
Decentralized Evaluation of Regular Expressions for Capability Discovery in
Peer-to-Peer Networks

B. Polot M. Szengel R. Holz H. Niedermayer C. Grothoff
Network Architectures and Services

Technische Universität München
Email: {polot,szengel,holz,heiko,grothoff}@net.in.tum.de

Abstract

We present a new approach for expressive distributed
searches in Distributed Hash Tables (DHTs) based on
regular expressions. Regular expressions are stored and
evaluated in the network in a decentralized manner. The
key idea of our approach is to convert regular expres-
sions into finite automata and store the corresponding
states and transitions in the DHT. This allows us to sup-
port a new way to express service capabilities in over-
lays. Offered capabilities are expressed as regular ex-
pressions. Offering peers are discovered by matching a
given search string against the regular expressions that
are stored in the DHT. Offering peers can merge their lo-
cally constructed Deterministic Finite Automaton (DFA)
into the DHT using PUT operations. This yields a Non-
deterministic Finite Automaton (NFA) in the DHT which
can be evaluated by following through a series of GET
operations. A particular advantage of our approach is
that peers do not need to possess any knowledge about
the current NFA as all merges are independent from each
other. We have implemented our approach and evaluated
the performance of the system using both emulation and
simulation. The case we studied is Internet-scale routing
using regular expressions to describe address ranges of
Autonomous Systems and finding exit peers for a given
IP address. Our results demonstrate the performance,
scalability and flexibility of our approach. Our code is
available for public download.

1 Introduction

DHT-based Peer-to-Peer (P2P) networks offer an effi-
cient way for decentralized and distributed storage and
retrieval of data objects. In traditional DHTs, indexing is
typically based on hash-keys [3]. While DHTs with more
expressive search capabilities exist, we are not aware of
any existing decentralized and distributed search meth-
ods that would be capable of handling regular expres-

sions with reasonable efficiency. This work presents a
new approach for expressive distributed searches in P2P
overlays based on regular expressions. General purpose
regular expressions offer a potent method for participants
to advertise services or capabilities. Our method enables
peers to discover other peers with adequate capabilities
in a fully decentralized and distributed fashion.

Use cases. There are a number of use cases where
the distributed evaluation of regular expressions proves
valuable. We present some typical representatives here.
Our first use case are message queuing systems, e.g., en-
terprise message buses for service-oriented architectures,
like [10]. Here, subscribers define topics of interest as
regular expressions, such as IBM/*ware/Results. It is
the responsibility of the message queuing system to de-
liver new messages to the correct subscribers. Our sys-
tem allows to find subscribers by matching the topic of
the message against the subscriber’s regular expression,
in a distributed fashion and without a central registry of
subscribers. A similar use case would be distributed
computation. Here, a scheduling node (or peer) must
determine peers that are willing to contribute and offer
certain platform properties, like enough RAM, CPU or
bandwidth. Such peers can describe their properties in a
regular expression; the scheduling peer would find them
by matching its search string against this expression. Fi-
nally, the use case that we have implemented and cho-
sen for our evaluation is a network-oriented one, in the
spirit of P2P. We use the distributed evaluation of regu-
lar expressions to find such nodes in a P2P network that
are willing to accept forwarded IP traffic and act as exit
nodes to the Autonomous System they are located in. We
use this to establish a kind of P2P-based VPN: Given des-
tination IP address, the overlay is capable of determining
the best exit node. A similar real-world application is
the search for exit nodes in the Tor network [5]. Here,
peers specify an exit policy with the set of acceptable
TCP destination addresses. Today, Tor transmits the exit
policies of all exit nodes to all other peers; our method

1

would enable a more scaleable, decentralized lookup.
Note that further properties, like acceptable bandwidth
usage, could also be defined in the regular expression us-
ing our approach.

Principle. We represent the capabilities of peers in the
system as data items, which we publish in the DHT under
a regular expression. They can then be located by search-
ing for strings that the regular expression matches. We
distribute the matching operation (the evaluation of reg-
ular expressions) with the help of PUT and GET operations
of a key-based DHT. The first step in publishing a regular
expression is to locally convert it to an automaton, which
consists of states and transitions. Then, we store (PUT)
each state as well as the state’s transitions under a cer-
tain key in the DHT. As multiple nodes will need to con-
currently store states, we provide a mechanism to merge
equivalent states and transitions. The result is an NFA
stored in the DHT. Peers searching for a particular string
are able to match a search string against the aggregated
regular expressions that are stored in the DHT. This is
achieved by issuing a series of GET requests, which es-
sentially follow the transitions in the NFA, until an ac-
cepting state is reached.

Contributions. First, we present the design and proof
of correctness for a new decentralized data structure
based on eventual consistency for expressive distributed
search operations using regular expressions. Specifically,
we provide mathematical results that show that our map-
ping of states to the DHT produces the correct NFA,
which recognizes exactly the correct language. Second,
we provide a freely available implementation of the data
structure and the associated network protocol. Finally,
we present experimental results demonstrating the capa-
bilities and limitations of the approach.

Outline. Section 2 provides background that may
be helpful in understanding our design. In Section 3
we present our design and explain how operations can
be conducted concurrently and independently by many
peers in the network and still generate the correct result.
Section 5 briefly presents our implementation and then
discusses the results of our evaluation. We evaluated per-
formance and scalability using both emulation and sim-
ulation. Related work is discussed in Section 6.

2 Background

This section summarizes fundamental concepts, termi-
nology and related algorithms that are relevant to our ap-
proach.

2.1 Distributed Hash Tables (DHTs)
A DHT is a data structure that allows efficient storage
and lookup of data in P2P networks. It provides hash

table functionality for handling key-value pairs. Node
identifiers and data item identifiers in a DHT use the
same address space. Keys are typically values from a
hash function, such as SHA1. Each node maintains con-
nections to a number of other nodes and is responsible
for storing certain key-value pairs, as well as routing re-
quests to other nodes in the network. Most DHT designs
incur a number of lookup steps that is logarithmic in
the number of nodes in the DHT. Lookups are typically
conducted for keys, i.e., hash values, which refer to ex-
actly one data item or node. Some selected DHT designs
provide more expressive search capabilities at the price
of decreased lookup performance – we discuss some of
these in Section 6.

