
Deriving Object Typestates in the Presence of Inter-Object
References

Mangala Gowri Nanda
IBM India Research

Laboratory

mgowri@in.ibm.com

Christian Grothoff
University of California

Los Angeles

christian@grothoff.org

Satish Chandra
IBM India Research

Laboratory

satishchandra@in.ibm.com

ABSTRACT
We are interested in static analysis of Java classes with the
goal of discovering the preconditions under which a certain
program point within a method may be reached, taking into
account the effects of previous method calls on an object of
that class. The information pertinent to this computation is
represented as the object’s typestate, which is a finite set of
relevant predicates that abstract the object’s actual state.
The execution of a method depends on an object’s current
typestate as well as other input parameters; the object may
transition to a different typestate during the method’s exe-
cution.

It is common for objects to contain references to other ob-
jects. In such cases, an object’s behavior may depend on, in
addition to its own state, the state of objects it has a refer-
ence to. The main contribution of this paper is to discover
relevant object typestates, as well as transitions between
typestates, in the presence of inter-object references. Our
analysis first performs a combined predicate discovery and
predicate abstraction to derive “boolean” versions of Java
classes given as input. It then uses abstract interpretation
to compute the typestate transitions caused by method calls.
A novel aspect of this work is that a set of Java classes is
analyzed in isolation, without any client program being pro-
vided. To do this, the analysis simulates all possible client’s
actions via a synthetic heap, all of whose interesting config-
urations are explored by our analysis.

The information we compute can be put to use in several
ways. It can be used in checking whether a given client code
erroneously uses a set of Java classes in a way that can throw
an exception. It can also be used in creating test drivers for
Java classes in order to exercise all relevant code paths in
the corresponding methods.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA ’05,October 16–20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

General Terms
Languages, Verification

Keywords
Java, alias analysis, interface specification, predicate ab-
straction, heap analysis

1. INTRODUCTION
It is common to develop and distribute software compo-

nents as building blocks of large software systems. For the
purpose of this paper, a software component is a set of Java
classes that are closed in the sense that the target of any call
within the component is also part of the component. While
components promote modularity, for clients it is important
to know how to use a component properly. For instance, a
client may need to know under which circumstances a cer-
tain method invocation may throw an exception. Merely
knowing Java’s type signature of the method can be insuffi-
cient, as correct usage may depend upon the dynamic state
of the concerned objects.

This problem can be addressed to a certain extent by as-
sociating each object with a typestate [17]. A typestate is
an abstraction of the dynamic state of an object. It depends
on the problem at hand to figure out which state properties
to reflect in the typestate. Typically, only simple properties
such as values of flags are included in the typestate. As long
as a specification of preconditions and postconditions for
each method is given in terms of typestates, a user can use
the component properly. However, when inter-object refer-
ences are present, components can become much more diffi-
cult to understand and verify; this is because it is difficult to
associate with an object a typestate that encapsulates the
relevant aliasing information.

Figure 1 shows two classes A and C.1 The code shown
contains only statements relevant from the point of view of
a client interested in preconditions for calling A.run() or
A.set() without throwing an exception. It is straightfor-
ward to describe the relevant behavior of C in isolation in
terms of typestates. A C object is either in the state C1 in
which C.disposed is false, or it is in the state C2 in which
C.disposed is true. The call to C.dispose() changes C’s
state from C1 to C2, and it is an error to call C.run() or
C.dispose() in state C2.

Suppose we attempt to capture the behavior of A in terms

1This example is an abstracted version of classes
ContentViewer and IBaseLabelProvider in Eclipse [1].

of the typestate of A.f. Here, the call to A.set(C1) would
take A.f from null to C1. One might expect that a subse-
quent call to A.set(C1) would retain the state of a.f. Sur-
prisingly, the call sequence a.set(c), a.set(c), a.run()

leads to an error. This is because the same object c is
passed in as a formal parameter to the second call to A.set,
and causes a.f to point to a c object which is now in
state C2. The call sequence a.set(c), a’.set(c), a.done(),
a’.run() would also lead to an error. Here, the state change
caused by the call to a.done() ends up changing the state
of a’.f as well, because the c object is shared.2

class A {
C f;
void run() {

if (f != null) f.run();
}
void done() {

if (f != null) f.dispose();
}
void set(C i) {

if (f != null) f.dispose();
f = i;

}
}
class C {

boolean disposed;
void run() {

if (disposed) throw new Error();
}
void dispose() {

if (disposed) throw new Error();
disposed = true;

}
}

Figure 1: A simple example to show the effect of
inter-object references.

As the preceding example shows, in order to characterize
the behavior of objects related by inter-object references,
typestates and transitions thereon need to factor in the alias-
ing relationships that hold among the objects involved in a
method call in order to prevent these types of errors. Tra-
ditional typestate systems do not satisfy this requirement.
This paper presents an approach to deriving relevant object
typestates in the presence of inter-object references that do
satisfy this requirement.

We use static analysis to automatically derive object type-
states, accounting both for inter-object references and the
local object state. Predicates of interest with respect to
the typestates are discovered by analyzing reachability of
certain program points, e.g. throw statements, within a
method. The typestate of the object on which a method is
invoked—along with typestates of any objects passed as pa-
rameters and possibly values of certain boolean flags—gives
the reachability precondition for the method: whether the
specified program point may be reached. Our analysis also
derives transitions between object typestates caused by a
method call, taking into account the typestate changes in
related objects as well. The effect of a method on an object

2A convention in Eclipse is that ContentViewers cannot
share an IBaseLabelProvider object, but the API itself
does not make this obvious. Also in other situations, certain
objects are supposed to be shared for efficient utilization of
resources.

a may not only update a’s typestate, it may update type-
states of objects that are referred to by a, and it may also
update typestates of any objects passed in as parameters to
the call. It may even update typestate of objects that are
not reachable from a, but nevertheless have some aliasing
relationship of consequence.

A key difficulty in computing and presenting this infor-
mation is that the client of the component being analyzed is
not known a priori. The analysis has to somehow account
for all possible actions the client code can take that may
lead to different possible transitions. We do this analysis
by exploring method calls on a synthesized heap. It is syn-
thesized in the sense that it does not come from an actual
client; it is produced by a client emulator that constructs all
heap states of interest. Effects of method calls are expressed
in how objects in a heap undergo typestate transitions.

Our overall approach is sketched in Figure 2.
1. We first discover predicates that determine reachability

of specified program points in the component. These pred-
icates control, either directly or indirectly, the outcomes of
conditionals leading from the component boundary to the
specified program points. Therefore, the predicate discov-
ery phase starts with predicates from branches leading to
the critical program points. It then performs a limited it-
erative weakest pre-condition computation which generates
additional predicates. The limitations imposed ensure that
only a finite number of predicates can be generated. Predi-
cate discovery is performed via backwards intra- and inter-
procedural “slicing”; a preliminary inter-procedural depen-
dence analysis is performed to enable this slicing. Because
the client code is unknown, the propagation simulates a non-
deterministic client that obeys Java type rules to “stitch”
the control-flow graphs at the component boundary.

2. The predicates resulting from the predicate discovery
are then used for predicate abstraction, in which we con-
vert the code for each method in the input Java classes to
“boolean” code. The boolean code abstracts out all scalar
computation in the method to reads and writes of predicates
of interest. Departing from a truly boolean program, the al-
gorithm retains assignments to reference variables (including
reference fields), and allocations in the “boolean” program.
Predicates in our boolean code are parameterized over such
reference variables. Our boolean abstraction is conservative
primarily due to our inability in handling arithmetic in the
weakest pre-condition computation, not due to approxima-
tions in the preliminary pointer analysis.

3. Given the boolean methods, client emulation and ab-
stract interpretation are used to explore the possible behav-
iors of the component. Since we have to bound the number
of observable behaviors, we map the “states” of the syn-
thetic heap into an abstract heap state space, which is finite
by design. The abstract heap states bound the number of
distinct typestates for any object, as well as the number of
distinct typestate transitions that a method can cause. The
abstract heap state space is constructed by repeated appli-
cation of boolean methods over the synthetic heap followed
by an abstraction of the synthetic heap. The exploration
increases the size of the synthesized heap, up to the point
where no new typestates or transitions in the abstract heap
state space are observed.

The result of our analysis is a set of object typestates and
transitions that describe how a method call influences the
typestates of various objects that participate in it. For some

��

� �

� �

� �

� �
� �

��

� 	

 �� � �
 �� ��� �� �

��� ��

��� � �� ��
�� � � � �!

" � � � � � � � # � $
� � � �% � � �

$ % � $ �

� � � �'& (� (

% � $ �
� �
$ � (
 �) �&

" � � � � � % �� * �� �
* � �� �� �

+, , -/.

+, , - . 012 -43 5, .

51 ,6 7, .

8 +9 2 :, .

,; , 53 7, .
<2 - 8 = 8, .

Figure 2: Overview of the approach

methods, some of the transitions are error transitions—that
is, the initial typestates of participating objects (or some of
the formal parameters) are such that the execution of the
method may reach an error statement. The result charac-
terizes the preconditions for safe use of a component: as
long as the transition followed is not an error transition, the
call is guaranteed to not reach an error-causing statement in
the corresponding Java method. Due to the limited preci-
sion of the boolean abstraction, the analysis may be overly
pessimistic, in that it may flag certain safe uses as possibly
erroneous. Note that in order to be able to determine le-
gality of calls for a sequence of method calls clients need to
maintain typestate information for the participating objects.

Returning to the example shown in Figure 1, our analysis
will associate a typestate with A that contains information
whether A.f is in state C1 or C2. The abstract heap state
space will show a transition for method call A.set(C1), in
which, if the instance of C passed in as the formal parameter
is aliased by A.f, the final typestate of that C object will
be C2; correspondingly the state of A.f will be C2 and a
call A.run() would be an error transition. The abstract
heap state space will also include a transition for the call
A.set(C1), in which an unaliased instance of C is supplied.
In this case, a subsequent call to A.run will not be an error
transition.

The paper uses two additional examples as running ex-
amples to illustrate the various parts of our analysis. The
Set-Iterator example in Figure 3 shows the use of a Java
collection class. We invite the reader to verify that the se-
quence of calls i = s.iterator(), s.add(), i.next() leads
to an error. The List example in Figure 4 shows a recursive
data structure. Although our analysis is not designed for
reasoning about shape properties, we include this example
to demonstrate how we finitize object typestates.

We believe that our technique of reachability analysis is a
new and powerful static analysis tool; being able to decide
reachability is a useful building block for other applications.
For example, it may be employed for interface synthesis, pro-
gram verification and also various optimization problems.
Note that the reachability problem can also model the ques-
tion of whether any user-specified predicate holds after the
execution of each method call. Describing these applications
in detail is outside the scope of this paper. Specifically, the
paper does not include an algorithm for statically verifying
client code, though Section 5.6 shows some examples of how
this may be done.

The paper is closely related to several threads of recent
work. It is related to work on object typestate formalisms, in
which manually specified typestates capture aliasing in cer-

class Set {
Version ver;
Object[] contents;
Set() {

contents = new Object[0];
ver = new Version();

}
public Iterator iterator() {

return new Iterator(this);
}
public void add(Object o) {

Object[] tmp = new Object[contents.length+1];
for (int i=0;i<contents.length;i++)

tmp[i] = contents[i];
tmp[contents.length] = o;
contents = tmp;
ver = new Version();

}
}
class Iterator {

final Version ts;
final Set set;
int pos;
Iterator(Set s) {

this.ts = s.ver;
this.set = s;

}
public Object next() {

if (ts != set.ver)
throw new ConcurrentModificationException();

return set.contents[pos++];
}

}

Figure 3: Set and an Iterator over the Set

tain ways [8, 11]. This work was inspired by algorithms that
discover typestates for the purpose of interface synthesis [2,
18]. It is also related to work on component verification us-
ing predicate abstraction [15] and shape analysis [12, 16].
Related work is discussed in more detail in Section 7.

