
Optimal Bitwise Register Allocation using Integer
Linear Programming

Rajkishore Barik1, Christian Grothoff2, Rahul Gupta1, Vinayaka Pandit1, and
Raghavendra Udupa1

1 IBM India Research Lab, Delhi
2 University of Denver, Colorado

Abstract. This paper addresses the problem of optimal global register allocation.
The register allocation problem is expressed as an integer linear programming
problem and solved optimally. The model is more flexible than previous graph-
coloring based methods and thus allows for register allocations with significantly
fewer moves and spills. The formulation can also model complex architectural
features, such as bit-wise access to registers. With bit-wise access to registers,
multiple subword temporaries can be stored in a single register and accessed effi-
ciently, resulting in a register allocation problem that cannot be addressed effec-
tively with simple graph coloring. The paper describes techniques that can help
reduce the problem size of the ILP formulation, making the algorithm feasible
in practice. Preliminary empirical results from an implementation prototype are
reported.

1 Introduction

This paper presents a family of new register allocation algorithms that are suitable
for off-line computation of high-quality register allocations. The algorithm is targeted
for embedded systems which need to run medium-sized applications with limited re-
sources. In particular, we assume that the number of registers available is relatively
small and that hardware optimizations such as out-of-order execution, caching and
prefetching are not available to an extent that would nullify the cost of spilling. In
this context, the compile-time cost for a critical method is almost irrelevant – even if
the compilation takes extremely long, the resulting gain in either reduced hardware cost
or possibly more important reduced energy consumption due to improved code perfor-
mance is all that matters.

The traditional approach towards decent-quality register allocation is to color the
interference graph [6]. If the number of colors exceeds the number of registers, tem-
poraries are selected for spilling until the graph becomes colorable. The approach pre-
sented in this paper makes a radical departure from the graph coloring model, com-
pletely eliminating the boolean decision of spilling or not spilling a temporary. The
basic idea is to allow temporaries to switch registers at any time and to use constraints
to force temporaries that are used at a given instruction into appropriate registers only at
the time of use. Moving a variable between registers or between registers and the stack
is associated with a cost in the goal function of the integer linear program (ILP). The

search space for the ILP solver is reduced using observations about the points in time
at which it may make sense for a temporary to be spilled in an optimal allocation.

In order to show the expressive power of the approach, this work describes a way
to perform optimal register allocation for architectures that allow bit-wise access to
registers as proposed in [11]. Various applications, in particular from the embedded
domain, make extensive use of sub-word sized values. Examples include network stack
implementations and signal- and image-processing as well as hardware drivers. For
these applications, bit-wise register allocation can reduce register pressure. Under the
assumption that the cost of adding instructions that support sub-word access is smaller
than the cost of adding additional registers (or increasing the processor speed to offset
the spill-cost), bit-wise register allocation can help reduce total system cost.

The proposed approach uses Integer Linear Programming (ILP) [13]. Using mi-
nor variations to the integer linear program the model is able to encompass features
from a large body of previous work on register allocation, including bit-wise allocation,
coalescing, spilling, use of registers for both spilling and ordinary temporaries, and a
limited form of rematerialization [3].

The remainder of the paper is organized as follows. After an overview of related
work in Section 2 the ILP formulation for the bit-wise register allocation is introduced in
Section 3. Section 4 presents the implementation, performance data for various bench-
marks and concludes the paper with a discussion of the benefits and limitations of this
approach.

2 Related Work

Previous work has focused on register allocation at local, global, intraprocedural, and
interprocedural levels. Intraprocedural register allocation is known to be a NP-hard
problem and several heuristics have been proposed to solve the problem [4,5,6].

ILP has been used previously for register allocation and instruction scheduling. The
optimal register allocator presented in [9] uses 0-1 linear programming to compute an
optimal register allocation. Like this work, the ILP formulation there allows for a vari-
able to moved between registers and memory. The primary difference is that in [9]
models the register allocation problem as a sequence of binary decision problems: to
allocate or not to allocate a register for a given variable at a given time. The objective
function then accumulates the associated costs for each of the possible decisions. The
decision model cannot cope with bitwise allocations, mostly because for a bitwise allo-
cator the decision which temporaries should share a register is no longer binary. In [7]
the ILP from [9] is transformed in order to improve the solution time while retaining
optimality. This is achieved by reduction techniques that exploit the control-flow graph
structure and live-ranges of the variables. The presented techniques implicitly assume
that every register can only hold one variable and are thus not directly applicable to the
model presented in this paper. The transformations resulted in a speed-up of a factor of
150 for solving the resulting ILP over the naı̈ve model.

