, it should replace “+” with the
name of the GNS authority of the site of origin. This mechanism is equivalent
to relative URLs, except that it works with hostnames.

6.5.4 Absolute Names

In GNS, the “.gnu” pseudo-TLD is used to provide secure and memorable names
which are only defined relative to some master zone. However, introducing new
zones into the system ultimately requires the ability to reference a zone by an
absolute identifier, which must correspond to the public key of the zone. To
facilitate dealing with public keys directly, GNS uses the pseudo-TLD “.zkey”,
which indicates that the specified domain name contains the public key of a
GNS zone. As a result, the “.zkey” pseudo-TLD allows users to use secure and
globally unique identifiers. Applications can use the “.zkey” pseudo-TLD to
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generate a domain name for a GNS zone for which the user does not (yet) have
a memorable name.

A label in the “.zkey” pseudo-TLD must be the Crockford’s Base32 en-
coded public key of a zone. We use the compressed point encoding of the
255-bit coordinates of Curve25519 [Ber06] to encode the name within the 63
character limitations for labels imposed by DNS. Names in the “.zkey” pseudo-
TLD are resolved by querying the respective GNS zone. As each “.zkey” name
uniquely identifies a public-private key pair, no authority is required to manage
the “.zkey” pseudo-TLD.

6.5.5 Records in GNS

As GNS is intended to coexist with DNS, most DNS resource records from
[Moc87, THKS03] (e. g., “A”, “MX”) are used with identical semantics and
binary format in GNS. GNS defines various additional records to support GNS-
specific operations. These records have record type numbers larger than 216 to
avoid conflicts with DNS record types that might be introduced in the future.
We also introduce several new records, which we have described above and
summarize here.

PKEY for delegation: “PKEY” records securely delegate control over a
subdomain to another zone. Repeated delegation allows GNS to achieve
transitivity of names. Secure delegation using “PKEY” records is central
to GNS; it replaces the tree structure of DNS with a directed graph.

NICK for nicknames: This record type is used to specify the desired nick-
name for a zone. The value of the record consists of a label with the
63-character limit from DNS. If a nickname is desired for a zone, the same
“NICK” record is added under each label of the respective zone; this en-
sures that the nickname is part of every response and thus no additional
lookup is required to obtain the nickname.

GNS2DNS: “GNS2DNS” records delegate resolution for a subdomain from
GNS to DNS.

Similar to “NS” records in DNS, the value in the “GNS2DNS” record
is the name of the subdomain in DNS. In addition to the “GNS2DNS”
record, the GNS zone must specify “A” or “AAAA” records under the
same GNS label which specifies the IP address of the DNS resolver to
contact for resolution (this is equivalent to the so-called glue records in
DNS). For example:

Name RR Type Value

Q: www.example.gnu A
A: example.gnu GNS2DNS example.com
A: example.gnu A 192.0.2.1
Q: www.example.com (DNS) A
A: www.example.com (DNS) A 192.0.2.2
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Given the first response, the GNS system will synthesize the DNS name
“www.example.com” from the “GNS2DNS” record and the “www” re-
maining from the GNS name and send a DNS query to the DNS server
at 192.0.2.1 based on the glue information from the “A” record. The
resolution then continues using DNS. Note that this record type enables
delegation to DNS from within GNS. Naturally, GNS cannot secure the
DNS part of the resolution process.

LEHO: This record type specifies the legacy (DNS) hostname for a name
in GNS. “LEHO” records are used to enable backwards-compatibility for
virtual hosting and SSL certificate validation in combination with the
client-side proxy. For example:

Name RR Type Value

Q: www.example.gnu A
A: www.example.gnu A 192.0.2.1
A: www.example.gnu LEHO www.example.com

These are all the special record types that GNS needs. GNS maximizes
compatibility with DNS by using the same length limits for labels and names,
and the same encoding rules for internationalized names as DNS.

6.6 Query Privacy

To enable other users to look up records of a zone, all public records for a given
label are stored in a cryptographically signed block in the DHT. To maximize
user privacy when using the DHT to look up records, both queries and replies
are encrypted. Let x ∈ Zn be the ECDSA private key for a given zone and
P = xG the respective public key where G is the generator of the elliptic curve.
Let n := |G| and l ∈ Zn be a numeric representation of the label of a set of
records Rl,P . Using

h : = x · l mod n (6.1)

Ql,P : = H(hG) (6.2)

Bl,P : = Sh(EHKDF(l,P )Rl,P ), hG (6.3)

we can then publish Bl,P under Ql,P in the DHT, where Sh represents signing
with the private key h, HKDF is a hash-based key derivation function and
E represents symmetric encryption based on the derived key. Any peer can
validate the signature (using the public key hG) but not decrypt Bl,P without
knowledge of both l and P . Peers knowing l and P can calculate the query

Ql,P = H(lP ) = H(lxG) = H(hG) (6.4)

to retrieve Bl,P and then decrypt Rl,P .
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Given this scheme, an adversary can only perform a confirmation attack;
if the adversary knows both the public key of the zone and the specific label,
he can perform the same calculations as a peer performing a lookup and, in
this specific case, gain full knowledge about the query and the response. As
the DHT records are public, this attack cannot be prevented. However, users
can use passwords for labels to restrict access to zone information to authorized
parties. The presented scheme ensures that an adversary that is unable to guess
both the zone’s public key and the label cannot determine the label, zone or
record data.

6.7 Security of GNS

One interesting metric for assessing the security of a system is to look at the size
of the trusted computing base (TCB). In GNS, users explicitly see the trust chain
and thus know if the resolution of a name requires trusting a friend, or also a
friend-of-a-friend, or even friends-of-friends-of-friends—and can thus decide how
much to trust the result. Naturally, the TCB for all names can theoretically
become arbitrarily large—however, given the name length restrictions, for an
individual name it is always less than about 125 entities. The DHT does not
have to be trusted; the worst an adversary can do here is reduce performance
and availability, but not impact integrity or authenticity of the data.

For DNS, the size of the TCB is first of all less obvious. The user may think
that only the operators of the resolvers visible in the name and their local DNS
provider need to be trusted. However, this is far from correct. Names can be
expanded and redirected to other domains using “CNAME” and “DNAME”
records, and resolving the address of the authority from “NS” records may re-
quire resolving again other names. Such “out-of-bailiwick” “NS” records were
identified as one main reason for the collateral damage of DNS censorship by
China [Ano12]. For example, resolving “google.com” requires correct informa-
tion from “x.gtld-servers.net” (the authority for “.com”), which requires trust-
ing “X2.gtld-servers.net” (the authority for “.net”). While the results to these
queries are typically cached, the respective servers must be included in the
TCB, as incorrect answers for any of these queries can change the ultimate re-
sult. Thus, in extreme cases, even seemingly simple DNS lookups may depend
on correct answers from over a hundred DNS zones [DSKM12]; thus, with re-
spect to the TCB, the main difference is that DNS is very good at obscuring
the TCB from its users.

In the following, we discuss possible attacks on GNS within our adversary
model. The first thing to note is that as long as the attacker cannot gain
direct control over a user’s computer, the integrity of master zones is preserved.
Attacks on GNS can thus be classified in two categories: attacks on the network,
and attacks on the delegation mechanism.

