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Abstract. We present a variation of the visitor pattern which allows
programmers to write visitor-like code in a concise way. The Runabout
is a library extension that adds a limited form of multi-dispatch to Java.
While the Runabout is not as expressive as a general multiple dispatch-
ing facility, the Runabout can be significantly faster than existing im-
plementations of multiple dispatch for Java, such as MultiJava. Unlike
MultiJava, the Runabout does not require changes to the syntax and the
compiler.

In this paper we illustrate how to use the Runabout, detail its implemen-
tation and provide benchmarks comparing its performance with other
approaches.

1 Introduction

A fundamental problem in programming language design is to make software
extensible while avoiding changes to existing code and retaining static type safety
[19]. For example, we may want to add functionality that operates on a number
of existing objects, or we may want to introduce a new object to existing code.
For such purposes, a strength of object-oriented programming is that it is easy to
introduce a new class. Adding functionality to existing classes is more difficult,
particularly because this typically requires access to the source code. It also may
be undesireable to add the functionality to all subclasses.

Extensibility Problem: Devise a mechanism for adding functionality
and classes to existing code while avoiding recompilation and retaining
efficiency and static type safety.

One traditional solution to this problem is to use the visitor pattern [14]. The
visitor pattern allows adding functionality in the form of visit methods that
are invoked from an accept method which is defined in each visitee object. The
accept is only specific with respect to the type of an abstract visitor. Visitors
do not completely solve the extensibility problem. If the set of visitee classes
changes, the type of the abstract visitor changes. Using visitors, it becomes
more difficult to change the set of visitees since all visitors must be adjusted
to provide a visit method matching the visitee types. Another solution to the
extensibility problem is to use multi-methods which allow both new functionality



and new classes to be added in a flexible and concise manner. The Runabout is a
step towards achieving many of the benefits of multi-methods without requireing
a new language.

In this paper we address the extensibility problem for Java, giving a solution
that does support changing sets of visitee types, and provides both acceptable
performance (only 2-10 times slower than visitors) and the minimum amount of
programming effort. Our solution is based on an approach that was proposed
by Palsberg and Jay [26] called Walkabout. Their approach takes advantage of
Java’s reflection mechanism to implement double-dispatch.

The Runabout presented in this paper is an extension of the Java libraries
that adds two-argument dispatch to Java. The Runabout is itself implemented
in Java (without any native methods). The code for the Runabout is about
1,000 lines of code, which is available on our webpage. Like the Walkabout [26],
the Runabout uses reflection to find visit methods. But instead of invoking the
visit methods with reflection, the Runabout uses dynamic code generation to
create verifying bytecode that will invoke the appropriate visit method. The
dynamically generated bytecode is type-safe and can be analyzed and optimized
by the compiler.

Generating bytecode for multi-dispatching is also what the MultiJava com-
piler [7] does. MultiJava compiles Java with multi-methods to ordinary Java
bytecode. Unlike MultiJava, the Runabout generates the invocation code when
the application is executed, not at compile time. Thus the Runabout does not
require changes to the compiler or the virtual machine. Contrary to previous
beliefs [26], the approach using reflection to determine visit targets does not au-
tomatically imply an extraordinary run-time overhead. In fact, for 100 million
visit invocations on 2,000 visitee classes, the Runabout is slower by less than a
factor of two compared to visitors (217s vs. 137s).

The remainder of the paper is structured as follows. First, an example for
programming with runabouts is given and the semantics of the Runabout are
described in detail. In section 3 the implementation of the Runabout is pre-
sented. Performance evaluations are detailed in section 4. Section 5 discusses
some related work.

2 Using the Runabout

Writing runabouts is similar to writing visitors or using multi methods. In order
to demonstrate how to write code with Runabouts, an example that imple-
ments the same functionality using dedicated methods, visitors, MultiJava and
the Runabout is first presented. Next, the semantics of the visitAppropriate
method of the Runabout are described. Then the specific benefits and draw-
backs of each of the implementations in terms of expressiveness and restrictions
imposed on the programmer are discussed.