With virtually all P2P systems, churn is a potential
problem [18]. For our method, we assume that the DHT
may loose key-value pairs due to churn or because values
expire after some time. Naturally, the DHT is allowed
to use replication and caching to alleviate this issue; the
DHT simply does not have to guarantee that stored val-
ues persist. Our implementation addresses this issue
by having the offerer periodically refresh all key-value
pairs that it is storing in the DHT (by issuing another
PUT). This method of performing keep-alive operations
to maintain soft state is common practice in P2P net-
works. It also offers an implicit way to perform a delete
operation — if a peer stops to refresh a key-value pair,
it will effectively be deleted when the original value ex-
pires. Caching and possible replication, non-persistence
and soft-state are typical semantics for most DHTs in
practice [12], and our method is designed to operate in
this context.

2.2 Finite Automata

Finite automata are a mathematical model of computa-
tion. They consist of states, input symbols and transi-
tions.

Deterministic Finite Automata (DFA) A DFA D =
(Q,Σ,δ ,q0,F) consists of a finite set of states Q, a finite
set of input symbols Σ, a transition function δ (q,a) : Q×
Σ→ Q that takes a state q and an input symbol a and
returns a state, a start state q0 ∈ Q and a set of accepting
states F , where F ⊆ Q. A word is a string (sequence)
of symbols. A DFA accepts a word if the sequence of
symbols leads from the start state to an accepting state by
following the transitions marked with the corresponding
symbols. Note that a transition may be marked with a
whole sequence of symbols, too. The language a DFA
accepts is the set of all words that lead to an accepting
state.

2

Non-deterministic Finite Automata An NFA N =
(Q,Σ,δ ,q0,F) shares most properties with the DFA, but
differs in the transition function δ . For an NFA, δ (q,a) :
Q× Σ→ {qi, . . . ,qk} is defined as a relation that takes
a state and an input symbol and returns a set of states
{qi, . . . ,qk} ∈ Σ. The non-determinism consists in the
possibility that several transitions may exist that lead
away from the same state but are marked with the same
symbol. In the computational model, the NFA is allowed
to ‘guess’ a transition leading to an accepting state. Any
NFA can be converted to a DFA that accepts the same
language.

2.3 Regular expressions and DFA/NFA
For every NFA or DFA that accepts a certain language L
(a so-called regular language), one can give an equivalent
regular expression that describes the same language (and
vice versa). Regular expressions are typically evaluated
by converting them to finite automata. The automata are
then simulated on an input string (word) to decide if the
string is in the language described by the regular expres-
sion. The steps to construct a DFA from a regular ex-
pression are parsing the regular expression, constructing
an NFA from the parse tree and converting the NFA into
an equivalent DFA. For every DFA, there exists an equiv-
alent minimal DFA, which is a DFA that recognizes the
same language with a minimum number of states. The
minimal DFA is also unique for the language, except for
the renaming of states. Converting an NFA to a DFA
does generally not lead to a minimal DFA. Minimization
requires removal of unreachable states and merging such
states that are equivalent (non-distinguishable as defined
in [17]).

2.4 Transitive Closure Algorithm (TCA)
The Transitive Closure Algorithm (TCA) [9] is a method
to compute equivalent regular expressions from a DFA
or NFA. We use the TCA as a key building block in our
main algorithm. The TCA works by incrementally con-
structing a regular expression for each pair of states in a
DFA. It has a worst-case space requirement of O(|Σ|4n).
Thus, simplifying the regular expression to reduce its
size in each step in the TCA is important. This can be
done by applying general algebraic rules to transform
the abstract syntax tree of the regular expressions at each
step of the iteration. For regular expressions, R,S and T ,
these are:

• Identity: /0|R = R; εR = Rε = R; /0R = R /0 = /0

• Associativity: R|(S|T) = (R|S)|T ; R(ST) = (RS)T

• Commutativity: R|S = S|R

• Distributivity: R(S|T) = RS|RT ; (S|T)R = SR|T R

• Idempotency: R|R = R

Using these rules, we simplify regular expressions in
each iteration of the TCA. In our experiments (see Sec-
tion 5), this has reduced space requirements to just a few
kB per instance of the TCA.

3 Design

We now present the general ideas and the functionality
of our design. Figure 1 shows a graphical illustration.

As shown in Figure 1, Offerers describe their ser-
vices using regular expressions. For example, a peer
that offers IP forwarding to a destination in its sub-
net 192.0.2.0/24 can do this with the regular expression
“IPV4−C00002.∗”, where (following POSIX) “.” (dot)
stands for “any” character and “∗” for “zero or more” of
the preceeding element. Naturally, it is possible to extend
the system to cover more complex requirements, such as
allowed port numbers, software versions or other proper-
ties of the offerer. Similarly, representing the IP address
in hexadecimal is a choice; other notations (such as bi-
nary or dotted decimal) would work just as well, with
more or less complex regular expressions as a result.

The idea is to convert every regular expression to a
DFA. This is done locally by the offerer. The resulting
DFA is then published in the DHT. Specifically, each of
the automaton’s states is published under a certain key in
the DHT. The entry for every state contains the outgoing
transitions from this state, and the keys of the respective
destination states. Finally, the identity of the offerer is
stored under those keys that correspond to the accepting
states in the automaton. As there are many offerers in the

Offerer Patron

PUT GET

DFA

DHT

Search string

NFA

Figure 1: Schematic overview of the presented approach.
An offerer creates a regular expression that describes its
offered services, converts this into a DFA and stores it
in the DHT. A patron searching for a particular string
traverses the NFA stored in the DHT to find matching
offerers.

3

system wishing to store their DFA in the DHT, the store
operations from all of the offerers need to somehow be
merged by the DHT. As we will see, in the result the
DHT will hold an NFA. We give an detailed description
of why and how this happens in Section 3.1 and Sec-
tion 3.2.