Attacks on the network can be staged as Eclipse attacks. The success de-
pends directly on the DHT. Our choice, R5N , shows a particularly good resis-
tance against such attacks [EG11b]. Poisoning is not possible, as the adversary
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cannot provide valid signatures and the DHT rejects malformed key-value pairs.
Concerning the delegation mechanism, the attacker has the option of trick-

ing a user into accepting rogue mappings from his own zones. This requires
social engineering. We assume that users of an anti-censorship system will be
motivated to carefully check whose mappings they trust. Nevertheless, if the
attacker succeeds, some damage will be done: all users that use this mapping
will be affected. The effect thus depends on the “centrality” of the tricked user
in the GNS graph. It is difficult to give estimates here, as the system is not
deployed yet. In order to maximize the effects of his attack, the attacker would
have to carry out his social engineering many times, which is naturally harder.
Comparing this to DNSSEC, we note that even when a compromise has been
detected, DNS users cannot choose whose delegations to follow. In GNS, they
can attempt to find paths in the GNS graph via other contacts. The system
that is most similar and in deployment is the OpenPGP Web-of-Trust. Ulrich
et al. found that the Web-of-Trust has developed a strong mesh structure with
many alternative paths [UHHC11]. If GNS develops a similar structure, users
would greatly benefit.

Finally, censorship does not stop with the name system, and for a complete
solution we thus need to consider censorship at lower layers. For example, an
adversary might block the IP address of the server hosting the critical informa-
tion. GNS is not intended as an answer to this kind of censorship. Instead, we
advocate using tools like Tor [DMS04b] to circumvent the blockade.

6.8 Special Features

This section describes some additional special features in GNS that are used
to deal with corner cases that a practical system needs to deal with, but that
might only be relevant for a subset of the users.

6.8.1 Automatic Shortening

Once Dave’s client translates “www.carol.+” to “www.carol.buddy.gnu”, Dave
can resolve “carol.buddy.gnu” to Alice’s public key and then lookup the IP
address for Alice’s server under the respective key in the DHT. At this point,
Dave’s GNS system will also learn that Alice has set her “NICK” record to
“carol”. It will then check if the name “carol” is already taken in Dave’s zone,
and—if “carol” is free—offer Dave the opportunity to introduce a PKEY record
into Dave’s zone that would shorten “carol.buddy.gnu” to “carol.gnu”.

Alternatively, the record could be automatically added to a special shorten
zone that is, in addition to the master zone, under Dave’s control. In this
case, Alice would become available to Dave under “carol.shorten.gnu”, thus
highlighting that the name was created by automatic shortening within the
domain name.

In either case, shortening eliminates Bob from the trust path for Dave’s
future interactions with Alice. Shortening is a variation of trust on first use
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(TOFU), as compromising Bob afterwards would no longer compromise Dave’s
path to Alice.

6.8.2 Relative Names in Record Values

GNS slightly modifies the rules for some existing record types in DNS. In par-
ticular, names in DNS values are always absolute; GNS allows the notation
“.+” to indicate that a name is relative. For example, consider “CNAME”
records in DNS, which map an alias (label) to a canonical name: as specified
in RFC 1035 [Moc87], the query can (and in GNS will) be restarted using the
specified “canonical name”. The difference between DNS and GNS is that in
GNS, the canonical name can be a relative name (ending in “.+”), an absolute
GNS name (ending in “.zkey”) or a DNS name.

As with DNS, if there is a “CNAME” record for a label, no other records
are allowed to exist for the same label in that zone. Relative names using the
“.+” notation are not only legal in “CNAME” records, but in all records that
can include names. This specifically includes “MX” and “SOA” records.

6.8.3 Dealing with Legacy Assumptions: Virtual Hosting
and TLS

In order to integrate smoothly with DNS, GNS needs to accommodate some
assumptions that current protocols make. We can address most of these with
the “LEHO” resource record. In the following, we show how to do this for Web
hosting. There are two common practices to address here; one is virtual hosting
(i. e. hosting multiple domains on the same IP address); the other is the practice
of identifying TLS peers by their domain name when using X.509 certificates.

The problem we encounter is that GNS gives additional and varying names
to an existing service. This breaks a fundamental assumption of these pro-
tocols, namely that they are only used with globally unique names. For ex-
ample, a virtually hosted website may expect to see the HTTP header Host:

www.example.com, and the HTTP server will fail to return the correct site if
the browser sends Host: www.example.gnu instead. Similarly, the browser
will expect the TLS certificate to contain the requested “www.example.gnu”
domain name and reject a certificate for “www.example.com”, as the domain
name does not match the browser’s expectations.

In GNS, each user is free to pick his own petname for the service. Hence,
these problems cannot be solved by adding an additional alias to the HTTP
server configuration or the TLS certificate. Our solution for this problem is to
add the legacy hostname record type (“LEHO”) for the name. This record type
specifies that “www.example.gnu” is known in DNS as “www.example.com”. A
proxy between the browser and the web server (or a GNS-enabled browser) can
then use the name from this record in the HTTP Host: header. Naturally, this
is only a legacy issue, as a new HTTP header with a label and a zone key could
also be introduced to address the virtual hosting problem. The LEHO records
can also be used for TLS validation by relating GNS names to globally unique
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DNS names that are supported by the traditional X.509 PKI. Furthermore,
GNS also supports TLSA records, and thus using TLSA records instead of CAs
would be a better alternative once browsers support it.

6.8.4 Handling TLSA and SRV records

TLSA records are of particular interest for GNS, as they allow TLS applications
to use DNSSEC as an alternative to the X.509 CA PKI. With TLSA support
in GNS, GNS provides an alternative to X.509 CAs and DNSSEC using this
established standard. Furthermore, GNS does not suffer from the lack of end-
to-end verification that currently plagues DNSSEC.

However, to support TLSA in GNS a peculiar hurdle needs to be resolved.
In DNS, both TLSA and SRV records are special in that their domain names
are used to encode the service and protocol to which the record applies. For
example, a TLSA record for HTTPS (port 443) on www.example.com would be
stored under the domain name 443. tcp.www.example.com.

In GNS, this would be a problem since dots in GNS domain names are
supposed to always correspond to delegations to another zone. Furthermore,
even if a special rule were applied for labels starting with underscores, this
would mean that, say the A record, for www.example.com would be stored under
a different key in the DHT than the corresponding TLSA record. As a result,
an application would experience an unpredictable delay between receiving the
A record and the TLSA record. As a TLSA record is not guaranteed to exist,
this would make it difficult for the application to decide between delaying in
hope of using a TLSA record (which may not exist) and using traditional X.509
CAs for authentication (which may not be desired and is likely less secure).

GNS solves this problem by introducing another record type, the BOX
record. A BOX record contains a 16-bit port, a 16-bit protocol identifier, a
32-bit embedded record type (so far always SRV or TLSA [Bar11]) and the
embedded record value. This way, BOX records can be stored directly under
www.example.com and the corresponding SRV or TLSA values are thus never
delayed — not to mention the number of DHT lookups is reduced. When GNS
is asked to return SRV or TLSA records via DNS, GNS recognizes the special
domain name structure, resolves the BOX record and automatically unboxes
the BOX record during the resolution process. Thus, in combination with the
user interface (Figure 6.3) GNS effectively hides the existence of BOX records
from DNS users.

We note that DNS avoids the problem of indefinite latency by being able to
return NXDOMAIN in case a SRV or TLSA record does not exist. However,
in GNS NXDOMAIN is not possible, largely due to GNS’s provisions for query
privacy. Furthermore, DNS can solve the efficiency problem of a second lookup
by using its “additional records” feature in the reply. Here, a DNS server can
return additional records that it believes may be useful but that were not ex-
plicitly requested. However, returning such additional records might not always
work, as DNS implementations can encounter problems with the serious size
restrictions (often just 512 bytes) on DNS packets. As GNS replies can contain
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up to 63 kB of payload data, we do not anticipate problems with the size limit
in GNS even for a relatively large number of unusually big TLSA records.

6.8.5 Revocation

In case a zone’s private key gets lost or compromised, it is important that
the key can be revoked. Whenever a user decides to revoke a zone key, other
users must be notified about the revocation. However, we cannot expect users
to explicitly query to check if a key has been revoked, as this increases their
latency (especially as reliably locating revocations may require a large timeout)
and bandwidth consumption for every zone access — just to guard against the
relatively rare event of a revoked key. Furthermore, issuing a query for zone
revocations would create the privacy issue of revealing that a user is interested
in a particular zone. Existing methods for revocation checks using certificate

Figure 6.3: The user can remain unaware of the behind-the-scenes boxing when
creating TLSA records in the GNS zone management interface.



