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Abstract. This paper presents a variation of the visitor pattern which
allows programmers to write visitor-like code in a concise way. The Run-
about is a library extension that adds a limited form of multi-dispatch
to Java. While the Runabout is not as expressive as a general multiple
dispatching facility, the Runabout can be significantly faster than exist-
ing implementations of multiple dispatch for Java, such as MultiJava.
Unlike MultiJava, the Runabout does not require changes to the syntax
and the compiler.
This paper illustrates how to use the Runabout, details its implementa-
tion, and provides benchmarks comparing its performance with other ap-
proaches. Furthermore, the effect of an automatic static program trans-
formation tool that translates bytecode using the Runabout to equiva-
lent bytecode is evaluated. The tool uses double dispatch and runtime
type checks to achieve the same semantics that the Runabout has. The
performance comparisons on large benchmarks that make extensive use
multiple dispatch show that using the Runabout does not result in a
significant loss of performance for realistic applications and that, de-
pending on the application and platform, small performance gains are
also possible.

1 Introduction

A fundamental problem in programming language design is to make software
extensible while avoiding changes to existing code and still retaining static type
safety [30]. For example, a programmer may want to add functionality that
operates on a number of existing classes, or he may want to introduce a new
class to existing code. For such purposes, one of the strengths of object-oriented
programming is that it is easy to introduce new classes. Adding functionality
to existing classes is more difficult, particularly because this typically requires
access to the source code. It may also be undesirable to add the functionality to
all subclasses.

Extensibility Problem: Devise a mechanism for adding functional-
ity and classes to existing code while avoiding recompilation and still
retaining efficiency and static type safety.

? This paper is an extended and revised version of the paper “Walkabout revisited:
the Runabout” in ECOOP 2003 – Object-Oriented Programming, pages 103-125,
Darmstadt, Germany, 2003.



One traditional solution to this problem is to use the visitor pattern [20].
The visitor pattern allows the addition of functionality in the form of visit
methods that are invoked from an accept method which is defined in each
visitee class. The accept is only specific with respect to the type of an abstract
visitor. Visitors do not completely solve the extensibility problem. If the set of
visitee classes changes, the type of the abstract visitor changes. Using visitors,
it becomes more difficult to change the set of visitees since all visitors must
be adjusted to provide a visit method matching the visitee types. Another
solution to the extensibility problem is to use multi-methods which allow both
new functionality and new classes to be added in a flexible and concise manner.
The Runabout is a step toward achieving many of the benefits of multi-methods
without requiring a new language.

This paper addresses the extensibility problem for Java, giving a solution
that does support changing sets of visitee types, and provides both acceptable
performance (only 2-10 times slower than visitors) and the minimum amount of
programming effort. The solution is based on an approach proposed by Palsberg
and Jay [39] called Walkabout. Their approach takes advantage of Java’s reflec-
tion mechanism to implement double-dispatch (Figure 1). The Runabout pre-
sented in this paper is an extension of the Java libraries that adds two-argument
dispatch to Java. The Runabout is itself implemented in Java (without any na-
tive methods). The code for the Runabout is about 1,000 lines of code, which
is freely available on our web-page. Like the Walkabout [39], the Runabout uses
reflection to find visit methods. But instead of invoking the visit methods with
reflection, the Runabout uses dynamic code generation to create ordinary (ver-
ifying) Java bytecode that will invoke the appropriate visit method (Figure 2).
The dynamically generated bytecode is type-safe and can be analyzed and opti-
mized by the just-in-time compiler just like the rest of the application.

Generating bytecode for multi-dispatching is also what the MultiJava com-
piler [9] does. MultiJava compiles Java with multi-methods to ordinary Java
bytecode. Unlike MultiJava, the Runabout generates the invocation code when
the application is executed, not at compile time. Thus the Runabout does not
require changes to the compiler or the virtual machine. Contrary to previous
assumptions [39], the approach using reflection to determine visit targets does
not automatically imply an extraordinary runtime overhead.

The Runabout Optimizer, a preprocessor for Java bytecode that converts
programs which use the Runabout to the equivalent visitor code, was used to
evaluate the performance impact of the Runabout for real-world applications.
The rather astonishing result is that the Runabout can sometimes be faster than
the equivalent visitor code. The worst-case performance loss for the applications
is well within the estimates from the micro-benchmarks; these show that for 100
million visit invocations on 2,000 visitee classes, the Runabout is slower by less
than a factor of two compared to visitors (217s vs. 137s).

The remainder of the paper is structured as follows. First, an example for
programming with runabouts is given and the semantics of the Runabout are
described in detail. In section 3 the implementation of the Runabout is pre-



sented. The bytecode transformation which translates Runabout client code to
visitors is presented in section 4. Performance evaluations are detailed in section
5. Section 6 discusses some related work.

visit(o)

m = this.getClass().getMethod(”visit”, new Class[]{o.getClass()})

m.invoke(this, new Object[] { o })

visit((A) o)

Fig. 1. Control flow in the Walkabout. The client calls the visit method of the
Walkabout which then uses reflection to find the method that best matches the
receiver. That method is then invoked using reflection. The Walkabout does not
use caching or dynamic code generation.

2 Using the Runabout

Writing runabouts is similar to writing visitors or using multi methods. In or-
der to demonstrate how to write code with runabouts, an an example is first
implemented using a variety of approaches to achieve the same functionality.
This example is illustrated using dedicated methods, visitors, MultiJava, and
finally the Runabout. Next, the semantics of the visitAppropriate method of
the Runabout are described. Then the specific benefits and drawbacks of each
of the implementations in terms of expressiveness and restrictions imposed on
the programmer are discussed.

2.1 A simple example

The example uses a set of visitee classes Ai that implement the common interface
A. Given an array a of instances of type A, the goal is to compute

∑
a∈A I(a)

where I(a) = i if a is of type Ai.



Dedicated methods Dedicated methods can be used to solve the problem
efficiently. The problem with dedicated methods is that for every operation that
is to be performed on the visitee classes, a method must be added to each of the
visitee classes. This spreads the code used by a particular operation over many
classes and often makes it hard to maintain. Fig. 3 shows the solution using a
dedicated method.

Cascading conditionals Another possibility would be to use a sequence of
instanceof tests, which is certainly impractical for larger numbers of visitee
types and requires modification each time a visitee is added (Fig. 4).

Visitors Fig. 5 details the code for expressing a solution with visitors. The
example uses overloading for the visit methods. Overloading is not needed
for visitors and is used here to emphasize the similarities with MultiJava and
the Runabout. For simplification, the example uses only one visitor and there is
therefore no need for a visitor interface for the accept methods to dispatch upon.

