
FA K U LT Ä T F Ü R I N F O R M AT I K
Technische Universität München

Lehrstuhl für Netzarchitekturen und Netzdienste

Master’s Thesis in Informatics

D E C E N T R A L I Z E D E VA L UAT I O N O F R E G U L A R
E X P R E S S I O N S F O R C A PA B I L I T Y D I S C O V E RY I N

P E E R - T O - P E E R N E T W O R K S

Maximilian Szengel

FA K U LT Ä T F Ü R I N F O R M AT I K
Technische Universität München

Lehrstuhl für Netzarchitekturen und Netzdienste

Master’s Thesis in Informatics

D E C E N T R A L I Z E D E VA L UAT I O N O F R E G U L A R
E X P R E S S I O N S F O R C A PA B I L I T Y D I S C O V E RY I N

P E E R - T O - P E E R N E T W O R K S

V E RT E I LT E AU S W E RT U N G V O N R E G U L Ä R E N
AU S D R Ü C K E N Z U R C A PA B I L I T Y D I S C O V E RY I N

P E E R - T O - P E E R N E T Z W E R K E N

author : Maximilian Szengel
supervisor : Christian Grothoff, PhD (UCLA)

advisors : Ralph Holz

Bartlomiej Polot
Dr. Heiko Niedermayer

date : November 15
th, 2012

D E C L A R AT I O N

I assure the single handed composition of this master’s thesis only
supported by declared resources.

Munich, November 15th, 2012

Maximilian Szengel

v

A C K N O W L E D G M E N T S

I would like to thank my advisors for their guidance, extensive support
and advice during the course of this work. I thank Christian Grothoff
for providing the initial idea and the possibility of working with
him, as well as his outstanding support on all aspects of this thesis.
I thank Ralph Holz for bringing us all together on this topic and
for his invaluable discussions. I thank Heiko Niedermayer for his
helpful feedback and discussions on the design and related work.
Moreover I thank Bartlomiej Polot for his work on the mesh part and
his support during the evaluation. Furthermore, I would like to thank
David Barksdale for his discussions on the design and I would like to
thank Sree Harsha Totakura for his work on the GNUnet testbed and
support on running the emulation.

Finally I would like to thank my friends and family for supporting
me during my whole academic studies.

vii

A B S T R A C T

This thesis presents a novel approach for decentralized evaluation of
regular expressions for capability discovery in Distributed Hash Table
(DHT)-based overlays. The system provides support for announcing
capabilities expressed as regular expressions and discovering partici-
pants offering adequate capabilities.

The idea behind our approach is to convert regular expressions into
finite automatons and store the corresponding states and transitions
in a DHT. We show how locally constructed Deterministic Finite
Automatons (DFAs) are merged in the DHT into an Nondeterministic
Finite Automaton (NFA) without the knowledge of any NFA already
present in the DHT and without the need for any central authority.
Furthermore we present options of optimizing the DFAs.

There exist several possible applications for this general approach of
decentralized regular expression evaluation. However, in this thesis we
focus on the application of discovering users that are willing to provide
network access using a specified protocol to a particular destination.

We have implemented the system for our proposed approach and
conducted a simulation. Moreover we present the results of an emula-
tion of the implemented system in a cluster.

ix

Z U S A M M E N FA S S U N G

Diese Arbeit präsentiert einen neuartigen Ansatz zum dezentral-
isierten Auswerten von regulären Ausdrücken, zur Capability Dis-
covery in Distributed Hash Table (DHT) basierten overlay Netzwerken.
Das System ermöglicht das bekanntmachen von Capabilities, welche
durch reguläre Ausdrücke beschrieben werden und das Auffinden
von Teilnehmern mit dazu passenden Capabilities.

Die Idee hinter unserem Ansatz ist es reguläre Ausdrücke in fi-
nite Automaten umzuwandeln und die dazugehörigen Knoten und
Transitionen in einer DHT abzulegen. Wir zeigen wie lokal erstellte
Deterministic Finite Automatons (DFAs) in der DHT zu einem Nonde-
terministic Finite Automaton (NFA) fusioniert werden ohne benötigte
Kenntnis über möglicherweise schon vorhandene NFAs in der DHT,
sowie ohne Notwendigkeit für eine zentrale Authority. Weiterhin
präsentieren wir optionen zum optimieren der DFAs.