138 CHAPTER 6. THE GNU NAME SYSTEM

revocation lists in X.509 have similar disadvantages in terms of bandwidth,
latency increase and privacy.

Instead of these traditional methods, GNS takes advantage of the P2P over-
lay below the DHT to distribute revocation information by flooding the network.
When a peer wants to publish a revocation notice, it simply forwards it to all
neighbors; all peers do the same when they receive previously unknown valid
revocation notices. However, this simple Byzantine fault-tolerant algorithm for
flooding in the P2P overlay could be used for denial of service attacks. Thus, to
ensure that peers cannot abuse this mechanism, GNS requires that revocations
include a revocation-specific proof of work. As revocations are expected to be
rare special events, it is acceptable to require an expensive computation by the
initiator. After that, all peers in the network will remember the revocation
forever (revocations are a few bytes, thus there should not be an issue with
storage).

In the case of peers joining the network or a fragmented overlay reconnecting,
revocations need to be exchanged between the previously separated parts of
the network to ensure that all peers have the complete revocation list. This
can be done using bandwidth proportional to the difference in the revocation
sets known to the respective peers using Eppstein’s efficient set reconciliation
method. In effect, the bandwidth consumption for healing network partitions
or joining peers will then be almost the same as if the peers had always been
part of the network.

This revocation mechanism is rather hard to disrupt for an adversary. The
adversary would have to be able to block the flood traffic on all paths between
the victim and the origin of the revocation. Thus, our revocation mechanism is
not only decentralized and privacy-preserving, but also much more robust com-
pared to standard practice in the X.509 PKI today, where blocking of access to
certificate revocation lists is an easy way for an adversary to render revocations
ineffective. This has forced vendors to include lists of revoked certificates with
software updates.

6.8.6 Shadow Records

GNS records can be marked as “shadow records”; the receiver only interprets
shadow records if all other records of the respective type have expired. This
is useful to ensure that upon the timeout of one set of records the next set of
records is immediately available. This may be important, as propagation delays
in the DHT are expected to be larger than those in the DNS hierarchy.

6.8.7 Availability and Caching

By default, each authority pushes all public records for a given label once every
four hours; as the records are retrieved from the DHT, it is pointless to maintain
several peers for a zone for load balancing. Nevertheless, it is of course possible
to improve availability by operating more than one peer in the overlay and to
replicate the functions of the zone authority over multiple peers. However, the
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use of the DHT should make this unnecessary, which is important as we would
not expect typical dissidents to necessarily have the capacity for redundancy.

To minimize the load on the network and to reduce latency, all validated
records are cached until they expire. The local system also contains the primary
database for all of the zones for which the peer is authoritative (Figure 6.4).
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Figure 6.4: In the GNS architecture, most requests will be answered by the local
namestore which is the authority for all names in the user’s personal “.gnu”
pseudo-TLD. The user can delegate subdomains to other users using “PKEY”
records. If not cached, names from those subdomains are then resolved using a
DHT. Note that the records in the DHT are encrypted and cryptographically
signed (Section 6.6).

6.8.8 Intercepting DNS queries

A GNS implementation only needs to intercept all DNS queries for the “.gnu”
(and “.zkey”) pseudo-TLD and inject appropriate responses. All other TLDs are
forwarded to the traditional DNS system. Our current implementation provides
three alternative methods to do so:

� On GNU systems, a plugin for the name services switch (NSS) [Fre17] in
GNU libc can be used to answer GNS queries before a DNS request is
ever created. Mechanisms similar to NSS exist for other platforms; we
also have an equivalent plugin working on Microsoft Windows.
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� The resolver configuration (usually /etc/resolv.conf) can be changed
to point to an IP address (i.e. 127.0.0.1) with a modified DNS resolver.
We have implemented a DNS-to-GNS gateway which resolves names in
the “.gnu” pseudo-TLD internally, and acts as a proxy for all other TLDs
by passing those requests to an actual DNS server.

� The browser can be configured to use an HTTP SOCKS Proxy. This
option offers additional advantages, and is discussed in more detail in
Section 6.8.9.

The NSS-based approach has the key advantage that it allows GNS to learn
the identity of the user that issued the query. As a result, we can fully per-
sonalize the GNS lookup on a per-user basis by maintaining a simple mapping
between (local) user names and the respective zone keys. A potential disadvan-
tage is that some applications may bypass the operating system and directly
contact a DNS resolver. Here, the network-level approaches can provide an
alternative. For browsers, the easiest method is to configure a SOCKS Proxy,
which can provide additional capabilities beyond allowing GNS to intercept DNS
queries (discussed in more detail in Section 6.8.9).

The DNS-to-GNS proxy is useful to allow legacy systems to access the GNS
distributed database without installing GNS or changing their system configu-
ration. To allow this, we have registered a domain name in DNS (“zkey.eu”)
where the DNS authority passes all requests on to GNS. Anyone controlling a
name in DNS can use the DNS-to-GNS proxy to create such a gateway.

While this trick can help users access GNS information without installing
GNS, it only offers security or censorship-resistance advantages if the proxy
operator (and the network to the proxy operator) can be trusted.

6.8.9 A HTTP SOCKS Proxy for Legacy Browsers

Our current implementation uses a client-side proxy to do the expansion of
relative names and SSL verification. A proxy implementation has the advantage
that it works with virtually all browsers. However, compared to native support
by browsers, using a proxy has the disadvantage that dynamic links, which
might be generated by code executing within the browser, cannot be translated.
Native support for GNS by browsers would improve security and usability.

The proxy from our current implementation speaks the SOCKS4a protocol,
which allows the browser to also delegate resolution of domain names to the
proxy. This is important as it allows the proxy to perform GNS resolution and
obtain “LEHO”records. If the target server is accessed using a GNS name, the
proxy replaces relative GNS names in the HTML; connections to systems using
DNS names are simply proxied without processing the content.

Another issue the client proxy tackles is the Same-Origin-Policy (SOP) im-
posed by modern browsers. The SOP forbids scripts or cookies to access a differ-
ent name in the domain namespace. For example, if you browse www.example.gnu
then JavaScript code from www.example.com is forbidden to run. This can be an
issue as the cookies and JavaScript code might use the legacy hostname (LEHO)
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instead of the GNS name and would then be ignored in accordance with the
SOP. To solve this issue, the proxy translates links pointing to the LEHO and
modifies the domain names in cookies to satisfy the SOP. This is implemented
using HTML rewriting and the use of Cross-Origin-Resource-Sharing [vK12].

6.9 Applications

While using GNS as a general alternative to DNS may seem appealing, there
are some applications where GNS has particular appeal because of shortcomings
in DNS. In particular, GNS is a natural fit when it comes to handling social
relationships.

6.9.1 Key Exchange

A first simple application is to introduce “CERT” records to store OpenPGP
public keys in GNS. Once users do this, GNS provides an alternative to the
Web-of-Trust. However, unlike the Web-of-Trust, GNS provides query privacy.
Furthermore, the identity model is different. In key signing parties for the
Web-of-Trust, users are commonly expected to correctly perform a complicated
multi-step process3 to assure that government-issued identity cards match email
addresses, thus linking OpenPGP keys to DNS information and real-world iden-
tities. This is problematic, as DNS and mail server operators can theoretically
change the identity associated with an email address. Furthermore, the use of
real-world identities makes the protocol fundamentally unsuitable for users that
would like to be pseudonymous. Finally, the Web-of-Trust includes complex
notions of what is required for a key to be verified by the trust graph, including
different levels of trust that each user can specify for other users.