In [2], the authors solve the register allocation problem for CISC machines by di-
viding it into two subproblems - optimal spilling and register coalescing. The optimal
spilling problem is solved optimally using ILP, while a variant of Park and Moon’s

heuristic [14] is used for solving the register coalescing problem (sub-optimally). The
authors exploit the CISC instruction set to optimize the cost of loads and stores. They
take into account that number of available registers may vary from program point to pro-
gram point, but do not consider variable bit-width requirements of temporaries. In [12]
an approach to speculative subword register allocation based on optimistic register al-
location is proposed. The idea behind this paper is that there are more opportunities for
subword allocation at runtime than what can be statically determined to be safe. The
authors propose to use profiling data to speculatively pack variables that are most of
the time sufficiently small into a register and to have the processor dynamically detect
and flag the case where the size constraints are not met. This requires support by the
processor which needs to keep an additional bit per register. If the flag is raised for a
given register, the processor executes the appropriate stack accesses instead.

3 ILP Formulations

The key idea for the algorithm is to avoid assigning a temporary (both program defined
variables and compiler generated temporaries) a fixed location and instead to formulate
certain constraints on the location in the form of an integer linear problem (ILP) [13].
The goal function of the ILP captures the cost of the resulting register allocation. The
ILP is then solved using off-the-shelf ILP solver technology.

The input to the ILP-solver is a set of constraints that describe the register allocation
problem. The basic constraints are that each temporary must be assigned to exactly one
register, and that each register must have enough space to hold all temporaries assigned
to it. Dead temporaries do not use any space. Throughout the paper, the stack is modeled
as a special register σ that has no space constraints. All other registers can only store b
bits of information.

3.1 Basic formulation

The basic formulation only considers allocating one register per temporary for the life-
time of that temporary. Moving a temporary between registers or between registers and
the stack is not allowed in this model. The reader can choose to ignore the bit-wise
nature of the register allocation and view the problem in a simplified manner where
dead temporaries have a bit-width of zero and all live temporaries are word-sized. This
would also be the natural simplification to the algorithm for architectures without bit-
wise access to registers.

The input to the problem is sets of temporaries i ∈V and registers r ∈ R, spill costs
Si for each temporary i∈V and the size wi,n for temporary i∈V at all nodes n∈N in the
control flow graph. The special register σ ∈R is used to represent the stack, which is not
constrained in size and is used for spilling. All other registers r ∈ R−{σ} are limited
to b bits (b is typically 32). The result of the computation is an allocation xi,r ∈ {0,1},
with i ∈ V and r ∈ R, that assigns every temporary a unique register (or the stack σ).
The problem can then be stated in a way suitable for integer-linear programming (ILP):

min ∑
i∈V

Si · xi,σ (1)

such that
∧

r∈R−{σ}
n∈N

∑
i∈V

xi,r ·wi,n ≤ b (2)

∧
i∈V

∑
r∈R

xi,r = 1 (3)

∧
i∈V
r∈R

xi,r ∈ {0,1} (4)

Equation (1) models the cost of the solution by summing up the cost of loading
temporaries i ∈ V that have been spilled (xi,σ = 1) from the stack. Equation (2) states
that at all times and for all registers except the stack, the total size of all temporaries
stored in any register must not exceed the register size b. Equations (3) and (4) state that
every temporary must be assigned exactly one location.

3.2 Control-flow graph formulation

Let (N,E) be the control-flow graph with nodes n ∈ N and directed edges (a,b) ∈ E ⊆
N×N. Note that the control-flow graph does not use basic blocks; instead, each indi-
vidual statement corresponds to two nodes in the graph, one for the register allocation
before the instruction and another one for the register allocation after the instruction.

The goal is to be more flexible in terms of when temporaries are spilled. The goal is
to allow allocations where a temporary is spilled part of the time or where it is moved
from one register to another (for example, in order to reclaim fragmented space in the
registers in bitwise allocation). This problem can be formulated using linear constraints
by introducing additional temporaries ci,r,n ∈ {0,1} that capture at which nodes n ∈ N
register r ∈ R has been allocated to a new temporary i ∈ V . Let xi,r,n ∈ {0,1} be the
decision function that places temporary i ∈V into register r ∈ R at node n ∈ N.

Let Si,n be the spill cost of temporary i ∈ V at node n ∈ N. The value of Si,n is
zero if i is neither defined in the instruction before n nor used in the instruction after n
(whichever case applies). Si,n gives the cost of loading i from the stack if i is used at
the instruction after node n. If i is defined at the instruction before t, then Si,n is the cost
of spilling i to the stack. The cost estimate S also includes a factor that estimates the
execution count for spill operations at node n.

Let µr,n ∈ R be the cost of moving a value to or from register r ∈ R at node n ∈ N.
Using µr,n, the cost of a move at node n between register a and b is assumed to be given
by µa,n + µb,n. For example, given only one family of registers, the value for µr,n for
r ∈ R−{σ} is half the cost of a register-to-register move. In this case, if ζn is the cost
of moving a value between the stack and a register at node n, then µσ ,n = ζn − µr,n.
Unlike S, the value of µ is independent of the access pattern of the program. For µr,n
the node n ∈ N only plays a role in that it can again be used to factor in the fact that a
move within a loop is more expensive than a move outside of loops.

Let wi,n be the number of bits that temporary i ∈ V requires at node n ∈ N. The
resulting integer linear program is shown in Figure 1.