2.1 A simple example

For our example, we are going to use a set of visitee classes A; that implement
the common interface A. Given an array a of instances of type A, the goal is to
compute » . 4 I(a) where I(a) =i if a is of type A;.

Dedicated methods Dedicated methods can be used to solve the problem
efficiently. The problem with dedicated methods is, that for every operation
that is to be performed on the visitee classes, a method must be added to each
of the visitee classes. This spreads the code used by a particular operation over
many classes and makes it often hard to maintain. Fig. 1 shows the solution
using a dedicated method.

interface A {
int dedicated ();

}

class A0 implements A {
int dedicated () { return 0; }

}

class Al implements A {
int dedicated () { return 1; }

}

class A2 implements A {
int dedicated () { return 2; }

}
long run(A[] a) {
long sum = 0;
for (int j=0;j<a.length;j++)
sum += a[j].dedicated ();
return sum;

}

Fig. 1. The visitee classes with a dedicated method (dedicated).

Cascading conditionals Another possibility would be to use a sequence of
instanceof tests, which is certainly impractical for larger numbers of visitee
types and requires modification each time a visitee is added (Fig. 2).

Visitors Fig. 3 details the code for expressing a solution with visitors. The
example uses overloading for the visit methods. Overloading is not needed for
visitors and it is used here to emphasize the similarities with MultiJava and the
Runabout. For simplification, we assume here that only one visitor is being used
and that thus there is no need for a visitor interface for the accept methods
to dispatch upon. In practice, the code would consist of multiple visitors for
multiple computations that would be performed over the visitee objects.



interface A {}

class A0 implements A {}
class Al implements A {}
class A2 implements A {}
long run(AJ[] a) {

long sum = 0;
for (int j=0;j<a.length;j++) {
Aaj =aljl;

if (aj instanceof A2)
sumInstanceof += 2;

else if (aj instanceof Al)
sumInstanceof += 1;

else if (aj instanceof A0)
sumlInstanceof += 0;

else
throw new Error(” Illegal._call”);

}

return sum;

}

Fig. 2. No changes to the visitees are required with cascading conditionals.

interface A {
void accept(Visitor v);
}
class A0 implements A {
void accept(Visitor v) { v.visit(this); }
}
class Al implements A {
void accept(Visitor v) { v.visit(this); }

class A2 implements A {
void accept(Visitor v) { v.visit(this); }
}
class Visitor {
long sum = 0;
public void visit (A0 a) { sum
public void visit (Al a) { sum
public void visit (A2 a) { sum
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long run(A[] a) {
Visitor v = new Visitor ();
for (int j=0;j<a.length;j++)
a[j].accept(v);
return v.sum;

}

Fig. 3. Visitors require accept methods in the visitees.



Multi-methods An implementation using MultiJava (Fig. 4) does not require
the accept methods. Instead, the compiler can see that multi-dispatch is declared

(@) and generates code to invoke the appropriate visit method.

interface A {}

class A0 implements A {}
class Al implements A {}
class A2 implements A {}

class MultiJavaSum {

}

long sum = 0;

public void visit
public void visit
public void visit
public void visit

A a) { throw new Error (); }
AQAQ a) { sum += 0; }

AQAl a) { sum +=1; }
AQA2 a) { sum += 2; }

Py

long run(A[] a) {

}

MultiJavaSum v = new MultiJavaSum ();

for (int j=0;j<a.length;j++)
v.visit(a[j]);

return v.sum;

Fig. 4. MultiJava indicates multi-dispatch using minimal changes to the syntax.

Runabouts The Runabout code (Fig. 5) is somewhere between visitors and
MultiJava. The visit methods do not require any additional syntax; all that
is required is that the class extends Runabout and that visitAppropriate (a
method provided by the parent class) is invoked instead of visit. As in Multi-
Java, no accept method is required in the visitees.

public class A0 {}
public class Al {}
public class A2 {}
public class RunaboutSum extends Runabout {

}

long sum = 0;
public void visit (A0 a) { sum
public void visit (Al a) { sum
public void visit (A2 a) { sum
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long run(Object [] a) {

}

RunaboutSum v = new RunaboutSum();

for (int j=0;j<a.length;j++)
v.visitAppropriate(a[j]);

return v.sum;

Fig. 5. Runabouts extend the Runabout class to inherit visitAppropriate.