Our overall approach is built upon fairly standard analysis
techniques: alias analysis, predicate abstraction, and finite
heap abstraction. Our contribution is primarily in adapting
a combination of these techniques for a new application. The
two most important technical novelties of this paper are:

• We infer relevant object typestates in the presence of
inter-object references automatically. In contrast, pre-
vious work has either required manual specification of
typestates, has restricted aliasing in certain ways, or
has ignored inter-object references completely.

public class List {
private Element head;
List () {

head = null;
}
public void append(int data) {

Element el = new Element(data);
add(el);

}
private void add(Element el) {

if (head == null) {
head = el;
return;

}
Element t = head;
while (t.next != null) {

t = t.next;
}
t.next = el;

}
public int remove () {

if (head == null)
throw new TestError();

Element t = head;
head = head.next;
return t.data;

}
} // end of List

class Element {
int data;
Element next;
Element(int data) {

this.data = data;
next = null;

}
} // end of Element

Figure 4: An example to illustrate a recursive data
structure

• Moreover, we show how to perform this analysis with-
out client code being given. We use a novel technique
of client emulation to determine all interesting object
typestates and transitions.

The paper is structured as follows. Section 2 describes
preparatory pointer and escape analysis that is subsequently
needed for predicate generation. Section 3 describes the
predicate abstraction, including a description of interproce-
dural slicing. Section 4 describes the boolean program model.
Section 5 describes how we construct an abstract heap state
space via client emulation; it also discusses several examples
to highlight interesting aspects of our analysis. Section 6 re-
ports some experimental data. Section 7 describes related
work, and Section 8 concludes the paper.

2. PREPARATORY ANALYSIS
This section describes preparatory dependence analysis

that must be done on the input Java code to enable pred-
icate generation. The dependence analysis uses a standard
iterative fixed-point computation [14, 5]. The purpose of
this section is to present the basic program representation,
some terminology and the results of this preparatory analy-
sis.

We begin the analysis with an intermediate representa-
tion of Java programs that contains a control-flow graph

representation of the bytecode for each method. In order
to simplify the presentation, we ignore most of the object-
oriented features of Java, such as subtyping. Adding support
for these basic object-oriented features presents no inherent
difficulty for our technique. We assume virtual function calls
have been converted to static calls and consider exceptions
only to the extent that throw statements are considered in-
dicative of errors that need to be prevented.

Terminology.A variable is a formal parameter, a local tem-
porary, or a field of a local or formal. In the bytecode rep-
resentation, multi-level dereferences have already been nor-
malized to single-level dereferences by the introduction of
additional local temporaries. A FormalIn variable is a for-
mal parameter of a method. An EscapeIn variable is an up-
wardly exposed field of a FormalIn or an EscapeIn. Later in
this section, we also define FormalOut and EscapeOut vari-
ables.

We compute a finite set of symbolic heap locations for
each method. Every reference variable in the method may
point to one or more of these locations at each program
point. Locations may represent multiple heap objects. Heap
locations can be obtained in three ways inside of a method
body:

1. Via references passed as formal arguments (FormalIn,
labeled Fi for the ith parameter). By convention, the
this reference appears implicitly at the beginning of
the formal parameter list, and so F1 is the self object
to which this points to.

2. Via dereferencing operations, reading reference-typed
fields (EscapeIn, labeled Ei, numbered using a counter).

3. Via allocation of objects inside of the method (labeled
Oi, where i is a program-point-specific index). We use
the customary approximation that each allocation site
always gives the same site-unique heap location.

All locations that are accessible outside the method are
termed escape locations. All F and E locations escape by
definition. Some O locations may also escape, while others
may remain local.

Intraprocedural Analysis
There are five basic statements that affect intraprocedu-
ral pointer and escape analysis: (i) (New), ti := new X,
(ii) (Assign), ti := tj , (iii) (PutField), ti.f := tj , (iv)
(GetField), ti := tj .f , and (v) return ti. The format of
each statement is summarized in Table 1, as are the results
of the dependence analysis. We use the notation u → loc

to mean u points-to loc. We say u → {L} to mean u may
point-to any location in the set L. In the course of our anal-
ysis, we also generate FormalIn, EscapeIn, FormalOut and
EscapeOut statements as explained below.

• At method entry, we create a FormalIn statement for
each formal parameter and an EscapeIn statement for
each EscapeIn variable as shown in Table 1.

• At a New statement u := new X, we generate a new
heap location Oi and set u → Oi.

• At an Assign statement u := v, if v may point to a set
of locations {L}, then we set u → {L} at this program
point.

• At a (primitive) GetField statement p := v.m, if v

points to a set of locations {L}, then for each location
loc ∈ {L}, we generate a use of a variable loc.m. Like-
wise, for a (reference) GetField statement u := v.f , we
generate loc.f variables; in addition, we determine the
set {L′} of locations that u may point to. An upwards-
exposed use of loc.m or loc.f results in the generation
of EscapeIn statements.

• At a (primitive) PutField statement u.m := q, if u

points to a set of locations {L}, then for each loca-
tion loc ∈ {L}, we generate a definition of a variable
loc.m. Likewise, for a (reference) PutField statement
u.f := v, we generate loc.f variables; in addition we
determine the set {L′} of locations that each loc.f
variable may point to.

• A (primitive) return statement return q is treated as
an assignment to a special variable R. A (reference)
return statement return v is treated similarly; we also
find the set of locations such that R → {L}.

• Def-use information is computed for all local variables
as well as field variables loc.f and loc.m.

Terminology.An EscapeOut field is a field of the form
loc.f or loc.m, whose definition is downwardly exposed and
loc escapes the method. An O location may escape in one
of two ways:

• if in the definition of an EscapeOut field, the rhs is a
reference variable that points to that O location

• if the return variable may point to that O location.

An EscapeOut statement is a place-holder for EscapeOut

fields, placed at the end of the method. A FormalOut state-
ment is a place-holder for the return value.

The FormalIn, EscapeIn, FormalOut and EscapeOut state-
ments encapsulate the dependence analysis for the method.
Table 1 summarizes the results of our dependence analysis.

Example. Figure 5 shows the bytecode before and after de-
pendence analysis for the List example. For the moment
ignore the columns labeled “Boolean code” and “Executable
code”. At statement a6, t1.hd is used before it is defined.
The pointer analysis resolves t1.hd to F1.hd and the escape
analysis generates the corresponding EscapeIn for F1.hd (at
statement a3). At statement a9, t4 points to E1 along the
forward path. An EscapeIn, E2, is generated for E1.next.
Along the backedge, t4 points to E2 and hence we gener-
ate “may” points-to information. We assume that E2.next
points to E2 and no further EscapeIn locations are gener-
ated. At statement a13 an assignment of F1.hd generates a
corresponding EscapeOut at a15.

Recursive Data Structures.The example above also shows
how we handle recursive data structures. We use a 1-limited
scheme for “folding” recursive data structures, wherein at a
given program point, a reference-type field causes escape-in
of a distinct heap object at most once. That is, during the
analysis, subsequent dereferences of the same field at the

same program point are assumed to point to the same heap
object. Thus E1.next points to E2 and E2.next also points
to E2.

Parameter Aliasing.The points-to information generated
may vary if two input parameters are aliased. However,
since we do not have access to client code, we have no way of
determining whether two parameters may be aliased or not.
Our analysis conservatively assumes that any two FormalIn

or EscapeIn parameters that are of the same Java type may
be aliased. For example, in Figure 5, the analysis would
assume that E1 and E2 may point to the same heap location.

Interprocedural Analysis
The purpose of interprocedural analysis is to provide link-
ages from the calling context to a called method. Each call
site specifies a list of actual parameters and optionally one
return variable to be assigned the value returned from a
call. All expressions and field variables are assigned to a
local variable before being passed into the call.

Terminology.An ActualIn variable is a local variable in
the caller that is passed as a parameter to a call. An ActualIn

statement is place-holder for an ActualIn variable. We
generate one ActualIn statement for each FormalIn and
EscapeIn variable in the callee. An ActualOut variable is
a local variable in the caller that “catches” the value of
a FormalOut or an EscapeOut variable in the callee. We
generate an ActualOut statement as a place-holder for each
ActualOut variable.

We replace the invoke statement by a series of ActualIn
statements followed by a series of ActualOut statements as
shown in Table 1. We create a parameter-in edge from each
ActualIn node to the corresponding FormalIn or EscapeIn

node and a parameter-out edge from each FormalOut or
EscapeOut node to the corresponding ActualOut node. (Note
that if an ActualIn variable represents a recursive location,
then this must be reflected in the ActualOut generated.)

Example. Figure 6 shows the analysis of the Set-Iterator

example. The function Iterator.<init> has two FormalIn

parameters and one EscapeIn parameter (see statements C2,
C3, C4). In Set.Iterator, the call at D9 to Iterator.<init>

passes in the ActualIn parameters t2 and t1 for which we
create the ActualIn statements D5 and D6. In addition we
create a GetField statement t3 := t1.ver and pass t3 in
as an ActualIn parameter at D8. Iterator.<init> has
two EscapeOut parameters F1.set and F1.ts. For each
EscapeOut in the callee, we create two corresponding state-
ments in the caller as follows. At C9 in the callee, F1.set
points-to F2. F1 and F2 in the callee map to t2 and t1

respectively in the caller. Hence, in the caller, at D10 we
create an ActualOut statement where a local variable (t4)
is assigned t1 which is “returned” by the EscapeOut. The
PutField at D11, t2.set := t4, maps the assignment to
F1.set in the callee appropriately in the caller. Similarly,
D12 and D13 are generated to map the F1.ts EscapeOut.

3. PREDICATE ABSTRACTION
This section describes the translation of Java programs

into boolean programs with reference variables. In order to

Java bytecode post-analysis
statement statement DEF USE statement DEF USE PTS

FormalIn(prim) ti := ti
FormalIn(ref) ti := ti ti → Fi

EscapeIn(prim) {Fi|Ei}.m := {Fi|Ei}.m
EscapeIn(ref) {Fi|Ei}.f := {Fi|Ei}.f {Fi|Ei}.f → Ej

New u := new X u u := Oi u u → Oi

Assign(prim) p := q p q p := q p q
Assign(ref) u := v u v u := v u v u → {L}
GetField(prim) p := v.m p v.m, v p := {L}.m p {L}.m, v
GetField(ref) u := v.f u v.f , v u := {L}.f u {L}.f , v u → {L′}
PutField(prim) u.m := q u.m q, u {L}.m := q {L}.m q, u

PutField(ref) u.f := v u.f v, u {L}.f := v {L}.f v, u {L}.f → {L′}
Return(void) return return
Return(prim) return q q R := q R q
Return(ref) return v v R := v R v R → {L}
FormalOut(prim) := R R
FormalOut(ref) := R R R → {L}
EscapeOut(prim) := loc.m loc.m
EscapeOut(ref) := loc.f loc.f loc.f → {L}

ai1 := t1 ai1 t1
ain := tn ain tn
:= ai1 ai1
:= ain ain

Invoke tr := call fn(t1, . . . , tn) tr t1, . . . , tn call fn
tr := tr
ao1 := ao1

aon := aon

Table 1: Dependence analysis summarized. u and v are reference variables; p and q are primitive variables;
f is a reference field; m is a primitive field.

P1(t4) := P2(t1)(t4=null) := (F1.hd=null)t4 := F1.hdt4 := t1.hda8P2(t1) := P1(t2)(F1.hd=null) := (t2=null)F1.hd := t2t1.hd := t2a13
a14 return return

a1
a2
a3
a4
a5
a6
a7

Formalin
Formalin
Escapein
Escapein
Escapein
t3 := t1.hd
if (t3=null)

t1 −> F1
t2 −> F2
F1.hd −> E1
E1.next −> E2
E2.next −> E2
t3 := F1.hd
if (t3=null)

(F1.hd=null)
(E1.next=null)
(E2.next=null)
(t3=null) := (F1.hd=null)
IF ((t3=null))

P1(t3) := P2(t1)
IF (P1(t3))

ENTER List.add

{E1|E2}.next := t2 P3(t4) := P1(t2)({E1|E2}.next=null) := (t2=null)

EXIT List.addP3(e:Element) :: (e.next=null)

P1(e:Element) :: (e=null)
P2(l:List) :: (l.head=null)

post−analysis boolean code generated executable code

a15 Escapeout
a16 Escapeout
a17 Escapeout

E1.next −> {E2|F2}
E2.next −> {E2|F2}

F1.hd −> {E1|F2} := (F1.hd=null)
:= (E1.next=null)
:= (E2.next=null)

a12 t4.next := t2

P1(t5) := P3(t4)
IF (P1(t5))

t5 := {E1|E2}.next
if (t5=null)if (t5=null)

t5 := t4.next
a10
a9 (t5=null) := ({E1|E2}.next=null)

IF ((t5=null))

(t4=null) := ({E1|E2}.next=null) P1(t4) := P3(t4)t4 := {E1|E2}.nexta11 t4 := t4.next

bytecode

Figure 5: Dependence analysis and boolean code generation for List.add.

perform predicate abstraction, the algorithm needs to dis-
cover boolean-valued predicates that encode properties on
the state of a Java program that are relevant to the reach-
ability question at hand. The resulting boolean program
will then consist of two kinds of operations. First, there
are operations on predicates. Secondly, the program con-
tains operations on references, such as creation of objects,
passing references as arguments and storing of references in
objects. Variables and statements from the Java program
that do not correspond to predicate or (relevant) reference
operations are deliberately discarded during this translation.