Patrons search for a particular service using a string
that describes the exact service they are looking for. Fol-
lowing our example from above, this would, e.g., be
IPV4−C00002EB. In order to find a service that satisfies
their search requirement, patrons follow the transitions
of the NFA in the DHT to learn the identities of offerers
with matching services. To this end, they compute the
key corresponding to the starting state (see Section 3.4
for details) and issue a GET to retrieve that state’s transi-
tions from the DHT. From the replies, they learn a set of
transitions and corresponding destination states. The pa-
trons match the transitions against their search string to
obtain the set of destination states (and the correspond-
ing keys) which are a longer match for their search string.
They then issue new GETs for these keys to retrieve the
next transitions and destination states, which they then
match against their search string. This process contin-
ues iteratively until the full search string is matched and
an accepting state is reached. If the search string is ex-
hausted without reaching an accepting state, there are no
search results.

As patrons step through an NFA, the number of GET
operations they need to perform is not bounded by the
length of the search string. However, GET operations
arising from the non-determinism can be performed in
parallel (our NFA has no ε-transitions). Thus, total la-
tency is still bounded by the length of the search string.

3.1 Designing a Mapping of States to Keys

We will now illustrate the key considerations that guided
us in designing our algorithm to map states to keys. The
choice of such a mapping is a critical factor as it has a
significant impact on both correctness and performance
of our design. To illustrate this, consider a naı̈ve (yet cor-
rect) design where the starting state is mapped to a single
key, and each offerer then maps each state of his DFA to
a new, random key. The initial state in the DHT would
have to store (at least) n non-deterministic transitions for
n offerers. To match search strings, patrons would have
to perform a prohibitively high number of GET opera-
tions. Furthermore, the DHT node(s) responsible for the
starting state’s key would be under high load. To avoid
such scenarios, it is important to minimize the number
of non-deterministic edges we create in the DHT. In the
following, we show informally how this can be achieved.

0 1
a

2
b

(a) DFA accepting ab

0 1
a

2
c

(b) DFA accepting ac

0

1a

3

a

2b

4
c

(c) Merged NFA accepting ab|ac

0 1
a

2b

3

c

(d) Merged DFA accepting ab|ac

Figure 2: DFAs for ab (a) and ac (b) that should be
merged in the DHT, and two possibilities for merging the
corresponding DFAs. While both (c) and (d) are correct,
DFA (d) will offer better performance.

Equivalent regular expressions

Regular expressions that are equivalent (e.g., aa∗|b and
b|a+) describe the same regular language. Converting
each into a DFA results in two isomorphic automata.
Thus, the corresponding states in these automata should
be mapped to the same keys.

Regular expressions with equivalent prefixes

Regular expressions that share a prefix should, whenever
possible, be merged into the DHT such that the resulting
transitions are only deterministic. Consider the regular
expressions ab and ac and the corresponding DFAs in
Figure 2a and Figure 2b. When merging these DFAs into

4

q0 q1
a

x

q2
b

(a) DFA accepting ax∗b

q0 q1
a

y

q2
b

(b) DFA accepting ay∗b

q0 q1
a

x
y

q2
b

(c) Incorrectly combined DFA which would ac-
cept a(x|y)∗b

q0

q1
a

q3

a

x

q2
b

y

q4
b

(d) Correctly combined NFA

Figure 3: Example of an incorrect merge (c) – it accepts
strings that are not in the union of the languages of the
original DFAs. A correct combination of the two DFAs
results in an NFA (d). Note that, as in the example from
Figure 2, both original regular expressions started with
the shared prefix a.

the DHT, there are two basic possibilities, shown in Fig-
ure 2c and Figure 2d. Both automata accept the same
language, but Figure 2c is an NFA and Figure 2d is a
DFA. Producing the DFA is desirable as the DHT has
fewer transitions to store and patrons will need signifi-
cantly fewer network operations to evaluate the DFA.

Concurrent operations

However, not all such structurally similar regular ex-
pressions can be safely merged to a DFA. Consider the
regular expressions ax∗b and ay∗b and the correspond-
ing DFAs in Figure 3a and Figure 3b. The merge il-
lustrated in Figure 3c is incorrect, as the resulting DFA

accepts strings that neither original regular expression
would have matched (e.g., axyxyb). Our algorithm
must not conduct such merges. Figure 3d shows a
correctly merged automaton for the regular expressions
from above. Here, merging the two DFAs yields an NFA.
Note that a DFA for ax∗b|ay∗b does exist. However, we
prefer the NFA here. The reason is a problem we face in
practice: two offerers generally do not know about each
other and there is thus no way for them to efficiently co-
operate. Furthermore, as both offerers may try to con-
currently publish their regular expressions, attempts to
lookup existing DFAs in the DHT cannot be guaranteed
to succeed. Updating complete records in the DHT (as
opposed to supplementing them) is also generally unde-
sirable due to the need for locking and the possibility of
a DHT performing distributed caching. Our concept is
meant to allow concurrent operations while being agnos-
tic to DHT implementations. Our notion of an indepen-
dent feasible merge is the answer to these problems.

In the following, we formalize the problem and
present our algorithms. We begin with the operation of
correctly merging DFAs into the DHT. We then show
how too many non-deterministic transitions and an over-
load of the starting state are avoided. In particular, we
show that our solution is practically implementable in a
distributed system with concurrent operations.

3.2 Formalisation of Problem

We give a formalisation of our problem statement in or-
der to show that our algorithms yield correct results.
We write the DFA that is to be merged as a 5-tupel
(Q′,Σ′,δ ′,q′0,F

′). The NFA that exists in the DHT is
represented as (Q,Σ,δ ,q0,F); note that δ is a relation
that takes a state and an input symbol and returns a set of
states, δ (q,a) : Q×Σ→P(Q), whereas δ ′ is a function
δ ′(q′,a) : Q′×Σ′→ Q′.

We can now define the notion of a feasible merge. This
is a bijective relation that describes the desired merge op-
eration of a DFA with an NFA. It has the desirable prop-
erty that the resulting NFA accepts exactly the correct
language:

Definition 1 (Feasible merge) A bijection m∈M′→M,
with M ⊆ Q and M′ ⊆ Q′ of an NFA (Q,Σ,δ ,q0,F) with
a DFA (Q′,Σ′,δ ′,q′0,F

′) is a feasible merge if and only
if q0 ∈ M and q′0 ∈ M′, and the resulting merged NFA,
namely the 5-tuple (Q∪ (Q′ \M′),Σ∪ Σ′, δ̂ ,q0, F̂), ac-
cepts exactly the union of the two original languages.