2.2 Semantics

In order to create a Runabout, the client code must create a public subclass of
Runabout. The Runabout class provides the method visitAppropriate which
can be used for two-argument dispatch. The two-arguments of the two-argument
dispatch are the receiver of visitAppropriate and the first and only argument
of visitAppropriate. The callee of the dispatch is determined by the lookup
method.

visit Appropriate The callee in the dispatch performed by visitAppropriate
is either visitDefault or exactly one of the visit methods defined in or inher-
ited by the class of the receiver. The concrete selection of the visit method is
performed by the lookup function, which, given a Class, returns Code to invoke
one of the visit methods. lookup(T) may only select non-static visit meth-
ods that have a return type of void and take only a single argument of public
type S where S must be a supertype of T. lookup may return null in which
case visitDefault is invoked. If not overridden, visitDefault throws a run-
time exception to indicate that no visit method was found. lookup may also
throw run-time exceptions (for example, to indicate ambiguities in the method
resolution).

Note that visitAppropriate does not require that all visit methods have a
common base-class other than Object. Thus the Runabout does not require the
interface A that most of the other implementations use to declare the dedicated
method, to declare the accept method, or as a help for the type system in the
form of the Ae.

The fact that the Runabout does not require accept methods or a common
interface in the visitees is often beneficial when dealing with code where adding
an accept method is not possible, like for String. A simple example for this is
given in Fig. 6.

public static void main(String [] arg) {
MyRunabout mr = new MyRunabout ();
mr. visitAppropriate (” Hello” );
mr. visitAppropriate (new Integer (1));
assertTrue (mr.cnt == 3);

public class MyRunabout extends Runabout {
int cnt = 0;
public void visit (String s) { cnt += 2; }
public void visit (Integer i) { cnt += i.intValue(); }

}

Fig. 6. Using the Runabout on any kind of visitee.



lookup Which visit method is invoked by visitAppropriate is specified by
the lookup strategy that is implemented by lookup. Defining a lookup strategy
is similar to defining how a compiler (like javac) resolves method invocations
for overloaded methods [15, section 15.11.2]. The main difference is that instead
of the static type, the dynamic type of the argument object is used. As with
overloading, multiple methods may be applicable. In the case of javac, the
method with the closest matching signature is chosen, and a compile-error is
generated in the case of ambiguities.

Client code can define a specific lookup strategy by overriding the lookup
function'. As an input, the lookup function is passed the dynamic type of the
object on which the dispatch takes place. The dynamic type is a node in the
inheritance hierarchy (a directional acyclic graph), which can then be traversed
by the function to find a matching type for which a visit method exists. A simple
example for an implementation of lookup that does not consider interfaces is
given in Fig. 7. The helper method getCodeForClass (c) tests if a visit method
for the type c exists and if so returns the Code instance for that visit method.

protected Code lookup (Class c¢) {
while (¢ != null) {
Code co = getCodeForClass(c);
if (co != null)
return co;
¢ = c.getSuperclass();

}

return null;

}

Fig. 7. Example of a 1lookup method.

The Runabout has the following default lookup strategy. If visit methods for
both classes and interfaces are applicable to the given dynamic type, the visit
method for the class closest to the dynamic type is chosen. If no visit method for
a superclass of the dynamic type exists and if there is only one visit method
matching any of the interfaces implemented by the dynamic type, then that
visit method is selected. If visit methods for multiple interfaces implemented
by the dynamic type (but none for its parent classes) exist, a run-time exception
indicating the ambiguity is thrown. If no applicable visit method exists at all,
null is returned, causing the invocation of visitDefault.

! Functions are methods that do not access any state except for the arguments and that
have no side-effects. We restrict the lookup strategy to a function since this restriction
allows a static checker to verify that the lookup strategy always succeeds when run
in a closed-world setting. This is not a significant restriction since a lookup strategy
that depends on the state of the application is likely to have an unexpected behavior
for the programmer and thus such a design should in fact be made impossible for
other reasons.