Für diesen Ansatz gibt es viele mögliche Anwen-
dungsmöglichkeiten, allerdings konzentrieren wir uns in
dieser Arbeit auf das Auffinden von Usern, die bereit sind
Netzwerkzugriff für ein spezielles Protokoll zu einer bestimmten
Destination bereitzustellen.

Wir haben das System für unseren vorgestellten Ansatz implemen-
tiert und simuliert. Weiterhin präsentieren wir die Ergebnisse einer
Emulation des Systems mit Hilfe eines Clusters.

xi

C O N T E N T S

1 introduction 1

2 background 3

2.1 Distributed Hash Tables 3

2.2 Finite Automata . 5

2.3 Regular Expressions . 8

2.3.1 Constants . 8

2.3.2 Operators . 8

2.4 Converting Regular Expressions to Automata 10

2.4.1 NFA construction 10

2.4.2 DFA construction 12

2.4.3 DFA minimization 14

2.5 DFA Optimizations . 15

2.5.1 Edge compression 16

2.5.2 Increased stride 16

2.5.3 Path compression 17

2.5.4 Alphabet reduction 17

2.6 Transitive closure method 19

2.6.1 Regex simplification 22

2.7 Summary . 24

3 design 26

3.1 Mapping of States to Keys 27

3.1.1 Illustrative Examples 27

3.2 Problem Statement . 29

3.3 Mapping DFA states to DHT keys 30

3.4 Decentralizing the Start State 34

3.4.1 Example . 34

3.4.2 Policies . 34

3.5 Optimizing the DFA to Minimize DHT Lookups 36

3.5.1 Edge Compression 36

3.5.2 Increased Stride 36

3.5.3 Path Compression 37

3.5.4 Alphabet Reduction 38

4 implementation 39

4.1 Architecture . 39

4.1.1 Component Interaction 41

4.2 Regular Expression Library 41

4.2.1 API Description 42

4.2.2 Testing . 43

4.3 GNUnet Protocol Translation (PT) Application 44

xiii

contents xiv

5 evaluation 46

5.1 Dataset . 46

5.2 Theory . 46

5.3 Simulation . 47

5.3.1 Experimental Setup 47

5.3.2 Measurements . 48

5.4 Emulation . 51

5.4.1 Experimental Setup 51

5.4.2 Measurements . 52

5.5 Summary . 55

6 related work 56

6.1 Structure on top of DHT 56

6.1.1 Data Indexing in Peer-to-Peer DHT Networks . 56

6.1.2 PastryStrings . 57

6.1.3 Prefix Hash Tree (PHT) 59

6.1.4 Comparison to our approach 59

6.2 P2P Overlay . 60

6.2.1 Cubit . 60

6.2.2 DPMS . 61

6.2.3 Comparison to our approach 62

6.3 Other . 63

6.3.1 Similarity Queries on Structured Data in Struc-
tured Overlays 63

6.3.2 Cooperative Information Sharing System 64

6.3.3 Comparison to our approach 64

7 conclusion and future work 66

Appendix

a profiling 69

a.1 Database information for simulated evaluation 69

a.1.1 Table Schema . 69

a.1.2 Prepared Insert Statement 69

a.2 Profiling Tools Reference 69

a.2.1 gnunet-regex-simulation-profiler 69

a.2.2 gnunet-regex-profiler 70

b regex library 71

b.1 Example Regex DFA . 71

c web resources 74

c.1 RFC-822 compliant regular expression 74

L I S T O F F I G U R E S

Figure 2.1 Illustration of the Chord DHT 4

Figure 2.2 Illustration of the Kademlia DHT 4

Figure 2.3 Example for a DFA graph representation . . . 6

Figure 2.4 Example for an ε-NFA graph representation . 6

Figure 2.5 Basic constructs for building an NFA 11

Figure 2.6 NFA fragments for concatenation, union and star 12

Figure 2.7 Example NFA for DFA construction 13

Figure 2.8 DFA constructed by NFA conversion 14

Figure 2.9 DFA with double strides 17

Figure 2.10 DFA graph for the regular expression
abc(d∗|e) f gh . 17

Figure 2.11 DFA graph with applied path compression . . 18

Figure 2.12 Example of alphabet reduction on a DFA . . . 19

Figure 2.13 Simple DFA with regular expressions as state
identifiers . 19

Figure 2.14 Illustration of the paths between two states in a
DFA . 20

Figure 3.1 Schematic overview of the presented approach 26

Figure 3.2 DFAs for the regular expression ab and ac . . . 27

Figure 3.3 Merging of two DFAs 28

Figure 3.4 Example for an incorrect DFA merge 28

Figure 3.5 Correctly combined DFAs with separation of
SCCs . 29

Figure 3.6 DFA example with partial regular expressions 31

Figure 3.7 DFA graph example for decentralizing the start
state . 35

Figure 3.8 Merging of DFAs with maximal path compression 37

Figure 3.9 Merging of DFA states with limited path com-
pression length 38

Figure 4.1 Architecture overview diagram 40

Figure 4.2 Protocol Translation application overview dia-
gram . 44

Figure 5.1 Experimental setup for simulation 48

Figure 5.2 Number of transitions and states in the merged
NFA for different path lengths 48