Runabout.<init>(this)

this.getClass().getMethods(...)

acceptor = Class.newInstance(...)

map.put(A.class, acceptor)

visitAppropriate(o)

acceptor = map.get(o.getClass())

acceptor.accept(o)

visit((A) o)

Fig. 2. Overview of the control flow in the Runabout. The constructor of the
Runabout (<init>) uses reflection to find all visit methods. For each such
method it creates an entry in a lookup map using dynamic code generation.
The resulting lookup map contains for each class an acceptor instance with a
synthetic accept method. Later, the client calls visitAppropriate which obtains
the acceptor from the map. The acceptor is then used to invoke the appropriate
visit method. Compared to the Walkabout, the Runabout shifts most work
into the constructor and replaces the reflective invocation with synthetic code.



interface A {

int dedicated ();

}

c lass A0 implements A {

int dedicated () { return 0; }

}

c lass A1 implements A {

int dedicated () { return 1; }

}

c lass A2 implements A {

int dedicated () { return 2; }

}

long run(A[] a) {

long sum = 0;

for ( int j=0;j<a.length;j++)

sum += a[j]. dedicated ();

return sum;

}

Fig. 3. The visitee classes with a dedicated method (dedicated).

interface A {}

c lass A0 implements A {}

c lass A1 implements A {}

c lass A2 implements A {}

long run(A[] a) {

long sum = 0;

for ( int j=0;j<a.length;j++) {

A aj = a[j];

i f (aj instanceof A2)

sumInstanceof += 2;

else i f (aj instanceof A1)

sumInstanceof += 1;

else i f (aj instanceof A0)

sumInstanceof += 0;

else
throw new Error(” I l l e g a l c a l l ”);

}

return sum;

}

Fig. 4. No changes to the visitees are required with cascading conditionals.

In practice, the code would consist of multiple visitors for multiple computations
that would be performed over the visitee objects.



Multi-methods An implementation using MultiJava (Fig. 6) does not require
the accept methods. Instead, the compiler can see that multi-dispatch is declared
(@) and generates code to invoke the appropriate visit method.

Runabouts The Runabout code (Fig. 7) lies somewhere between visitors and
MultiJava. The visit methods do not require any additional syntax; all that
is required is that the class extends Runabout and that visitAppropriate (a
method provided by the parent class) is invoked instead of visit. As with Mul-
tiJava, no accept method is required in the visitees. A UML class diagram for
the Runabout is given in Fig. 8.

2.2 Semantics

In order to create a Runabout, the client code must create a public subclass of
Runabout. The Runabout class provides the method visitAppropriate which
can be used for two-argument dispatch. The two arguments of the two-argument
dispatch are the receiver of visitAppropriate and the first and only argument
of visitAppropriate. The callee of the dispatch is determined by the lookup
method.

interface A {

void accept(Visitor v);

}

c lass A0 implements A {

void accept(Visitor v) { v.visit( this ); }

}

c lass A1 implements A {

void accept(Visitor v) { v.visit( this ); }

}

c lass A2 implements A {

void accept(Visitor v) { v.visit( this ); }

}

c lass Visitor {

long sum = 0;

public void visit(A0 a) { sum += 0; }

public void visit(A1 a) { sum += 1; }

public void visit(A2 a) { sum += 2; }

}

long run(A[] a) {

Visitor v = new Visitor ();

for ( int j=0;j<a.length;j++)

a[j]. accept(v);

return v.sum;

}

Fig. 5. Visitors require accept methods in the visitees.



interface A {}

c lass A0 implements A {}

c lass A1 implements A {}

c lass A2 implements A {}

c lass MultiJavaSum {

long sum = 0;

public void visit(A a) { throw new Error (); }

public void visit(A@A0 a) { sum += 0; }

public void visit(A@A1 a) { sum += 1; }

public void visit(A@A2 a) { sum += 2; }

}

long run(A[] a) {

MultiJavaSum v = new MultiJavaSum ();

for ( int j=0;j<a.length;j++)

v.visit(a[j]);

return v.sum;

}

Fig. 6. MultiJava indicates multi-dispatch using minimal changes to the syntax.

public c lass A0 {}

public c lass A1 {}

public c lass A2 {}

public c lass RunaboutSum extends Runabout {

long sum = 0;

public void visit(A0 a) { sum += 0; }

public void visit(A1 a) { sum += 1; }

public void visit(A2 a) { sum += 2; }

}

long run(Object [] a) {

RunaboutSum v = new RunaboutSum ();

for ( int j=0;j<a.length;j++)

v.visitAppropriate(a[j]);

return v.sum;

}

Fig. 7. Runabouts extend the Runabout class to inherit visitAppropriate.

visitAppropriate The callee in the dispatch performed by visitAppropriate
is either visitDefault or exactly one of the visit methods defined in or in-
herited by the class of the receiver. The concrete selection of the visit method
is performed by the lookup function, which, given a Class, returns Code to
invoke one of the visit methods. lookup(T) may only select non-static visit
methods that have a return type of void and take only a single argument of
public type S where S must be a supertype of T. lookup may return null in
which case visitDefault is invoked. If not overridden, visitDefault throws



Runabout
HashMap<Class,Code> map
visitAppropriate(Object):void

RunaboutSum
sum:int
visit(A0):void
visit(A1):void
visit(A2):void

Code
accept(Object):void

GenCodeXX

0..*1

Fig. 8. UML class diagram for the Runabout.

a run-time exception to indicate that no visit method was found. lookup also
throws runtime exceptions to indicate ambiguities in the method resolution.

Note that visitAppropriate does not require that all visit methods have a
common base class other than Object. Thus, the Runabout does not require the
interface A that most of the other implementations use to declare the dedicated
method, to declare the accept method, or to assist the type system in the form
of the A@.

The fact that the Runabout does not require accept methods or a com-
mon interface in the visitees is often beneficial when dealing with code where
adding an accept method is not possible, as with, for example, String. A simple
example for this is given in Fig. 9.

public stat ic void main(String [] arg) {

MyRunabout mr = new MyRunabout ();

mr.visitAppropriate(” H e l l o ”);
mr.visitAppropriate(new Integer (1));

assertTrue(mr.cnt == 3);

}

public c lass MyRunabout extends Runabout {

int cnt = 0;

public void visit(String s) { cnt += 2; }

public void visit(Integer i) { cnt += i.intValue (); }

}

Fig. 9. Using the Runabout on any kind of visitee.



lookup Which visit method is invoked by visitAppropriate is specified by
the lookup strategy that is implemented by lookup. Defining a lookup strategy
is similar to defining how a compiler (like javac) resolves method invocations
for overloaded methods [23, section 15.11.2]. The main difference is that instead
of the static type, the dynamic type of the argument object is used. As with
overloading, multiple methods may be applicable. In the case of javac, the
method with the closest matching signature is chosen, and a compile error is
generated in the case of ambiguities.