2.3 Discussion

The Runabout as described so far is more expressive than typical visitors and
has fewer requirements for the visitees. Primarily, the Runabout does not re-
quire accept methods in the visitees. On the other hand, additional restrictions
imposed by the Runabout are that all the visitee classes and all subclasses of
Runabout must be public (the Runabout must internally cast to these types) and
that all visit methods must be public. These restrictions are minor since if the
visitees are legacy code, the classes are probably already public; adding accept
methods (or even dedicated methods) would typically be much harder. Mak-
ing the subclass of Runabout or its visit methods public is even less likely to
be a problem. A slightly more limiting constraint is that the Runabout requires
visit methods to return void and take just one argument. A more sophisticated
implementation should be able to relax this requirement.

MultiJava does not impose restrictions on the access modifiers, the special-
ized compiler takes care of these problems. Extending the language has the
advantage that MultiJava is more expressive than any other solution. For ex-
ample, it is possible to dispatch on more than one argument. MultiJava also
does not have the requirement that the methods that are multi-dispatched are
named visit, which also allows MultiJava to support many multiply-dispatched
method families in the same class.

While the Runabout could be extended to allow names other than visit,
we feel that in practice this limitation will hardly ever be a problem and that
in fact several multi-dispatch method families in the same class without any
syntax to mark these methods would instead likely confuse programmers. Mul-
tiJava’s approach of extending the Java syntax solves this problem but prevents
users from deploying other language extensions like GJ [2] or Aspect] [18] in
the same code. The current implementation of MultiJava uses linear sequences
of instanceof tests, making the tool impractical for large numbers of visitee
classes. We expect that a better implementation of MultiJava will take care of
this major performance issue.

A drawback of visitors is that they often require writing excessive amounts
of trivial code. All visit methods must be declared in a base-class (or interface)
which is used by the accept method. The accept methods themselves can be
tedious if the code has many visitees. Also, the visitor pattern is less expressive
than the Runabout since it requires the programmer to occasionally add addi-
tional code to perform the intended dispatch. For example, suppose some of the
visitee types form a hierarchy where A, B and C represent similar visitees and
thus extend the common parent P. In this case, the visit methods for P, A, B and
C are sometimes identical. In the case of the Runabout, only one visit method
for P needs to be implemented, the lookup for A, B and C will automatically
result in the invocation of visit (P). For visitors, either the code is replicated
or the default visitor pattern [17] where visit(A a) calls this.visit((P)a);
must be used, forcing the user to write additional methods that merely indirect
the control flow.



3 Implementation

In this section, we describe our implementation of Runabout. In particular,
we describe how the constructor builds the dynamic code map and how the
visitAppropriate method uses that map to invoke the appropriate visit
method. We then discuss extensions to the core functionality, such as handling
of primitive visitees and addition of visit methods that are not declared in the
subclass of Runabout.

3.1 The dynamic code map

Central to the implementation of the Runabout is the dynamic code map. This
hash table maps the dynamic type of the argument to an implementation of
Code (see Fig. 8), an abstract class. Instances of Code are stateless and can be
seen as the Java equivalent of C function pointers. The virtual method table of
the code objects refers to a piece of code that is to be invoked for arguments of
the corresponding dynamic type.

The constructor of Runabout scans the Runabout class (using reflection) and
creates a specialized object of type Code for every visit method that is found. The
class for each instance of Code (Fig. 8) is generated on-the-fly and dynamically
loaded into the VM using Java’s class-loading mechanism. The generated code
is illustrated best with an example. If the concrete instance of Runabout is of
type RunaboutExample and the visit method takes String as the argument, the
dynamically generated code will correspond to the Java code in Fig. 9. The X is
replaced with a unique number to avoid name-clashes. An instance of GenCodeX
is instantiated and installed in the dynamic code map.

public static abstract class Code {
public abstract void visit (Runabout r, Object o);
}

Fig. 8. The Code class is an inner class of the Runabout that defines the interface
for the dynamically generated and loaded code tunks.

class GenCodeX
extends Runabout.Code {
public void visit (Runabout r, Object o) {
((RunaboutExample) r). visit (( String)o);

}

Fig. 9. Source equivalent of the code that is dynamically generated code when
reflection finds the method RunaboutExample.visit(String). An instance of
this type is returned by map.get (String.class) in visitAppropriate.



