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Abstract

In this paper, we present the first heuristic for fully
distributed bootstrapping of peer-to-peer networks.
Our heuristic generates a stream of promising IP ad-
dresses to be probed as entry points. This stream is
generated using statistical profiles using the IP ranges
of start-of-authorities (SOAs) in the domain name sys-
tem (DNS). We present experimental results demon-
strating that with this approach it is efficient and
practical to bootstrap Gnutella-sized peer-to-peer net-
works – without the need for centralized services or the
public exposure of end-user’s private IP addresses.

1 Introduction

The primary promise of peer-to-peer technology is
the decentralization of services and various associated
benefits. While peer-to-peer networks do not neces-
sarily decentralize all functions for reasons of perfor-
mance, simplicity, control and in particular security,
it is generally desirable to have available efficient and
effective means for fully decentralizing any common
peer-to-peer operation.

One key operation in any open peer-to-peer overlay
network is bootstrapping, the initial discovery of other
systems participating in the network. Nascent peers
need to perform such an operation in order to join the
network. Bootstrapping does not include the mainte-
nance of connections or exchange of topology infor-
mation for peers that are already connected to the net-
work at large. However, in our definition, bootstrap-
ping does include operations needed to repair overlays
that have split into disconnected subgraphs. To the best
of our knowledge, no effective and efficient protocol

for fully decentralized bootstrapping of open peer-to-
peer networks has been proposed previously.

Existing open peer-to-peer networks use variations
on and combinations of two main approaches for boot-
strapping. The first approach is to distribute a list of
known peers with the software (as done, for exam-
ple, by [1, 7, 10]). The problem with this method is
that some of the peers in the initial distribution list
must continually be available until a new list is dis-
tributed. These peers will experience additional traf-
fic from peers joining the network and are also pri-
mary targets for attacks. For example, ISPs block-
ing these well-known addresses can effectively prevent
new users from joining the network. We believe that
few users would volunteer to have their personal static
IP address included in such a list. Note that some peer-
to-peer networks are able to communicate using well-
known ports and even encapsulate their traffic in pro-
tocols that ISPs cannot afford to block (for example,
GNUnet can run over HTTP or SMTP [5]). Thus, an
ISP would be much more willing to block well-known
IP addresses from these distribution lists versus widely
used protocol ports.

The second approach is to distribute lists of known
peers from certain servers, often called hostlists [8] or
webcaches [4, 14]. The servers obtain those lists either
by themselves participating in the network and pub-
lishing their neighbor sets [4, 8] or by having peers
explicitly register themselves [14]. The lag between
changes in the network and hostlist generation (espe-
cially for manually maintained lists) can result in out-
dated entries. In addition, end-users may not appre-
ciate having their IP addresses advertised for privacy
reasons. Further, running a hostlist provides no ben-
efits for the operator. Well-known hostlists can con-



sume significant amounts of bandwidth and are also
highly visible targets for attacks. Hostlist providers
may be targets of lawsuits by companies trying to re-
strict copyright infringements. Malicious hostlist op-
erators can also deliberately advertise addresses con-
trolled by the attacker, cripling or restricting network
access for their victims. As a result, hostlists are not
a reliable approach for bootstrapping peer-to-peer net-
works.

In terms of repairing network splits, using hostlist
servers with peer registration is the only method from
the approaches listed that is able to repair such discon-
nects. However, since all peers must explicitly know
and register at such a hostlist server, this design also
suffers from even more centralization than any of the
other methods.

One obvious approach for bootstrapping was not
considered in the discussion above: the method of
brute-force scanning of the entire address space for ex-
isting peers. Scanning 4 billion IP addresses is clearly
an expensive proposition; however, it has the advan-
tage of being a completely decentralized operation.
Given an estimated size of about 1.3 million peers for
the Gnutella network [16], the chance of finding a peer
is less than 0.03%. In our experiments, a brute-force
random global scan for Gnutella peers requires on av-
erage 2425 attempts before finding the first peer. The
simple trick of excluding unallocated and reserved IP
ranges can almost double the chance of success.