As an input, the lookup function is passed the dynamic type of the object on
which the dispatch takes place. The dynamic type is a node in the inheritance
hierarchy (a directional acyclic graph), which can then be traversed by the func-
tion to find a matching type for which a visit method exists. A simple example
for an implementation of lookup that does not consider interfaces is given in
Fig. 10. The helper method getCodeForClass(c) tests if a visit method for
the type c exists and if so returns the Code instance for that visit method.

protected Code lookup(Class c) {

while (c != null ) {

Code co = getCodeForClass(c);

i f (co != null )
return co;

c = c.getSuperclass ();

}

return null ;
}

Fig. 10. Example of a lookup method.

What follows is an informal description of the default lookup strategy used
by the Runabout. If visit methods for both classes and interfaces are applicable
to the given dynamic type, the visit method for the class closest to the dynamic
type is chosen. If no visit method for a superclass of the dynamic type exists and
if there is only one visit method matching any of the interfaces implemented
by the dynamic type, then that visit method is selected. If visit methods for
multiple interfaces implemented by the dynamic type (but none for its parent
classes) exist, a runtime exception indicating the ambiguity is thrown. If no
applicable visit method exists at all, null is returned, causing the invocation
of visitDefault.

2.3 Discussion

The Runabout as described so far is more expressive than typical visitors and
has fewer requirements for the visitees. Primarily, the Runabout does not re-
quire accept methods in the visitees. On the other hand, additional restrictions



imposed by the Runabout are that all the visitee classes and all subclasses of
Runabout must be public (the Runabout must internally cast to these types) and
that all visit methods must be public. These restrictions are minor since if the
visitees are legacy code, the classes are probably already public; adding accept
methods (or even dedicated methods) would typically be much harder. Mak-
ing the subclass of Runabout or its visit methods public is even less likely to
be a problem. A slightly more limiting constraint is that the Runabout requires
visit methods to return void and take just one argument. A more sophisticated
implementation should be able to relax this requirement.

MultiJava does not impose restrictions on the access modifiers, the special-
ized compiler takes care of these problems. The advantage of extending the
language is that MultiJava is more expressive than any other solution; for ex-
ample, it is possible to dispatch on more than one argument. MultiJava is also
not constrained by the requirement that the methods that are multi-dispatched
are named visit, which allows MultiJava to support many multiply-dispatched
method families in the same class.

While the Runabout could be extended to allow names other than visit,
we feel that in practice this limitation will hardly ever be a problem; in fact, it
is likely that several multi-dispatch method families in the same class without
any syntax to mark these methods would instead confuse programmers. Multi-
Java’s approach of extending the Java syntax solves this problem but prevents
users from deploying other language extensions like GJ [4] or AspectJ [28] in
the same code. The current implementation of MultiJava uses linear sequences
of instanceof tests, making the tool impractical for large numbers of visitee
classes. A better implementation of MultiJava might take care of this major
performance issue.

One of the drawbacks of visitors is that they often require writing excessive
amounts of trivial code. All visit methods must be declared in a base class (or
interface) which is used by the accept method. The accept methods themselves
can be tedious if the code has many visitees. Also, the visitor pattern is less
expressive than the Runabout since it requires the programmer to occasionally
add additional code to perform the intended dispatch. For example, suppose
some of the visitee types form a hierarchy where A, B and C represent similar
visitees and thus extend the common parent P . In this case, the visit methods
for P , A, B and C are sometimes identical. In the case of the Runabout, only
one visit method for P needs to be implemented; the lookup for A, B and C
will automatically result in the invocation of visit(P). For visitors, either the
code is replicated or the default visitor pattern [27] where visit(A a) calls
this.visit((P)a); must be used, forcing the user to write additional methods
which merely indirect the control flow.

3 Implementation

This section describes the implementation of Runabout. In particular, it describes
how the constructor builds the dynamic code map and how the visitAppropriate



method uses that map to invoke the appropriate visit method. The section also
discusses extensions to the core functionality, such as handling of primitive vis-
itees and addition of visit methods that are not declared in the subclass of
Runabout.

3.1 The dynamic code map

Central to the implementation of the Runabout is the dynamic code map. This
hash table maps the dynamic type of the argument to an implementation of
Code (see Fig. 11), an abstract class. Instances of Code are stateless and can be
seen as the Java equivalent of C function pointers. The virtual method table of
the code objects refers to a piece of code that is to be invoked for arguments of
the corresponding dynamic type.

The constructor of Runabout scans the Runabout instance (using reflection)
and creates a specialized object of type Code for every visit method that is found.
Note that the constructor does not inspect the Runabout class but the specific
subtype that is being instantiated. This the primary reason why this cannot
be done inside of the static initializer of the Ruanbout – the possible dynamic
subtypes are not known at that time.

The constructor creates a class for each instance of Code (Fig. 11) on-the-
fly using Java’s dynamic class-loading mechanism. The code generation only
substitutes constant pool entries in a pre-compiled .class file – which itself
stored as a byte array inside of the Runabout. As a result, the generation code
is extremely small and fast, consisting only of a single allocation and a few
System.arraycopy operations. The generated code is best illustrated with an
example. If the concrete instance of Runabout is of type RunaboutExample and
the visit method takes String as the argument, the dynamically generated code
will correspond to the Java code in Fig. 12. The X is replaced with a unique
number to avoid name clashes. An instance of GenCodeX is instantiated and
installed in the dynamic code map.

public stat ic abstract c lass Code {

public abstract void visit(Runabout r, Object o);

}

Fig. 11. The Code class is an inner class of the Runabout that defines the inter-
face for the dynamically generated and loaded code.

3.2 Lookup

The implementation of Runabout.visitAppropriate is now simple (Fig. 13).
visitAppropriate does a get on the dynamic code map to find an object of



c lass GenCodeX

extends Runabout.Code {

public void visit(Runabout r, Object o) {

(( RunaboutExample) r).visit (( String)o);

}

}

Fig. 12. Source equivalent of the code that is dynamically generated code when
reflection finds the method RunaboutExample.visit(String). An instance of
this type is returned by map.get(String.class) in visitAppropriate.

type Code. If no matching code is found, the lookup procedure is invoked to find
a matching piece of code and the dynamic code map is updated. Finally, the
code found in the code map is invoked. Note that lookup returns a code instance
nocode with an implementation of visit that throws a RunaboutException if
no matching visit method was found in the lookup. Note that lookup runs at
most once for every dynamic type passed to visitAppropriate per Runabout
class. Lookup also never needs to perform dynamic loading; the initial population
of the dynamic code table in the constructor has created all the Code instances
that are needed.

public f ina l void visitAppropriate(Object o) {

Class cl = o.getClass ();

Code co = map.get(cl);

i f (co == null ) {

co = lookup(cl);

i f (co == null )
co = visitDefaultCode;

map.put(c, co);

}

co.visit( this , o);

}

Fig. 13. visitAppropriate finds the dynamically generated code for an object in
the hash table map.