5

Here, δ̂ :=

δ (q,a)∪

{δ ′(q,a)} q ∈M′∧δ ′(q,a) /∈M′

{m(δ ′(q,a))} q ∈M′∧δ ′(q,a) ∈M′

{δ ′(q,a)} q /∈M′∧δ ′(q,a) /∈M′

{m(δ ′(q,a))} q /∈M′∧δ ′(q,a) ∈M′

and F̂ is the set of merged accept states

F̂ := F ∪m(F ′∩M′)∪ (F ′ \M′). (1)

The intuitive understanding of δ̂ is that this relation
combines the two state machines, using the mapping
function m to map the states M′ ⊆ Q′ from the DFA to
corresponding states M ⊆ Q in the NFA. Edges that do
not begin or end at nodes in M (or M′) are simply pre-
served. Note that the requirement to include q′0 ∈M′ and
q0 ∈M results in ‘linking’ the original state machines via
an initial empty word.

Note that the above definition implies that a feasible
merge never leads to the creation of new states that were
not already contained in either the original DFA or NFA.
δ̂ only merges equivalent states, keeping states from the
DFA or NFA that are not related via m.

We now proceed to address concurrent operation. As
the CAP theorem [8] states, no distributed system can
provide consistency, availability and partition tolerance
at the same time. We assume availability and partition
tolerance to be hard requirements for our application do-
main, and the underlying DHT to provide them. We thus
sacrifice the global consistency property and require that
feasible merges do not rely on globally consistent state
in the DHT. In other words, it must be possible for many
merge operations to be executed in parallel, without need
for synchronisation between participants. We define an
independent feasible merge as follows.

Definition 2 (Independent feasible merges)
Independent feasible merges are operations that
compute feasible merges and permit the concurrent
execution of other independent feasible merge opera-
tions, without knowledge or communication between the
entities carrying out these operations. Upon completion
of all independent merge operations, the resulting NFA
must still only accept the union of the merged DFAs and
the original NFA.

The above definitions state the properties that must be
fulfilled by our algorithm that maps DFA states to DHT
keys and merges a DFA into the NFA. Note that our feasi-
ble merge definition already implies that the NFA that re-
sults from independent merge operations is well-defined
as the ∪ operation is associative and commutative.

q0

q1 (a)
a

q2 (c)

c
q3 (ab|cd)e*

b

d

e

q4 (ab|cd)e*f
f

Figure 4: DFA graph for the regular expression
(ab|cd)e ∗ f with partial regular expressions assigned to
each state.

3.3 Algorithm to Compute Independent
Feasible Merges

We now present our algorithm to compute the maximal
feasible merge bijection (Algorithm 1), that is the largest
(in number of mapped elements) bijection that represents
a feasible merge. We then show that this algorithm can be
carried out in parallel to provide the independence prop-
erty.

The basic idea of our algorithm is to first derive the
regular expression R0 j between the start state q0 and ev-
ery other state q j ∈ Q, and then add a mapping for states
with equal regular expressions to the bijection. We de-
rive the regular expressions with the TCA. In order to
be able to test them for equivalence, we need to pre-
process the DFA to ensure deterministic processing by
the TCA. Specifically, TCA relies on a numbering of the
DFA states. As we will use the resulting regular expres-
sions for unique state identification, we need to ensure
that these expressions are canonical. Thus, the number-
ing of states also needs to be canonical. This is achieved
by first sorting the outgoing transitions of each state in
the DFA graph using the names of the corresponding
labels and then numbering the states by performing a
depth-first-search on the DFA graph.

Figure 4 illustrates an example DFA with (partial) reg-
ular expressions assigned to each state.

Starting with a canonical DFA and a function TCA
for computing canonical regular expressions Ri j for each
pair of states qi,q j ∈ Q, Algorithm 1 finds a maximal
feasible merge that satisfies Definition 1.

Lemma 1 (Feasible merge) Algorithm 1 computes a
feasible merge.

Proof A full proof can be found in [19]. The key ideas
are the following. First, one shows that the algorithm
computes a feasible merge. For a feasible merge, q0 and
q′0 need to be in M and M′ respectively. As q0 and q′0 are
both start states, the corresponding regular expressions
are in both cases the empty string, ε . Hence R00 = R′00′
and thus the algorithm will include m(q′0) 7→ q0 in the

6

Algorithm 1: Mapping DFA states to DHT keys
Algorithm: The algorithm starts with an empty
bijection m ∈M′→M and computes the maximal
feasible merge bijections.
Input: NFA N = (Q,Σ,δ ,q0,F) and DFA

D = (Q′,Σ′,δ ′,q′0,F
′)

Output: Maximal feasible merge bijection
m ∈M′→M with M ⊆ Q and M′ ⊆ Q′

1 Ri j← TCA(N);
2 R′i j← TCA(D);
3 foreach (q j,q′j′) ∈ Q×Q′ do
4 if R0 j = R′0 j′ then
5 m← m∪{q′j′ 7→ q j};
6 end
7 end

bijection. Next, one shows that the merged NFA accepts
exactly the union of the two original languages. To this
end, one first shows that, if a word A is accepted by the
NFA via a series of transitions (i.e. moving from state to
state), then the union operator ensures that these transi-
tions also exist in δ̂ (and thus the word is also accepted).
For a word B, accepted by the DFA, via a sequence of
transitions, one shows that the mapping that is conducted
by a feasible merge results in a series of equivalent tran-
sitions in the merged NFA that also lead to an accepting
state. Finally, one shows that no word that was not al-
ready accepted by either the NFA or the DFA is accepted
in the merged NFA. This can be shown by assuming such
a word exists and then showing this leads to a contradic-
tion. �

Lemma 2 (Independent merge) Algorithm 1 directly
leads to an independent merge operation to compute a
feasible merge.