In this paper, we will propose methods based on
classification of IP address ranges using DNS [17] that
can help improve the success rates of this completely
decentralized approach for peer-to-peer bootstrapping.
The fundamental assumption of our research is that ad-
dresses in peer-to-peer networks have a signficant bias
in their distribution across different organizations, as
evidenced in Gnutella and Skype measurements [6, 9].
By biasing the scan towards organizations with a dis-
proportionally high number of participants, we obtain
an efficient and fully decentralized peer-to-peer boot-
strapping method that is competitive when compared
to approaches using somewhat outdated hostlists.

2 Approach

Our approach to peer-to-peer bootstrapping consists
of two parts. First, a profile of the IP addresses of peers

participating in the P2P network is generated. Using
this list, a statistical profile is generated that describes,
for each organization (as identified by DNS), the prob-
ability of how likely it is to find peers in the IP space of
the organization. Second, the resulting statistical pro-
file is used by peers to generate a stream of promising
IP addresses for bootstrapping.

The specific method for obtaining a list of IP ad-
dresses of peers in the P2P network is dependent on
the specifics of the network. In our experiments,
we use a full graph traversal (Gnutella) [16], random
walks (DirectConnect) and connection statistics from
super-peers (E2DK). The resulting IP lists are matched
against the start of authority (SOA) for the respective
IP address in DNS. In other words, the range of IP ad-
dresses of an organizations is identified as the range of
IP addresses for which the same SOA is specified in
the global DNS database. The P2P vendor then ships
the resulting small database containing success prob-
abilities for various organizations with the P2P soft-
ware.

Using this statistical profile, the proposed approach
provides peers that are trying to bootstrap with a ran-
domized algorithm producing an infinite sequence of
promising IP addresses that the peer should probe.
The algorithm to generate IP addresses to scan works
as follows. First, the algorithm uses a random num-
ber generator to generate three 8-bit values a, b and
c, which are the the first 24 bits of an IP address
of the form a.b.c.x. It then determines the probabil-
ity of finding peers for the 256 possible values for
x ∈ [0 : 255] based on the SOA for the particular
subnet. (While it is technically possible that the sub-
net is shared by multiple SOAs, this is hardly ever the
case in practice.) Given a probability p of finding a
peer in the address range of the the entire organiza-
tion, the peer then selects at most k = bp · nc IP ad-
dresses in the subnet.1 The parameter n is a trade-off
between finding peers with few attempts and probing a
diverse set of networks. In our implementation, the k
values for x are determined using the equivalence class
x ≡ b mod p with p = d k

256ewith a randomly selected
value for b. The smallest values for x are probed first –
most organizations allocate IP addresses sequentially,
making small values for x a bit more likely to result in

1If p ≥ 256
n

, all values for x will be used.
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active IP addresses.

The reason why the heuristic starts with a random
small subnet and (usually) only probes a couple of IP
addresses is that it is not unlikely for any such gener-
ator to produce IP addresses that are actually not al-
located. Internet service providers may determine that
scanning of ports of unallocated IP addresses is an “at-
tack” and react to it by blocking the traffic. By fre-
quently changing networks and by starting with “low”
IP addresses, the heuristic minimizes the impact of this
type of blocking – by the time that an intrusion detec-
tion system is likely to block the scanner, the heuristic
will have moved on to another network.

There are various reasons why the proposed ap-
proach uses the SOA in order to determine the or-
ganization to which an IP address belongs to. First,
the DNS names of large organizations are unlikely to
change even as new IP addresses are allocated to an or-
ganization. Also, if the SOA of an IP address changed,
it is likely that the corresponding IP address space was
allocated to a different organization; naturally, the spe-
cific name of the SOA server may change without sig-
nificant changes in the organization; only the domain
name should be considered significant. Given that or-
ganizations are unlikely to run a DNS server for only
a few IP addresses, using the SOA allows the client to
determine the organization for an entire range of IP ad-
dresses with just a couple of DNS queries. The number
of DNS queries is important since performing billions
of DNS lookups would be worse than scanning bil-
lions of IP addresses. Finally, unlike hostnames, there
is only one SOA for any given IP address.