Figure 5.3 Count of states for numbers of transitions for
different path lengths 49

Figure 5.4 CCDF of outgoing transitions for path lengths
6, 8 and 16 . 50

Figure 5.5 Degree of non-nondeterminism at states in the
merged NFA . 50

xv

list of figures xvi

Figure 5.6 Emulation testbed setup 52

Figure 5.7 Search duration for 100 peers 53

Figure 5.8 Search duration for 500 peers 54

Figure 5.9 Search duration for 5000 peers and different
maximum path compression 55

Figure 6.2 PastryStrings event to subscription matching . 58

Figure 6.3 Peer organization for a Cubit node 61

Figure B.1 DFA for an AS generated with GNUnet Regex
Library . 73

L I S T O F TA B L E S

Table 2.1 Example for an ε-NFA transition table 7

Table 2.2 DFA acceptance table 7

Table 2.3 Constants used in regular expressions 8

Table 2.4 Regular expression operators 9

Table 2.5 Closure functions for DFA construction 13

Table 2.6 Alphabet reduction transition table 19

Table 2.7 Excerpt from regular expression rewriting rules 24

Table 2.8 Symbol reference table 25

Table 3.1 Example policy description 35

Table 5.1 Statistics for emulations with 100, 500 and 1000

peers . 53

Table 5.2 Comparison of maximum path length 4, 8 and
16 for 5000 peers. 54

xvii

L I S T O F A L G O R I T H M S

- Procedure NFA concatenation 11

- Procedure NFA union . 11

- Procedure NFA star . 12

1 Merging non-distinguishable DFA states 15

2 Double Stride algorithm by Brodie et al. 16

3 NFA path compression 18

4 Transitive closure algorithm 21

5 Mapping DFA states to DHT keys 31

xviii

G L O S S A RY

R5N Randomized Recursive Routing for Restricted-
Route Networks. 40

API Application Programming Interface. 4, 39, 40, 42,
43, 45

AS Autonomous System. 46, 51, 52, 73

CAIDA The Cooperative Association for Internet Data Anal-
ysis. 46

CCDF Complementary Cumulative Distribution Function.
49

CISS Cooperative Information Sharing System. 63, 64

DFA Deterministic Finite Automaton. ix, xi, 3, 5–8, 10,
12–19, 21–34, 36–38, 40–43, 46, 47, 51–53, 55, 66

DHT Distributed Hash Table. ix, xi, 1, 3, 4, 24, 26, 27, 29,
30, 32–42, 47, 48, 53, 54, 56–59, 62–64, 66

DNS Domain Name System. 44

DPI Deep Packet Inspection. 16

DPMS Distributed Pattern Matching System. 61, 62

FSM Finite-State Machine. 5

GNUnet GNU’s Framework for Secure Peer-to-Peer Net-
working. 39–41, 44, 45, 51, 54

IPv4 Internet Protocol version 4. 9, 10, 37, 38, 42–47, 49,
51, 52, 64

IPv6 Internet Protocol version 6. 42–45

NFA Nondeterministic Finite Automaton. ix, xi, 1, 5–8,
10–14, 19, 25–38, 41–43, 46–51, 55

P2P Peer-to-Peer. 1, 3, 39, 47, 56, 60, 62, 64

xix

Glossary xx

pfx2as Routeviews Prefix to AS mappings Dataset. 46, 47,
51

PHT Prefix Hash Tree. 56, 59, 60

PT Protocol Translation. 39, 42, 44

SCC Strongly Connected Component. 43

TCA Transitive Closure Algorithm. 31

TCM Transitive Closure Method. 3, 24, 30

VPN Virtual Public Network. 44

XPath XML Path Language. 56

1
I N T R O D U C T I O N

This work presents a novel approach for distributed searches in Peer-
to-Peer (P2P) overlays based on regular expressions. Data, such as
peer identities, is published under a regular expression and can then
be located using strings that match the regular expression. General
purpose regular expressions offer a potent method for participants
to advertise services or capabilities, and to enable other peers to
discover partners with adequate capabilities in a fully decentralized
and distributed fashion.