3.1 Predicates
Syntactically, predicates are conditional expressions of the

form (variable op variable) and (variable op const). These
expressions evaluate to true, false, or an indeterminate
value * which means the predicate could be either true or
false. Furthermore, a predicate’s value may be undefined
(?) which means that the predicate cannot be evaluated (for
example, (a.f=42) is undefined if a is null).

Predicate Types
We classify predicates into types where the type of a pred-
icate is defined by the Java types of the variables and the
operator. For example (int < 20) is a predicate type and
(i < 20) and (j < 20) are instances of this predicate type.
Furthermore, for an integer field variable a.i where a is an
object of Java type A, the predicate (a.i < 20) has the type
(A.i < 20); and this type is different from the type (int <

20).
We limit the predicates to the following set of syntactic

forms

Template name Syntactic structure
1. prim-const (prim op const)
2. ref-null (ref = null)

3. prim-prim (prim op prim)

4. ref-ref (ref = ref)

In the list above, op is one of the operators <, ≤ or =;
prim is a variable or field of primitive type and ref is a refer-
ence variable or a reference field. For example, the predicate
type (int < 20) is of the template prim-const, and so is
the predicate type (int = 30). Likewise the predicate type
(A.f=B.g) is of the template ref-ref, assuming f and g

are references. Note that the predicate structures are nor-
malized to the above forms. For example, (int < 20) is
the normalized form for (20 > int) as well as for !(int >=

20). This may require exchanging the true and false tar-
gets of a conditional in the control-flow graph. A structure
(A.f=B.g) is the same as (B.g=A.f) after normalization.
We assign a unique sequence number to each distinct pred-
icate type; this numbering is used to refer to predicates in
the generated boolean code.

Terminology.The predicate types derived from the tem-
plates prim-const and ref-null are called single-variable
predicates, and the predicate types derived from the tem-
plates prim-prim and ref-ref are called dual-variable pred-
icates.

Executable predicates
For predicates involving field variables, predicate discovery
happens using an intermediate form where all field accesses
are of the form loc.f where loc ranges over possibly many
different locations. While the loc.f form is suitable for
dependence propagation, it is not suitable for precise inter-
pretation of the boolean program, which needs to be able to
distinguish between the different heap objects.

For example, in Figure 5 the analysis maybe interested
in a predicate (E2.next=null) at statement a9. During de-
pendence analysis E2 represents any element in the linked
list and consequently E2.next always returns the same lo-
cation, E2. For abstract interpretation, these location-based
predicates are converted into executable predicates which re-
fer to the original variable t4. Executable predicates are
identified by a predicate type and one or two local vari-
ables. For example, at statement a9, the boolean predicate
(E2.next=null) is represented as P3(t4), where P3 has the
type (Elem.next=null) and t4 points to the instance of
type Elem that the predicate pertains to.

3.2 Predicate Generation
The starting point of the predicate generation phase is

a forest of control-flow graphs representing the component
functions. We assume that a set of statements in the pro-
gram has been identified as indicative of an error condition
or any condition whose reachability a client may want to
control.

Predicate generation starts as follows. For each error-
causing statement S, identify c, the conditional expression
in the statement S′ such that S is control-dependent on S′;
c then is a predicate that we need to track in the boolean
program. This gives an initial set of predicates to track.

Example. In Figure 6 the throw statement at A14 is con-
trol dependent on A11. At A11 we generate the predicate
(t2=t4) of type (Version=Version), and the corresponding
executable predicate is P1(t2,t4).

3.2.1 Intraprocedural Propagation
The algorithm presented in this section iteratively discov-

ers predicates by a backwards slicing of the program. The
slicing is performed with respect to the variables mentioned
in the set of predicates we need to track. At each assignment
and conditional statement included in the slice, we generate
appropriate boolean code. For each conditional statement
encountered in the slice, we generate a boolean conditional
statement for the boolean program, and also generate a fresh
predicate to be tracked. The treatment of assignment state-
ments is explained below.

Single-variable predicates.Predicate generation is based
on computing weakest pre-conditions. Let (p op const) be
a predicate that is used at a certain statement and let the
reaching definition of p be at S. Then at S, we generate
a boolean statement as shown in Table 2. If the defining
statement is a GetField statement u := v.f , then to get a
complete slice, we also need to find all reaching definitions
of v. For this reason, we add v to the list of slicing criteria.
This is the source of reference copies that we generate in
the boolean code, which are indicated by @v in all figures
and tables. All statements in the slice of v are added to
the “boolean” code and these statements are indicated by

B6 −−−

B7 if()

B8 −−−

B9 −−−

A1 ENTER Iterator.next

Executable code

@ t3 := t1.set

P3(t2,t3) := P4(t1,t3)

P1(t2,t4) := P3(t2,t3)

IF (P1(t2,t4))

B13
B14

EscapeOut
EscapeOut

F1.cont −> E1
F1.ver −> E2 := (Other−Iter−1.ts=F1.ver)

:= (F1.ver=Other−Set−1.ver)

EXIT Set.add

C1 ENTER Iterator.<init>

ParameterIn / ParameterOut
Control Flow

EXIT Iterator.next

A13
A14

t5 := new CME()
throw(t5)

t5 −> O3
throw(t5) fail fail

A12 −−−
B11

B12

t9:=new V()

t1.ver := t9

t9 −> O2

F1.ver := t9

(t9=Other−Set−1.ver) := false
(Other−Iter−1.ts=t9) := false
(F1.ver=Other−Set−1.ver) :=

@ t1

(Other−Iter−1.ts=F1.ver) :=
(t9=Other−Set−1.ver)

(Other−Iter−1.ts=t9)

P3(t9,Other−Set−1):=false
P7(Other−Iter−1,t9) := false
P8(t1,Other−Set−1) :=

P4(Other−Iter−1,t1) :=
P3(t9,Other−Set−1)

P7(Other−Iter−1,t9)

D1 ENTER Set.Iterator

Executable code

@ t2 := new Iter()

:= t1
:= t2

@ call <init>

B1 ENTER Set.add

Bytecode
A2
A3
A4
A5
A6

A9

A8

A10

A11

A7

FormalIn
EscapeIn
EscapeIn
EscapeIn
EscapeIn
EscapeIn
t3 := t1.set

t2 := t1.ts

t4 := t3.ver

if (t2=t4)

Post−analysis
t1 −> F1
F1.ts −> E1
F1.set −> E2
E2.ver −> E3
E1.cont −> E4
F1.pos :=
t3 := F1.set

t2 := F1.ts

t4 := E2.ver

if (t2=t4)

Boolean code generated

IF((t2=t4))

@ t1

@ F1.set
(F1.ts=E2.ver)

@ t3

@ t1

@ t1
@ t3 := F1.set

(t2=E2.ver) := (F1.ts=E2.ver)

(t2=t4) := (t2=E2.ver)

Bytecode Post−analysis Boolean code generated Executable code
B2
B3
B4
B5

FormalIn
FormalIn
EscapeIn
EscapeIn

t1 −> F1
t2 −> F2
F1.cont −> E1
F1.ver −> E2

Post−analysis
t1 −> F1
t2 −> F2
F2.ver −> E1
F1.set := t2
t3 := F1.set
t4 := F2.ver

Boolean code generated
@ t1

(F2.ver=Other−Set−1.ver)
@ F1.set := t2; @t1

@ t2

@ t3 := F1.set; @t1
(t4=Other−Set−1.ver) :=

Bytecode
C2
C3
C4
C5
C6
C7

FormalIn
FromalIn
EscapeIn
t1.set := t2
t3 := t1.set
t4 := t3.ver

F1.ts := t4 (F1.ts=Other−Set−1.ver) :=C8 t1.ts := t4
(F2.ver=Other−Set−1.ver); @t3

F1.set −> F2
F1.ts −> E1

@F1.set
:= (F1.ts=Other−Set−1.ver)

EXIT Iterator.<init>

C9
C10

EscapeOut
EscapeOut

(t4=Other−Set−1.ver); @t1

Executable code

@ t1.set := t2
@ t3 := t1.set
P3(t4,Other−Set−1) :=

P4(t1,Other−Set−1) :=
P8(t3,Other−Set−1)

P3(t4,Other−Set−1)

Iterator.init(t1: Iterator, t2: Set) {
t1.set := t2
t3 := t1.set
t4 := t3.ver
P3(t4, Other−Set−1) := P8(t3, Other−Set−1)
t1.ts := t4
P4(t1, Other−Set−1) := P3(t4, Other−Set−1)

}

Iterator.next(t1: Iterator) {
t3 := t1.set
t2 := t1.ts
P3(t2, t3) := P4(t1, t3)
t4 := t3.ver
P1(t2, t4) := P3(t2, t3)
if (P1(t2, t4)) {
} else

FAIL
}

Set.init(t1: Set) {
t2 := new Version
P7(Other−Iter, t2) := false
P3(t2, Other−Set) := false

}

Set.Iterator(t1: Set) {
t2 := new Iterator
call Iterator.init(t1, t1)
return t2

}

Set.add(t1: Set) {
t9 := new Version
P3(t9, Other−Set) := false
P7(Other−Iter, t9) := false
t1.ver := t9
P8(t1, Other−Set) := P3(t9, Other−Set)
P4(Other−Iter, t1) := P7(Other−Iter, t9)

}

(b)

(a)

P1(v1:Version, v2:Version) :: (v1=v2) P2(r:Iterator) :: (r=null) P3(v:Version, s:Set) :: (v=s.ver) P4(r:Iterator, s:Set) :: (r.ts=s.ver)
P8(s1:Set, s2:Set) :: (s1.ver=s2.ver)P5(s:Set) :: (s=null) P7(r:Iterator, v:Version) :: (r.ts=v)P6(r:Iterator) :: (r.set=null)

Post−analysis
t1 −> F1
F1.ver −> E1
t2 −> O1
:= t2
:= t1
t3 := F1.ver

Boolean code generated
@ t1

@ t2 := new Iter()
@t2

(F1.ver=Other−Set−1.ver)

@t1
(t3=Other−Set−1.ver) :=

Bytecode
D2
D3
D4
D5
D6
D7

FormalIn
EscapeIn
t2 := new Iter()
ActualIn
ActualIn
t3 := t1.ver

(F1.ver=Other−Set−1.ver); @t1
:= t3
call <init>

:= (t3=Other−Set−1.ver); @t3

t5 := t3 (t5=Other−Set−1.ver) :=
O1.set := t4 @ O1.set := t4
t4 := t1 @ t4 := t1

D8 ActualIn
D9 Invoke

D12 ActualOut
D11 t2.set := t4
D10 ActualOut

@ call <init>

(t3=Other−Set−1,ver)
O1.ts := t5 (O1.ts=Other−Set−1.ver) :=D13 t2.ts := t5

(t5=Other−Set−1.ver)

O1.set −> F1 @O1.set
R −> O1 @R
R := t2 @t2

O1.ts −> E1 (O1.ts=Other−Set−1.ver)
D16 EscapeOut
D15 FormalOut
D14 return t2

D17 EscapeOut

EXIT Set.Iterator

Figure 6: (a) Forest of control-flow graphs for the Set-Iterator example (b) Generated boolean program.

Bytecode Post−analysis
A2
A3
A4
A5

FormalIn
EscapeIn
EscapeIn
EscapeIn

t1 −> F1
F1.ts −> E1
F1.set −> E2
E2.ver −> E3

A8 t2 := t1.ts t2 := F1.ts

A9 t3 := t1.set t3 := F1.set
A10 t4 := t3.ver t4 := E2.ver

A11 if (t2=t4) if (t2=t4)

Boolean code

(F1.ts=E2.ver)
(t2=E2.ver) :=

(t2=t4) :=

IF((t2=t4))
(t2=E2.ver)

(F1.ts=E2.ver)

Executable code

P3(t2,t3) := P4(t1,t3)

P1(t2,t4) := P3(t2,t3)

IF (P1(t2,t4))

Figure 7: Boolean code generation for dual variable
predicates

@statement. If the defining statement is a New statement,
u := new T, equality predicates involving u are set to false.