3.2 Lookup

The implementation of Runabout.visitAppropriate is now simple (Fig. 10).
visitAppropriate does a get on the dynamic code map, to find an object of
type Code. If no matching code is found, the lookup procedure is invoked to find
a matching piece of code and the dynamic code map is updated. Finally, the
code found in the code map is invoked. Note that lookup returns a code object
nocode with an implementation of visit that just returns if no matching visit
method was found in the lookup. Note that lookup runs at most once for every
dynamic type passed to visitAppropriate per Runabout class. Lookup also
never needs to perform dynamic loading; the initial population of the dynamic
code table in the constructor has created all the Code instances that are needed.

public final void visitAppropriate(Object o) {

Class ¢l = o.getClass ();
Code co = map.get(cl);
if (co == null) {

co = lookup(cl);

if (co == null)

co = visitDefaultCode ;
map. put(c, co);

co.visit (this, o);

}

Fig. 10. visitAppropriate finds the dynamically generated code for an object in
the hash table map.

3.3 Caching generated code

Like [3], the Runabout uses caching to improve the performance. The dynamic
code map as described above caches the results of the lookup. While this is ef-
fective to improve the time of running visitAppropriate, creating a Runabout
instance is also a performance concern. Creating a Runabout involves the use
of reflection to find the declared visit methods and dynamic code generation,
class loading and reflective instantiation of Code objects. The performance of
Runabout creation can be improved by sharing the dynamic code map between
instances of the same Runabout types. For this, the implementation uses a sec-
ond Cache that is basically a thread-local hash table that maps subclasses of
Runabout to instances of the dynamic code map. The Cache is thread-local to
eliminate the need for synchronization on the maps. Every new instance of a
Runabout is checked against the cache, limiting the use of reflection and dy-
namic code generation to once per Runabout class. Since the code maps are
shared, this also further limits the use of the lookup function to only once for
each combination of thread, runabout class and dynamic type that is used in the
dispatch. The Runabout uses the same class loader for all instances that share
the same Cache.



3.4 Extensions

In order to support primitive visitees, our Runabout implementation provides
a second visitAppropriate method, which takes an additional argument of
type java.lang.Class. This second argument is used to distinguish between
primitive types and their wrapper classes. The Runabout provides empty visit
methods for the 8 primitive types that can be overridden by subclasses.

A typical use of this facility would be the iteration over an object graph
using reflection. Fig. 11 shows the code of a simple iterator that counts the
number of primitive ints that are reachable from any argument passed to
visitAppropriate. Note that the example code does not handle cycles in the
object graph.

public class CountInt extends Runabout {

int count = 0;

public void visit (int i) {
count++;

}

public void visit (Object o) {
Field [] fields = o.getClass (). getDeclaredFields ();
for (int i=0;i<fields.length;i++)
if (! Modifier.isStatic (fields[i]. getModifiers()))
visitAppropriate(fields[i]. get (o),
fields[i].getType());
}

void run() {
CountInt ci = new Countlnt();
ci.visitAppropriate (” Example” );
System.out . println (ci.count + ”_int._fields_reachable”);

}

Fig.11. Using the Runabout with primitives: counting the number of reachable

fields of type int in an object graé)h without cycles.
Another simple extension is adding methods to the code map that are not

visit methods in the subclass of the Runabout. The Runabout interface pro-
vides the method addExternalVisit(Class cl, Code co) to allow adding an
external visit method to the Runabout. If the Runabout encounters an object of
the specified class, it calls the visit method defined in Code. Note that the visit
method declared in Runabout.Code is declared to take Object as the type of
the visitee argument, and while the Runabout guarantees that the object passed
will be a subtype of cl, it cannot verify that casts in Code are safe. Note that
the cost of the dispatch in the Runabout is not changed at all by this extension.