The new goal function (5) adds the cost for moving a temporary i from or to register
r at node n in (indicated by ci,r,n = 1) at cost µr,n. The new formulation allows each
variable to be spilled part-time while residing in registers at other times. Thus the spill
cost is now differenciated into a per-node, per-variable access cost Si,n which is incurred
if xi,σ ,n = 1, that is i is spilled onto the stack σ at node n.

min ∑
i∈V
n∈N

Si,n · xi,σ ,n + ∑
i∈V

r∈R,n∈N

µr,n · ci,r,n (5)

such that
∧

r∈R−{σ}
n∈N

∑
i∈V

xi,r,n ·wi,n ≤ b (6)

∧
i∈V
n∈N

∑
r∈R

xi,r,n ≥ 1 (7)

∧
i∈V,r∈R
(p,n)∈E

(xi,r,n− xi,r,p)+ ci,r,n ≥ 0 (8)

∧
i∈V,r∈R
(p,n)∈E

(xi,r,p− xi,r,n)+ ci,r,n ≥ 0 (9)

∧
i∈V,r∈R

n∈N

xi,r,n ∈ {0,1} (10)

∧
i∈V,r∈R

n∈N

ci,r,n ∈ {0,1} (11)

Fig. 1. ILP formulation for bitwise register allocation with a graph-based control flow
model.

Equation (6) directly corresponds to equation (2); the only change is that now also x
depends on n ∈ N. The new constraints (8) and (9) ensure that ci,r,n must be 1 each time
that xi,r,n 6= xi,r,p for some predecessor p of n∈N. Equation (10) states that for any node
n a variable i must either be assigned to register r or not; a partial assignment is not
allowed. While implied, equation (11) makes it obvious that ci,r,n is a boolean variable
and that in particular values greater than 1 are not possible.

3.3 Zero-cost moves

Dead temporaries can be moved between registers at no cost. The model so far considers
all moves to be of equal cost, regardless of the liveness of the temporary. A good way
to allow for zero-cost moves is to split all temporaries with multiple disjoint live-times
into multiple temporaries, one for each live-time. While this increases the size of the
set V , the simplification presented in the next section avoids significant growth of the
problem due to this extension.

3.4 Optimizations to the ILP

The ILP stated so far can be optimized in order to achieve faster solution times. The
basic idea is to reduce the search space for the ILP solver by adding constraints that fix
the value of problem variables without changing the value of the goal function for the
optimal solution.

Let pred(n) := {p|(p,n) ∈ E} be the set of immediate predecessors of node n ∈ N.
Let Ln ⊆ V be the set of temporaries that are not accessed at nodes n and pred(n) and

that are either dead or have maximum size at node n∈N. Considering that Si,n specifies
the spill-cost for temporary i at node n ∈ N, the exact definition of Ln is

Ln :=

i ∈V

∣∣∣∣∣∣wi,n ∈ {0,b}∧
∧

d∈pred(n)∪{n}
Si,d = 0

 .

Let M ⊆ N be the set of nodes where the move cost is equivalent compared to all
previous and next nodes (and thus performing the move earlier or later does not change
the cost of the move). The intuitive meaning of M is the set of nodes where the control-
flow is linear. Formally

M :=

n ∈ N

∣∣∣∣∣∣∣
∧

p∈pred(n)

∧
s∈succ(n)

r∈R

µr,p = µr,n = µr,s

 . (12)

Lemma 1 The optimality of the solution computed by the ILP solver is preserved if the
constraint ∧

r∈R
n∈M

∧
i∈Ln

p∈pred(n)

xi,r,n = xi,r,p (13)

is added. The constraint further implies that∧
r∈R
t∈M

∧
i∈Ln

ci,r,n = 0. (14)

Proof: Suppose for some r ∈ R, n ∈ M, i ∈ Lt an optimal solution to the ILP exists
with xi,r,n 6= xi,r,pred(p). If xi,r,n = 1, then i was moved at node n out of register r ∈ R.
If wi,n = 0, performing the move earlier at time p makes no difference at all (since the
temporary is dead and only assigned a register pro-forma). Suppose wi,n = b. In that
case, i must be moving from the stack into a register or vice versa, since moving i from
one register r ∈ R−{σ} to another register r′ ∈ R−{r,σ} must be a useless move in
an architecture with orthogonal registers and can thus not occur in an optimal solution.3

Assume that i is moved from σ to register r ∈ R−{σ}. Then this move can be deferred
until time succ(n) (change to the previous optimal solution requires setting xi,r,n = 0 and
xi,σ ,pred(n) = 1). This is always possible, since deferring the move only reduces register
pressure (σ has no space constraint). Similarly, if the move is from register r ∈ R−{σ}
to σ , the move can be performed earlier at pred(n) without changing the cost and again
strictly reducing register pressure. The situation for xi,r,n = 0 is analogous. �

Symmetry Another improvement in performance can sometimes be achieved by elimi-
nating symmetry from the ILP formulation. Symmetry occurs in the ILP since all reg-
isters (in the same register family) are equal. Thus for n registers, there exist n! com-
pletely equivalent solutions. If symmetry is not addressed, the ILP solver may end up

3 Note that this would not be true for wi,n ∈ (0,b), since such a move might defragment the
available space in the registers in that case.

enumerating all of these. Symmetry can be reduced by adding constraints that eliminate
redundant solutions.