We do not attempt to compute precise weakest pre-condi-
tions for all expressions. Instead, we conservatively set the
predicate to * if we encounter a complex expression (though
in various special cases we can easily determine a definite
value without the use of a theorem prover). It is necessary to
limit the exactness of the weakest pre-condition computation
in order to ensure that the number of predicates generated
is finite.

Dual-Variable Predicates.Tracking dependencies in dual
variable predicates is similar and the details are summarized
in Table 3. Let the predicate P(u, v) be a predicate used at
a certain statement. Let the reaching definitions of u and v

be at Su and Sv, respectively. Since both definitions reach
the same program point, clearly one must post-dominate the
other. Without loss of generality, assume Su post-dominates
Sv. Then the reaching definition for the predicate is Su and
boolean code is generated according to the rules in Table 3.
(Note that the definition of v at Sv may still define the new
predicate generated on the rhs at Su.)

There are certain implementation difficulties associated
in tracking dual-reference predicates. Consider an excerpt
of code from Iterator.next shown in Figure 7. For the
predicate (t2=t4) at A11, the reaching definition of t2 is
at A8 and the reaching definition of t4 is at A10. Since
A10 post-dominates A8, at A10 we generate the boolean code
(t2=t4) := (t2=E2.ver) and the executable code P1(t2,t4)
:= P3(t2,t3). At A10, the reaching definition of t2 is at
A8 and the reaching definition of E2.ver is at A5; A8 post-
dominates A5. Hence, at A8 we generate the boolean code
(t2=E2.ver) := (F1.ts=E2.ver). It is unclear what the
executable predicate should be. A candidate executable
predicate is P3(t2,t3) := P4(t1,t3), but note that at A8,
the temporary t3 has not yet been defined, and such code
would fail at the time of interpretation. In the executable
code, we need to find an appropriate variable that points
to the location E2. One way to achieve this is to create a
temporary copy statement such as tx:= t1.set; insert this
statement before A8 and generate the executable predicate
P3(t2,tx) := P4(t1,tx) at A8. Alternatively, we could do
the following: we determine that t3 is defined at A9. If
placing A9 before A8 does not violate any data- or control-
dependence, then we reorder the statements and proceed;
this is shown in Figure 6. If neither of these options is
programmatically feasible, we would have to conservatively
generate the code P3(t2,t3) := ∗ at A8.

3.2.2 Interprocedural Propagation
Interprocedural propagation of predicates can happen both

when there is a caller-callee relationship between two meth-
ods (“connected” methods), and also when there is not (“dis-
connected” methods). In the latter case, the dependence
comes from the client space, as explained later below.

1. Connected methods: When two functions are con-
nected by a call edge then predicates can be propagated
backwards (i) from ActualOut nodes in the caller to corre-
sponding FormalOut or EscapeOut nodes in the callee, and
(ii) from FormalIn or EscapeIn nodes in the callee to cor-
responding ActualIn nodes in the caller. When crossing
function boundaries, predicates are rewritten using names
that are meaningful in the function body as shown in Fig-
ure 8(a). In the case that a dual-variable predicate reaches
an ActualOut node, if both the predicate variables are de-
fined at the same call site, then both of them are propagated
backwards through the callee (Figure 8(b)). If only one
of the predicate variables is produced by the callee ((Fig-
ure 8(c)), then the other variable needs to be propagated
with a name that does not pertain to the method body.
These variables are termed OTHER variables and are expressed
generically as Other-〈typeof (v)〉-index . A different OTHER

variable is generated for each predicate in a function in which
the variable participates.

We maintain a call stack to ensure that predicates are
propagated only along the calling context. However, if a
function is not in a “called” context, then a predicate that
reaches a FormalIn / EscapeIn statement, is propagate back-
wards into all calling functions.

2. Disconnected methods: Since our analysis is oblivious
to the client program, we need to account for all possible
ways in which a client could potentially call the methods
in our component. We build interprocedural linkages across
disconnected methods as follows: a predicate that reaches
a FormalIn or EscapeIn node when the propagation is not
in a called context is said to be visible in the client context.
Such a predicate is propagated back into the FormalOut or
EscapeOut node of a function based on type matching, as
shown in Figure 8(d). As in the case of connected com-
ponents, we need to generate OTHER variables when a dual-
variable predicate is propagated into a function that type-
matches only one of the variables (Figure 8(e)).

Example. In Figure 6 (F1.ts=E2.ver) “escapes upwards”
from the EscapeIn statement A5. Inspection of FormalOut

and EscapeOut statements in all the functions shows that
F1.ver escapes downward in Set.add (statement B14), F1.ts
escapes downwards in Iterator.<init> (statement C10),
and O1.ts escapes downwards in Set.Iterator (statement
D16). At B14, E2.ver is replaced by F1.ver and F1.ts is
replaced by Other-Iterator-1.ts to generate the predicate
(Other-Iterator-1.ts=F1.ver). At D16, F1.ts is replaced
by O1.ts and E2.ver is replaced by Other-Set-1.ver to gen-
erate the predicate (O1.ts=Other-Set-1.ver). Hence the
predicate is propagated backwards from these statements.

The complete boolean code generated for the Set-Iterator
example has been shown in Figure 6(b). Note that we
do not generate executable code for FormalIn, EscapeIn,
FormalOut, EscapeOut, ActualIn and ActualOut statements.
These statements are only used for the purpose of predicate
propagation and for parameter matching during execution.

Referenced Defining Statement Boolean Code Generated Executable Code
Predicate/Reference Bytecode Post-analysis
(p op const) p := const′ p := const′ (p op const) := eval(const′op const) P1(p) := {true|false}

p := q p := q (p op const) := (q op const) P1(p) := P1(q)
p := v.m p := {L}.m (p op const) := ({L}.m op const); @v P1(p) := P3(v)
p := expr p := expr (p op const) := ∗ P1(p) := ∗

(u=null) u := null u := null (u=null) := true P2(u) := true
u := v u := v (u=null) := (v=null) P2(u) := P2(v)
u := new X u := loc (u=null) := false P2(u) := false
u := v.f u := {L}.f (u=null) := ({L}.f= null); @v P2(u) := P4(v)

(loc.m op const) u.m := q {L}.m := q (loc.m op const) := (q op const); @u P3(u) := P1(q)
EscapeIn loc.m := (loc.m op const) :=

(loc.f= null) u.f := v {L}.f := v (loc.f= null) := (v=null); @u P4(u) := P2(v)
EscapeIn loc.f := (loc.f op const) :=

@ u u := null u := null @ u := null @ u := null
u := v u := v @ u := v; @v @ u := v
u := new X u := loc @ u := new X @ u := new X
u := v.f u := {L}.f @ u := {L}.f ; @v @ u := v.f

Table 2: Boolean code generation for single-variable predicates. Here op may be either =, < or ≤. P1, P2, P3,
P4 are predicates of appropriate type.

Referenced Defining Statement Boolean Code Generated Executable Code
Predicate Bytecode Post-analysis
(p op prim) p := const p := const (p op prim) := (const op prim) P1(p, prim) := P2(prim)

p := q p := q (p op prim) := (q op prim) P1(p, prim) := P1(q, prim)
p := v.m p := {L}.m (p op prim) := ({L}.m op prim); @v P1(p, prim) := P3(v, prim)
p := expr p := expr (p op const) := ∗ P1(p, prim) := ∗

(u=ref) u := null u := null (u=ref) := (null=ref) P2(u, ref) := P5(ref)
u := v u := v (u=ref) := (v=ref) P2(u, ref) := P2(v, ref)
u := new X u := loc (u=ref) := false P2(u, ref) := false
u := v.f u := {L}.f (u=ref) := ({L}.f= ref); @v P2(u, ref) := P4(v, ref)

(loc.m op prim) u.m := q {L}.m := q (loc.m op prim) := (q op prim); @u P3(u, prim) := P1(q, prim)
EscapeIn loc.m := (loc.m op prim) :=

(loc.f= ref) u.f := v {L}.f := v (loc.f= ref) := (v=ref); @u P4(u, ref) := P2(v, ref)
EscapeIn loc.f := (loc.f op ref) :=

Table 3: Boolean code generation for dual-variable predicates. Here op may be either =, < or ≤. P1, P2, P3, P4

are predicates of appropriate type. In this table, we assume that the reaching definition of the first variable
of the referenced predicate post-dominates the reaching definition of the second variable of the referenced
predicate and is found at the defining statement. The reverse situation is symmetric.

4. BOOLEAN METHODS
The previous phase abstracts a given set of Java classes

into a set of abstract procedures. These abstract procedures
are similar to boolean programs used ordinarily in predi-
cate abstraction [3], with one important distinction: refer-
ence copies present in the unabstracted program are retained
in the abstracted program. Unlike customary boolean pro-
grams, our abstract procedures contain predicates that are
parameterized over reference variables. One important rea-
son for this choice is that it allows an abstract interpreter
operating on these boolean programs to be more precise than
the original points-to analysis that was used to compute the
predicates. While the abstracted program in our work is not
a “pure” boolean program, for sake of presentation we call
it a boolean program in this paper.

Terminology.A single-reference predicate is one in which
there is one field lookup involved, i.e. only one occurrence
of refvar.field, where refvar is a reference local variable. A
dual-reference predicate is one in which there are two occur-
rences of refvar.field. A nullary predicate is one which has
no field lookups, i.e. it involves only primitive or reference-
typed local variables. A single-reference predicate pertains
to a type τ if the type of refvar on which the field lookup is

performed in the predicate is τ . A dual-reference predicate
is said to pertain to a type τ if τ is the type of at least one
of the two reference variables on which field lookup is per-
formed. A single-reference predicate of the form (refvar.field
op var), where var is a local variable, is said to be a tempo-
rary predicate, because the predicate is meaningful only in
the scope of that local variable; other single-reference pred-
icates are said to be persistent, as they exist alongwith the
object they pertain to across method calls.

We describe the structure of our boolean programs and
salient features of its interpretation. The program consists
of the constructs shown in Table 4. Note that the non-
reference parameters of a method are abstracted away and
instead nullary predicates involving those parameters be-
come part of the parameter list. The same change is also
made to the parameter list for call statements inside meth-
ods. Additionally, procedures may return a tuple of values,
containing possibly several nullary predicate values. Fig-
ure 6 gives the boolean code for the Set-Iterator example.

The run-time environment of a boolean program consists
of a stack and a heap. The heap consists of a set of typed
heap objects, where the types are drawn from the Java types
in the component being analyzed. There is no a priori limit
on the number of objects in the heap. There is also a desig-

(F1.n op’ const)

ENTER Func1 ENTER Func2

ENTER Func3

Eoutb1 E3.k := (Other.n op E3.k)

ENTER Func4

:= (F1.n op Other−2.k)
:= (Other−1.n op E2.k)
:= (F1.n op E2.k)

Boolean code

(F1.n op F2.k) :=

Post−

t1 −> F1

F1.n :=
F2.k :=

t2 −> F2

analysis
Byte

Fina1

Eina3
Eina4

a2 Fin

code
Bytecode Post−analysis Boolean code

Eoutb1 E1.n := (E1.n op Other.k)

Eoutb1
b2 Eout

F1.n
E2.k

(e) Disconnected methods: Dual−variable predicate propagation

ENTER Func2ENTER Func1

Boolean code

:= (E1.n op const)

L .m := t51

ENTER Caller

t4 := L .n1

ENTER Callee

(t5 op L 2.k) :=
(L1.m op L2.k) :=

L .k := t62

L .m := t51

ENTER Caller

t4 := L .n1
(L1.n op’ const)

ENTER Callee

L .m := t51

t4 := L .n1

(L .m op const) :=1

ENTER CallerENTER Callee

Fin
Ein

a1
a2

Byte

Eouta3

code

(t4 op’ const’) :=
(L .n op’ const’)1

(d)Disconnected methods: Single−variable predicate propagation

Boolean code Bytecode

Eoutb1(F1.n op const) :=

Post−

t1 −> F1
F1.n :=

analysis
Byte

Fin
Ein

a1
a2

code

E1.n

Post−analysis

Parameter−in/Parameter−out edge
Edge showing matched FormalIn (Fin) / EscapeIn (Ein) nodes with
corresponding FormalOut (Fout) / EscapeOut (Eout) nodes

(c) Connected methods: Dual−variable predicate propagation with OTHER variables

ActualIn
Invoke(t3)

b3
b4

:= t4

ActualOut
t3.m := t5

b5
b6

t5 :=

Bytecode

ActualIn
t4 := t3.n

Post−analysis Boolean code

b1
b2

:= t3

Boolean code

Fin
Ein

a1
a2

Eouta3

Byte
code

F1.m

(b) Connected methods: Dual−variable predicate propagation

ActualIn
Invoke(t3)

b3
b4

:= t4

ActualOut
t3.k := t6

b7
b8

t6 :=

ActualOut
t3.m := t5

b5
b6

t5 :=

Bytecode

ActualIn
t4 := t3.n

Post−analysis Boolean code

b1
b2

:= t3
(t4 op’ const) :=

(F1.m op F3.k)

Boolean code

Fin
Ein

a1
a2

Eouta3

Eouta3

Byte
code

t1 −> F1
F1.n :=

F3.k
F1.m

Post−
analysis

(t5 op t6) :=

(L1.m op L2.k) :=
.m op t6)(L1

t1 −> F1
F1.n :=

analysis
Post−

(F1.n op’ Other.k)

(F1.m op Other.k)

(L1

(t5 op L 2.k)

(L1 .m op t6) :=
(t5 op t6)

:= (t4 op’ L .k)
.n op’ L .k)

(t4 op’ L .k) :=
2

2

2

(a) Connected methods: Single−variable predicate propagation

ActualIn
Invoke(t3)
ActualOut
t3.n := t5

b3
b4
b5
b6

ActualIn
t4 := t3.n

b1
b2

:= t4

t5 :=

:= t3

(t5 op const) :=

:= (t4 op’ const’)

(t5 op const)

Bytecode Post−analysis Boolean code

(F1.n op’ const’)

(F1.m op const)

Boolean code

t1 −> F1
F1.n :=

F1.m

Post−
analysis

:= (t4 op’ const)

Figure 8: Interprocedural predicate generation.