3.3 Caching generated code

As in [5], the Runabout uses caching to improve the performance. The dynamic
code map as described above caches the results of the lookup. While this is
effective to improve the time of running visitAppropriate, creating a Runabout
instance is also a performance concern. Creating runabouts involves the use of



reflection to find the declared visit methods and dynamic code generation, class
loading and reflective instantiation of Code objects. The performance of runabout
creation can be improved by sharing the dynamic code map between instances
of the same runabouts. For this, the implementation uses a second Cache that is
basically a thread-local hash table that maps subclasses of Runabout to instances
of the dynamic code map. The Cache is thread-local to eliminate the need for
synchronization on the maps. Every new instance of Runabout is checked against
the cache, limiting the use of reflection and dynamic code generation to once per
Runabout class. Since the code maps are shared, this also further limits the use
of the lookup function to only once for each combination of thread, Runabout
class, and dynamic type that is used in the dispatch. The Runabout uses the
same class loader for all instances that share the same Cache.

3.4 Extensions

In order to support primitive visitees, our Runabout implementation provides
a second visitAppropriate method, which takes an additional argument of
type java.lang.Class. This second argument is used to distinguish between
primitive types and their wrapper classes. The Runabout provides empty visit
methods for the 8 primitive types that can be overridden by subclasses.

A typical use of this facility would be the iteration over an object graph
using reflection. Fig. 14 shows the code of a simple iterator that counts the
number of primitive ints that are reachable from any argument passed to
visitAppropriate. Note that the example code does not handle cycles in the
object graph.

Another simple extension is adding methods to the code map that are not
visit methods in the subclass of Runabout. The Runabout interface provides the
method addExternalVisit(Class cl, Code co) to allow adding an external
visit method to the Runabout. If the Runabout encounters an object of the
specified class, it calls the visit method defined in Code. Note that the visit
method declared in Runabout.Code is declared to take Object as the type of the
visitee argument, and while the Runabout guarantees that the object passed will
be a subtype of cl, it cannot verify that casts in Code are safe. It is important
to mention here that the cost of the dispatch in the Runabout is not changed at
all by this extension.

Adding external visit methods to an instance of Runabout should not modify
the behavior of other instances. Thus, the shared dynamic code that was obtained
from the Cache is copied when the first private extension is added.

4 The Runabout Optimizer

The Runabout Optimizer is a static program transformation tool that performs
a semantics-preserving translation of code that uses the Runabout into code that
does not require reflection or dynamic code generation. The generated code in-
stead uses a combination of instanceof tests and double dispatch to achieve the



public c lass CountInt extends Runabout {

int count = 0;

public void visit( int i) {

count ++;

}

public void visit(Object o) {

Field [] fields = o.getClass (). getDeclaredFields ();

for ( int i=0;i<fields.length;i++)

i f (! Modifier.isStatic(fields[i]. getModifiers ()))

visitAppropriate(fields[i].get(o),

fields[i]. getType ());

}

}

void run() {

CountInt ci = new CountInt ();

ci.visitAppropriate(”Example”);
System.out.println(ci.count + ” i n t f i e l d s r e a c h a b l e ”);

}

Fig. 14. Using the Runabout with primitives: counting the number of reachable
fields of type int in an object graph without cycles.

same dispatching semantics. The Optimizer performs a static data-flow analy-
sis on a closed-world application to replace the visitAppropriate call with
semantically equivalent and possibly more efficient code. Essentially, the Opti-
mizer converts code that uses the Runabout into equivalent code using the visitor
pattern.

There are several motivations for using the Runabout Optimizer. First, there
exist JVMs in which using reflection or dynamic code generation is either not
supported at all or results in severe performance penalties. An example of the
first category is a VM for embedded devices [1]; the second category includes VMs
that lack a just-in-time compiler and instead rely on ahead-of-time compilation
for real-time performance [36].

These exotic uses aside, the primary motivation why the Runabout Optimizer
was developed was to allow for a direct performance comparison of Runabout and
visitor-based code through real-world examples without the need to manually
rewrite the code to support both variants.

Knowing the semantics of the visitAppropriate call, the key idea behind
the Runabout Optimizer is simple: to replace such calls with double dispatch.
Given all runabouts and all of the visitee classes, the Optimizer can replace
visitAppropriate calls with new dispatching code. While the idea is rather
simple, there are quite a few corner cases that need to be handled.

The Optimizer needs to distinguish between three different categories of vis-
itee types. First, there are the types where the Optimizer is allowed to add
accept methods. This category includes the code from the application itself



and, if applicable, that of the framework which the application is using. This
first set typically excludes types from the JDK, since the JVM may rely on a
specific implementation of these types. Even if this is not the case, it is typi-
cally not desirable to ship a copy of the runtime libraries with the application.
Hence, the second category of visitee types are the types where the Optimizer
is not allowed to insert synthetic accept methods. The third category consists
of the primitive types. These types cannot be handled with instanceof tests
and thus require special treatment. Naturally, dispatch on primitives is rare in
practice. The details of this special case are uninteresting, however, and are thus
not discussed further.

For each visitAppropriate call site the Optimizer performs an intrapro-
cedual data-flow analysis to conservatively determine the possible visitor and
visitee types that could be used at that callsite. In many cases, the specific sub-
type of Runabout is statically known and all possible visitee types are defined by
the application, allowing the Optimizer to extended those classes with accept
methods. In those cases, the visitAppropriate call is replaced with a call to
those synthetic accept methods, which then perform the appropriate double dis-
patch. If visitee types from the system library flow into the callsite, a sequence of
instanceof tests is used to invoke the correct visitor method, possibly followed
by an accept call for the remaining application types (see Figure 15). Visitees
of primitive type are also handled by appropriate tests if necessary. Since the
data-flow analysis is conservative and purely intraprocedual, it may drag in oth-
erwise dead classes. It is therefore advisable to run a dead code elimination tool
(such as [43] or [24]) on the code before running the Runabout Optimizer.

If multiple different subtypes of Runabout are determined as possible visitors,
the call to visitAppropriate is preserved. This virtual call is used to dynam-
ically determine the runtime type of the Runabout. The visitAppropriate
method is overridden with a synthetic visitAppropriate method in each sub-
class. This synthetic method then contains the accept call and, if applicable,
the sequence of instanceof tests that are necessary for this particular visitor.