Note that the register order can only be chosen arbitrarily for one specific node
since in an optimal solution the selected permutation may limit the register order at
other places. Since only live variables will impose constraints on neighboring nodes,
the impact of selecting a register order can be increased by adding a constraint at a
node where the number of variables in registers is high.

Lemma 2 Let nS ∈ N be a node where the number of live variables is maximized. Let
W ⊆V be the set of variables at node nS for which wi,nS = b.4 Let Q⊆ R be a subset of
equivalent registers (that is, Si,n = S j,n and µi,n = µr,n for all i, j ∈ Q and n ∈ N). For
example, given a suitable architecture Q := R−{σ}. Let <Q be a total ordering of the
registers and <W be a total ordering of the variables in W.

Then, adding the constraint∧
r1,r2∈Q,i1,i2∈W
r1<Qr2,i1<W i2

xi1,r1,nS + xi2,r2,nS < 2 (15)

does not change the value of the optimal solution for the ILP.

Proof: Let x ∈ {0,1}V,R,N be an optimal solution for the ILP without constraint (15). It
needs to be shown that there exists a solution x′ ∈ {0,1}V,R,N that satisfies (15) with the
same cost. Equation (15) can be reformulated into a logical expression:

∧
r1,r2∈Q,i1,i2∈W
r1<Qr2,i1<W i2

xi1,r1,nS + xi2,r2,nS < 2

⇔
∧

r1,r2∈Q,i1,i2∈W
r1<Qr2,i1<W i2

(xi1,r1,nS = 1)⇒ (xi2,r2,nS = 0)

⇔
∧

r1∈Q
i1∈W

(xi1,r1,nS = 1)⇒
∧

r2∈Q,i2∈W
r1<Qr2,i1<W i2

xi2,r2,nS = 0

For variable i ∈W let ri ∈ R be this register (xi,ri,nS = 1) for the optimal solution x. Let
τ0 : R→ R be the identity permutation. For any permutation τk define xk

v,r,n := xv,τk(r),n.
While xk violates (15) define xk+1 iteratively as follows:
Let rk ∈ Q be the smallest (with respect to <Q) register for r1 such that the above
equation is not satisfied for r1 := −rk and suitable choices for the other terms. Let
ik ∈W be the unique variable for which xik,rk,nS

= 1. Let r2 ∈ Q be the largest register

4 W could be defined to include all variables that at node nS cannot be co-located with others in
the same register. However, this definition makes the proof simpler and more to the point.

rk <Q r2 for which there exists an j ∈W with xk
j,r2,nS

= 1 and ik <W j. Define τk+1 :=
τk ◦ τrk,r2

.
Note that the permutation will eliminate the violation of the constraint since r2 >Q r
among all registers r ∈ Q for which there exists an i ∈W with xk

i,r,nS
= 1 and ik <W i.

Note that precondition wi,nS = b is important here since it implies that at most one
variable from the set W can be assigned to any given register (∑i∈W xi,r,nS ≤ 1 for all
r ∈ R). This ensures that there does not exist a j 6= i for which xk

j,ri2 ,nS
= 1 also holds

(which would result in (15) making the problem infeasible).
The inductive definition of xk terminates with a solution x′ = xkmax (with kmax < |W |)
since in step k+1 the equation jk+1 > W jk holds and thus enforces progress. The result
x′ is a feasible solution (using c′v,r,n = cv,τ(r),n gives the values for c) of equivalent cost
(since τ(r) = r for r ∈ R−Q implies that cost equivalence follows trivially from register
equivalence for r ∈ Q) that satisfies (15). �

3.5 Avoiding to block registers for spilling

Whenever a spilled temporary is used by an instruction, some architectures require
that it must be loaded into a register before execution of that instruction. Similarly, if
an instruction produces a temporary that is not allocated a register at that point, the
result may need to be temporarily stored in a register before it can be spilled onto the
stack. A common technique addressing such requirements is to reserve a few registers
for accessing spilled temporaries. These registers are then excluded from the ordinary
register allocation process. The formulation presented so far assumes that a sufficient
number of such registers exist outside of the set of available registers R that is made
available to the ILP solver.

Let ai,n ∈ {0,1} be a condition temporary that indicates that at node n temporary i
is accessed (used or defined). Since Si,n gives the cost for accessing a spilled variable,
this means ai,n := sgn(Si,n). Let br,n ∈ {0,1} indicate that register r is used for at least
one assigned temporary at node n. The term “assigned temporary” is used to differen-
tiate these temporaries from “spilled temporaries” in the classical sense. The following
constraints are then sufficient to reserve registers for spilling (extending the ILP model
from Section 3.2):

∧
n∈N

∑
i∈V

ai,n · xi,σ ,n + ∑
r∈R−{σ}

br,n ≤ |R−{σ}| (16)

∧
i∈V,r∈R

n∈N

br,n ·wi,n ≥ xi,r,n ·wi,n (17)

∧
r∈R
n∈N

br,n ∈ {0,1} (18)

In (17) the value of br,n is forced to be one if a live temporary i exists (wi,n 6= 0) that
is assigned to register r at node n (xi,r,n = 1). As a result, ∑i∈V ai,n ·xi,σ ,n is the number of

registers that must be reserved for spilled temporaries at node n and ∑r∈R−{σ} br,n is the
number of registers assigned to registers at that instruction. Equation (16) describes that
the number of allocated registers for both the spilled and register-allocated temporaries
must not exceed the total number of registers.