Construct Syntax
PredAssignStmt Predicate := Predicate

Predicate := BooleanValue
Predicate PredId(refvar, primvar)

PredId(refvar, refvar)
PredId(refvar, OTHER)

PredId(refvar)
PredId()

BooleanValue true | false | *
RefCopyStmt refvar := refvar

refvar := refvar.f
refvar := null

refvar.f := refvar
AllocationStmt refvar := new X

ControlFlowStmt if (Predicate) goto l else l’
if (BooleanValue) goto l else l’
label l

ProcedureCall ArgList := FuncId(ArgList)
return ArgList

ArgList refvar
PredId()
refvar , ArgList
PredId() , ArgList

ErrorStmt FAIL

Table 4: Syntax of boolean program. Here refvar
is a reference local variable, primvar is a primitive
local variable, PredId is a predicate type, and FuncId
is a method.

nated null object, to which all null pointers point. Objects
in the heap state may also contain fields that are references
to other objects in the heap, exactly as regular Java objects
do.

The stack consists of bindings for local variables, which
are all of reference type, as the primitive-typed variables
have been abstracted away. These variables point to one of
the heap objects in the heap. Note that we are primarily
interested in how the heap is modified when a method com-
pletes its execution. The stack contents are of interest only
during the execution of a method.

Execution of a boolean method is set up by assigning
FormalIn reference parameters from the heap, and assigning
true or false values to the other arguments (which are all of
predicate type after abstraction). The execution proceeds
conventionally in the style of a model checker, following the
control flow in the boolean method. When a conditional
value evaluates to *, either path can be taken. A new X

statements allocates an unused object of type X from the
heap; if no such object is available the interpreter termi-
nates abnormally, but without reporting an error. When
the execution of a boolean program hits a FAIL statement,
it terminates with an error.

Next, we describe reads and write of predicates. Concep-
tually, the run-time environment maintains a store, Pred-
Store, of various predicates along with their current val-
ues. Nullary predicates are indexed into this store based on
the (now abstracted) variable names they contain, e.g. the
nullary predicate P1(x) is looked up by the tuple 〈P1, x〉.
Single-reference predicates are indexed based on the heap
object to which their refvar points to. Thus, the predi-
cate P3(u,t), defined as (u.f == t), is indexed as the tuple

〈P3, o, t〉, where o is a heap object to which u points, and t

is a temporary. Dual-reference predicates are indexed based
on both the heap objects their refvars refer to. Two objects
that are related by a dual-reference predicate are termed
buddies with respect to that predicate. Note that a given
heap object can have multiple instances of a dual-reference
predicate associated with it in PredStore, because it can be
in a certain relationship with several other heap objects (its
buddies w.r.t. a certain predicate). Nullary, and tempo-
rary single-reference predicates, are defined only when the
current method being executed contains stack bindings of
the temporary variables they contain. An interpreter would
maintain the information in PredStore partly in the heap
and partly in the stack, as appropriate for each predicate
instance.

Example. Figure 9 shows four objects: o1 of type Set and
o2, o3 and o4 of type Iterator. Figure 9(a) shows the
situation when o1 has been initialized by an invocation of
Set.init. The generated predicates are stored in the heap
as shown. o2, o3 and o4 have not yet been initialized, and
hence contain no information.

Figure 9(b) shows the situation just after o2 and o3 have
been initialized by calls to Iterator.init(F1:o2, F2:o1) and
Iterator.init(F1:o3, F2:o1), respectively. The predicate
P4(s,i), defined as (s.ver == i.ts), has 〈P4, o1, o2〉 and
〈P4, o1, o3〉, both with value true, in the PredStore. o2 and
o3 are buddies of o1 w.r.t. P4. Conversely, o1 is a buddy of
o2 and o3 w.r.t. P4.

P8=T

o 1o

o3

P8=T
P5=F
P4=T

P2=F
P4=T
P6=F

o2
P2=F
P4=T
P6=F

(P4, o1, o2)=T

o4o3 o4

o2

1o

o3

P8=T
P5=F
P4=*

P2=F
P4=F
P6=F

o4

o2
P2=F
P4=F
P6=F

(P4, o1, o2)=F

P2=F
P4=T
P6=F

1o

o3
P2=F
P4=F
P6=F

o4

o2
P2=F
P4=F
P6=F

(P4, o1, o2)=F

(P4, o1, o3)=F (P4, o1, o3)=F

(P4, o1, o3)=T

(P4, o1, o4)=T

P5=F

(a) (b)

(c) (d)

P8=T

P5=F
P4=F

1

Figure 9: Heap state for the Set-Iterator example.
Object o1 is of type Set and objects o2, o3 and o4 are
of type Iterator.

Predicates withOTHER. Recall from Section 3.2.2 that OTHER
can be generated in a dual-reference predicate during inter-
procedural backward slicing: when the calling context is
known (in connected methods) and when the calling con-
text is unknown (in disconnected methods), i.e. the method

is called directly from the client. When the calling context
is known, the binding of OTHER comes in as a part of the pa-
rameter list. However, when the calling context is unknown,
we have to find out what it might be bound to. (This dis-
tinction in treatment needs to be made at interpretation
time.)

For a dual-reference predicate P (l, OTHER-T-1), we look
up the heap object referred by l, and then identify all “bud-
dies” it has for the predicate P in the PredStore. This gives
us a set of bindings for OTHER-T-1. Note that for equal-
ity predicates (where the operator is = or ≤) where both
variables of the predicate are of the same type T.field, we
consider an implicit binding for OTHER-T-1 to the other loca-
tion mentioned in the predicate – which makes the predicate
by definition true. For an inequality predicate (where the
operator is <) we consider an implicit binding for OTHER-T-1
in the same way, except the predicate is by definition false.

If both the lhs and the rhs of a statement have an occur-
rence of the same OTHER variable, then the binding implied
by the rhs predicate is used for the lhs occurrence as well. In
effect, the statement is executed for each different binding
of OTHER. This mechanism thus performs a universal quan-
tification over the set of related objects, and is a feature
required to handle predicates on collection classes.

Example. Continuing the previous example, the statement
P4(s, OTHER-Iter) := false, where s points to o1 would
make both 〈P4, o1, o2〉 and 〈P4, o1, o3〉 false. This is shown
in Figure 9(c).

5. ABSTRACTING THE HEAP
We now define an abstract heap state from the heap of

a boolean program’s environment. An abstract heap state
consists of a set of heap objects in certain typestates, as de-
fined shortly. The specific contents of the heap objects are
not of significance in the abstract heap state, and neither
does the abstract heap state contain references between heap
objects. Given a concrete heap H, we can apply the types-
tate computation to each of its constituent objects (ignoring
null) to arrive at an abstract heap state A. The typestate
computation defines an abstraction function α, such that
A = α(H).

The key idea behind abstract heap states is that all rel-
evant behaviors of methods, which we need to explore to
discover a safe interface, can be found by a finite explo-
ration of these abstract heap states. For this purpose, we
also require a notion of transitions between abstract heap
states in response to method calls.

5.1 Typestates
The typestate of a type is the valuation of an ordered set

of persistent predicates. The design decision we make here
is to include as much information in the typestate as pos-
sible in order to be able to reflect the safety precondition
of a call. Thus, we not only include the predicates on the
receiver object of a method call, but also predicates on any
objects that may be accessed by following field-references
starting from the receiver object. We think of this as “split-
ting” typestates into finer distinctions based on additional
reachable data.

Example. In the A-C example in Figure 13, the predicates
for an object of type A are (A = null) and (A.f = null).
These two predicates in isolation are insufficient to distin-
guish all the different behaviors of A. It is important to also
include the predicate on the object that A.f points to (if not
null). This lets method calls distinguish behavior of A de-
pending on whether A.f is disposed or not. Thus the type-
state of A is defined by the predicates (A = null), (A.f =

null) and the typestate of A.f, as shown in Figure 13(a).

Two approximations are used in doing this. First, be-
cause of the possibility of recursive data structures, we have
to take care not to go in cycles collecting an unbounded
number of predicates. We bound the number of predicates
being collected along any chain of deferences by consider-
ing only those field paths that do not repeat a field name.
(An alternative strategy would be to bound the number of
dereferencing operations on each path.)

Example. Figure 12(c) gives the typestates for the recursive
object Element in the List example of Figure 4. Consider
the linked list of Elements. o1 has the following set of pred-
icates in its state space {(P1,F), (P3,T), next[]} which
generates the typestate M1. o2 has the following set of pred-
icates in its state space {(P1,F), (P3,F), next[(P1,F),

(P3,T)]} which generates the typestate M2. o3 has the fol-
lowing set of predicates in its state space {(P1,F), (P3,F),

next[(P1,F), (P3,F)]} which generates the typestate M3.
o4 has the following set of predicates in its state space {(P1,F),
(P3,F), next[(P1,F), (P3,F)]} which also generates the
typestate M3. Adding more Elements will not generate any
further typestates. Note that more than one next field is
never traversed in typestate computation. The typestates are
also summarized in Figure 12(a). The table shows that an
object in typestate M3 may have a next reference that is ei-
ther in state M2 or M3.

The second approximation pertains to dual-reference pred-
icates. Each dual-reference predicate may be assigned for
the same object with several different partners. The types-
tate computation approximates this information by keeping
only three distinct valuations: that the predicate is true with
respect to all partners (true), that the predicate is false with
respect to all partners (false), and that it is true for some
partners and false for others (*).

Example. Figure 9(d) shows the situation when o4 has been
initialized by a call to Iterator.init(F1:o4, F2:o1). The
PredStore now contains 〈P4, o1, o4〉, with the value true, in
addition to the existing tuples 〈P4, o1, o2〉 and 〈P4, o1, o3〉
both with value false. The predicate value of P4 in o1 is
set to * since for some buddies the predicate is true and for
some it is false. The predicate value of P4 in o4 is set to
true since for all its buddies (it has a single buddy o1) the
predicate is true. Similarly, the predicate value of P4 in o2

and o3 is false. Note that in Figure 9(b), all the buddies
of o1 have a value true for P4 and so the value of P4 in
o1 is also true. In Figure 9(c), all the buddies of o1 have a
value false for P4 and so the value of P4 in o1 is also false.

Consequently, the typestate for each type consists of a
finite length string of predicates, and therefore for each type
there are a finite number of distinct typestates.

For a type τ , we denote its typestates as τ0, τ1, τ2 etc.,
where τ0 is the state of an object on which the constructor
has not run yet. Each τ i is a map Path × Pred → BVal,
where Path is either self or an object reachable via non-
repeating field references, Pred is a predicate on the object
thus reached, and BVal is T/F/*. At times, when the con-
crete heap object passed in as an EscapeIn of type τ is null,
we assume its typestate is τ0.