With GNS, the key exchange protocol is greatly simplified. After creating
his key pair, Bob only needs to give his public key to Alice via an authenticated
channel. Alice then assigns a label for the key (or confirms the suggested nick-
name) in her zone. Alice is not expected to check Bob’s identity, as “bob.gnu”
is her name for Bob. Furthermore, Bob’s email is irrelevant, his identity is his
public key and it is not tied to his email provider or DNS. Finally, Alice could
email Bob at “mailbox@bob.gnu”, assuming Bob configured an MX record for
his zone and shared a mailbox name with her.

6.9.2 Telephony

A second simple application is to use GNS for P2P voice applications. Existing
P2P voice applications, such as Skype, typically use a centralized service for user
authentication. This is highly problematic as this is one place where attacks
can be mounted against the system, from denying access to interception and
impersonation. One alternative is the use of X.509 client certificates for users,

3See http://www.keysigning.org/methods/sassaman-efficient and https://wiki.

debian.org/Keysigning for popular instructions.

http://www.keysigning.org/methods/sassaman-efficient
https://wiki.debian.org/Keysigning
https://wiki.debian.org/Keysigning
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which is, for example, supported by Mumble4. However, the use of certificate
authorities (CAs) in X.509 allows a large number of CAs to act as trusted
third parties, with the weakest CA determining the security of the system.
Furthermore, the cost of certification or the desire to use pseudonyms drive
users to use self-signed certificates, which provide no more than TOFU security.

We implemented a simple conversation service on top of GNUnet which uses
GNS to establish a secure connection between the participants. GNS “PHONE”
records contain the public key of a peer and an integer specifying the line under
which a user application realizes a phone service for incoming calls. A call
can then be made by specifying the GNS name that resolves to the “PHONE”
record. The connection to the target peer is then secured using ECDHE and
AES using the public key of the target peer. The caller signs the call request
with his zone key. The callee performs a reverse lookup against the caller’s
public key to determine the caller id. If the caller’s public key is not in the
callee’s zone, a “.zkey” name is generated from the public key instead.

6.9.3 Other Applications

Other applications that would be a good fit for GNS include naming for Tor
hidden services (memorable names for “.onion”), and identity management in
fully decentralized P2P social networking applications [Tot13b].

6.10 Censorship in Other Layers

Censorship does not stop with the name system. For example, censors can also
attempt to block information by destination IP address. Blocking IP addresses
is actually easier than censoring DNS; however, there is an increased chance of
collateral damage as with virtual hosting, a single IP address can host many
sites and services. Tools that help users circumvent IP-level censorship can also
benefit from censorship-resistant name systems.

For example, the Tor network [DMS04b] is an anonymizing public virtual
network for tunneling TCP connections over the P2P overlay network. While
Tor is often associated with the goal of providing anonymity for HTTP clients,
it can also be used to circumvent censorship by tunneling (the Tor overlay)
traffic in other protocols, such as TLS. Tor also offers the possibility of host-
ing services within the Tor network, here with the primary goal of providing
anonymity to the operators of the servers. Accessing these “hidden services”
using cryptographic identifiers is not particularly user-friendly.

Given a decentralized censorship-resistant name system, it should be easy to
provide names for services offered within such P2P overlays. The name system
would map names to a new record type that identifies the respective service
and peer (instead of using “A” or “AAAA” records to reference a host on the
Internet). Such service endpoint addresses can then again be translated to IP
addresses in the entry node’s private address range to enable communication

4http://mumble.sourceforge.net/

http://mumble.sourceforge.net/
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of legacy applications with the P2P service. The result would be still close to
hidden services in Tor, though it would not necessarily have to also provide
support for anonymity.

6.11 Related Work

Timeline-based systems in the style of Bitcoin [Nak08] have been proposed to
create a global, secure and memorable name system [Swa11]. Here, the idea is to
create a single, globally accessible timeline of name registrations that is append-
only. In the Namecoin system [dot13], a user needs to expend computational
power on finding (partial) hash collisions in order to be able to append a new
mapping. This is supposed to make it computationally infeasible to produce an
alternative valid timeline. It also limits the rate of registrations. However, the
Namecoin system is not strong enough in our adversary model, as the attacker
has more computational power than all other participants, which allows him
to create alternative valid timelines. Note that our adversary model is not a
far-fetched assumption in this context: it is conceivable that a nation-state can
muster more resources than the small number of other entities that participate
in the system, especially for systems used as an alternative in places where
censorship is encountered or during the bootstrapping of the network, when
only a small number of users participate.

The first practical system that improves confidentiality with respect to DNS
queries and responses was DNSCurve [Ber08]. In DNSCurve, session keys are
exchanged using Curve25519 [Ber06] and then used to provide authentication
and encryption between caches and servers. DNSCurve improves the existing
Domain Name System with confidentiality and integrity, but the fundamental
issues of DNS with respect to the adversary trying to modify DNS mapping is
not within its focus.

GNS has much in common with the name system in the Unmanaged Internet
Architecture (UIA) [For08], as both systems are inspired by SDSI. In UIA, users
can define personal names bound to self-certifying cryptographic identities and
can access namespaces of other users. UIA’s focus is on universal connectivity
between a user’s many devices. With respect to naming, UIA takes a clean-
slate approach and simply assumes that UIA applications use the UIA client
library to contact the UIA name daemon and thus understand the implications
of relative names. In contrast, GNS was designed to interoperate with DNS as
much as possible, and we have specifically considered what is needed to make
it work as much as possible with the existing Internet. In terms of censorship-
resistance, both systems inherit basic security properties from SDSI with respect
to correctness.
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6.12 Summary and Conclusion

We have outlined the limitations of censorship-resistant name systems and
shown that it is not possible to achieve memorable, secure and global names in a
unified name system. However, it is possible to use pseudo-TLDs to allow users
to cherry-pick between multiple name systems, offering combinations of two of
the three desirable properties. Among the theoretical ideas, the SDSI-design
using delegation is the only which has so far not been attempted in practice.
Here, the lack of globally unique names creates additional issues for legacy ap-
plications that need to be mitigated. Focusing on Web applications, we have
performed a survey which shows that a delegation-based name system would
offer significant benefits over simpler petname systems, as most name resolu-
tions in practice arise from users following links. As each design offers unique
advantages, developers of censorship circumvention tools should consider the
integration or interoperability of their systems with multiple secure name sys-
tems via pseudo-TLDs, including DNS/DNSSEC, cryptographic identifiers and
petnames with delegation.

Based on this analysis, we have introduced, GNS, a censorship-resistant,
privacy-enhancing name system which avoids the use of trusted third parties.
GNS provides names that are memorable, secure and transitive. Placing names
in the context of each individual user eliminates ownership and effectively elim-
inates the possibility of executive or judicial control over these names.

GNS can be operated alongside DNS and begins to offer its advantages as
soon as two parties using the system interact, enabling users to choose GNS
or DNS based on their personal trade-off between censorship-resistance and
convenience. We have implemented proxies that can be used in lieu of native
support by browsers.
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Chapter 7

Ongoing and future work

This chapter summarizes the current direction of the GNUnet project and in-
cludes work that has either not been published or not been implemented or
both.

7.1 Secure multiparty computations

Efficient secure multiparty computations form important building blocks for
future privacy-preserving Internet applications. The GNUnet framework will
thus incorporate common primitives for secure multiparty computations, such
that applications can perform cooperative computations on private data.

7.1.1 Private scalar product

This section is based on unpublished joint work with Christian Fuchs and Tanja
Lange.

We have implemented a privacy-preserving scalar product protocol in GNUnet,
which is based on an original idea of Ioannidis et al. [IGA02] and was refined
by Amirbekyan et al. [AEC07]. In the original protocol, Alice learns the scalar

product
∑

aibi of her private vector a⃗ with Bob’s private vector b⃗. The proto-

col is privacy-preserving in that Alice cannot discern details about b⃗ other than
what she can learn from a⃗ and the scalar product

∑
aibi, and Bob does not

learn anything.
In recommender systems, Alice’s vector is often sparse. Thus, performance

can be improved by allowing Alice to select a subset of the elements of the
vectors to be multiplied. Naturally, depending on how Alice determines this
mask, Bob may be able to deduce that certain elements in ai are zero.