Note that this formulation does not take bit-wise access to registers into account.
While the ILP solution does allow assignment of temporaries to all registers at times,
the formulation does not allow for the possibility of allocating just some bits of registers
for the spilled temporaries. The problem with a formulation supporting this kind of
allocation is that one would still have to ensure that the spilled temporaries are not
scattered over multiple registers. This precludes a simple formulation over the sum of
all bits assigned to temporaries.

3.6 Coalescing

Coalescing is an important step in register allocation that assigns the same register to
temporaries that are connected by a move in order to reduce the number of move in-
structions. The problem with coalescing for previous register allocators is that forcing
two temporaries to be in the same register can result in additional spilling. In [8] an
algorithm is presented that attempts to minimize the number of moves without intro-
ducing any additional spills.

Since the ILP formulations presented in this paper (with the exception of the basic
formulation in section 3.1) allow spilling temporaries on a per-instruction basis, they
do not have the problem of additional spills due to too aggressive coalescing. Where
in [5] the merging of move-connected temporaries would force these temporaries to be
either spilled or kept in a register throughout their lifetime, the ILP formulation allows
for partial spilling. Hence it is possible to merge all temporaries that are connected by
moves upfront. The ILP solver will insert the necessary minimal number of moves and
spills as required.

Also note that coalescing reduces the total number of variables and thus reduces the
problem size of the ILP. From that perspective, coalescing should also be considered an
optimization that improves the run-time of the register allocation algorithm.

3.7 Rematerialization

Rematerialization [3] is an important technique based on the realization that is some-
times cheaper to recompute a temporary than to load it from memory or to hold it in a
register (and possibly spilling other temporaries). The simplest case for this is where the
temporary is a constant value. Extending the presented formulation to the case where
values need to be recomputed is not easily possible since this may change the lifetimes
of the other temporaries that are used in the expression. On the other hand, rematerial-
ization of constants can be handled easily by the ILP formulation.

Note that it would not be optimal to just replace all uses of a constant with a fresh
temporary. Inserting an instruction to load a constant value can be more expensive than
keeping the constant in a register if a register is available for free. The cost of loading
an immediate value can be modeled precisely in the goal function. This can be achieved
by modifying the goal function to allow for temporary-specific spill costs. Let µi,r,n

be the cost of spilling temporary i ∈ V at node n ∈ N to or from register r ∈ R. For
temporaries of constant value, the spill-cost to the stack would be zero. The spill-cost
for loading a constant-value temporary from the stack would be the cost of a load-
immediate instruction. The resulting goal function that incorporates the differentiated
spill-cost due to constant rematerialization is then:

min ∑
i∈V
n∈N

Si,n · xi,σ ,n + ∑
i∈V

r∈R,n∈N

µi,r,n · ci,r,n (19)

4 Results

The current implementation uses gcc [1] to generate the ILP problems. gcc was modi-
fied to support register allocation for hypothetical architectures with 4 to 8 orthogonal
registers. The integer linear problems generated by gcc are then solved using ILOG’s
AMPL/CPLEX linear optimizer. Code generation based on the ILP results has not yet
been implemented. Note that a target platform with bit-wise access does not yet exist
to the best of our knowledge. However, platforms allowing subword-register allocation
exist and while it is trivial to adjust the ILP model for these architectures the neces-
sary modifications to gcc would be extensive. The various cost-parameters in the ILP
formulation were set using gcc’s built-in cost estimation functions.

The resulting performance metric is the cost estimate given by the goal function in
the ILP formulation (5). While this does not allow us to deduce the overall speed-up
that could be obtained from the proposed algorithm, this cost estimate should be a good
general metric for comparing register allocators. In order to compare the new register
allocation algorithm, the output of various other register allocation algorithms available
for gcc was judged using the same metric.

For the evaluation, three previously published register allocators were compared
with the various ILP-based allocators presented in this paper. The previously published
register allocators are traditional graph coloring [5], linear-scan register allocation [15]
and Tallam and Gupta’s bitwidth aware global register allocation [17]. In order to allow
a fair comparison with the graph coloring and linear scan allocators we give numbers
for the ILP models for both bitwise and ordinary (wordwise) register allocation. Also,
the bitwidth estimation algorithm used is the same for all allocators supporting bitwise
allocation.