5.2 Transitions
A transition describes typestate changes in heap objects

that participate in the various locations (F, E, and O) in a
method call. In the presence of dual-reference predicates,
each such object can also have buddy objects that too can
be impacted by a method because of the potential update to
that predicate. It is convenient to assign locations to buddy
objects as well: all objects that are related to a particular
F, E, or O location via a particular dual-reference predicate
belong to the same buddy location (denoted Bi). The lo-
cations F, E, O and B together describe the objects that are
potentially impacted by a method, in that one or more pred-
icates on those objects may be updated by the method and
therefore their typestate can change.

There is also an indirect impact on objects that point to
any of the objects impacted by a method. We call such
objects “parent” objects. The typestate change on a parent
object maybe of consequence for verifying client code, but
is not important to the transition. (We will come back to
the topic of client code verification Section 5.6.)

The correspondence between objects and locations is not
one-to-one. In certain cases, a location describes a mul-
tiplicity of objects, whose count is not bounded a priori.
This occurs in the case of recursive data structures. Recall
from Section 2 that a finite number of locations represent all
objects constituting a recursive structure due to 1-limiting
used in the computation of locations E and O. This also oc-
curs in the case of buddy locations (Bi), since multiple ob-
jects can be related to a particular location by a particular
dual-reference predicate. In both of these cases, we need to
finitize the number of distinct transitions that involve such
a “multi” location. The abstraction we use is that a tran-
sition contains all possible final typestates for each distinct
initial typestate at that “multi” location, instead of a list of
per-object typestate changes.

When a single object maps to several locations—a form
of parameter aliasing—it can cause distinct transitions, as
shown in the example below. In general, aliasing could occur
between multiple pairs of locations simultaneously. Since
different aliasing combinations might lead to different tran-
sitions, each distinct combination must be considered sep-
arately to account for all different transitions. Therefore,
transitions are annotated with a description of which pairs
of locations are aliased.

Example. In Figure 13(b), both the transitions T17 and T18

take as input objects in state A2, C1 and C1 as F1, F2 and
E1 parameters respectively. However, in T18, the F2 and E1

parameters are aliased. Hence in F2 and E1, the transition
for the F2 parameter is C1 → C2 instead of C1 → C1 as in
T17. This may come as a surprise to an unsuspecting pro-
grammer, who does not expect the state of the F2 parameter
to change.

To summarize, for each location of a method, a transition
contains an initial typestate and a final typestate.3 For a
“multi” location, a transition contains initial and final tran-
sition pairs for all distinct initial typestates participating in
that location. It is easy to see that the number of distinct
transitions is finite. Formally, a transition for a method is a
map Loc × TypeState → TypeState except for “multi” loca-

tions, for which it is a map Loc × TypeState → 2TypeState.
The aliasing context of the transition, when present, is a list
of pairs Loc× Loc.

Next, we describe how these transitions relate abstract
heap states and help create the abstract heap state space.

5.3 Defining an Abstract Heap State Space
Let A = {o1, o2, ..., on} be an abstract heap state, with

objects in certain typestates (not necessarily distinct), and
let A′ be another abstract heap state in which the typestates
of some or all of these objects may have changed. We say
that A′ = A(µ, T) if,

• The mapping µ maps (a subset of) objects in A to
locations of the transition T ;

• The aliasing constraint, if any, in transition T is satis-
fied, that is, if (l1, l2) is a pair in the aliasing constraint
of T , then µ maps a common object to both locations;

• For each object oi participating in the mapping µ, the
typestate of oi in A′ is consistent with T , that is, if
µ(oi) = l, typestate of oi in A is τp, and typestate of
oi in A′ is τ q, then τ q = T (l, τp), or if l is a multi-
location, then τ q ∈ T (l, τp); and,

• The typestate of each object in A not participating in
µ is unchanged in A′.

For a set of given boolean methods, and their correspond-
ing sets of transitions (recall that each method can give rise
to several transitions), the abstract heap state space is a
graph whose nodes are abstract heap states, and an edge
from abstract heap state A to A′ indicates that there exists
a mapping µ and a transition T such that A′ = A(µ, T). The
graph contains an initial state A⊥, in which all objects are in
their respective uninitialized typestates (τ0). There is also a
designated error node, and all error-causing transitions lead
to the error node.

Our goal is obtain a maximal graph — that is, to add all
reachable states and to add all possible edges starting with
a given set of objects in state A⊥. Nodes and edges in this
graph are added by observing the effects of a method call on
a certain concrete heap state; this is described in the next
subsection.

One key issue is whether the starting state contains a suf-
ficient number of objects to allows for the observation of
all possible behaviors. Our technique systematically tries
out initial states with an increasing number of objects, until
no new transitions can be found. Recall that the number
of different transitions is in fact bounded, and thus an up-
per bound on the number of objects needed to observe all
transitions must exist.

3Different final typestates, which may appear for the same
initial typestate along different execution paths through a
method, are shown in separate transitions.

5.4 Creating the Abstract Heap State Space
Our approach for finding all relevant abstract heap states

and transitions is to emulate all possible client actions on
a concrete heap and observe the effects. A client can cre-
ate new objects in the heap, and can call various sequences
of methods on heap objects. A client also has flexibility in
how it binds heap objects to formal parameters, as long as
the types are matched. Since our boolean methods act on
a concrete heap, we track client actions on a synthesized
concrete heap H, and shadow those changes in the corre-
sponding abstract heap state A. H is a concretization of A,
that is H ∈ α−1(A).

We now describe how we explore the abstract heap state
space, starting with a given A⊥. The concrete heap H at
this time consists of uninitialized heap objects of the same
corresponding types as in the abstract heap state A⊥; H
also includes a null object.

1. The client emulator selects non-deterministically a met-
hod m from the set of methods available to it. Note
that only constructor methods may be invoked on unini-
tialized heap objects, and the constructor may not be
invoked subsequently.

2. The client emulator then binds non-deterministically
the formal parameters (F locations) of m from type-
appropriate objects in H. Further details on binding
are given below.

3. The emulator invokes the interpreter to execute some
(possibly cyclic) path in the boolean method m in this
environment. The execution can produce the following
outcomes:

• It reaches the exit point of the method. In this
case, the heap objects in H are examined for their
typestates, and possible new abstract state and a
transition is created in the abstract heap state
space. The mapping µ induced by the execu-
tion of the method is recorded. The aliasing im-
plicit in the mapping of objects to locations is also
recorded along with the transition. The emulator
also retains the concrete heap H obtained at the
exit to enable further exploration.

• It reaches a new X where no unused object of type
X is available in H. The execution is abandoned
at this point, without reporting an error.

• It reaches an error statement. We record this as
well in the abstract state space by an error tran-
sition.

The emulator then backtracks, and tries different paths in
step 3, different bindings in step 2 and different methods in
step 1. For all normal executions, the abstract heap states,
transitions, and the final concrete heap are stored. The error
transitions are also remembered.

Next, the above procedure is repeated for each of the new
abstract heap states, starting with the concrete heap stored
alongwith. This continues until no new typestates or tran-
sitions are discovered.

Once the abstract heap state space of a given set of ob-
jects has been explored, the emulator increases the number
of objects in the heap state and repeats the whole process.
With more objects, additional behaviors can be observed.

For one thing, certain executions that previously terminated
at a new statement may run to completion. Also, different
aliasing contexts might be exercised. We describe further
below the way in which the emulator explores heap states of
various sizes, until even increasing the number of objects in
the initial heap does not yield any new typestates or tran-
sitions.

Setting up the input parameters.The client emulator in-
spects the types of each reference formal parameter. For
each formal parameter, it finds all possible heap objects in
H that match based on the type, as well as the null object,
which matches every type. A heap object of the appropri-
ate type may be available in various typestates in the cur-
rent heap state – the algorithm tries all of them. In some
of these attempts, it may alias formal parameters among
themselves, or may alias formal parameters with EscapeIn

(which are determined automatically once formal parame-
ters are bound). This is intentional, as parameter aliasing
may lead to distinct behaviors.

The emulator tries both true and false values for each
FormalIn predicate; recall that while formal parameters of
primitive type are abstracted away, predicates involving them
may still be relevant.

Increasing the Size of Abstract Heap.The emulator starts
with an A⊥ in which there is one object of each known type.
Once this A⊥ has been fully explored, the emulator tries to
increase the size of the heap state, so that more typestates or
transitions can be discovered. The emulator adds additional
objects guided by the following considerations:

(a) The exploration of abstract heap states must ensure
that given any method in the component with FormalIn pa-
rameters f1, . . ., fm, each parameter fi will be bound with
objects in all possible typestates of the type of fi. In ad-
dition, sufficient number of distinct objects in each of those
typestates must exist in order to exercise all possible aliasing
combinations. Once the current set of typestates for each
type is known, the number of objects needed to make this
happen can be computed; the emulator adds the required
number of objects to the heap state.

(b) A method may contain a certain number of new τk

statements. We determine the number of objects of type τk

necessary to let the execution of such a method complete
along some path. Those objects need to be added in their
initial typestates τ0

k .
After adding the additional objects the emulator is run

again. This process repeats until no additional typestates
or transitions are discovered.

The abstract heap state space of the largest initial config-
uration explored in this process has the following properties:

Safety Executing any sequence of non-failing transitions
described by the abstract heap state space will not
lead to reaching an error statement.

Maximality Adding additional objects will not allow the
observation of additional transitions or typestates that
are reachable from A⊥ on safe paths.

Minimality It is not possible to remove transitions from
the final heap state space without violating maximal-
ity.

5.5 Examples
Figure 10 shows two different sized abstract heap states

for the Set-Iterator example. Figure 10(a) shows the set
of transitions that may be discovered when the heap state
consists of exactly one Iterator object (labeled o1) and
one Set object (labeled o2). Figure 10(b) shows the set
of transitions that may be discovered when the heap state
consists of two Iterator objects (labeled o1 and o3) and one
Set object (labeled o2).

In the initial heap state, all objects are uninitialized and
hence in Figure 10(a), o1 is in typestate R0 and o2 is in
typestate S0. From this heap state, executing the method
Set.init with the o2 object mapped to the input param-
eter F1 causes the o2 object to change from a typestate
of S0 to S1. This results in a new heap state, as shown.
The transition, labeled T10, contains the typestate change
{F1:S0 → S1}. From the heap state labeled {R0, S1}, ex-
ecuting Iterator.init generates the transition, labeled T2,
which contains {F1:R1 → R2, F2:S1 → S2}. The figure
shows that a buddy relationship has been discovered and
that the predicate value binding the buddies is currently
true; however, the buddy relationship itself is not a part of
the abstract heap state.

Nine distinct transitions are found with these two objects
in the Set-Iterator example. Increasing the heap state
by adding one more Iterator (as shown in Figure 10(b)),
generates seven additional transitions. The complete set of
transitions is shown in Figure 11(b).

Figures 11, 12 and 13 show the typestates and the tran-
sitions for the Set-Iterator, List and A-C example respec-
tively. As mentioned earlier, transitions map initial types-
tates to final typestates for every location that may be im-
pacted by a method call. For example, in Figure 11(b), the
method Iterator.init effects the this parameter, F1, the
Set parameter, F2, and buddies of F2 designated as B1. In
each case, a transition is defined by a location-wise mapping
of initial and final typestates for each object that partici-
pates in the method. Each transition contains a possible
aliasing context, for example, T18 in Figure 13. Where not
shown, the aliasing context is inapplicable to the transition.

Per-Object State Transitions.From these transitions, we
can extract per-object state transition diagrams which give
a more readable view of typestate changes of an object of a
certain type under the various method calls. For example,
in the Set-Iterator example (Figure 11(c)), an object in
typestate R0 will move to a typestate R1 if initialized by a
call to Iterator.init with the F2 parameter in typestate
S1 (transition T2), but will move to a typestate R3 if initial-
ized by a call to Iterator.init with the F2 parameter in
typestate S3 (transition T4). It is interesting to note that an
Iterator object can change from typestate R1 to R2 or from
R2 to R4 only as “buddy” transitions – that is, these type-
state changes occur only as side effects to certain method
calls and are not visible otherwise.

5.6 Using Abstract Heap State Space for Client
Code Checking

In this section we discuss, informally, how the transitions
may be used by a client verifier.