Proof Combined with Equation (1), the algorithm is
turned into a decentralized independent merge operation
as follows. An independent merge operation first com-
putes canonical regular expressions R′0 j for each state
q′j ∈ Q′. Then, the operation hashes the string R′0 j to de-
rive a key which then describes the location in the DHT
for storing the union of all δ ′(q′j,a) (for all a ∈ Σ′). Note
that prior to the DHT PUT operation, the operation needs
no knowledge about the existing NFA in the DHT. The
peer responsible for the key derived from hashing R′0 j
can then perform the commutative and associative union
operation on the δ ′-mappings for the respective q′j (and
all a ∈ Σ), locally, and in any order. This merge opera-
tion is independent as the corresponding transformations
to the NFA are all commutative and associative, and the

steps can be executed without having a consistent global
view of the NFA. �

Theorem 1 (Maximal feasible independent merge)
Algorithm 1 computes the maximal feasible merge that
can be executed using an independent merge operation.

Proof This proof works again by contradiction. With
the previous lemmata, one shows that adding an addi-
tional element q′ to M′ does not constitute a feasible
merge anymore. For details, we refer the reader to [19].
�

3.4 Decentralizing the Start State
The algorithm described so far exhibits a problem: all
starting states correspond to the same regular expression,
namely the empty string. Thus, they would be mapped to
the same key in the DHT. The corresponding responsi-
ble nodes (hosts) would experience significant load: they
would receive many GET and PUT operations, and the re-
sult sets they would need to return would also be rather
large (in O(|Σ|)).

We thus distribute the starting states in the following
way. For any string in the accepted language, we take
the first k characters of the corresponding regular expres-
sions. When merging its DFA, a peer inserts a synthetic
start state under the hash of each of these prefixes into
the DHT. The synthetic start states are then connected to
the rest of the DFA as necessary. E.g., for abc∗de f , an
offerer would choose the strings abcc, abcd and abde to
determine the corresponding keys.

Instead of the naı̈ve search, a patron peer hashes the
first k characters of the string that should be matched,
and looks up the information stored under this hash to
find the entry point for the corresponding NFA.

This strategy trades load on peers hosting entry states
for a potentially exponential increase in the number of
synthetic entry states, i.e., offerers with highly generic
offers may have to perform additional PUT operations.
For an input alphabet Σ and k initial characters, the worst
case would be a number of additional states in the order
of |Σ|k. Thus, k needs to be chosen with care and with
respect to the Σ that is applicable for the respective ap-
plication.

4 Hardening

So far we have assumed that the regular expressions and
their associated capabilities are not private information,
and that the peers providing the underlying DHT are hon-
est. While this may be the case for certain types of ser-
vices, it would be good to support private offers and to
protect the values in the DHT against tampering by peers.

7

This can be done if we assume that each search term
(and regular expression) starts with sufficient entropy to
prevent enumeration attacks. For this section we will
thus assume that for private services, search terms and
regular expressions start with a random pre-shared key
(PSK) of sufficient length L (say 128 bits) and that the
prefix k (from Section 3.4) is larger or equal to k.

Let (H(R),v) be any of the key-value pairs previously
stored in the DHT in the clear, where R is some (partial)
regular expression and v the respective encoding of the
outgoing state transitions Σ 7→P(Q). Let HKDF and
HKDF ′ be two hash-based key derivation functions [?]
with different salts. Let G be the generator of an Ellip-
tic curve, say Curve25519 and n = |G| the group order.
We can then define a private key d = HKDF(R) mod n
and the corresponding public key D = dG and use, say,
EdDSA [?] for signing Sd using private key d. Given
this setup, we can use a symmetric cipher E to store
〈Sd(EHKDF ′(H(R))(v)),D〉 under key H(D).

Given the PSK, a peer performing a search s can start
with its R0-value using the first k bits from 〈PSK,s〉 and
can then perform DHT lookups to incrementally obtain
the encrypted blocks and perform the decryption to ob-
tain a series of H(Ri) values up until the accept state. The
accept state may even store confidential access informa-
tion with the value v which would never be disclosed to
anyone who does not know the PSK. Furthermore, the
signature scheme ensures that peers cannot tamper with
the values in the DHT, and that only parties privy to the
PSK can offer the respective service.

5 Implementation and Experimental Re-
sults

We implemented our approach for the GNUnet1 Peer-to-
Peer (P2P) framework. This allowed us to evaluate our
approach using emulation and real GNUnet production
code (as opposed to simulation code). It should be noted
that GNUnet’s default DHT is optimized with a view to-
wards use in a route-constrained environment, such as it
may be encountered where many peers are located be-
hind a NAT or firewall, and there are relatively few peers
that have near-global connectivity. The DHT deals with
such problems by using a recursive routing strategy plus
a short, randomized series of first steps in the network
(after which search continues normally). A drawback of
this is that latencies are slightly less predictable than in
a conventional DHT. However, it also means that the re-
sults we obtained from emulation, especially latencies,
generally represent upper bounds – conventional DHTs
can be expected to be somewhat faster. We chose this
particular DHT as it is best suited for our use case: P2P-

1https://gnunet.org

based VPNs must deal with such route-constrained envi-
ronments.

Metrics related to the structure of the DFA and NFA,
such as the number of non-deterministic edges in the
NFA, are independent of the underlying P2P framework.
This allows us to determine these by simulation rather
than emulation and obtain results that are valid for any
DHT setup. Our experiment setup was the same for both
emulation and simulation: In our experiments, regular
expressions are used to find peers willing to forward traf-
fic to a particular Autonomous System.

5.1 Integration into GNUnet and Experi-
ment Design

Our implementation uses several GNUnet components.
Fundamentally, states are stored in the GNUnet DHT [6].
Our experiments themselves are based on the Protocol
Translation (PT) component. This is a GNUnet appli-
cation which allows peers to provide network access for
other peers, while translating between IP versions in the
overlay if needed.

PT is a particularly good choice for our experiments
for two reasons. First, the service needs to discover suit-
able peers that are willing to act as Exits. Second, an
Exit may not be able or willing to handle all incoming
traffic, but, e.g., just particular IP versions for particular
destinations due to policy or connectivity restrictions.