4.1 Bitwidth-estimation

The bitwidth information for various temporaries at different program points are deter-
mined using the approach suggested by [17]. The bitwidth of a temporary i at program
point n is represented in a pair (ld, tr), where ld represents the leading zero bits of i at n
(leading dead bits) and tr represents the trailing zero bits of i at n (trailing dead bits). In
order to determine (ld, tr) pairs for all temporaries at all program points, first a forward
data flow analysis is performed to chain the definition of temporaries to their uses. Then
a backward data flow analysis is performed to refine the (ld, tr) pairs by chaining the
use of temporaries to their respective definitions. The (ld, tr) pair for all temporaries
are computed simultaneously as they are interdependent on each other.

4.2 Benchmarks

The performance of the approach is evaluated using benchmarks from the Bitwise [16]
and Mediabench [10] suites. These benchmarks are appropriate since they correspond to
real-world applications where sub-word access to temporaries is common. Furthermore,
using some of the same benchmarks as [17] enables comparison with prior work on
bitwise register allocation.

4.3 Impact of the optimizations

Applying Lemma 1 to the ILP formulation reduces the searchspace for the ILP solver.
Depending on the benchmark the resulting constraints can eliminate up to 90% of the
free variables. Note that the reduction of problem variables does not only reduce the
space requirements but also significantly reduces the search space for the ILP solver.
For example, mpegcorr with 8 registers takes 422s without the constraints allowed by
Lemma 1, but only 46s with those constraints.

Surprisingly, using the constraints from Lemma 2 increases the cost for this bench-
mark, if applied together with Lemma 2 the solution time is between roughly 50 and
300s depending on the choice of nS. While the additional constraints from Lemma 2
also reduce the search space, this reduction can somehow not offset the cost of evaluat-
ing the additional constraint for the specific ILP solver and any of the benchmarks that
have been tested for this during our study.

Another possible optimization is to use any of the other register allocation algo-
rithms to compute a feasible register allocation and to feed this as an input into the
ILP solver. Such a feasible starting solution can help the solver in its branch and bound
search to prune the search space. In our benchmarks, we use the best solution com-
puted by either graph coloring, linear scan or Tallam’s bitwise allocator as the starting
solution. The resulting performance improvements vary depending on the benchmark.
Typically smaller benchmarks see no improvement or even performance degradation,
whereas larger benchmarks see (often minor) performance improvements. For example,
the mpegcorr benchmark runs in 46s with a starting solution, but takes 418s without
it. We speculate that the smaller search space for small benchmarks gives fewer oppor-
tunities for pruning and the given initial solution is further away in the search space
from the optimal solution than the default infeasible starting point that would be used
without a starting solution. Future work may result in some deeper understanding of the
circumstances under which the various combinations of these optimizations (namely
Lemma 1, Lemma 2 and giving a starting solution) are most effective.

The performance results reported for the benchmarks henceforth use a feasible start-
ing solution in combination with the constraints from Lemma 1.

4.4 Performance

Figure 2 and Figure 5 shows the cost as estimated by the goal function (5) for the various
register allocation algorithms for all benchmarks.

The time it took to solve the different ILP problems were obtained by running
ILOG’s cplex v9.1 on an Intel Xeon 3 Ghz with 4 GB memory running Linux 2.6.10.

Benchmark Reg. adpcm convolve median mpegcorr NewLife MotionTest Histogram
Graph Coloring [5] 4 1225415 0 91280 92400 2236190 4690 7515
Linear [15] 4 1450425 0 131217 127913 1752698 7060 106605
Tallam [17] 4 800330 0 91280 92400 2136180 4690 5160
ILP GCF 4 490124 0 44710 73850 599642 1919 3773
ILP GCFB 4 330071 0 44710 73850 599642 1916 2837
Graph Coloring [5] 6 750315 0 34575 34835 531305 260 1990
Linear [15] 6 1025311 0 82283 67444 743840 4560 4310
Tallam [17] 6 325230 0 34575 34835 531305 260 1195
ILP GCF 6 270084 0 17795 28550 251428 105 794
ILP GCFB 6 120045 0 17795 28550 251428 105 6
Graph Coloring [5] 8 275215 0 17870 8055 27915 0 0
Linear [15] 8 575214 0 72248 38415 218790 0 0
Tallam [17] 8 130 0 17870 8055 27915 0 0
ILP GCF 8 120054 0 6452 1062 11404 0 0
ILP GCFB 8 42 0 6452 1062 11404 0 0

Fig. 2. ILP GCF is the ILP model with the graph-based control flow model and with-
out bitwise allocation. ILP GCFB is the graph-based control flow model with bitwise
allocation. Memory load/store cost metric is 5.

Benchmark adpcm convolve median mpegcorr NewLife MotionTest Histogram
4 registers 53257s 0s 73s 10s 57s 2s 6s
6 registers ≥ 105s 0s 44s 35s 163s 3s 11s
8 registers 454s 0s 80s 46s 312s 1s 6s

Fig. 3. Solver time for the bitwise graph-based ILP formulation, ILP GCFB. Entries
prefixed with > indicate that the ILP was timed out before completing.