Adding external visit methods to an instance of Runabout should not modify
the behavior of other instances. Thus the shared dynamic code that was obtained
from the Cache is copied when the first private extension is added.



4 Experimental Results

In this section we present experimental results. We first present micro-benchmarking
results which demonstrate that the Runabout is comparable in performance
with the other designs. We then describe our experience with refactoring the
Kacheck/J to use the Runabout instead of visitors.

4.1 Synthetic Micro-benchmarks

In order to evaluate the performance of the Runabout, we have run variations of
the example presented in section 2.1. The four major designs were run on IBM
JDK 1.4.0 and Sun JDK 1.4.1 on a PIII-1000 running Linux 2.4.18. The time
measured corresponds to a total of 10 million invocations. The reported numbers
are the average over 10 runs in single user mode. All methods are invoked with
equal frequency.

Two parameters have a significant impact on the benchmark. First of all, the
number of visit methods (and visitee classes) is important to see if the design
scales to complex visitee structures. The graphs contain the results for one to
20 visitee types, appendix A shows the results for up to 200 visitee types. For
2,000 types MultiJava is currently unable to compile the test-case.

The second important parameter is the hierarchy of the visitee types. The
graphs show the numbers for a totally flat hierarchy (every visitee extends Ob-
ject) and for a hierarchy of maximum depth (visitee class n extends n —1). Note
that in the case of the deep hierarchy, the number of visit methods is equal to the
depth of the hierarchy. The choice of hierarchy impacts the runtime of subtype
tests, performed frequently by the MultiJava and the Runabout implementation.

As the benchmarks in Fig. 12 and 14 show, the differences between the ap-
proaches in execution speed are small. The Runabout has the highest cost for
just one visit method; MultiJava degrades with higher numbers of visitee types.
If the hierarchy is deep (Fig. 13 and 15), the instanceof tests in MultiJava be-
come more expensive. The performance of dedicated methods, visitors and the
Runabout is not changed significantly.

In practice, the differences between all five approaches (with the potential
exception of MultiJava for large hierarchies) are minor. In particular, the fact
that the double dispatch of the visitor turns out to be faster than the dedicated
method can not be explained and is presumabably just an artefact of the opti-
mzing compiler. Overall, the numbers from the micro benchmark are too close
to rule out any of the variants: the runtime of any application using any of the
variants of the visitor pattern is typically not determined by the tiny cost of
the dispatch but rather by the actions performed in the visit methods. Also,
hierarchies in real applications are typically not that deep, thus Fig. 12 is more
realistic than Fig. 13.

The measurements above just reflect the time required for the invocation.
But the Runabout is also a bit more costly to create compared to instances
of ordinary visitors. Fig. 16 shows the cost of creating 100,000,000 instances
of Runabout (with caching enabled) compared with the creation of 100,000,000
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instances of an equivalent visitor. As the numbers show, creating a Runabout can
be only about a factor of two slower than creating a visitor. But this is only half-
true. The Runabout implementation caches reflective information, in particular
instances of the dynamically generated and loaded classes, in a thread-local
cache. The creation of the first instance of a given Runabout type in a new thread
is more expensive. Fig. 17 shows the cost of creating 100,000 Runabouts without
the cache. The numbers show that caching the reflective information per-thread
reduces the overhead of creating a Runabout by a factor of up to 810,000 for
200 visit methods. Note that while it would be possible to cache the information
globally and not just per thread, this would introduce synchronization operations
in visitAppropriate, which would probably be worse in most applications.
Profiling Runabout creation shows that dynamic class loading and reflective
instantiation are each responsible for over 30% of the time of Runabout creation.

4.2 Refactoring Kacheck/J

Kacheck/J is a bytecode analysis tool to infer confined types [16]. Kacheck/J
is written using the Ovm bytecode framework [25]. Ovmn [24] is a customizable
Java Virtual Machine. The Ovm framework contains a bytecode analysis and
manipulation framework which was previously based on visitors. In particular,
the framework provides an abstract interpretation engine that uses flyweight
instruction objects as visitees to support abstract execution. Kacheck/J uses
this abstract execution framework to analyze code.