3 Experimental Results

Experiments testing the proposed heuristic were
performed between October 2007 and February 2008
using IP lists for Gnutella [4], E2DK (eMule) and Di-
rectConnect [15]. The Gnutella IP list was extracted
from a topology crawl performed between September
2004 and August 2007 by Cruiser [16]. The IP ad-
dresses for E2DK and DirectConnect were taken from
topology crawlers in October 2007. The number of IP
addresses and their source are listed in Table 1.

P2P Network Unique IPs Port
Gnutella (8/2007) 377,246 6346
eDonkey (10/2007) 80,728 411
DirectConnect (10/2007) 175,139 4662

Table 1. Data sources and unique IP counts.
Note that the given number of unique IPs is
the number of IPs used for the generation of
the statistical profiles. The actual networks
maybe significantly larger.

Network Size (# IPs) # SOAs
20 to 28 IPs 60,921
28 to 216 IPs 14,577
216 to 224 IPs 1,296
224 to 232 IPs 22
Total 76,816

Table 2. Categorization of DNS SOAs by the
size of the IP space that the SOA is responsi-
ble for.

3.1 Scanning DNS

Using GNU adns [11], we determined an approxi-
mation of the SOAs for all IP addresses. The algorithm
started with all 255 networks of size 224. For each
network, the code would first request the SOA for the
first and last IP address in the network. If the SOAs
were identical, the heuristic would assume that the en-
tire range was under control of the particular SOA. If
the SOAs were different, the network would be split
into 255 subnets which would again be subjected to
the same process.

Table 2 lists the number of IP addresses that each
authority is responsible for (according to the above
heuristic). For the statistics in Table 2, we used the
full hostname of the DNS server to identify the or-
ganization (in other words, ns1.example.org and
ns2.example.org would be treated as two differ-
ent organizations).
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3.2 Predicted Discovery Efficiency

Using the list of IPs for a peer-to-peer network and
the break down of the IPv4 address space into domains
by the SOA for each IP address, it is possible to deter-
mine how many peers are active in each domain. The
resulting statistical profile is likely to differ between
peer-to-peer networks; different networks appeal to
different groups, for example, some peer-to-peer ap-
plications may have clients that are only available in
certain languages. Similarly, support groups for par-
ticular networks also operate in a social and cultural
context. This bias is not a problem for the proposed
approach; in fact, the proposed approach works better
because of this bias which is reflected in particularly
high and particularly low probabilities for different or-
ganizations. However, this bias also means that sta-
tistical profiles must be created for each peer-to-peer
application.

Table 3 provides a list of SOAs, the number of IPs
for which the DNS server is the authority and the num-
ber of Gnutella peers falling into that range taken from
the largest snaphots in our sets. The most stunning re-
sult is that at the time of the snapshot, almost 6% of
the IPs in two organizations run Gnutella peers. Con-
sequently, a peer scanning these organizations would
be expected to succeed after an average of only 17
attempts. Given the size of the snapshot, a scan that
would be oblivious to organizational bias would be ex-
pected to take on average 1,250 attempts.

This improvement in the number of peers that need
to be probed is not realistic in practice. The reason is
that achieving this kind of performance assumes that
the network characteristics do not change over time,
that current DNS information is available for free for
the peer, and that the peer only scans the most promis-
ing organization. However, in order to repair network
splits and to achieve the desired decentralization and
its load balancing benefits, any heuristic must choose
a trade-off between scanning highly promising orga-
nizations and scanning a broad range of organizations.
The heuristic described in Section 2 will eventually re-
turn all IP addresses that have a probability higher than
n−1. For our experiments, we use n = 1024, ensuring
that even in the worst case the probability of a sin-
gle probe is still slightly better than a brute-force scan
while also distributing the load among a broad range

of organizations and IP addresses.