For example, a player might be searching for an opponent with
particular availability, skills, and using hardware that offers certain
minimal computational capabilities. Another example would be a
scheduler that is searching for peers that are offering certain hardware
and are willing to provide their computational power for distributed
computing. Finally, in this thesis, we focus on the problem of finding
users that are willing to provide network access using a specified
protocol to a particular destination. This is useful for overlay networks
that are used to tunnel IP packets to destinations that are not directly
accessible for a peer in the network, for example due to protocol
incompatibilities (IPv4 vs. IPv6) or firewalls.

Traditional structured Distributed Hash Table (DHT)-based P2P
networks offer an efficient way of decentralized distributed storage
and retrieval of data objects. In traditional DHTs, indexing is typically
based on hash-keys [Bal+03]. DHTs with more expressive search capa-
bilities exist; for example, CAN [Rat+01] can be used for range queries
and P-Grid [Abe+03] provides substring, range and path queries. How-
ever, we are not aware of any existing decentralized and distributed
methods for evaluating regular expressions.

Our approach implements the evaluation of regular expressions on
top of traditional key-based DHTs. The usual way to evaluate a regular
expression locally on one machine is to convert it to an automaton that
consists of states and transitions between these states. The idea is to
store each node of the automaton graph as well as the node’s outgoing
transitions under a certain key in the DHT. Peers that are searching for
a particular string are able to evaluate the regular expressions stored in
the DHT by following the transitions in the resulting Nondeterministic
Finite Automaton (NFA).

This thesis presents our basic design, possible optimizations to
the automaton to improve network performance and includes exper-
imental results from an implementation in GNUnet using regular
expressions to mimick AS-level routing in the P2P overlay.

1

introduction 2

The thesis is structured as follows. Chapter 2 gives an overview
of the fundamental concepts and algorithms on which our design is
based. The design of the overall system is described in Chapter 3, fol-
lowed by Chapter 4, which focuses on the implementation. Evaluation
of the implemented system is discussed in Chapter 5. Next, the work
related to our approach is presented in Chapter 6. Finally, Chapter 7

gives an overview of the achievements and ideas for future work.

2
B A C K G R O U N D

In this chapter the fundamental concepts, terminology and algorithms
that are relevant to the design are discussed in detail. First the concepts
of traditional key-based DHTs are introduced, followed by definitions
and algorithms for finite automata and regular expressions. Further-
more optimizations for Deterministic Finite Automatons (DFAs) and
the Transitive Closure Method (TCM) are presented. The chapter con-
cludes with a short summary and a legend of symbols used through-
out the thesis.

2.1 distributed hash tables

A DHT is a data structure that allows efficient storage and look-up of
data in P2P networks. It provides hash table functionality for handling
(key, value) pairs. The nodes in a DHT and the stored data items are
identified by a key in the same key-space. Keys are typically values
from a hash function such as SHA, which provides 2160 (for SHA-1,
SHA-2 can even provide 2512) possible values, that, although possible,
are unlikely to collide. Therefore nodes and items can be uniquely
identified in the network. Each node maintains connections to other
nodes and is responsible for storing certain (key, value) pairs, as well
as routing requests to other nodes in the network. Routing efficiency is
typically bound by O(log n), meaning that for n nodes participating in
the network, routing a request for the value to a key takes a maximum
of log n hops. This is achieved by imposing a structure, such as a tree,
on the participating nodes. Two basic operations are provided by a
DHT: PUT(key, value), which stores data under a specific key in the
DHT and value = GET(key), which receives a previously stored value
for a given key. Knowledge of the key is essential for data lookup.
There is no integrated mechanism to search the stored data. In addition
to routing efficiency for the PUT and GET operations, a DHT has the
following characteristics [She+09].

• Scalibility, meaning with an increasing number of nodes, the
overhead for managing these nodes only grows logarithmically.

• Self-organization, describing that there is no requirement for a
central authority, it operates fully decentralized.

• Incremental deployability, which means a DHT works with any
number of participating nodes and normal operation is still
possible even when nodes constantly join and leave.