Both cases are complicated by the possibility of the user having already
overridden visitAppropriate. In that case, it is not acceptable to inline the
call to accept or to override visitAppropriate in a subclass. The Optimizer
detects this case and instead inserts a general version of visitAppropriate into
the method that a call to super.visitAppropriate inside of the user-defined
visitAppropriate method would invoke. This general version then determines
the dynamic type of the visitor and triggers the appropriate visit call. Naturally,
the resulting general dispatch sequence is more expensive and thus clients that
are intended to be optimized with the Optimizer are discouraged from overriding
visitAppropriate.

Table 1 gives an overview of the different costs associated with each approach
for the different types of arguments. The table differentiates between callee types
from the application and from the framework. The reason for this is that in
practice there is a significant difference between these two categories for both
the visitor pattern and the Runabout. For the visitor pattern, it is problematic



public f ina l c lass Visitor extends Runabout {

public void visit(A a) { }

public void visit(B a) { }

public void visit(String s) { }

}

public interface Visitor_acceptor { // synthetic

public void accept__Visitor(Visitor v);

}

public c lass A implements Visitor_acceptor {

public void accept__Visitor(Visitor v) { // synthetic

v.visit( this );
}

}

public c lass B implements Visitor_acceptor {

public void accept__Visitor(Visitor v) { // synthetic

v.visit( this );
}

}

stat ic void callVisit(Visitor v, int i) {

Object o = new Object ();

switch (i) {

case 1: o = new A(); break;
case 2: o = new B(); break;
case 3: o = ” s t r i n g ”; break;

}

// replaced ‘‘v.visitAppropriate(o);’’ with synthetic code:

i f (o instanceof Visitor_acceptor)

(( Visitor_acceptor)o). accept__Visitor(v);

else i f (o instanceof String)

v.visit (( String)o);

else
v.visitDefault(o);

}

Fig. 15. Simple example for code generated by the Runabout Optimizer for a
call to visitAppropriate. Here the visitor type is statically known and both
double-dispatch and instanceof tests are necessary. Note that the actual tool
operates on bytecode.

to extend the types of the framework with accept methods. This is because
it is generally desirable from a design perspective for a client application to
not modify any framework code; such modifications make maintenance more
difficult. For the Runabout, the callee types from the framework are actually
less problematic than dispatching on types from the application: the constraint
that the types need to be public is trivially true, since an application using a



given framework can obviously only get direct access to the public types. This
makes the restriction that the visitee types must be public redundant.

Visitor Pattern Runabout Runabout Optimizer

Application inconvenient requires public double-dispatch

Framework problematic % double-dispatch

Core library infeasible % instanceof

Primitives infeasible wrapper overhead additional tests

Table 1. Overview of the costs of using the different approaches on types in
different categories.

While the Runabout Optimizer needs to know all of the runabouts and their
visitee classes in order to operate, it does not need a completely closed-world
setting. Clearly, adding unrelated classes - that is, classes that neither extend
Runabout nor any of the visitees - to a system transformed by the Runabout
Optimizer is unproblematic. Furthermore, it is possible to add subclasses to
the visitees’ classes. However, if runabouts use an interface as one of the visi-
tee types, adding new subtypes of that interface which do not extend existing
classes that implement the interface after running the Optimizer will result in
runtime errors. The reason for this is that the Runabout Optimizer may have
added synthetic accept methods to those interfaces which would then not be
implemented by those new subtypes. It is possible to add new runabouts to a
program that was already transformed by the Runabout Optimizer as long as
those extend Runabout directly. This is possible since the Runabout Optimizer
preserves the original Runabout code. The synthetic non-reflective version gener-
ated by the Optimizer is invoked through a synthetic constructor that switches
visitAppropriate to the non-reflective variant that is used for transformed
code.

5 Experimental Results

This section presents various experimental results. Unless otherwise noted, the
results are for the plain Runabout code (without transformations from the Run-
about Optimizer). To begin with, micro-benchmarking results are used to demon-
strate that the Runabout is comparable in performance with the other designs.
Then, using the static bytecode analysis tools Kacheck/J and Hitsuji as exam-
ples, we describe our experience with refactoring actual applications to use the
Runabout instead of visitors. Our experience confirms an opinion also expressed
in [33]: multi-methods simplify the task of building extensible compiler frame-
works. Finally, the performance impact of using the Runabout in these tools is
evaluated. This is achieved by measuring the runtime for both the code based on
the Runabout and the result of the bytecode transformation by the Runabout
Optimizer which yields the equivalent visitor code.



5.1 Synthetic Micro-benchmarks

In order to evaluate the performance of the Runabout, we have run variations of
the example presented in section 2.1. The four major designs were run on IBM
JDK 1.4.0 and Sun JDK 1.4.1 on a PIII-1000 running Linux 2.4.18. The time
measured corresponds to a total of 10 million invocations. The reported numbers
are the average over 10 runs in single user mode. All methods are invoked with
equal frequency.

Two parameters have a significant impact on the benchmark. First of all, the
number of visit methods (and visitee classes) is important to see if the design
scales to complex visitee structures. The graphs contain the results for one to
20 visitee types; appendix A shows the results for up to 200 visitee types. For
2,000 types, MultiJava is currently unable to compile the test-case. Appendix B
shows results for Sun JDK 5.0, IBM JDK 5.0 and GNU GCJ 4.xxx.

The second important parameter is the hierarchy of the visitee types. The
graphs show the numbers for a totally flat hierarchy (every visitee extends Ob-
ject, as illustrated in Figure 16) and for a hierarchy of maximum depth (visitee
class n extends n − 1, as illustrated in Figure 17). Note that in the case of the
deep hierarchy, the number of visit methods is equal to the depth of the hier-
archy. The choice of hierarchy impacts the runtime of subtype tests, performed
frequently by the MultiJava and the Runabout implementation. The flat hierar-
chy is an important data point since it characterizes both the best-case (in terms
of performance) as well as a common case – parser generators like the Java Tree
Builder [26] often generate a completely flat hierarchy. The deep hierarchy is
the worst case, especially for virtual machines that do not use a constant-time
subtype test [38]. For real-world benchmarks, the actual performance should fall
between these two extremes – with a strong bias towards the case of the flat
hierarchy.

Object

A1 A2 A3 A4 A5

Fig. 16. Illustration of the flat visitee hierarchy used for the micro-benchmarks
(for four visitee classes).

As the benchmarks in Fig. 18 and 20 show, the differences in execution
speed between the approaches are small. The Runabout has the highest cost for
just one visit method; MultiJava degrades with higher numbers of visitee types.
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Fig. 17. Illustration of the deep visitee hierarchy used for the micro-benchmarks
(for four visitee classes).