3.3 Observed Discovery Efficiency

The bootstrapping peers were provided with sta-
tistical information generated from that profile. The
sizes of the generated statistical profiles, including full
SOA names, IP ranges and respective probabilities, are
given in Table 4. SOAs where the probability of find-
ing a peer (based on the IP statistics available) is zero
are not included in the database. Using this index,
IP addresses were generated according to the heuris-
tic presented in Section 2. The code then attempted to
establish a TCP connection on the default port for the
respective P2P protocol. The experiment considered a
peer to be running a peer if the TCP connection was
established successfully.

Since SOA range information was included in the
database, no DNS requests were performed in the fi-
nal experiment. In practice, an implementation would
perform DNS queries to keep the SOA database up-
to-date. The amount of DNS queries required cor-
responds to the frequency at which new DNS SOAs
are created; we expect the necessary traffic to be in-
significant, especially since the algorithm would toler-
ate somewhat outdated SOA information.

Table 4 also lists the average number of connec-
tion attempts needed to discover a peer. The “random
global scan” does not use any statistical profiling data
and just generates random IP addresses. The four “bi-
ased” approaches use (portions of) the hostname of the
SOAs to map IP addresses to organizations. For exam-
ple, “biased using TLD only” considers only the top-
level domain as the “organization”; in other words, all
IPs in the UK would be part of the same organization.
Finally, “recent hostlist” uses random IPs from a list of
IP addresses that is only a few months old (represent-
ing a common approach used today).

Table 4 shows the average number of IP probes re-
quired to discover a single peer over 50 runs; however,
due to the randomized algorithm and the structure of
the statistical profile, the variance is quite high. De-
pending on the P2P network, biasing the scan towards
certain organizations improves the performance of ran-
dom probing by a factor of 2 to 105. Unsurprisingly,
the data also shows that using a sufficiently recent
hostlist can produce connections with fewer probes.
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Organization (SOA) # IPs # Peers
ns.pc-network.ro 254 15 (5.91%)
ns1.netplanet.ro 254 12 (4.72%)
ns.rdstm.ro 11,244 517 (4.60%)

...
ns-a.bbtec.net 10,829,308 4 (0.00%)
rev1.kornet.net 10,857,115 1 (0.00%)
Total 232 3,741,099 (0.09%)

Table 3. Frequency of Gnutella peers in various domains taken from the largest snapshots in our
sets. The table lists the three most dense domains, the least dense domain and the average density.

P2P Network Gnutella E2DK DirectConnect
Probes DB size Probes DB size Probes DB size

Random global scan 2425 ± 3089 0K 1875 ± 1780 0K 3117 ± 3080 0K
Biased, TLD only 833 ± 897 96K 18 ± 43 32K 1252 ± 1874 38K
Biased, domainname 1150 ± 1181 123K 74 ± 86 42K 623 ± 1599 52K
Biased, subdomain 849 ± 820 136K 56 ± 71 47K 1786 ± 2545 58K
Biased, FQN 817 ± 856 158K 51 ± 92 50K 1397 ± 2320 60K
Recent hostlist 245 ± 245 14964K 7039 ± 7185 320K 217 ± 211 712K

Table 4. Success statistics (average number of probes needed to find an open port and std. dev.)
and compressed database sizes (in kilobytes) for various P2P networks.

However, the results for E2DK are surprising, both
in terms of how well the biased scan performs and in
terms of how terribe a hostlist (which in this case is
not even four months old) performs. This may in fact
indicate that a stable core, i.e., long lived peers, for
E2DK is relatively small. The smaller the stable core
for a P2P network, the less useful a hostlist remains
over time.

In all cases, the number of probes could be accept-
able for an actual implementation, and as mentioned
before, shipping a database with specific IP addresses
raises various security and privacy concerns which do
not apply to the statistical profiles.