We present two variants of the protocol, one based on homomorphic encryp-
tion, and one based on solving DLOG over Elliptic curves. The first variant is
suitable for scalar products where the final value is large, while the second is
suitable for scalar products where the final value is small.

147
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Choice of Homomorphic Cipher

Our protocol uses the Paillier cryptosystem [PP99]:

EK(m) : = gm · rn mod n2, (7.1)

DK(c) : =
(cλ mod n2)− 1

n
· µ mod n (7.2)

where the public key K = (n, g), m is the plaintext, c the ciphertext, n the
product of p, q ∈ P of equal length, and g ∈ Z∗

n2 . In Paillier, the private key is
(λ, µ), which is computed from p and q as follows:

λ : = lcm(p− 1, q − 1), (7.3)

µ : =

(
(gλ mod n2)− 1

n

)−1

mod n. (7.4)

Paillier was chosen as it offers additive homomorphic public-key encryption,
that is

EK(a)⊗ EK(b) ≡ EK(a+ b) (7.5)

for some public key K.

As the Paillier homomorphism cannot efficiently handle negative numbers,
an appropriate offset s needs to be added to all inputs to ensure that the cal-
culations will only involve positive numbers. s has to be chosen to be larger
than the smallest possible input, and small enough such that the sum of all
concurrently used offsets and operands is always smaller than n. We assume
that a sufficiently large value for s is chosen and known to all participants.

Protocol 1

Let (EK ,DK) represent encryption and decryption operators with a additive
homomorphic public key algorithm using key K.

The following protocol is used to compute the scalar product over a subset
of two vectors of length n:

1. Alice initiates the protocol by transmitting her public key A, a mask
M ⊆ {1, . . . , n} specifying which subset of the vectors will be multiplied,
and EA(s+ ai) for i ∈ M to Bob. As discussed before, s denotes a shared
static offset to enable scalar product operations with negative inputs.

2. Bob creates two random permutations π and π′ over the elements in M ,
and a random vector ri for i ∈ M and sends
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R : = EA(s+ aπ(i))⊗ EA(s− rπ(i) − bπ(i)) (7.6)

= EA(2 · s+ aπ(i) − rπ(i) − bπ(i)), (7.7)

R′ : = EA(s+ aπ′(i))⊗ EA(s− rπ′(i)) (7.8)

= EA(2 · s+ aπ′(i) − rπ′(i)), (7.9)

S : = EA(
∑

(ri + bi)
2), (7.10)

S′ : = EA(
∑

r2i ) (7.11)

3. Alice decrypts R and R′ and computes for i ∈ M :

aπ(i) − bπ(i) − rπ(i) = DA (R)− 2 · s, (7.12)

aπ′(i) − rπ′(i) = DA (R′)− 2 · s, (7.13)

which is used to calculate

T : =
∑
i∈M

a2i (7.14)

U : = −
∑
i∈M

(aπ(i) − bπ(i) − rπ(i))
2 (7.15)

U ′ : = −
∑
i∈M

(aπ′(i) − rπ′(i))
2 (7.16)

and then computes

P : = DA (S) + T + U (7.17)

= DA

(
EA

(∑
i∈M

(bi + ri)
2

))
+
∑
i∈M

a2i +

(
−
∑
i∈M

(ai − bi − ri)
2

)
(7.18)

=
∑
i∈M

(
(bi + ri)

2 + a2i − (ai − bi − ri)
2
)

(7.19)

= 2 ·
∑
i∈M

ai(bi + ri). (7.20)

P ′ : = DA (S′) + T + U ′ (7.21)

= DA

(
EA

(∑
i∈M

r2i

))
+
∑
i∈M

a2i +

(
−
∑
i∈M

(ai − ri)
2

)
(7.22)

=
∑
i∈M

(
r2i + a2i − (ai − ri)

2
)

(7.23)

= 2 ·
∑
i∈M

airi. (7.24)
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Finally, Alice computes the scalar product using:

P − P ′

2
=
∑
i∈M

ai(bi + ri)−
∑
i∈M

airi =
∑
i∈M

aibi. (7.25)

Protocol 2

The protocol uses a group ⟨g⟩ of some large but finite order o. Our imple-
mentation uses Curve25519 [Ber06] (but we will stick to multiplicative notation
here).

Alice’s public key is A = ga, her private key is a. Alices gives to Bob
(gi, hi) = (gri , gria+ai) using random values ri for i ∈ M . These are ElGamal
encryptions of gai . Since the ri are big they hide the ai and a.

Bob can compute (gbii , hbi
i ) for i ∈ M . Note that

(gbii , hbi
i ) = (gribi , garibi+aibi) (7.26)

is an ElGamal encryption of gaibi with randomness ribi for Alice’s key. Since
Alice is not supposed to learn the individual values aibi but only their sum, Bob
computes the products (∏

i∈M

gbii ,
∏
i∈M

hbi
i

)
(since he does not need the individual encryptions this is faster done by using
a multi-exponentiation like Bos-Coster’s [BC90]). This equals(∏

i∈M

gbii , (
∏
i∈M

gbii )ag
∑

i∈M aibi

)

i.e. the ElGamal encryption of g
∑

i∈M aibi under randomness
∑

i∈M ribi and for
Alice’s public key.

When Bob sends this result to Alice, she can then compute(∏
i∈M

gbii

)−a

·

(∏
i∈M

gbii

)a

· g
∑

i∈M aibi = g
∑

i∈M aibi .

Assuming
∑

i∈M aibi is sufficiently small, Alice can then obtain this value by
solving the DLP.

The issue here is that the ai and bi must be small enough that computing
DLPs makes sense — a DLP in an interval of size l costs roughly

√
l group

operations [Pol00].

7.1.2 Private set intersection cardinality with signatures

In [GRBG16] we proposed a protocol for private set intersection cardinality with
signatures. Here, the set members are public keys, and by the signatures the
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public keys on one side are used to confirm that the respective public key belongs
into the set. This protocol then allows two participants to securely compute the
set intersection cardinality of two sets, where one of the participants has his set
signed by the members in the set. This secure multiparty computation does
not follow the usual “honest but curious” adversary model; instead, if say Alice
learns the result, a malicious computational partner Bob may attempt to make
the set intersection look larger than it actually is. The signatures are used to
prevent Bob from stuffing his set with false entries.

We envision using the protocol for privacy-preserving detection of abusive
behavior in OSNs, where a large overlap between Alice’s subscriptions and Bob’s
subscribers is an indicator of the benign nature of Bob.

We also envision using the protocol to assess the validity of public keys for
an entity in a privacy-enhanced variant of the Web-of-trust. Here the users
still sign each other’s keys, but do not expose the resulting social graph to
the world. We call this variant the Fog-of-trust protocol to indicate that the
relationships between users remain obscured (albeit not perfectly, as the size of
the intersection which is revealed naturally reveals some information about the
sets).

We will now briefly sketch the new protocol (which is yet to be implemented).

The Boneh-Lynn-Shacham (BLS) signature scheme

We first outline the BLS signature scheme [BLS01], which begins with a gap
co-Diffie-Hellman group pair (G1, G2) of order p with an efficiently-computable
bilinear map e : G1×G2 → GT , a generator g2 of G2, and a cryptographic hash
function H1 : {0, 1}∗ → G1.

In the BLS scheme, a private key consists of a scalar c ∈ Z/pZ, while the
corresponding public key is C := gc2, and a signature on a message m by C is
σ := H1(m)c.

A signature σ is verified by checking that e(H(m), C) = e(σ, g2). If σ =
H(m)c then this holds by bilinearity of e.