Figure 5 visualizes how PT works. The Exit daemon is
one key component: it can be configured to share the lo-
cal Internet connection. The VPN service is the counter-
part to the Exit daemon; it provides peers with the ability
to route Internet traffic arriving at a virtual network in-
terface via the P2P network to a peer that is running an
Exit. To communicate with peers that offer an appropri-
ate Exit, Protocol Translation (PT) relies on the CADET
service [?], which is responsible for routing messages
to suitable peers. CADET needs to receive information
about peers found using our implementation. An Exit
can specify a policy, represented as a regular expression,
with the protocols (e.g., IPv4, IPv6) and destination IP
or networks it is willing to offer forwarding to. A patron
looking for forwarding to a certain address will convert
the desired target IP address to a suitable string and then
ask the VPN to discover a matching Exit and create a
CADET tunnel towards it. The idea behind this is that a
peer may be willing to serve as an Exit, but only for traf-
fic destined to its own Autonomous System (AS). In our
experiments, we evaluated how effective and efficient a
search for an IPv4 Exit node is when regular expressions
are used to express this.

8

Regex
Library

DHT

Protocol Translation (PT) Application

VPN Service Exit Daemon

Regex
Library

Mesh tunnel

DHT Service DHT Service

Figure 5: Protocol Translation (PT) application overview
diagram for two peers, one acting as offerer (highlighted
with light grey) that is running the Exit daemon and one
acting as patron (highlighted with dark grey) that is run-
ning the VPN service and is trying to find a matching
Exit.

5.2 Dataset for Experiments
We used the CAIDA Routeviews Prefix to AS mappings
Dataset (pfx2as) to obtain mappings from IPv4 prefixes
to AS numbers. This dataset is derived from the Univer-
sity of Oregon’s Route Views Project [14] and updated
daily; we used the data from 2012-09-11, which contains
440,448 lines with 40,696 unique AS numbers.

The maximum number of subnets for an AS in the data
set is 2,773.

5.3 Results from Emulation
We first present results obtained by large-scale emu-
lation. For the experiments, we used the GNUnet
testbed [20] For the experiments, we used the GNUnet
testbed [20] to deploy, control and observe up to 2,000
peers on a PC with an Intel Xeon W2530 processor at
2.8 Ghz and 24 GB RAM. The testbed runs the normal
GNUnet code; however, special options were set to store
DHT data in RAM instead of on disk and to artificially
delay messages exchanged between peers.

5.3.1 Setup

In our setup, each AS ID corresponds to a peer respon-
sible for announcing the appropriate regular expressions.
The peers were distributed among all hosts and each peer
was initially connected randomly to other peers in the
testbed, until every peer had 40 connections on average.
The DHT was not allowed to create additional routing ta-
ble entries to keep the load predictable and under control.
The DHT used, R5N [6], supports this restricted routing

scenario but performs better if new connections are al-
lowed. While the DHT supports caching and replication,
the effect of these features is limited due to the short du-
ration of the PUT period and the fact that each lookup is
for a different search string. Thus, in practice the system
may perform better than what is shown in this emulation.

We conducted experiments with setups emulating
1,000 and 2,000 peers. Each peer out of a set of 3
was given a regular expression describing the range of IP
addresses of its corresponding AS to store in the DHT.
Each peer stored the regular expression 3 times, with
a separation between operations selected at random be-
tween 0 and 1 seconds. Another peer, selected at random,
would start the search of a string describing an IP ad-
dress in the AS, after waiting for 2 seconds. This waiting
period guarantees that the regular expression has been
stored all 3 times in the DHT before the search starts. Af-
ter the search succeeded or 90 seconds passed, whichever
came first, a new peer started to store its regular expres-
sion in the DHT. This sequence was used to limit the
number of peers simultaneously performing GET and PUT
operations in the network.

5.3.2 Performance

Table 1 summarizes performance results from our exper-
iments. As can be seen, our approach scales quite grace-
fully: bandwidth consumption per peer increases only
slowly when doubling number of peers. Note that the
searches use only GET operations – the majority of traf-
fic is caused by storing the automata. The PUT operations
are repeated 3 times and have to store all states and edges
of the automata, while GET operations only traverse the
relevant states for the search string. The traffic for bigger
networks increases due to the nature of the DHT operat-
ing in a restricted route network. Given a random topol-
ogy with a fixed number of connections per peer, a bigger
network has a bigger diameter, and therefore the R5N [6]
GET and PUT request paths must be longer to guarantee
reaching the appropriate peer for a given key. RESULT

messages follow the route of GETs, therefore have the
same tendency. Note that the results presented are for
traffic data of individual peers, the standard deviation is
thus a measure of the load distribution among the peers.
As expected, the load is reasonably well balanced.

5.3.3 Search duration

We measured the time each peer needs to complete a
search in different size networks. To achieve more realis-
tic results, the peers run with a simulated 100ms network
latency for each one-way peer-to-peer message, making
a total round trip time between peers of 200ms. The re-
sults are illustrated in Figure 6, for runs with 1,000 and

9

Table 1: Results from experiments for emulations with
1000 and 2000 peers. Numbers are on average per peer.

Bandwidth (kB)/peer 1,000 2,000
PUT: Average 587 702

Standard deviation 238 311
GET: Average 67 82

Standard deviation 27 36
RESULT: Average 107 121

Standard deviation 44 54

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100

%
 o

f
m

a
tc

h
e
d

 s
tr

in
g

s

Search duration in s

1,000 peers
2,000 peers

Figure 6: Search duration for runs with 1000, 2000 ran-
domly connected peers. Note logarithmic scale in x-axis.

2,000 peers. The majority of strings is found after a rel-
atively short time: 50% of the strings in the 1,000 peer
network are found after 441ms, which is a little more
than two round trips. On the upper end, 95% of results
in the 2,000 peer network are found after 6.3s. We find
these results quite encouraging, given the high potential
expressivity of our search mechanism and the unfavor-
able conditions (latency, topology) for the DHT opera-
tion.

We also found that some strings are found very soon.
There are two explanations. First, some strings are
searched by the same peer that already holds a matching
regular expression. Second, sometimes a direct neigh-
bour has a matching regular expression (i.e., the network
is well-meshed). There are some strings that take a very
long time to match, likely due to the DHT using recur-
sive randomized routing, which has higher latency and
larger variance in latency compared to other DHTs.