Benchmark adpcm convolve median mpegcorr NewLife MotionTest Histogram

4 registers ≥ 105s 0s 23s 10s 42s 2s 5s
6 registers 331s 0s 39s 27s 168s 3s 11s
8 registers 4162s 0s 80s 43s 286s 1s 6s

Fig. 4. Solver time for the graph-based ILP formulation, ILP GCF.

While the time may seem excessively long for some benchmarks, note that this is using
a stock ILP solver that has not been specialized to the problem at hand. Furthermore,
the run-times should still be feasible when compiling small programs or performance
critical functions for embedded systems where high performance and low per-unit cost
are paramount.

Note that various benchmarks show that adding more registers does not always have
to increase the cost of the ILP – typically at some point computing an optimal solu-
tion becomes much easier because there are few or no points of register pressure left.

Benchmark Reg. bilint edge-detect levdurb g721 adpcm-coder
Graph Coloring [5] 4 1225490 3331565 912080 90565 1419575
Linear [15] 4 687730 2134138 1424956 148124 1736976
Tallam [17] 4 975390 3331565 912080 87705 1028675
ILP GCF 4 260104 1333229 582787 29943 581829
ILP GCFB 4 ≤80072 ≤1333181 582787 29943 412035
Graph Coloring [5] 6 325130 2604260 427840 32040 955580
Linear [15] 6 487665 1535156 851177 98388 1409078
Tallam [17] 6 287615 2604260 427840 32040 539670
ILP GCF 6 142557 ≤962851 260489 13608 401715
ILP GCFB 6 ≤92537 ≤952981 260489 13608 222531
Graph Coloring [5] 8 150060 2076610 193580 0 639035
Linear [15] 8 350125 1129861 489472 11945 1032645
Tallam [17] 8 150060 2076610 193580 0 234130
ILP GCF 8 72529 ≤1346346 41844 0 278352
ILP GCFB 8 ≤35014 ≤1346346 41844 0 100776

Fig. 5. Solution cost for various larger benchmarks using the graph-based control flow
model. Entries prefixed with≤ indicate that the ILP solver was aborted prior to proving
optimality. Memory load/store cost metric is fixed to 5.

Benchmark bilint edge-detct levdurb g721 adpcm-coder

4 registers > 106s > 105s 24s 57s 5545s
6 registers > 105s > 105s 102s 321s 845s
8 registers > 105s > 105s 138s 41s 648s

Fig. 6. Solver time for the graph-based bitwise ILP formulation, ILP GCFB. Entries
prefixed with > indicate that the ILP was timed out before completing.

Benchmark bilint edge-detct levdurb g721 adpcm-coder
4 registers 5s 1342s 26s 443s 3855s
6 registers 16s > 105s 60s 311s 935s
8 registers 18s > 105s 77s 15s 1588s

Fig. 7. Solver time for the graph-based ILP formulation, ILP GCF

In general, the runtime of the solver is rather unpredictable. For example, the adpcm
benchmark with word-wise register allocation runs takes more than 105s for 4 registers,
runs rather quickly in 331s for 6 registers. Astonishingly, if the number of registers is
increased to 8 the solver takes again significantly longer with 4162s.

Figure 8 gives some data comparing the size of the benchmarks and the respective
runtime of the ILP. The size of the benchmark is determined by the number of local
variables (|V |), the number of nodes (|N|) and edges (|E|) in the control flow graph.

Benchmark |V | |E| |N| time (GCFB)
adpcm 29 228 218 53257s
median 34 190 184 73s
NewLife 61 312 302 57s
levdurb 37 206 199 24s
mpegcorr 31 185 178 10s

Fig. 8. This Table shows the relationship between benchmark size and the time it takes
to solve the ILP for some selected benchmarks. The number of registers is fixed to 4.

4.5 Discussion

At the surface the large and unpredictable ILP solution times seem to be the big prob-
lem with the presented approach. However, in practice, the optimal solution is com-
puted rather quickly, especially given a good initial feasible starting solution. The solver
spends most of its time proving that this solution is optimal. Naturally such a proof does
not yield any speedups later, so it is perfectly reasonable to turn the presented algorithm
into a heuristic by simply aborting the ILP solver if the computation takes too long with-
out improving the solution. This will allow the user to select an appropriate trade-off
between register allocation quality and compile-time.

In addition to heuristics that abort the ILP solver earlier, solution times can be im-
proved dramatically using straight-forward reductions of the ILP problem size. One
possibility is to map multiple nodes from the original control-flow graph to one node
in the ILP formulation. Also, on many processors bit-wise register allocation may not
be useful or effective anyway. As the 32-bit timings have shown, using a more coarse
allocation granularity can dramatically improve solution times. Changing the ILP for-
mulation to other granularities such as nibbles or bytes is trivial. All of these changes
can improve ILP solution times at the expense of reduced quality of the produced solu-
tions. Future work will have to evaluate which graph reduction strategies will give the
most effective trade-offs.