Our protocol

Given a cryptographic hash function h (which may or may not be identical to
H), we define Z ′ := {h(x)|x ∈ Z} whenever Z is some set under discussion, and
assume a fixed system security parameter κ ≥ 1 has been agreed upon. Each
participant is identified by a public key C = gc2 for the BLS signature scheme.
Each participant A has a subscriber list LA consisting of tuples (C, σA,C) where
σA,C := H1(A||date)c is a BLS signature affirming that C = gc2 was subscribed
to A until some expiration date, the specifics of which depend on the appli-
cation. We envision these signatures being provided in advance so that Bob’s
subscribers need not be online when he runs the protocol.

Suppose Alice wishes to know n := |LAlice ∩ LBob|. First, she generates an
ephemeral private scalar xA ∈ Z/pZ and sends Bob

XAlice := sort [CxA | (C, σA,C) ∈ LAlice ] . (7.27)
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Second, Bob picks ephemeral private scalars tBob,j ∈ Z/pZ for j ∈ 1, . . . , κ and
computes

XBob,j : = sort
[
CtBob,j

∣∣ (C, σB,C) ∈ LBob

]
(7.28)

YBob,j : = sort
[
C

tBob,j
∣∣∣ C ∈ XAlice

]
. (7.29)

For j ∈ 1, . . . , κ and (C, ·) ∈ LBob, Bob picks more ephemeral private scalars
sj,C ∈ Z/pZ and computes Sj,C := g

sj,C
2 and σB,Sj,C

:= H1(B||date)sj,C . Let π
denote the permutation applied by the sort for XBob,j . Bob also computes

UBob,j : = π
[
CtBob,jSj,C

∣∣ (C, σB,C) ∈ LBob

]
(7.30)

VBob,j : = π
[
σ
tBob,j

B,C σB,SC

∣∣∣ (C, σB,C) ∈ LBob

]
. (7.31)

He then sends to Alice the commitments Y ′
Bob,i, and V ′

Bob,i for i ∈ 1, . . . , κ,
along with UBob,i itself.

Third, Alice picks a non-empty random J ⊆ {1, . . . , κ} and sends J to Bob.
Fourth, Bob sends Alice all the scalars tBob,j and VBob,j for j /∈ J , as well

as XBob,j and all his scalars π[sj,C |(C, σB,C) ∈ LBob] for j ∈ J .
Fifth, Alice verifies Bob’s commitments : For j /∈ J , Alice checks that tBob,j

matches the commitment Y ′
Bob,j by computing YBob,j herself. Also for j /∈ J ,

Alice checks that VBob,j matches the V ′
Bob,j and verifies the signatures in VBob,j

using UBob,j as public keys. These signatures validate because we employ the
BLS pairing-based signature scheme where:

e(H1(B||date), CtBob,jSj,C) = e(H1(B||date), gtBob,j+sj,C
2 )

= e(H1(B||date), g2)tBob,jc+sj,C

= e(H1(B||date)tBob,jc+sj,C , g2)

= e(H1(B||date)tBob,jcH1(B||date)sj,C , g2)

= e(σ
tBob,j

B,C σB,SC
, g2)

For j ∈ J , Alice verifies UBob,j by computing it herself from XBob,j and the sj,C .
For j ∈ J , Alice computes

YAlice,j :=
{
ĈxA

∣∣∣ Ĉ ∈ XBob,j

}
. (7.32)

Finally, she obtains the result from |Y ′
Alice,j ∩ Y ′

Bob,j | = n for j ∈ J , checking
that these values agree for all j ∈ J .

An attack on this blinded signature scheme translates into an attack on the
underlying BLS signature scheme. If Bob tries to manipulate to increase the
overlap, the cut-and-choose part detects this with probability 1 : 2κ.

7.2 Social networking

The NSA’s PRISM program [NSA13] demonstrates that encrypting communi-
cation is insufficient and that society needs to transition from hosted messaging
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applications like Google Mail or Facebook Messenger towards decentralized ap-
plications where data is end-to-end encrypted, and not in plaintext accessible
on third-party systems financed by data mining for advertising. To move social
networking applications away from service providers offering hosting, several
key issues need to be addressed:

First, by removing the “trusted” service provider, we eliminate the simple
authentication model where the service provider authenticates users via their
user name and associated authentication data, such as passwords. Existing
global public key infrastructures that are not provider-specific, like DNS and
X.509, are also ill-suited for decentralized social networking applications, as
they require payment and would reintroduce a service provider. However, the
GNU Name System (GNS) is uniquely suited as a PKI for a decentralized so-
cial networking application, as one can easily model users as zones and social
relationships as delegations in GNS. How visible these links between users are
(private, shared via DHT, or even fully public) is a choice each user can make
for each link.

Second, a modernWeb-based service provider can more easily manage system-
wide upgrades. If a new version of the service is to be rolled out, the provider
updates the server-side software and database schemata, and then ships new
software (typically as JavaScript) to the clients as they access the service via
their browsers. Thus, the provider can be quite certain that virtually all clients
run the latest version of the software. While clients loose all autonomy on their
computing — features can be added or removed without their consent at any
time — this dramatically simplifies upgrades for the provider. In contrast, in
a decentralized P2P social networking application, one has to plan for clients
running diverse implementations by diverse authors, and possibly versions that
may be several years old. To enable improvements to the software under these
conditions, the network protocol needs to be extensible. XML, JSON and vari-
ous other formats offer syntactic extensibility. For the GNUnet social network,
we will use a variant of PSYC1 (so far called PSYC2) which offers both syn-
tactic and semantic extensibility. Semantic extensibility is achieved by build-
ing object-oriented dispatching into the handling of messages, thereby allowing
the introduction of more specialized message types while also permitting older
clients to handle the messages using more general/generic baseline functions.

Third, PSYC2 is designed to operate over a stateful multicast communica-
tion infrastructure. Thus, we need to create a scalable and secure multicast
mechanism to distribute the information. Here, a key design goal is to ensure
that only eligible participants can read messages, while also permitting non-
participants to provide bandwidth. In particular, as participants with asym-
metric Internet connections will rarely be able to serve as effective bandwidth
multipliers, we want to support peers that are not participating in the group to
fan out encrypted messages. At the same time, global rekeying must be avoided
when peers leave, as especially the origin is unlikely to be able to participate
in frequent rekeying operations for larger group sizes. In terms of message dis-

1http://about.psyc.eu/

http://about.psyc.eu/
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tribution, we plan to avoid both rigid designs like SplitStream [CDK+03] and
high-latency designs based purely on gossip, and instead use a flexible forest
construction with gossip operating in the background to achieve resilience.

Finally, to facilitate developers using this system, the social abstractions are
packaged into an API [Tot13b] that offers a generic vocabulary for developing
social networking applications. Key concepts in this API include:

nym pseudonym of another user in the network (≡ GNS zone)

place where social interactions happen (≡ multicast channel)

host owner of a place (≡ origin of multicast channel)

guest visitor of a place (≡ multicast subscriber)

Functions in the API then offer operations that allow a host or guests to enter

or leave a place, for guests to talk, for the host to announce something. The
host can also admit, reject or eject guests. To obtain context, guests can
replay the (message) history of a place and look at the state of a place.

7.3 Payment and incentives

While Bitcoin [Nak08] offers a fully decentralized P2P payment system, we
reject this solution for GNUnet on both ethical and technical grounds. Bitcoin is
unethical as it prevents the state from effectively extracting taxes from economic
activity, or from enforcing basic rules on allowed economic activity. If we want to
live in a society where there is the possibility of the state providing basic safety
(education, health care, justice) and can enforce the rule of law on economic
activity, it would be unethical to deploy a system that fundamentally supports
an anarcho-capitalistic and unregulated digital economy. Bitcoin is technically
inadequate as it fails to offer good privacy for citizens, and is also too inefficient
(high latency, high power consumption) to be viable for many applications.