Table 5 shows the impact of using older hostlists on
the number of probes required, comparing the biased
TLD only approach with the simple hostlist approach.
While the performance of the biased scan is better than
the hostlist for the oldest IP list, the data is not conclu-
sive about which approach will perform better in gen-

eral when faced with outdated information.
While the presented experimental data is for IPv4,

the overall size of the IP address space should not mat-
ter, as long as SOAs are not assigned to large amounts
of unused address space. In contrast, the size of the
peer-to-peer network in relation to the overall size of
the Internet obviously still matters. However, small
peer-to-peer networks can generally use hostlists – the
costs of operating such a centralized service for a small
network would be insignificant and the likelihood of
attention by powerful adversaries should be low.

4 Related Work

General approaches to bootstrapping of peer-to-
peer networks are discussed in [13]. The authors also
provide five key criteria for decentralized bootstrap-
ping, specifically robustness against failure, robustness
against security applications, robustness against exter-
nal interference, efficiency and scalability.
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Hostlist Biased, TLD only
Year Probes DB size Probes DB size
2004 1487 ± 1305 299K 1257 ± 1333 41 K
2005 1124 ± 1138 480K 1659 ± 1651 45 K
2006 546 ± 506 1278K 983 ± 1139 87 K
2007 246 ± 245 1719K 833 ± 897 96 K

Table 5. Success statistics using older hostlist data. The first pair of columns gives success statis-
tics for Gnutella using random IPs from hostlists of different age. The second pair of columns gives
success statistics using biased random IPs based on per-TLD statistics generated from the same
hostlist.

Some authors use the term bootstrapping to refer
to the full integration of new nodes into the overlay.
Scalable and fast integration of new peers is a difficult
problem for structured overlays [2, 3, 12]. This paper
is primarily concerned with the discovery of an initial
first point of contact for a new peer, a necessary step
that is not addressed by [2, 3, 12].

Gish et al. measured Gnutella properties of query
strings and in addition examined the distribution of
peers geographically [6]. They found a heavy distribu-
tion of Gnutella nodes within the United States (42%),
including a heavy distribution of queries within the
area. Skype properties were measured by Guha et al.
and also showed a strong bias with almost 60% of the
supernodes located in Europe and only 20% located in
the United States [9].

Other researchers [3] have also noted similar dif-
ferences in the distribution of nodes between differ-
ent overlay networks. For the statistical approach pre-
sented in this paper, these results imply that statistics
would need to be obtained for each overlay that in-
tends to use this approach. This also implies that the
proposed bootstrapping method can only be used for
peers trying to find an entry point into networks that
are already established. This is not a serious limitation
since emerging networks are also likely to be too small
to enable fast bootstrapping with our method.

5 Conclusion

By considering the geographic and organizational
bias in the distribution of IP addresses participating
in peer-to-peer networks, it is possible to construct a

biased global address space scan that can efficiently
bootstrap sufficiently large peer-to-peer networks. The
main requirements for this method of peer-to-peer
bootstrapping are that most peers use a default port
and that the developers are able to obtain a list of IP
addresses for the network; peer-to-peer networks usu-
ally grow over time, so it can be expected that by the
time that centralized solutions become problematic de-
velopers will have access to such a list.

While the new approach has a clear advantage in
terms of decentralization and elimination of critical
points of failure, it cannot be expected to outperform
the distribution of recent hostlists with the software in
terms of the number of probes required. In particu-
lar, by providing a recent crawl of a given peer-to-peer
network and using it as a hostlist, one can ensure with
high probability that new peer can bootstrap into the
system with minimal probing. The tradeoff, however,
is that the hostlist size may be much larger than our
technique and only provide a minimal improvement in
probing, especially as the hostlist becomes out of date.
Furthermore, in a P2P system where a large percentage
of the hosts are constantly joining and leaving, a host-
list may perform significantly worse than our heuristic,
as our experience with E2DK demonstrates.

For future work, we plan on investigating how
changes over time of the P2P IP addresses might im-
prove our bootstrapping heuristic. Given that a large
portion of peers tend to be in constant churn, many
of these would not exist from snapshot to snapshot.
Thus, we may be able to improve the heuristic if it
were weighted more heavily on organizations which
remained stable over time.
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