Given a set of objects in some specified typestates and
a method to be applied to the objects, and optionally an
aliasing context, it is possible to determine which transi-

S0

18 Set.add(F1:o 2) Set.add(F1:o 2)T :18 R3 S4 R4

T :7 Iterator.next(F1:o 1, E1:o2) T :7 Iterator.next(F1:o 3, E1:o2)

T :17 Set.add(F1:o 2)

T :7 Iterator.next(F1:o 3, E1:o2)

R0 S3 R2
FF

R2 S3 R0

T :13 Set.Iterator(F1:o 2, O1:o3)
T :4 Iterator.init(F1:o 3, F2:o2)

T :7 Iterator.next(F1:o 1, E1:o2)

Set.add(F1:o 2)T :17

T :9 Iterator.next(F1:o 1, E1:o2)

Set.Iterator(F1:o 2, O1:o1)
T :4 Iterator.init(F1:o 1, F2:o2)
T :13

Iterator.next(F1:o 3, E1:o2)T :9

T :8 Iterator.next(F1:o 1, E1:o2)Iterator.next(F1:o 3, E1:o2)T :8

T :17 Set.add(F1:o 2)

Set.add(F1:o 2)T :16

R0 S2 R1
TT

R1 S2 R0

Set.Iterator(F1:o 2, O1:o3)
T :3 Iterator.init(F1:o 3, F2:o2)
T :12

R0 S1 R0

T :10 Set.init(F1:o 2)

T :15 Set.add(F1:o 2)

Iterator.init(F1:o 3,F2:null)
T :1 Iterator.init(F1:o 1,F2:null)
T :1

Set.Iterator(F1:o 2, O1:o3)
T :2 Iterator.init(F1:o 3, F2:o2)
T :11

o1 o2 o3

T :11 Set.Iterator(F1:o 2, O1:o1)
T :2 Iterator.init(F1:o 1, F2:o2)

Iterator.next(F1:o 1, E1:o2)
T :6

Iterator.next(F1:o 3, E1:o2)

T :6

T :12 Set.Iterator(F1:o 2, O1:o1)
T :3 Iterator.init(F1:o 1, F2:o2)

T
R1 S2 R1

T

F
R2 S3 R2

F

T :16 Set.add(F1:o 2)

R0 S0

R0 S1

o1 o2

R1 S2

T :15 Set.add(F1:o 2)

R2 S3 T :17 Set.add(F1:o 2)

T :7 Iterator.next(F1:o 1, E1:o2)

T :11 Set.Iterator(F1:o 2, O1:o1)
T :2 Iterator.init(F1:o 1, F2:o2)

T :16 Set.add(F1:o 2)

T :10 Set.init(F1:o 2)

T :1 Iterator.init(F1:o 1,F2:null)

T :6 Iterator.next(F1:o 1, E1:o2)

T

F

FAIL

FAIL

(a)

T :16 Set.add(F1:o 2)

Transition T/F Buddy

. . .
Heap State

FT

FAIL

FAILFAIL

FAIL FAIL

FAIL

(b)

F T
R4 S4 R3

R0 R0

T :

Figure 10: Exploring the heap state space for the Set-Iterator example.

tion will apply, and hence the resultant typestates that each
participating object will be in. A client verifier “executes” a
sequence of method calls by applying a series of transitions
as dictated by the client program and the object typestates
at the beginning of each step. Consider the Set-Iterator

client program described in the introduction. We show be-
low how a client verifier would determine that the program
will lead to an error.

client code transition applied
s = new Set() T10 s:S0 → S1

i = s.Iterator() T11 s:S1 → S2, i:R0 → R1

s.add() T16 s:S2 → S3, i:R1 → R2

i.next() T7 i:R2 → FAIL

For this example to work correctly, the client verifier needs
to keep track of the fact that the call i = s.Iterator()

puts t in a buddy B1 location of Set.add().
The next example shows how aliasing context can influ-

ence the outcome of a sequence of method calls.

client code transition applied
c = new C() T1 c:C0 → C1

a = new A() T6 a:A0 → A1

a.set(c) T14 a:A1 → A2, c:C1 → C1; a.f → c

a.set(c) T18 a:A2 → A3, c:C1 → C2

a.done() T12 a:A3 → fail, c:C2 → fail

Here the first call to a.set(c), sets up causes a.f to alias
c. In the second call to a.set(c), the client must use the

transition T18—which recognizes aliasing of locations F2 and
E1—and not T17.

Parent Transitions.Transitions capture the typestate chan-
ges at each location that participates in a method call. They
do not capture the indirect effect on objects that point to
any of the objects participation in a call. The typestate
changes of these “parent” objects must be computed by a
client verifier. Consider the set of method calls

client code transition applied
c = new C() T1 c:C0 → C1

a = new A() T6 a:A0 → A1

a’ = new A() T6 a’:A0 → A1

a.set(c) T14 a:A1 → A2, c:C1 → C1; a.f → c

a’.set(c) T14 a’:A1 → A2, c:C1 → C1; a’.f → c

a.done() T11 a:A2 → A3, c:C1 → C2

The transition T11 indicates that c goes from C1 to C2 and
(as a result) a goes from A2 to A3. It does not capture the
effect of the transition c:C1 → C2 on the a’ object, which
here is the “parent” of c, a’.f → c. A subsequent call to
a’.run() might assume that a’ is still in typestate A2 and
erroneously infer that the call will succeed.

To handle such parent transitions, the client verifier needs
to do the following: whenever it accesses an object, it uses
the parent-child bindings generated thus far to check if any
child (or descendant) object has changed typestate. It must
then re-evaluate the parents’ current typestate before deter-

τ pred-value field-typestate

typestates for objects of type Set

S1 P5 = F
P8 = T

S2 P4 = T
P5 = F
P8 = T

S3 P4 = F
P5 = F
P8 = T

S4 P4 = *
P5 = F
P8 = T

typestates for objects of type Iterator

R1 P2 = F %.set → S2
P4 = T
P6 = F

R2 P2 = F %.set → S3
P4 = F
P6 = F

R3 P2 = F %.set → S4
P4 = T
P6 = F

R4 P2 = F %.set → S4
P4 = F
P6 = F

(a) typestates for Set and Iterator.

Id / function locations aliases
Iterator.init F1 F2 B1: P4(?, F2)

T1 R0 → ? S0 → ?
T2 R0 → R1 S1 → S2
T3 R0 → R1 S2 → S2 R1 → R1
T4 R0 → R3 S3 → S4 R2 → R4
T5 R0 → R3 S4 → S4 R3 → R3, R4 → R4

Iterator.next F1 E1: F1.set B1: P4(?, E1)

T6 R1 → R1 S2 → S2 R1 → R1 (F1,B1)
T7 R2 → ? S3 → ? R2 → ? (F1,B1)
T8 R3 → R3 S4 → S4 R3 → R3, R4 → R4 (F1,B1)
T9 R4 → ? S4 → ? R3 → ?, R4 → ? (F1,B1)

Set.init F1

T10 S0 → S1

Set.Iterator F1 O1 B1: P4(?, F1)

T11 S1 → S2 R0 → R1
T12 S2 → S2 R0 → R1 R1 → R1
T13 S3 → S4 R0 → R3 R2 → R4
T14 S4 → S4 R0 → R3 R3 → R3, R4 → R4

Set.add F1 B1: P4(?, F1)

T15 S1 → S1
T16 S2 → S3 R1 → R2
T17 S3 → S3 R2 → R2
T18 S4 → S3 R3 → R2, R4 → R2

(b) Transition maps. Since B1 is a multi-location, the alias (F1, B1) indicates
that some locations in B1 are aliased to F1.

R0 R1 R2

R3

T (F1),2 T (F1),3

T (O1),11 T (O1)12

T (F1)6
T (B1)3

T (B1)16 T (B1),4

T (F1),5T (F1),4

T (O1)14T (O1),13

T (B1)18

T (F1),8 T (B1),5

R4
T (B1)18

FAILFAIL

S0 S1 S2 S3 S4
T (F1)10

T (F1)15

T (F2),2 T (F1)11

T (F2)3

T (F1)12

T (F1)16

T (F1)17

T (F2),4 T (F1)13

T (F2)5

T (E1)8

FAIL FAIL

T (E1)6

T (F1)14

T (F1)18

NPENPE

T (F2)1

T (B1)14

T (B1)13

T (B1)12

T (F1)7T (F1)1 T (F1)9 T (F2)7 T (F2)9

(c) Object State Transitions for Iterator and Set.

Figure 11: Set-Iterator example. Predicate summary: P2(r : Iterator) :: (r=null), P4(r : Iterator, s : Set) ::
(r.ts = s.version), P5(s : Set) :: (s=null), P6(r : Iterator) :: (r.set=null), P8(s1 : Set, s2 : Set) :: (s1.version =
s2.version).

mining which transition to apply. In the example above, be-
fore executing a’.run(), the client verifier determines that
a’.f is now in typestate C2 and hence a’ is in typestate A3

and the applicable transition is T12, which results in failure.

Recursive Data Structures.We need to bound the type-
states generated for recursive data structures and this may
lead to some loss of information. In the List example, start-
ing with an initialized List object in typestate L1, successive
calls to append takes the List object from L1 to L2 to L3 to
L4 and subsequent calls to append does not further change
the typestate of the List object. From typestate L4, there
are two transitions T8 and T9 on a call to remove. When the
client verifier finds a situation where more than one possible
transition is applicable, it may return conservative results.

6. RESULTS
In this section we briefly describe more examples that we

tested our algorithm against, though due to space limita-
tions we do not show the transition diagrams. We ran the
examples on an Intel based Linux machine (2.2 GHz, 2GB
RAM). We report the time to execute the various compo-
nents of the algorithm.

Sample Programs.In addition to the A-C example, the
List example and the Set-Iterator example that have
been extensively described in the text we ran our imple-
mentation on the following test examples: The Grabbed

Resource Problem (GRP) example described in the Can-
vas paper [15] throws an error if there is more than one
simultaneous traversal of a graph. The TooManyListeners

(TML) example is an emulation of the DropTarget class from

τ pred-value field-typestate

typestates for objects of type Element

M1 P1 = F %.next → M0
P3 = T

M2 P1 = F %.next → M1
P3 = F

M3 P1 = F %.next → M2,M3
P3 = F

typestates for objects of type List

L1 P2 = T %.head → M0
P4 = F

L2 P2 = F %.head → M1
P4 = F

L3 P2 = F %.head → M2
P4 = F

L4 P2 = F %.head → M3
P4 = F

(a) typestates for Element and List.

Id / function locations
Element.init F1

T1 M0 → M1

List.init F1

T2 L0 → L1

List.append F1 O1 E1: F1.hd E2: F1.hd.next

T3 L1 → L2 M0 → M1 M0 → M1 → M0
T4 L2 → L3 M0 → M1 M1 → M2 M0 → M1
T5 L3 → L4 M0 → M1 M2 → M3 M0 → M1, M1 → M2
T6 L4 → L4 M0 → M1 M3 → M3 M0 → M1, M1 → M2, M2 → M3
T7 L4 → L4 M0 → M1 M3 → M3 M0 → M1, M1 → M2, M2 → M3, M3 → M3

List.remove F1 E1: F1.hd E2: F1.hd.next

T8 L4 → L4 M3 → M3 M3 → M3, M2 → M2, M1 → M1
T9 L4 → L3 M3 → M3 M2 → M2, M1 → M1
T10 L3 → L2 M2 → M2 M1 → M1
T11 L2 → L1 M1 → M1
T12 L1 → ? M0 → ?

(b) Transition maps.

null

nextnext next next

o4 o3 o2 o1

next:[M3]

P1(this): F

next:[M2]

M3
P1(this): F

next:[M1]

M2
P1(this): F

next:[null]

M1
P1(this): F

NULLM3

P3(this): TP3(this): FP3(this): FP3(this): F

(c) Typestates for Element.

L0 L4L3L2L1

FAIL

T (F1)2 T (F1)3 T (F1)4 T (F1)5

T (F1)9T (F1)10T (F1)11T (F1)12

T (F1)8

T (F1)7

T (F1)6

(d) Object State Transitions for List.

Figure 12: List example. Predicate summary: P1(e : Element) :: (e=null), P2(l : List) :: (l.head=null), P3(e :
Element) :: (e.next=null), P4(l : List) :: (l=null).

τ pred-value field-typestate

typestates for objects of type C

C1 P2 = T
P3 = F

C2 P2 = F
P3 = F

typestates for objects of type A

A1 P4 = T %.f → C0
P5 = F

A2 P4 = F %.f → C1
P5 = F

A3 P4 = F %.f → C2
P5 = F

(a) typestates for C and A.