The need for a design where the state can efficiently collect taxes precludes
the use of a pure P2P architecture, as effective taxation requires that the state
can obtain the information required for taxation from a few easily identified
systems. With a P2P payment system, the state may have to audit any general-
purpose computer!

Thus, despite our general love for decentralisation, Chaum’s untraceable
electronic cash [CFN90] offers the right design choice for a payment system:
customers spending money can remain anonymous, while merchants receiving
money are identifiable and thus taxable. Mint operators (who issue the digital
coins) have the records which allow the government to track income.

A key issue with Chaum’s design is that its use of blind signatures [Cha83]
provides atomic coins: the coins are indivisible. While Brands [Bra93] intro-
duces k-show signatures to achieve divisible coins, the resulting transactions are
linkable, which reduces anonymity. With GNU Taler2, we are introducing an

2https://taler.net/

https://taler.net/
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improved Chaumian digital payment system where we can give change (virtu-
ally arbitrary divisibility), are computationally more efficient than Brands (but
require on-line spending) and can even give refunds to anonymous customers
— while at the same time retaining unlinkability and taxability of income. The
key operation that enables this is Taler’s refresh protocol, which enables a cus-
tomer to exchange the residual value of a partially spent coin for new coins at
the mint, providing unlinkable change. In Taler, coins are not merely signed
digital tokens, but signed public (ECC) keys. This is necessary to identify the
owner of a coin, allows coins to be used to sign digital contracts, and is crucial
for the refresh protocol. Finally, Taler also explicitly introduces an auditor into
the design, where the role of the auditor is to verify the correct operation of the
mint.

With respect to GNUnet (and other P2P systems), Taler provides a triv-
ial mechanism for providing incentives to contributing resources. Naturally,
payments may not always be the ideal solution. Where applicable, alternative
reward systems like those rewarding contributors with better throughput in file
sharing applications [Gro03, Coh03] might still be considered. Still, an efficient
and privacy-preserving payment mechanism will be a useful building block for
many other applications we envision, in particular news distribution and secure
privacy-preserving auctions [Tei17].

7.4 News distribution

Accessing news online is a key Internet activity for most users. For our discus-
sion, news distribution includes browsing news websites (possibly using aggre-
gators based on syndication [NS05]) as well as reading timelines in online social
networks. News distribution is critical for a democratic society, as democracy
is only meaningful if the voters are able to make informed choices. Naturally,
using propaganda and deception has been part of the standard playbook for
corporations and governments for a long time [Bel82], including historically the
introduction of copyright for the purpose of censorship [Fal11].

P2P news distribution can principally provide both privacy and censorship-
resistance, but we need to find ways to address other key aspects of the jour-
nalistic process:

� Sourcing: somebody still has to find interesting information.

� Contextualization and editing: somebody has to present the information,
make it accessible and put it correctly into its context.

� Translation: text may need to be translated into the natural language and
possibly cultural context for different groups of readers.

� Ranking: readers cannot possibly handle all of the information available
today, so ranking algorithms are needed to provide an editorial filter to
focus attention on the important news.
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� Presentation: readers expect news to be presented in an accessible and
appealing fashion.

The key challenge today for sourcing, editing and translation is that jour-
nalists working online sometimes find it difficult to be adequately paid for their
work. With the Taler system, we hope to lower the barrier for individuals to
setup for-pay online services, especially for news distribution as readers ought
to be particularly sensitive about their privacy in this context.

For ranking, we plan to use collaborative ranking using cosine similarity
computed using secure multiparty computation. We have extended the SMC
dot product protocol of Ioannidis [IGA02] to handle signed values and include a
set intersection operation to better handle extremely sparse vectors. We inves-
tigated a method combining a secure multiparty protocol for computing signed
set intersection cardinality with supervised learning to classify messages as likely
abusive based on private meta data [AGRBG16], which ought to be combined
with the collaborative ranking algorithm in the future.

More work is needed to provide the actual distribution of news items and to
facilitate collaborative editing and achieve adequate visual presentation.

7.5 Process architecture improvements

We envision various improvements to the existing testing, monitoring and de-
ployment processes for GNUnet as the system moves closer to production.

7.5.1 Testing

Right now, developers typically write testcases to test the APIs that they intro-
duce, and they sometimes use the code coverage analysis to guide their testing.
Nevertheless, testing at this level makes it difficult to test paths where peers
violate the protocol, as using the canonical APIs does not allow one to trigger
malicious behavior. In some cases, this is addressed by adding configuration
options or API calls that enable malicious versions of the core logic for testing.
However, these malicious versions need to be hand-crafted and extending APIs
or configurations to support them is laborious and thus not always justified.

Fuzzing provides an alternative method to test whether components han-
dle malicious inputs. Especially guided fuzzers like American Fuzzy Lop3 that
try to automatically maximize code coverage can be useful to systematically
synthesize interesting testcases, and in particular to ensure good coverage of
branches performing error handling. Thus, one plan for the future is to fuzz
each component by mutating the message streams it receives via IPC/RPC.

7.5.2 Monitoring

In terms of monitoring the deployed system, the existing statistics subsystem
is limited in its view to a single peer. Using the SMC scalar product, it should

3http://lcamtuf.coredump.cx/afl/

http://lcamtuf.coredump.cx/afl/
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be possible to have peers correlate statistics (while obscuring private data) to
obtain a less insular view of network events, and possibly flag anomalies that
are not sufficiently clear from the individual peer’s data.

7.5.3 Deployment

Finally, we are working with the GNU Guix team to facilitate the installation of
GNUnet using the Guix functional (and reproducible) build and package man-
agement system. Ideally, this would result in an easy to use, multi-distribution
installation routine using Guix, as well as the ability of Guix users to upgrade
Guix by downloading packages from other Guix peers, instead of FTP/HTTP
mirrors.

7.6 Network architecture evolution

Currently, the GNUnet network architecture is totally egalitarian: all peers are
treated as equal in all respects. However, this ideal rarely holds in practice. In
reality, some peers will have high-speed network connectivity and be virtually
always available and reachable. Other peers may use a slow DSL line and be
off during the night. Finally, peers running on mobile phones may have to
worry about battery drain and the cost of bandwidth may be excessively high.
In the past, P2P networks like Gnutella and Tor have evolved to explicitly
accommodate peers with different capabilities.

For GNUnet, we envision that peers — while in principle equal — may
announce certain strong preferences to their neighbors, which those might than
typically try to respect. In particular, we envision the network to include at
least three classes of peers (Figure 7.1). (1) Infrastructure peers are peers with
good network connectivity and high uptime. They should be preferred for DHT
queries, and as relays. (2) Desktop peers are peers that are happy to contribute,
but have sub-par bandwidth, latency or availability compared to infrastructure
peers. The should be used if the infrastructure peers fail for any reason, and
generally be included in DHT queries and relay operations as a backup option.
(3) Mobile peers are unwilling to really spend resources for the needs of other
users, as they are paying a very high price for their contributions. They may
still be involved in operations as a last resort, but peers falling back to this
option have to expect extremely low quality service.

The goal of this structure is purely performance optimization, but with the
meta goal of never giving up control over user data or service availability to
infrastructure providers. This key property is maintained as long as protocols
only consider the service class of a peer as indicative for the performance to
be expected, and not start to rely on any particular service class or peer for
availability, confidentiality or integrity.
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Figure 7.1: Network architecture with service classes. In the future, peers
may voluntarily declare which level of service they are willing to provide, with
expected levels including infrastructure (i.e. data-center-hosted), backup (i.e.
desktops at home or office) or incapable (i.e. mobiles).