In the previous version of the framework, every instruction object had an
accept method. In addition to that, every instruction had an execute method
which would perform the state manipulation on the abstract interpreter for this
instruction during abstract interpretation. In its main loop, the abstract inter-
preter would call the execute method to simulate the instruction interleaved
with accepting on a visitor which would do the analysis. Some additional code
in the main loop took care of control flow handling and merging of abstract
states. The execute method can be seen as a dedicated method for abstract
execution.

We have refactored the analysis framework to use Runabouts instead of the
dedicated execute method and the accept method. An immediate benefit of
this change was that adding new instruction types for analysis on VM specific
bytecodes (for example, quick opcodes), no longer requires adding visit methods
to parts of the framework that are not concerned with these types of instruc-
tions. Factoring out the execute method into a Runabout makes it easier to
change its behavior. In order to ease the selective manipulation of the abstract
execution, each abstract interpretation step was split into two Runabouts: one
that manipulates the local variables and the stack of the abstract machine and
one that is responsible for control flow, exception handling and merging of states.

In addition to saving hundreds of accept methods and hundreds of visit
methods in the matching abstract visitor, the introduction of the Runabout also
allowed other code reductions. Many analyses were grouping visit methods for
closely related instructions, such as invokevirtual, invokeinterface, invokespecial



and invokestatic. This was achieved with the default visitor pattern [17]. Since
the hierarchy of instructions is fairly complex, multiple default visitors (where
one visit method was just dispatching to another visit method) existed in the
old framework. Maintaining these default visitors, especially with changes in the
hierarchy of the instructions, has always been a problem. With the Runabout,
most of what we were trying to achieve with the default visitors was covered by
the lookup algorithm, making all of these classes obsolete.

The new framework also has some additional features that impact Kacheck/J’s
performance (for example, an extensible set of abstract values for application-
specific abstract execution domains). Additionally, Kacheck/J’s implementation
is slightly more powerful; for example it records and reports much more de-
tailed information about the constraint system. These and other changes make
the code not entirely comparable. The original Kacheck/J tool takes about 57
seconds to analyze the entire Sun JDK 1.4.0 from the Purdue Benchmark Suite
(JDK5) running on top of Sun JDK 1.4.1 on a PIII-800. The performance of
the redesigned Kacheck/J is about 77s to analyze the entire Sun JDK 1.4.0.2
During the analysis, the innermost loop performs slightly more than 10 million
invocations of visitAppropriate.

To evaluate the impact of the visitAppropriate calls on the overall perfor-
mance of the application, additional calls to visitAppropriate were put into
the inner loop. The additional calls invoke cheap but not entirely trivial visit
methods that computes the sum of the opcodes of the instructions visited. The
original inner loop contains three Runabout invocations, using additional invoca-
tions to these opcode-counting Runabouts the number of calls in the inner loop
was increased to up to a total of 9 calls. Overall, the inner loop is run about 3.3
million times, resulting in 10 to 30 million runabout invocations for the profil-
ing. For 30 million calls, the total runtime increases to about 95s. Fig. 18 shows
the runtime of the abstract execution and the solving of the constraint system
for three to nine Runabout invocations in the inner loop. The cost of parsing is
nearly constant at 90s.

The cost of the introduction of the Runabout call in the innermost loop of
Kacheck/J is thus about 12% of the time spent for abstract execution without
constraint solving. While 12% might sound rather large, most steps in the ab-
stract execution in practice consist of extremely cheap operations where even the
traditional double-dispatch would take a fair share of the runtime. For example,
for a POP, our implementation calls a visitor to do stack manipulation (which re-
duces the height of the stack by one) and a visitor to record Kacheck/J specific
constraints (which only does something for 11 out of 200 Java opcodes), and
finally calls a third visitor which most of the time just increments the program
counter. That the three calls are taking a large share (and with the Runabout
even 12%) of the runtime is thus more an effect of the way the code is written.