5 Conclusion

This paper introduced a new ILP-based algorithm for bit-wise register allocation. The
presented formulation expands the expressiveness of the model of existing ILP-based
register allocation algorithms and hence allows for better solutions. The algorithm inte-
grates previous techniques including coalescing, spilling, constant rematerialization and
register families and allows for temporaries to be temporarily spilled. The formulation
supports using the same register for access to spilled temporaries or direct temporary as-
signment at different times. Experimental results show that the resulting ILP problems
can be solved by modern of-the-shelf ILP software, resulting in register allocations that
substantially improve on allocations computed by state-of-the-art techniques.

6 Acknowledgments

We thank Calin Cascaval, Satish Chandra, Nandivada V. Krishna and Jens Palsberg for
their comments on earlier drafts of this paper.

References

1. http://gcc.gnu.org/, 2004.
2. Andrew W. Appel and Lal George. Optimal spilling for cisc machines with few registers. In

Proceedings of the ACM SIGPLAN 2001 conference on Programming language design and
implementation, pages 243–253, 2001.

3. Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. In Proceedings of
the Conference on Programming Language Design and Implementation (PLDI), volume 27,
pages 311–321, New York, NY, 1992. ACM Press.

4. Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph coloring regis-
ter allocation. ACM Transactions on Programming Languages and Systems, 16(3):428–455,
May 1994.

5. Gregory J. Chaitin. Register allocation and spilling via graph coloring. In Proceedings of
the ACM SIGPLAN ’82 Symposium on Compiler Construction, pages 98–105, Jun.

6. Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins,
and Peter W. Markstein. Register allocation via coloring. Computer Languages, 6:47–57,
1981.

7. Changqing Fu and Kent Wilken. A faster optimal register allocator. In MICRO 35: Proceed-
ings of the 35th annual ACM/IEEE international symposium on Microarchitecture, pages
245–256, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

8. Lal George and Andrew W. Appel. Iterated register coalescing. ACM Transactions on Pro-
gramming Languages and Systems, 18(3):300–324, May 1996.

9. David W. Goodwin and Kent D. Wilken. Optimal and Near-Optimal Global Register Allo-
cation Using 0-1 Integer Programming, 1996.

10. Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Mediabench: A tool
for evaluating and synthesizing multimedia and communicatons systems. In International
Symposium on Microarchitecture, 1997.

11. Bengu Li and Rajiv Gupta. Bit section instruction set extension of arm for embedded ap-
plications. In Proceedings of the international conference on Compilers, architecture, and
synthesis for embedded systems, pages 69–78. ACM Press, 2002.

12. Bengu Li, Youtao Zhang, and Rajiv Gupta. Speculative subword register allocation in em-
bedded processors. In Proceedings of the LCPC 2004 Workshop, 2004.

13. John L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, 1987.
14. Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. In Jean-Luc Gaudiot, ed-

itor, International Conference on Parallel Architectures and Compilation Techniques, pages
196–204, Paris, October 1998. IFIP,ACM,IEEE, North-Holland.

15. Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM Transactions
on Programming Languages and Systems, 21(5):895–913, 1999.

16. Mark Stephenson, Johnathan Babb, and Saman Amarasinghe. Bitwidth analysis with appli-
cation to silicon compilation.

17. Sriraman Tallam and Rajiv Gupta. Bitwidth aware global register allocation. ACM SIGPLAN
Notices, 38(1):85–96, January 2003.

A ILP Progress over Time

The presented algorithm can easily be converted into a heuristic by aborting the ILP
solver before optimality is established. In this context, it is interesting to know how fast
the ILP solver finds good solutions. The following graphs show the improvement of
the best known integer solution over time for some representative benchmarks (starting
with the starting solution and ending with the optimal solution).

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 0 1000 2000 3000 4000 5000 6000

co
st

time (s)

Best known integer solution
Improved integer solution found

 300000

 350000

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 750000

 800000

 850000

 0 10000 20000 30000 40000 50000 60000

co
st

time (s)

Best known integer solution
Improved integer solution found

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 0 5000 10000 15000 20000 25000

co
st

time (s)

Best known integer solution
Improved integer solution found

 900000

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 1.7e+06

 1.8e+06

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000

co
st

time (s)

Best known integer solution
Improved integer solution found

Fig. 9. For many benchmarks, near-optimal solutions are found quickly. Graphs for bit-
wise solutions for adpcm-coder (4 reg.), adpcm (4 reg.) and edge-detect (4 and 6 reg.).

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 0 200 400 600 800 1000 1200 1400 1600

co
st

time (s)

Best known integer solution
Improved integer solution found

 900000

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 1.7e+06

 1.8e+06

 0 2000 4000 6000 8000 10000 12000 14000

co
st

time (s)

Best known integer solution
Improved integer solution found

Fig. 10. For some benchmarks, it takes a while for better solutions to be found. Graphs
for wordwise solutions for edge-detect (4 and 6 reg.).

	Optimal Bitwise Register Allocation using Integer Linear Programming
	Rajkishore Barik (IBM India Research Lab), Christian Grothoff (University of Denver, Colorado), Rahul Gupta (IBM India Research Lab), Vinayaka Pandit (IBM India Research Lab), Raghavendra Udupa (IBM India Research Lab)