7.7 A new underlay

As an overlay network, GNUnet typically operates on top of the TCP/IP stack.
However, doing so means that GNUnet is susceptible to the myriad of attacks
against TCP/IP, from BGP route hijacking to TCP RST injection. While the
impact of such attacks may largely be a loss of performance, we should never-
theless consider what the ideal underlay network for GNUnet would look like.
As GNUnet treats TCP/IP more like a layer-1 technology (in the OSI model),
this question basically is about the design of a new LAN protocol, a modern
version of Ethernet or the 802.11 (WLAN) protocol family.

Figure 7.2 shows what an ideal packet format for a new physical underlay for
GNUnet might look like. The packet begins with a public key, which identifies
the destination of the packet. This is the only useful non-encrypted informa-
tion. The public key is followed by a second ephemeral public key chosen by the
sender. We note that this key does not identify the sender, the key is ephemeral
in the sense that the sender picks a fresh ephemeral key for each packet. This
header is followed by fixed size payload which is symmetrically encrypted us-
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32 byte destination D = dG (ECC Point)
32 byte ephemeral key S = sG (ECC Point)

216 − 128 byte encrypted payload (K = ECDHE(d, S))
64 byte HMAC

Figure 7.2: Ideal packet. Once packets look like this, routers have no choice but
to be neutral.

ing ECDHE based on the key of the recipient and the ephemeral key of the
sender. Finally, the packet concludes with an HMAC (encrypt-than-MAC),
but any modern authenticated encryption scheme providing confidentiality and
integrity will basically do at this point. The use of a fixed size payload not
only simplifies handling in hardware, but also ensures that packet size does not
leak information. Thus, with this format on the link-layer, spy programs like
TEMPORA [MBH+13] would become useless.

The receiver would learn the actual identity of the sender after decrypting
the payload. Here, the sender’s public key would be used to sign the ephemeral
key. To make such public key operations viable at reasonable speeds, encoding
and decoding the payload should be done directly in hardware. Hosts could
discover their neighborhood by sending service discovery packets to a broadcast
address with a well-known private key, for example 0G or 1G (with private
keys d = 0 or d = 1 respectively). This hardware design would essentially
be a drop-in replacement for GNUnet’s CORE layer, allowing the system to
drop legacy TCP/IP support entirely, dramatically improve performance by
eliminating many layers in the stack, and leaving only the more interesting
network functions to software.

The proposed header has some similarities to MinimaLT [PZS+13], where
there sender’s public key is also not transmitted in the clear and where the
receiver’s public key is obtained via the name system prior to establishing a
connection. However, MinimalLT runs over IP and UDP, and thus ultimately
does still leak information about the source address. Furthermore, the cryptog-
raphy in MinimaLT is connection-oriented, and thus an adversary can at least
learn the number of bytes and the duration of a connection. With the proposed
scheme, sessions are no longer visible on the network as each packet is encrypted
with a new ephemeral key. However, this key advantage requires much more
public key operations and thus hardware support.
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Chapter 8

Related projects

There are several projects related to GNUnet with at least somewhat similar
ambitions. We note that we only consider an activity a “related project” if it
involves a larger team developing and releasing software over a sustained period
of time. This chapter gives an overview of some of the more important projects
in this area.

Most related projects fall into one of two main categories. There are patch
projects that try to address one very specific concern with the current Inter-
net architecture while keeping the rest intact, and then there are sledgeham-
mer projects that rebuild a significant part of the Internet around their specific
sledgehammer technology. An example for an unrelated patch project would
be IPv6 [DH95], which focuses on IPv4 address space exhaustion, and tries to
make modest changes to the rest of TCP/IP. An example for a sledgehammer
are the various academic efforts on content-centric or information-centric net-
working, which try to rearchitect the Internet around the concept of querying for
information or content, instead of connecting to a particular server or service.

GNUnet is different from patch and sledgehammer projects in that it neither
tries to solve just one particular issue nor applies just one key technique over
and over again, and instead offers a toolchest to solve many issues. Nevertheless,
all of these related projects are inspirational as a source of tools, or as a means
to deploy solutions faster.

8.1 Patch projects

A number of important patch projects have been developed by the IETF.
DNSSEC [KG06] attempts to fix authenticity of DNS records, and DANE [Bar11]
uses DNSSEC to provide an alternative to the X.509 [HFPS99] public key infras-
tructure. DNS privacy considerations [Bor15] seeks to reduce meta data leakage
from the DNS protocol. TCP MD5 signatures [Lee03] improve authenticity for
TCP, in particular protecting against RST injection attacks.

The Tor project [DMS04b] uses onion routing to avoid leaking IP addresses
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when establishing TCP connections, in particular for surfing the Web.
SCION [BRSP15] provides an alternative to the border gateway routing

protocol (BGP) [LR91] using cryptography to prevent a host of known attacks
on BGP [Mur06] such as BGP route hijacking or sinkholes, and ensures fast
adaptation to link failures.

8.2 Sledgehammer projects

The Freenet project [CSBH01] has built a surprisingly diverse number of services
on top of an anonymous file sharing layer. The I2P project [jP03] has done the
same using an uni-directional [Her11, HG11] onion routing layer as the key
abstraction. Finally, RetroShare1 uses end-to-end encrypted friend-to-friend
communication (combining TLS and PGP) as its key primitive. All of the
above networks use these functions to implement services like chat, asynchronous
messaging, forums and file sharing.

8.3 Semi-related projects

There is a number of semi-related projects, such as Tribler (exploiting ideas
from Bittorrent), Maidsafe (exploiting ideas from Bitcoin) and Ethereum (also
exploiting ideas from Bitcoin), which use their sledgehammer to build decen-
tralized networks, but without the necessary focus on privacy-enhancing tech-
nologies that would make them related to GNUnet.

8.4 net2o

Finally, Bernd Paysan’s net2o2 is an attempt to “reinvent the Internet” that
like GNUnet is concerned with privacy and security and also provides a toolchest
of solutions. net2o uses packet switching information carried in each packet for
simple fast routing, which also limits information leakage from headers. It has
a new scheme for flow control, that does not suffer from buffer bloat [GN11]
and provides low latency. It integrates a Forth-like command interpreter with
a stack machine into the network stack, offering a large number of commands.3

While net2o offers a surprisingly large number of new and interesting ideas,
it is a one-man project that seems to have so far not received any academic
attention.

1http://retroshare.sourceforge.net/
2https://net2o.de/
3https://fossil.net2o.de/net2o/doc/trunk/wiki/commands.md

http://retroshare.sourceforge.net/
https://net2o.de/
https://fossil.net2o.de/net2o/doc/trunk/wiki/commands.md


Chapter 9

Discussion & Conclusion

GNUnet provides a modular foundation for building secure, decentralized net-
work applications. But like the Internet, the GNUnet will never be “finished”:
there is plenty of room for improvement for existing modules, and even more
for additional features.

Some of the features on the roadmap will be critical to address key challenges
faced by modern societies. However, making the complexity of the system more
manageable for users and lowering the barrier to entry — in particular for the
installation — will probably be more crucial for GNUnet to become widely used.
Here, the GNU Guix distribution offers a glimmer of hope through the thicket
created by the interdependency forest.

The existing development process is also somewhat immature: deployed
projects tend to evolve a more disciplined change management and review pro-
cess, for example by forcing multiple developers to sign-off each change, by
adding the requirement that regression tests have to pass before a commit, in-
stead of having them run afterwards.

Today, GNUnet provides a platform for P2P research and development with
a broader set of capabilities and features than any other such system in existence.
The architecture also makes it relatively easy to develop extensions in various
languages; today, (minor) extensions to the C codebase exist that use Java,
Python, Ruby, Rust or JavaScript. Given the diversity in languages known to
students today, this should also facilitate the use of GNUnet as a foundation
for projects in graduate-level P2P courses. The development of a P2P textbook
around GNUnet would thus be the next logical long text to be written about
the network at large. After all, where would the Internet be today without
Comer’s TCP/IP books1 educating the first generation of Internet engineers
and researchers?

1https://www.cs.purdue.edu/homes/comer/netbooks.html
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