2 On a dual-processor system, the difference between the original tool (44s real time,
60s CPU time) and the new implementation (62s real time, 95s CPU time) is slightly
different.
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Fig.18. Timings for the abstract execution phase of Kacheck/J with 0 to 6
additional Runabout invocations in the innermost loop.

For the overall application with parsing and constraint solving, the cost of
the Runabout drops down to less than 3%. Considering that double dispatch
and even dedicated methods also incur some cost, the actual cost of using the
Runabout instead of traditional visitors is more around 2%.

5 Related Work

The walkabout pattern as described in [26] allows the traversal of an arbitrary
object graph without double dispatch. Instead of double dispatch, reflection is
used to find the matching visit method. The authors noted that their implemen-
tation was impractically slow. Bravenboer [3] improved the performance of the
walkabout by caching reflective results, but their performance is still poor; they
report being about 100 times slower than visitors. The implementation given in
[26] also requires that the type of the argument to the visit method matches
exactly the type of the object that is being visited.

Space and time efficient implementations of virtual method dispatch have
been the subject of a large body of research [6,9,20,27]. In a statically typed single
inheritance setting, the most common approach is to use virtual function tables.
More advanced languages, such as Java, require more complicated designs [1] to
handle features like multiple-inheritance and dynamic class loading. [29] provides
a good overview of recent research. The Runabout is not concerned with these
low-level compilation techniques and instead uses a large hashtable which puts



it close to dynamic perfect hashing [8], a design that is not suitable for general
dispatch techniques since it comes with a large space penalty. For the Runabout,
space is not really a concern since there are typically few Runabout classes in
any given application. Furthermore, the type-safe high-level implementation of
the dispatch in the Runabout cannot use some of the low-level techniques that
compilers would use for dispatching.

A technique to provide multi-dispatch in the JVM is described in [10]. The
authors have extended the virtual machine to use multi-dispatch for classes that
were marked for multi-dispatch. While their approach is compatible with ex-
isting java compilers and libraries, it requires modifications to the VM. The
authors also implemented MDLint, a tool to statically analyze code and warn
programmers about ambiguities in the multi-dispatch.

While the Runabout and other multi-dispatch related research has focused
on the dispatch element in visitors, other researchers [3,23] have made sugges-
tions on how to specify the visit strategy, that is the order in which objects are
visited. In the same way that the Runabout allows for a concise and dynamic
specification of how to find the target of the dispatch, the Demeter Java project
has focused on designing specifications for the visit order, allowing programmers
to specify the order in which objects in a graph should be visited [23]. A guiding
visitor [3] can be used to specify the order of the traversal, allowing program-
mers to make the actual code independent from the specification of the traversal
order. Note that both research areas (dispatch strategy and visit strategy) are
orthogonal and thus most solutions can be easily composed.

Various techniques to extend traditional programming languages in order to
allow programmers to write more extensible, reusable code have been proposed
in the past [11,12,13,18,21,22,28]. These implementations are often incompatible
with each other and require specialized compilers. While these techniques are
more general than the Runabout, the Runabout is a more lightweight solution
for Java. Other examples for lightweight extentions of the Java language that
also use dynamic code generation and reflection are the dynamic generation of
helper classes for structural conformance, automatic delegation or mixins [4].

6 Conclusion

The Runabout is a viable alternative solution to the extensibility problem. Unlike
other designs, the Runabout does not require extensions to the Java language.
The Runabout can perform about as fast as other solutions, including Mul-
tiJava, visitors or dedicated methods. While the current implementation of the
Runabout only supports double-dispatch, future work may extend this approach
to support full multi-dispatch.
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A Micro-benchmarks: one to 200 visit methods

In this appendix the results for the micro-benchmarks that were shown for one
to twenty visit methods in figures 12, 13, 14 and 15 are repeated, just this time
for one to 200 visit methods. Note that a different y-scale is used for the flat and
the deep hierarchy.
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Fig.19. Sun JDK 1.4.1 with flat (left) and deep (right) hierarchy.
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Fig. 20. IBM JDK 1.4.1 with flat (left) and deep (right) hierarchy.
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