5.4 Results from Simulation
A key parameter in our design is the maximum length
of path compression, which is a trade-off between state
explosion and the number of lookups. We now present
an evaluation of the effects of path compression. We ob-
tained these results by simulation as the effects are inde-
pendent of network structure. To this end, we replaced
GNUnet’s VPN and Exit services with a profiler and the

 1

 10

 100

 1000

 10000

 100000

 1e+06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39

#
 s

ta
te

s

outgoing transitions

Figure 7: Number of states in the merged NFA by out-
degree.

DHT with a database.

5.4.1 Number of Edges

The number of transitions stored at a given key is an im-
portant parameter for performance. Many transitions at
a key mean a larger result set, a higher load on the re-
sponsible peer, and potentially a higher degree of non-
determinism. Figure 7 visualizes the out-degree distribu-
tion for our experiment. It shows the number of states
that have a certain number of outgoing transitions in the
NFA. Note the logarithmic y-axis (indicating the num-
ber of states). The ratio of edges per state behaves quite
gracefully, with most nodes having a low degree and no
nodes having an excessively high degree. This is ex-
pected, especially given our use of a hexadecimal alpha-
bet for the interesting part of the regular expression.

5.4.2 Non-Determinism in the DHT

As our automaton is an NFA, the degree of non-
determinism (non-deterministic edges per state) directly
affects the performance of the DHT, in particular
searches, as it translates into more necessary iterative
lookups. We thus evaluated this important metric.

Figure 8 shows that, for the AS data set, the maxi-
mum number of non-deterministic edges at any state in
the merged NFA is only two. Furthermore, the overall
fraction of non-deterministic edges is quite low. These
values are very encouraging and show that our approach
will show good performance for the AS use case. How-
ever, we do have to add a word of caution: the values
do not necessarily generalize to other use cases. One
can expect some applications to exhibit a higher degree
of non-determinism, depending on the structure of the
regular expressions they need to use. We have done
other experiments where the maximum number of non-
deterministic edges was three [19]. Systematically de-

10

 1000

 10000

 100000

 1e+06

 1e+07

d
e
te

rm
in
istic

n
o
n
-d

e
te

rm
in
istic

#
 s

ta
te

s

Figure 8: Characterization of states of the merged NFA
from the CAIDA dataset. Non-deterministic states have
exactly 2 transitions with the same label.

signing rules for writing regular expressions that, when
independently merged using our method, would mini-
mize non-determinism, is left for future research.

6 Related Work

The presented method is a specialized design and im-
plementation of a Convergent Replicated Data Type
(CRDT) [16]. In general, CRDTs address the fundamen-
tal issue of the CAP theorem [8] using eventual consis-
tency [21]. In contrast to the generic CRDT graph repre-
sentations described in [16], our method does not require
explicit delete operations (the DHT simply discards en-
tries after a timeout) or garbage collection. Furthermore,
assuming the DHT itself is Byzantine fault-tolerant, our
decentralized data structure should also operate correctly
even in the presence of malicious participants. Existing
CRDTs generally operate under the stronger assumption
of non-byzantine behaviour [16].

Our work differs from most of the related work on
searching in DHTs in two respects. First, and to the best
of our knowledge, the use of general regular expressions
is a unique feature of our concept. Second, many related
concepts [7, 15] assume that the offerer publishes a string
and that the patron searches for a range or set of strings.
Despite these fundamental differences, some concepts do
appear in related work.

Garcés-Erice et al. [7] propose a system to discover
objects stored in a DHT. Objects are stored under a com-
bination of all their keywords; individual keywords are
mapped to keyword combinations. The authors expect
the application to traverse the graph starting with key-
words provided by the user, followed by an iterative, in-
teractive refinement process using search refinement sug-
gestions generated automatically. The notion of iterative
traversal is also a part of our concept.

PastryStrings [1] creates a publish-subscribe system

using a tree-structure on top of a DHT. It supports a va-
riety of queries, like range and comparison queries for
numerical values, and prefix, suffix, and containment
matching for strings. Subscribers express interest in a
specific value. For each starting character of a string,
PastryStrings builds a tree with all of the words that have
the character as prefix. The publisher will search the
trees to find all nodes interested in its data. Prefix Hash
Trees (PHTs) [15] add range query support to arbitrary
DHTs. PHTs add a trie structure to normal DHT stor-
age; the trie structure links neighboring items in the item
name space. The idea is similar to PastryStrings; how-
ever, intermediate nodes are located at the hash of their
prefix and can thus be reached without contacting the
root node. Compared to our system, PastryStrings and
PHT are limited in the expressiveness of queries (we sup-
port regular expressions).

Cubit [4] tackles the problem of finding approximate
matches for keywords. In Cubit, nodes have keywords as
identifiers and the overlay structure is based on edit dis-
tances between those keywords. Mappings are stored on
nodes with a small edit distance to the keyword. Approx-
imate searches are then conducted by querying all nodes
with identifiers within a certain edit distance to the query.
Keywords also play a central role in the Distributed Pat-
tern Matching System (DPMS) [2]. Here, each keyword
represents a bit in the identifier space. Objects are as-
sociated with a set of keywords, and an object is iden-
tified with the combination of the object’s keywords.
Pattern matching is enabled by using n-grams as key-
words. The overlay structure of DPMS is a hierarchical
lattice; searches traverse the hierarchy. While these ap-
proaches support approximate matching, they need spe-
cialized network structures. Our approach can be used
with any DHT.

Cooperative Information Sharing System (CISS) [13]
enables range query support for existing DHTs by replac-
ing the hash function with a locality preserving function.
This achieves a high level of clustering of similar objects.
However, creating an appropriate clustering function is
non-trivial; the choice impacts the DHT’s load-balancing
properties.

Karnstedt et al. [11] present an approach to store and
select entries of a relational database in a DHT. Each en-
try has an identifier, and the complete entry is stored un-
der this identifier. In addition to that, all of its columns
are stored individually in the DHT under combinations
of their identifier, their value, and their field name with
a link back to the entry identifier. The system is able to
run on generic DHTs. However, it only supports a subset
of SQL and suffers from significant storage overhead.