If the hierarchy is deep (Fig. 19 and 21), the instanceof tests in MultiJava
become more expensive. The performance of dedicated methods, visitors and
the Runabout is not changed significantly.

In practice, the differences between all five approaches (with the potential
exception of MultiJava for large hierarchies) are minor. In particular, the fact
that the double dispatch of the visitor turns out to be faster than the dedicated
method cannot be explained and is presumably just an artifact of the optimizing
compiler. Overall, the numbers from the micro benchmark are too close to rule
out any of the variants: the runtime of any application using any of the variants
of the visitor pattern is typically not determined by the tiny cost of the dispatch
but rather by the actions performed in the visit methods. Also, hierarchies in
real applications are typically not very deep; thus, Fig. 18 is more realistic than
Fig. 19.
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Fig. 18. Sun JDK 1.4.1, flat hierarchy.
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Fig. 19. Sun JDK 1.4.1, deep hierarchy.
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Fig. 20. IBM JDK 1.4.1, flat hierarchy.

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20

tim
e 

(m
s)

number of visit methods

Dedicated methods
Visit methods

Runabout
MultiJava

Fig. 21. IBM JDK 1.4.1, deep hierarchy.
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Fig. 22. This graph compares the time to create 10,000,000 instances of the
same Runabout with the time to create 10,000,000 visitors on Sun JDK 1.4.1.
The creation of runabouts with the cache is about a factor of 3.8 slower.

The measurements above only reflect the time required for the invocation.
The Runabout is also a bit more costly to create compared to instances of ordi-
nary visitors. Fig. 22 shows the cost of creating 10,000,000 instances of Runabout
(with caching enabled) compared with the creation of 10,000,000 instances of an
equivalent visitor. As the numbers imply, creating runabouts can be as little
as roughly a factor of two slower than creating visitors. This is, however, only
half-true. The Runabout implementation caches reflective information, in partic-
ular instances of the dynamically generated and loaded classes, in a thread-local
cache. The creation of the first instance of a given Runabout type in a new
thread is more expensive. Fig. 23 shows the cost of creating 1,000 runabouts
without the cache. The numbers show that caching the reflective information
per-thread reduces the overhead of creating runabouts by a factor of up to
810,000 for 200 visit methods. Note that while it would be possible to cache
the information globally and not just per thread, this would introduce synchro-
nization operations in visitAppropriate, which would probably be worse in
most applications. Profiling Runabout creation shows that dynamic class load-
ing and reflective instantiation are each responsible for over 30% of the time of
Runabout creation.



5.2 Importance of Code Generation

The approach of caching objects used for dispatching as described in the pre-
vious section was previously suggested by Bravenboer and Visser [5]. However,
Bravenboer and Visser cached instances of java.lang.reflect.Method instead
of instances tied to dynamically generated code. Using instances of Method for
dispatching introduces a significant performance penalty compared with code
generation. Figure 24 compares the performance of Bravenboer’s approach with
the Runabout. Note that the generic object traversal, which is also part of [5] was
not used – the only differences in the implementations are the use of dynamic
code generation vs. reflection.

5.3 Refactoring Kacheck/J

Kacheck/J is a bytecode analysis tool used to infer confined types [25] and is
written using the Ovm bytecode framework [37]. Ovm [36] is a customizable
Java Virtual Machine whose framework contains a bytecode analysis and ma-
nipulation framework which was previously based on visitors. In particular, the
framework provides an abstract interpretation engine that uses flyweight in-
struction objects as visitees to support abstract execution. Kacheck/J uses this
abstract execution framework to analyze code.

In the previous version of the framework, every instruction object had an
accept method. In addition to this, every instruction had an execute method
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Fig. 23. This graph shows the time it takes to create 1,000 runabouts without
the cache on Sun JDK 1.4.1.
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Fig. 24. Using dynamic code generation (Runabout) vs. using reflection
(Bravenboer). Using Sun JDK 1.5.0 with a flat hierarchy with the same setup
as used in Appendix B.

which would perform the state manipulation on the abstract interpreter for this
instruction during abstract interpretation. In its main loop, the abstract inter-
preter would call the execute method to simulate the instruction. These execute
calls are interleaved with accepting on a visitor which executes code specific to
the analysis. Additional code in the main loop took care of control flow handling
and merging of abstract states. The execute method can be seen as a dedicated
method for abstract execution.

The analysis framework was refactored to use runabouts instead of the ded-
icated execute method and the accept method. An immediate benefit of this
change was that adding new instruction types for analysis on VM specific byte-
codes (for example, quick opcodes) no longer required adding visit methods to
parts of the framework that were not concerned with these types of instructions.
Factoring out the execute method into a runabout has made it easier to change
its behavior. In order to ease the selective manipulation of the abstract execu-
tion, each abstract interpretation step was split into two runabouts: one that
manipulates the local variables and the stack of the abstract machine, and one
that is responsible for control flow, exception handling, and merging of states.



In addition to getting rid of hundreds of accept methods and hundreds of
visit methods in the matching abstract visitor, the introduction of the Run-
about also allowed other code reductions. Many analyses were grouping visit
methods for closely related instructions, such as invokevirtual, invokeinterface,
invokespecial and invokestatic. This was achieved with the default visitor pat-
tern [27]. Since the hierarchy of instructions is fairly complex, multiple default
visitors (where one visit method was just dispatching to another visit method)
existed in the old framework. Maintaining these default visitors, especially with
changes in the hierarchy of the instructions, has always been a problem. With
the Runabout, most of what we were trying to achieve with the default visitors
was covered by the lookup algorithm, making all of these classes obsolete.

The new framework also has some additional features unrelated to the Run-
about that impact Kacheck/J’s performance (for example, an extensible set
of abstract values for application-specific abstract execution domains). Addi-
tionally, Kacheck/J’s implementation is slightly more powerful; for example, it
records and reports much more detailed information about the constraint system.
These and other changes make the two versions of the code not entirely compa-
rable. The original Kacheck/J tool takes about 57 seconds to analyze the entire
Sun JDK 1.4.0 from the Purdue Benchmark Suite (JDK5) running on top of Sun
JDK 1.4.1 on a PIII-800. The performance of the redesigned Kacheck/J is about
77s to analyze the entire Sun JDK 1.4.0.1 During the analysis, the innermost
loop performs slightly more than 10 million invocations of visitAppropriate.