FAIL FAIL

A0

6T (F1)

A1 T (F1),T (F1),10 137 T (F1)

C0

1T (F1)

T (F2,E1),18T (E1),17 T (E1)19

T (F1),4 T (E1),11 T (E1),16

T (F1),3 5T (F1),T (E1),9 T (E1),12
T (E1),20 T (E1),21 T (E1)22

14T (F1) 15T (F1)

A3A2

T (F1)

T (F1),11 T (F1),18 T (F1)19

T (F1)8

T (F1)17

T (F1),9 T (F1),12 T (F1),20 T (F1),21 22

16

T (F1)

C1 T (F2),17 T (E1)8

T (F2),14T (F1),2

C2 T (F2),19T (F2),15

(b) Object State Transitions for A and C.

Id / function locations aliases
C.init F1

T1 C0 → C1

C.run F1

T2 C1 → C1
T3 C2 → ?

C.dispose F1

T4 C1 → C2
T5 C2 → ?

A.init F1

T6 A0 → A1

A.run F1 E1: F1.f

T7 A1 → A1 C0 → C0
T8 A2 → A2 C1 → C1
T9 A3 → ? C2 → ?

A.done F1 E1: F1.f

T10 A1 → A1 C0 → C0
T11 A2 → A3 C1 → C2
T12 A3 → ? C2 → ?

A.set F1 F2 E1: F1.f

T13 A1 → A1 C0 → C0 C0 → C0
T14 A1 → A2 C1 → C1 C0 → C0
T15 A1 → A3 C2 → C2 C0 → C0
T16 A2 → A1 C0 → C0 C1 → C2
T17 A2 → A2 C1 → C1 C1 → C2
T18 A2 → A3 C1 → C2 C1 → C2 (F2,E1)
T19 A2 → A3 C2 → C2 C1 → C2
T20 A3 → ? C0 → ? C2 → ?
T21 A3 → ? C1 → ? C2 → ?
T22 A3 → ? C2 → ? C2 → ?

(c) Transition maps.

Figure 13: A-C example. Predicate summary: P1(α : int) :: (α=0); P2(c : C) :: (c.disposed=0); P3(c : C) :: (c=null);
P4(a : A) :: (a.f=null); P5(a : A) :: (a=null).

Sample EA CD Slicing AI
A-C 0.091 0.006 0.025 0.806

Set-Iterator 0.357 0.005 0.112 1.07
GRP 0.370 0.004 0.033 0.434

TooManyListeners 0.043 0.004 0.087 0.404
Queue 0.356 0.004 0.026 0.487
Stack 0.328 0.004 0.021 0.435

List Traversal 0.363 0.006 0.025 0.735

Table 5: Computation time in seconds

Sample Number of Heap Objects
A-C 3 A, 4 C

Set-Iterator 5 Set, 6 Iterator, 6 Version

GRP 4 Graph, 4 Iterator

TooManyListeners 4 DropTarget, 4 Listener

Queue 7 Element, 3 Queue

Stack 7 Element, 3 Stack

List Traversal 7 Element, 3 List

Table 6: Size of heap space

java.awt that permits one and only one Listener to be reg-
istered on the particular event listener source concurrently.
The Stack and Queue examples are standard implementa-
tions of data structures, and along with the List, were used
to evaluate how our implementation handles recursive data
structures.

Implementation Details.Our algorithm was built on top
of a standard Java bytecode analyzer that takes Java byte-
code and builds the control flow graph with all local vari-
ables in SSA form. Our algorithm consists of the following
components - (i) Escape Analysis, (ii) Computing the con-
trol dependence, (iii) Slicing and Boolean Code Generation,
and (iv) Abstract Interpretation and Client Emulation. Ta-
ble 5 gives the compute times for each of the components
for the sample programs described in this paper.

Table 6 shows the number of heap objects of each type
that were generated for each of the examples. The number
of objects ranges from 8 to 17. This shows that a relatively
small heap space suffices to reason about these programs.

Although the running time is pretty reasonable for small
examples, it is clear that scalability will be a concern for
larger components. In future work, we plan to work with
larger components and devise techniques for trading off pre-
cision with scalability.

7. RELATED WORK
Building on the early work on typestates [17], recent work

has applied typestates to objects. In [8] a typestate system
is presented that takes into account states of nested objects
as well; however, unrestricted inter-object references are not
permitted. In [11], a very general typestate system is pre-
sented in which typestate is expressed as membership in cer-
tain sets. This work can account for inter-object references
in a fairly general way. However, in both these systems the
typestate specification is entirely manual. The component
writer must specify the preconditions and postconditions for
each method. In contrast, our work attempts to create rele-
vant typestates automatically based on a given reachability
criterion.

A tool presented in [9] uses a built-in set of predicates to
derive abstract object states, called roles, that are of interest
to the programmer. In addition to being limited to the
build-in predicates, the tool does not use static analysis;
instead, it executes an instrumented version of the program
and tracks the transitions that can be observed. The user
is then expected to manually coarsen the abstraction, thus
creating “role subspaces”, in order to obtain usable problem-
specific information. In contrast, the goal of this work is to
automatically generate useful, problem-specific information
using static analysis of a component.

Automatically determining specifications that describe le-
gal call sequences for object-oriented components was pio-
neered by [18]. However, their work does not support alias-
ing and focuses on a single object. Their approach was also
severely limited in the amount of context that could be ex-
pressed in the interface specification: the specification only
described constraints based on the last method invoked on
the component. The Jist [2] project improves on this tech-
nique by allowing the programmer to select the amount of
context captured in the specification with a parameter k,
resulting in a finite state machine with at most k states.
Jist work does not account for the behavior of inter-object
references. However, Jist takes certain steps to synthesize
an interface that is easily understood. We might be able to
leverage the Jist techniques to go from the heap state space
to a readable interface specification.

An alternative approach [10] uses iterative, counter-example
driven iterative refinement to create a safe and permissive
but also possibly much larger interface. This approach sep-
arates the abstraction refinement for showing safety and
permissiveness, which helps in obtaining parsimonious ab-
stractions. While the described algorithm can be applied
to components that use references, it is only guaranteed to
terminate if the state of the component is finite.

The Canvas work [15] tries to create abstractions of pro-
vided components, using which client code can be checked
for conformance. Canvas uses programmer supplied predi-
cates to base predicate abstraction. Their focus is also on
aliasing properties, and the Set-Iterator example in our work
is inspired by their work. Canvas does not create object
typestates–it is not its purpose. Rather, Canvas inlines a
method’s abstraction—essentially a boolean program—with
abstracted client code and then uses TVLA [12] to verify
correct usage in the client. By contrast, for limited vari-
ety of predicates, we construct method preconditions and
postconditions without any client code being given.

The goal of shape analysis [12, 16] is finding precise heap
abstractions that can model aliasing relationships between
objects. The heap abstraction used by the three value logic
analyzer (TVLA) system [12] uses a set of binary abstrac-
tion predicates to decide which objects should be summa-
rized with only one node in the heap abstraction. For each
of these nodes, TVLA then keeps 3-valued (true, false, un-
known) information about various other predicates of inter-
est. Similar to the work presented in this paper, TVLA
uses abstract interpretation over a heap abstraction that
is based on predicates to statically analyze programs. In
contrast to our work, TVLA’s abstract interpreter oper-
ates on an abstracted heap; our interpreter operates on
concrete heaps and only uses the abstraction function to
bound the exploration of the concrete synthetic heaps. Us-
ing concrete synthetic heaps for the interpretation has the

advantage that summary nodes can be avoided since all ref-
erences are “must” pointers. However, using predicates on
summary nodes TVLA is theoretically able express more
general properties, in particular those that involve transi-
tive closure. Since the predicate discovery used in this paper
will not generate such predicates, this potential advantage
is insignificant for the problem at hand.

Automatic discovery of predicates has previously done us-
ing counterexample-guided abstraction refinement [4, 6, 7].
In those analyses the algorithm checks if the counterexample
that was found when trying to verify a property is spurious,
and if so uses those spurious counterexamples to iteratively
construct a refined abstraction. These analyses are typically
limited to a fixed, finite abstract domain of cartesian prod-
ucts of boolean values. In the domain of shape-analysis [12,
16], recent work [13] described an algorithm that iteratively
breaks the verification condition down into smaller abstrac-
tion predicates. In contrast, the work presented in this pa-
per does not use complex programmer-provided verification
conditions but uses reachability as the only input beyond
the code itself.

8. CONCLUSION
We presented a new static analysis to derive relevant ob-

ject typestates in the presence of inter-object references. Ob-
ject typestates contain predicates on an object’s local state
as well as on the state of the objects it may refer to. This
is important in order to be able to account for side-effects
that inter-object references may cause. Our analysis works
in three parts. It first uses reachability of a certain pro-
gram point as the criteria for predicate discovery. It then
performs predicate abstraction to convert each input met-
hod to a boolean program. Finally, it uses client emulation
to explore heap states that help discover distinct typestates
and transitions. This analysis enables further applications
such as client code verification.

In future work, we plan to devise ways to infer an interface
specification for each component from the heap state space.
Such specification would then be used for statically checking
client code for correct use of the component.

9. REFERENCES
[1] http://www.eclipse.org/, 2004.

[2] R. Alur, P. Cerny, P. Madhusudan, and W. Nam.
Synthesis of interface specifications for java classes. In
POPL ’05: Proceedings of the 32nd ACM
SIGPLAN-SIGACT sysposium on Principles of
programming languages, pages 98–109. ACM Press,
2005.

[3] T. Ball, R. Majumdar, T. D. Millstein, and S. K.
Rajamani. Automatic predicate abstraction of C
programs. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 203–213,
2001.

[4] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. Lecture Notes
in Computer Science, 2057:103+, 2001.

[5] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar,
and S. Midkiff. Escape analysis for Java. In ACM
Conf. on Object-Oriented Programming Systems,
Languages, and Applications, 1999.

[6] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-Guided Abstraction
Refinement. In Computer Aided Verification, 2000.

[7] S. Das and D. L. Dill. Counter-example based
predicate discovery in predicate abstraction. In
Formal Methods in Computer-Aided Design.
Springer-Verlag, November 2002.

[8] R. DeLine and M. Fahndrich. Typestates for objects,
2004.

[9] B. Demsky and M. Rinard. Role-based exploration of
object-oriented programs. In ICSE ’02: Proceedings of
the 24th International Conference on Software
Engineering, pages 313–324, New York, NY, USA,
2002. ACM Press.

[10] T. A. Henzinger, R. Jhala, and R. Majumdar.
Permissive interfaces. In Proceedings of ACM
Conference Foundations of Software Engineering,
2005.

[11] P. Lam, V. Kuncak, and M. Rinard. Generalized
typestate checking using set interfaces and pluggable
analyses. ACM SIGPLAN Notices, 39(3):46–55, March
2004.

[12] T. Lev-Ami and M. Sagiv. TVLA: A system for
implementing static analyses. In SAS ’00: Proceedings
of the 7th International Symposium on Static
Analysis, volume 1824 of Lecture Notes in Computer
Science, pages 280–301. Springer-Verlag, 2000.

[13] A. Loginov, T. Reps, and M. Sagiv. Abstraction
refinement for 3-valued-logic analysis. Technical
report, University of Wisconsin, Madison, WI, April
2004.

[14] M. G. Nanda and S. Ramesh. Pointer analysis of
multithreaded Java programs. In Proceedings of the
ACM Symposium on Applied Computing, 2003.

[15] G. Ramalingam, A. Warshavsky, J. Field, D. Goyal,
and M. Sagiv. Deriving specialized program analyses
for certifying component-client conformance. In PLDI
’02: Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and
implementation, pages 83–94. ACM Press, 2002.

[16] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Transactions on
Programming Languages and Systems, 24(3):217–298,
2002.

[17] R. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability.
IEEE Transactions on Software Engineering, 12(1),
1986.

[18] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
extraction of object-oriented component interfaces. In
Proceedings of the International Symposium of
Software Testing and Analysis., 2002.

	Introduction
	Preparatory Analysis
	Predicate Abstraction
	Predicates
	Predicate Generation
	Intraprocedural Propagation
	Interprocedural Propagation

	Boolean Methods
	Abstracting the Heap
	Typestates
	Transitions
	Defining an Abstract Heap State Space
	Creating the Abstract Heap State Space
	Examples
	Using Abstract Heap State Space for Client Code Checking

	Results
	Related Work
	Conclusion
	REFERENCES -9pt