11

7 Summary, Conclusion and Outlook

We have described our mechanism for searches based on
regular expressions in DHTs. Using our approach, of-
ferers can describe services in regular expressions, and
patrons can find them by searching for strings that match
the regular expression. To the best of our knowledge,
there are no search mechanisms yet that would offer
equivalent expressiveness.

We have evaluated our mechanism using both emula-
tion and simulation. Our use case was VPN-like func-
tionality with searches for Exit nodes to certain net-
works. We have found that our design scales well
with the number of peers and searches in the network.
Lookups require only a low number of traversed nodes,
and an acceptable number of iterated edges. The ma-
jority of searches terminates after a comparatively short
time. The expected total network latency is linear in the
length of the search string, which should be suitable for
applications that can tolerate moderate latency.

Still, there remains room for improvement, We have
tested our design for only one use case, and it will be
highly interesting to determine its performance for other
use cases, e.g., distributed computation. Furthermore,
our cluster allowed us to emulate only a relatively small
number of peers. With access to a new cluster, we hope
to be able provide more insight for much larger networks
soon.

On the whole, however, we find our results very en-
couraging and the mechanism certainly usable, espe-
cially when considering the high expressiveness that it
supports. Our mechanism is integrated in GNUnet and
thus available for public review.

Acknowledgments
This work was funded by the Deutsche Forschungsge-
meinschaft (DFG) under ENP GR 3688/1-1. We thank
David Barksdale for insightful discussions and Sree Har-
sha Totakura for help with running the experiments.

References

[1] Ioannis Aekaterinidis and Peter Triantafillou. Pas-
tryStrings: a comprehensive content-based pub-
lish/subscribe DHT network. In Proc. 26th
IEEE Int. Conf. on Distributed Computing Systems
(ICDCS ’06), Lisboa, Portugal, page 23, 2006.

[2] Reaz Ahmed and Raouf Boutaba. Distributed pat-
tern matching: A key to flexible and efficient P2P
search. In Proc. 10th IEEE/IFIP Network Opera-
tions and Management Symposium (NOMS 2006),
pages 198–208.

[3] Hari Balakrishnan, M. Frans Kaashoek, David
Karger, Robert Morris, and Ion Stoica. Looking up
data in P2P systems. Commun. ACM, 46(2):43–48,
February 2003.

[4] Aleksandrs Slivkins Bernard Wong and Emin Gün
Sirer. Approximate matching for Peer-to-Peer over-
lays with Cubit. Technical report, Cornell Univer-
sity, Computing and Information Science, 2008.

[5] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion
router. In Proc. 13th USENIX Security Symposium,
August 2004.

[6] Nathan S. Evans and Christian Grothoff. R5N: Ran-
domized recursive routing for restricted-route net-
works. In 5th Int. Conf. on Network and System
Security (NSS 2011), Milan, Italy, September 2011.

[7] L. Garcés-Erice, P. A. Felber, E. W. Biersack,
G. Urvoy-Keller, and K. W. Ross. Data Index-
ing in Peer-to-Peer DHT Networks. In Proc.
24th Int. Conf. on Distributed Computing Systems
(ICDCS’04), Tokyo, Japan, pages 200–208, 2004.

[8] Seth Gilbert and Nancy Lynch. Brewer’s con-
jecture and the feasibility of consistent, available,
partition-tolerant Web services. SIGACT News,
33(2):51–59, June 2002.

[9] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Intro-
duction to automata theory, languages, and compu-
tation. Pearson/Addison Wesley, 2007.

[10] International Business Machines Corporation.
WebSphere MQ: Publish/Subscribe User’s Guide
7.0, January 2009.

[11] Marcel Karnstedt, Kai-Uwe Sattler, Manfred
Hauswirth, and Roman Schmidt. Similarity queries
on structured data in structured overlays. In Proc.
22nd Int. Conf. on Data Engineering Workshops
(ICDEW ’06), page 32, Washington, DC, USA,
2006. IEEE Computer Society.

[12] Brad Karp, Sylvia Ratnasamy, Sean Rhea, and
Scott Shenker. Spurring adoption of dhts with
openhash, a public dht service. In GeoffreyM.
Voelker and Scott Shenker, editors, Peer-to-Peer
Systems III, volume 3279 of Lecture Notes in Com-
puter Science, pages 195–205. Springer Berlin Hei-
delberg, 2005.

[13] Jinwon Lee, Hyonik Lee, Seungwoo Kang,
Su Myeon Kim, and Junehwa Song. CISS: An effi-
cient object clustering framework for DHT-based
Peer-to-Peer applications. Computer Networks,
51(4):1072–1094, March 2007.

12

[14] David Meyer. University of Oregon Route Views
Archive Project . http://www.routeviews.

org/. [Last retrieved: January 2013].

[15] Sylvia Ratnasamy, Joseph M. Hellerstein, and Scott
Shenker. Range queries over DHTs. Technical Re-
port IRB-TR-03-009, Intel Research, 2003.

[16] Marc Shapiro, Nuno Preguica, Carlos Baquero, and
Marek Zawirski. A comprehensive study of conver-
gent and commutative replicated data types. (7506),
01/2011 2011.

[17] Y.N. Singh. Mathematical Foundation Of Com-
puter Science. New Age International (P) Limited,
2006.

[18] Daniel Stutzbach, , and Reza Rejaie. Understand-
ing churn in peer-to-peer networks. In Proceedings
of the 6th ACM SIGCOMM conference on Internet
measurement, IMC ’06, pages 189–202, New York,
NY, USA, 2006. ACM.

[19] Maximilian Szengel. Decentralized evaluation
of regular expressions for capability discovery in
Peer-to-Peer networks. Master’s thesis, Technische
Universität München, November 2012.

[20] Sree Harsha Totakura. Large scale distributed
evaluation of peer-to-peer protocols. Masters,
Technische Universitaet Muenchen, Garching bei
Muenchen, 06/2013 2013.

[21] Werner Vogels. Eventually consistent. ACM Queue,
6(6):14–19, October 2008.

13