5.4 Refactoring Hitsuji

Hitsuji [40] is an implementation of 0-CFA [41] for Java. It uses a demand-driven
approach to compute receiver sets, walking over the data-flow graph build by
the abstract interpreter. The computation of the receiver sets dominates the
runtime of the analyzer. This iteration over the data-flow graph initially used
visitors, but the use of visitors resulted in some awkward code. The reason was
that the data-flow graph could be built naturally using the abstract values from
the data-flow analysis. However, the canonical abstract values lacked the proper
accept methods. Since the abstract values were logically part of the bytecode
framework, adding the tool-specific visit methods was not a good option. An
initial implementation used the adaptor pattern [20] to wrap the abstract values
to provide the desired accept methods.

Using runabouts instead of visitors avoids creating these wrappers, resulting
in a slight reduction of memory consumption and garbage collection times at the
expense of a more expensive call in the central loop of the analysis.

1 On a dual-processor system, the difference between the original tool (44s real time,
60s CPU time) and the new implementation (62s real time, 95s CPU time) is slightly
different.



5.5 Using the Runabout Optimizer on Kacheck/J and Hitsuji

The Runabout Optimizer was used on both Kacheck/J and Hitsuji to obtain
a fair comparison between code using visitors and code using the Runabout.
Note that neither Kacheck/J nor Hitsuji make use of the more exotic Runabout
features. The visitAppropriate call is always performed on application types2

and not on primitives or JDK classes. For Hitsuji, the Optimizer can gener-
ate visitors with what is in practice straightforward double-dispatch code. For
Kacheck/J, the generated code requires an additional instanceof test, since
visitAppropriate is overridden in one place.

Table 2 shows the performance of Kacheck/J and Hitsuji analyzing GNU
classpath 0.07 [22] for Hotspot 1.4.1 and the IBM JDK 1.4.2 on a PIII-1000
before and after applying the Runabout Optimizer. The Optimizer itself converts
the code of both applications in a few seconds. Note that the resulting code after
applying the Runabout Optimizer is essentially equivalent to the original code
using visitors – only this time, the accept methods are machine-generated.

Sun JDK 1.4.1 IBM JDK 1.4.2

Kacheck/J 3.1.0 10.840s 23.770s

Kacheck/J 3.1.0-RO 12.410s 21.340s

Hitsuji 0.9.1 51.040s 64.300s

Hitsuji 0.9.1-RO 48.860s 96.780s

Table 2. Performance data for Kacheck/J and Hitsuji on Sun JDK 1.4.1 and
IBM JDK 1.4.2 before and after conversion (of the static analysis tool) with
the Runabout Optimizer. The numbers show the CPU user time as reported by
time of the fastest of three consecutive runs.

The benchmarks primarily illustrate two properties of dispatches in Java.
First, there is no clear winner in terms of implementation. It depends on both the
benchmark and the virtual machine. Only given both it is even meaningful to try
to optimize performance by picking either approach. Secondly, the benchmarks
show that, in general, using the (unoptimized) Runabout does not necessarily
lead to a loss in overall performance, since the performance for these real-life
benchmarks is roughly the same using the (unoptimized) Runabout or visitors.

How useful the Runabout Optimizer is as a tool clearly depends on both
the benchmark and the virtual machine. A virtual machine using ahead-of-time
compilation is likely to require or at least benefit significantly more from the
Runabout Optimizer than a just-in-time compiled or even interpreted system.
The benchmarks also show that the Runabout itself is clearly useful. In Hitsuji,
the use of the Runabout avoids adding wrappers and polluting the source of the
framework with accept methods at no cost. In cases where it would be beneficial
2 In this case, the Ovm framework is specified to be a part of the application and can

thus be modified by the Optimizer.



for performance, the Runabout Optimizer can be used to add accept methods
to the binary class files of the framework, resulting in the same performance
that a visitor would have provided.

6 Related Work

6.1 Walkabout Variations

The Walkabout pattern as described in [39] allows the traversal of an arbitrary
object graph without double dispatch. Instead of double dispatch, reflection is
used to find the matching visit method. The authors noted that their implemen-
tation was impractically slow. The implementation given in [39] also requires
that the type of the argument to the visit method exactly matches the type of
the object that is being visited. Bravenboer [5] improved the performance of the
Walkabout by caching reflective results, but their performance is still poor; the
authors report results that are about 100 times slower than visitors. While mod-
ern virtual machines have reduced the cost of reflection somewhat, Bravenboer’s
approach is still significantly slower than the Runabout (even when limited to
dispatching without reflective traversal) as shown earlier in Section 5.2.

The Sprintabout [18] is a variation of the Runabout where the program-
mer implements an abstract base class with visit methods and an abstract
visitAppropriate method. In the design of the Sprintabout, dynamic code
generation is then used to generate a subclass of the abstract base class where
visitAppropriate is instantiated with code that essentially equivalent to that
of the Runabout. The main difference is that by putting visitAppropriate into
a subclass, the generated dispatching code can be simplified by a single cast –
the Runabout needs to cast to the specific subclass (since only the subclasses
have the necessary visit methods) whereas the Sprintabout can avoid this cast.
The author of the Sprintabout claims performance benefits over the Runabout of
up to 30%. However, the Sprintabout is significantly more complex – the imple-
mentation is significantly larger (see Table 3) and the requirement of changing
the instantiation of abstract base-classes by the Sprintabout framework requires
changes in allocation code which maybe in unrelated parts of the code. Finally,
the author of this paper was unable to get the Sprintabout to work – the Sprint-
about only links with one particular version of the ASM framework that I could
find, and that particular version fails to generate verifying bytecode.

The Sprintabout’s approach of using subclasses for the dispatching code in-
stead of the parent is shared by PolyD [10], another multi-dispatching facility
inspired by the Runabout. PolyD enables true multi-dispatch, supports arbitrary
return values, custom dispatch configuration including mixins [16] and even fea-
tures a runabout-compatibility mode. For simple single-dispatch, we expect the
Sprintabout to have roughly the same performance as PolyD which is slightly
better than that of the Runabout. PolyD shares the requirement of program-
mers using an abstract base-class which is instantiated by the PolyD framework
with the Sprintabout. Appendix B provides results from micro-benchmarks com-



Approach Size

Dedicated Methods 0

Visitor Pattern [21] 0

Bravenboer [5] 4566

Runabout 8655

Sprintabout [18] 35461

PolyD [10] 92975

JMMF [17] 120341

MultiJava compiler [9] 2024608

Table 3. Code size for the different multi-dispatching techniques. The sizes
listed are the size of the compressed JAR files. The goal of this table is simply
to give a rough idea of the complexity of the projects, minor differences in size
are not significant.

paring the performance of visitors, runabouts and PolyD. In terms of size and
complexity, PolyD dwarfs the Sprintabout (Table 3).

6.2 Multiple-Dispatch

Implementations of virtual method dispatch which are efficient in terms of both
space and time have been the subject of a large body of research [8,12,32,42].
In a statically-typed single inheritance setting, the most common approach is
to use virtual function tables. More advanced languages, such as Java, require
more complicated designs [2] to handle features like multiple inheritance and
dynamic class loading. A good overview of recent research is provided in [46].
The Runabout is not concerned with these low-level compilation techniques and
instead uses a large hashtable which puts it close to dynamic perfect hashing [11],
a design that is not suitable for general dispatch techniques since it comes with a
large space penalty. For the Runabout, space is not really a concern since there
are typically few subtypes of Runabout in any given application. Furthermore,
the type-safe high-level implementation of the dispatch in the Runabout cannot
use some of the low-level techniques that compilers would use for dispatching.

A technique to provide multi-dispatch in the JVM is described in [13]. The
authors have extended the virtual machine to use multi-dispatch for classes that
were marked for multi-dispatch. While their approach is compatible with ex-
isting java compilers and libraries, it requires modifications to the VM. The
authors also implemented MDLint, a tool to statically analyze code and warn
programmers about ambiguities in the multi-dispatch. The Runabout Optimizer
also statically detects such ambiguities and does not defer them until runtime.

Closely related to the Runabout Optimizer is doublecpp [3], an extension
of C++ that supports multi-dispatch. doublecpp transforms a variant of C++
with multi-dispatch into C++ code that uses visitors. doublecpp supports a
modular transformation (with is equivalent to the split into application and



runtime library classes in the Runabout Optimizer) which uses runtime type
information instead of double-dispatch to determine the target method.

6.3 Language-based Approaches

Another language-based approach that can be used to address the extensibility
problem is the use of aspect oriented programming [29]. With aspects, it is pos-
sible to introduce accept methods into existing classes. These accept methods
can then be used with visitor-aspects that traverse those classes. In terms of per-
formance, the resulting object code would correspond precisely to that of using
visitors. The main problem with this approach is that it pretty much requires
whole-world compilation. Since accept methods cannot be introduced (without
significant overhead) after instances of the particular classes have been created,
the aspect compiler must be aware of all aspects at link time (for Aspect/J [28],
the latest possible link time is the stage where the Aspect/J runtime performs
load-time weaving of aspects). With the runabout, it is possible to dynamically
load subtypes of Runabout that will visit instances that existed long before the
particular extension was made available. In other words, in contrast to aspect-
oriented programming, the runabout fully supports modular compilation.

Various techniques to extend traditional programming languages in order to
allow programmers to write more extensible, reusable code have been proposed
in the past [14,15,16,28,33,34,45]. These implementations are often incompatible
with each other and require specialized compilers. While these techniques are
more general than the Runabout, the Runabout is a more lightweight solution
for Java. Other examples for lightweight extensions of the Java language that
also use dynamic code generation and reflection are the dynamic generation of
helper classes for structural conformance, automatic delegation, and mixins [6].

6.4 Related Patterns

While the Runabout and other multi-dispatch related research has focused on the
dispatch element in visitors, other researchers [5,35,44] have made suggestions
on how to specify the visit strategy — that is, the order in which objects are
visited. In the same way that the Runabout allows for a concise and dynamic
specification of how to find the target of the dispatch, the Demeter Java project
has focused on designing specifications for the visit order, allowing programmers
to specify the order in which objects in a graph should be visited [35]. A guiding
visitor [5] can be used to specify the order of the traversal, allowing programmers
to make the actual code independent from the specification of the traversal
order. An entire language for composing visitors and specifying traversal orders
is described in [44]. Note that both research areas (dispatch strategy and visit
strategy) are orthogonal and thus most solutions can be easily composed. The
Runabout satisfies the single-responsibility principle [31] by being only concerned
with dispatch and leaving questions about the visit order to other classes.

A pattern that also addresses the extensibility problem is the extension ob-
jects pattern [19]. This pattern is useful if different subsets of the subtypes of



a particular class will need to be extended with unanticipated operations. The
extension objects pattern prescribes that the parent class provides a generic op-
eration to lookup an extension (for example, by name). Individual instances can
then be modified to support individual extensions. The pattern is similar to the
Runabout in that it makes it easier to add functionality to an existing object
structure. The extension object pattern is also similar in terms of performance
– an operation requires a hash table lookup and a cast. However, the cast per-
formed by the Runabout is guaranteed to succeed, programming with extension
object patterns requires disciplined matching of keys and values in the extension
map from the programmer. With the Runabout, the key for the lookup is the
type of the object structure, the operation is already known. In contrast, with the
extension object pattern, the key is the operation (name of the extension), the
specific object is known since it is used to perform the lookup. Runabouts (and
visitors) are better at centralizing state associated with the operation ( in the
visiting instance), whereas the extension objects pattern is better at preserving
encapsulation within the visitees.

7 Conclusion

The Runabout is a viable alternative solution to the extensibility problem. Unlike
other designs, the Runabout does not require extensions to the Java language.
The Runabout can exhibit speeds comparable to other solutions, including Mul-
tiJava, visitors, and dedicated methods. Experience in implementing projects
using the Runabout shows that it helps significantly in decoupling client code
from the framework by allowing the applications to use visitor-like dispatch-
ing on objects provided by the framework without the need for changes to the
framework itself. In cases where a loss of performance can be attributed to the
Runabout, a static program transformation can be used to generate the equiva-
lent visitor code.
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A Micro-benchmarks: one to 200 visit methods

In this appendix, the results for the micro-benchmarks that were shown for one
to twenty visit methods in Figures 18, 19, 20 and 21 are repeated, this time for
one to 200 visit methods.
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Fig. 25. Sun JDK 1.4.1 with flat (left) and deep (right) hierarchy.
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Fig. 26. IBM JDK 1.4.1 with flat (left) and deep (right) hierarchy.
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Fig. 27. SUN (left) and IBM (right), flat hierarchy without MultiJava.



B Micro-benchmarks with Java 5

This appendix gives results for the same benchmarks that were used in ap-
pendix A but uses the Java 5.0 versions from Sun and IBM as well as GNU
GCJ. Furthermore, the benchmarks were run on a 64-bit AMD Sempron 2600+
at 1608 MHz. The benchmark suite was extended to include PolyD (20050403-
0031) [10] a multi-dispatching variant of the Runabout. JMMF [17] was also
measured; the numbers are not shown since the performance was generally more
than a factor of ten worse than any of the other approaches.
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Fig. 28. Sun JDK 1.5.0 with flat (left) and deep (right) hierarchy.
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Fig. 29. IBM JDK 1.5.0 with flat (left) and deep (right) hierarchy.
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Fig. 30. GNU GCJ with flat (left) and deep (right) hierarchy.
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