3

2.1 distributed hash tables 4

Figure 2.1 and Figure 2.2 show two schematic DHT examples. The
Chord DHT structures its peers in an identifier ring, where each peer
keeps a so called finger table with shortcuts to distant peers in the
ring. The Kademlia DHT can be abstracted as a binary tree. It uses the
XOR metric to measure the distance between two peers. There exist
many other DHTs that implement a diverse set of routing algorithms
and strategies, but can be abstracted using the above PUT/GET Ap-
plication Programming Interface (API) abstraction.

Figure 2.1: Illustration of the Chord DHT with ten nodes arranged in a circle,
showing the "fingers" for node N16. Each node in Chord keeps
a finger table with links to other peers, this is required to have
O(logn) routing performance in an n-node network. (Illustration
from [She+09].)

Figure 2.2: Illustration of the neighbors for peer E in the Kademlia DHT. The
peer E would choose up to k peers from each of the regions as
neighbors. (Illustration from [She+09].)

In this thesis we use such a traditional key-based DHT as the basis
for our design. However, in addition to these concepts of traditional
key-based DHTs there exist other approaches which provide more
than a simple PUT/GET API. A selection of such approaches, which
are relevant to this thesis, are discussed in Chapter 6.

2.2 finite automata 5

2.2 finite automata

Finite automata or Finite-State Machines (FSMs) generally consists of
states, input symbols and transitions between these states. An FSM
is a mathematical model of computation and can be used to model a
broad spectrum of problems. [Aho+06; HMU07; Sip06]

deterministic finite automata A DFA is an FSM, basically
consisting of states, input symbols and transitions between the states.
A DFA is a special form of an FSM and is used to recognize languages
generated by type-3 grammars from the Chomsky hierarchy (regular
languages) [Cho56]. A DFA D = (Q, Σ, δ, q0, F) consists of:

1. A finite set of states Q.

2. A finite set of input symbols Σ.

3. A transition function δ(q, a) : Q× Σ 7→ Q that takes a state q
and an input symbol a and returns a state.

4. A start state q0 ∈ Q.

5. A set of accepting states F, where F ⊆ Q.

non-deterministic finite automata An NFA
N = (Q, Σ, δ, q0, F) has the same properties as the DFA, but differs
in the transition function δ. For an NFA, δ(q, a) : Q× Σ 7→ {qi, ...qk}
is defined as a relation that takes a state and an input symbol and
returns a set of states {qi, ..., qk} ∈ Σ. A transition from some state
q1 ∈ Q to q2 ∈ Q on some input symbol a ∈ Σ is expressed as a tuple
δ : Q× Σ× Σ 7→ (a, q1, q2).

An ε-NFA, in contrast to an NFA, supports ε-transitions. This means
the transition relation δ can act on the special symbol ε, allowing the
automaton to transition from any state qs to a state qt without con-
suming any of the input symbols Σ \ {ε}. Even though the definition
of an NFA and an ε-NFA differ, the following chapters of this paper
will not always strictly distinguish them. An ε-NFA will be generally
referred to simply as an NFA.

Note that the states of a finite automaton can be freely renamed
without changing the recognized language. Naming of states is only
relevant for referencing certain states in the text. For example, in this
document the starting state of an automaton is typically named q0.

representation Both (ε-)NFAs and DFAs can be represented by a
transition graph (see Figure 2.3 and Figure 2.4). Note that, throughout
this thesis, any graphs of NFAs or DFAs do not contain all a ∈ Σ
at each state q ∈ Q, only the relevant edges that lead to accepting
states are shown. The states are represented as graph nodes and
the transition function is represented by labels on the graph’s edges.

2.2 finite automata 6

Nodes marked with a double circle are accepting states. There exists
an edge with the label a from state qs to state qt if and only if qt is
in the return set of δ(qs, a). In case of an ε-NFA the edge labels can
contain ε transitions. According to the above definition, a DFA state
cannot have two outgoing edges with the same label (because δ is
defined as a function that returns exactly one state) and cannot contain
any ε transitions.

0

1
a

2b

3c

a

c

Figure 2.3: Example for a DFA graph representation, where nodes represent
states, edges and their labels represent the transition function and
double circled states are in the set of accepting states. This DFA
accepts the empty string, the string consisting of at least one a
followed by any number of optional a’s and the string "bc", as
well as, the string consisting of the single character c.

0

1ε

6

ε

2
ε

4ε

7ε
9

ε

3
a

5

ε

ε
ε

8b 10εε 11c
ε

Figure 2.4: Example for an ε-NFA graph representation that accepts the
same strings as the DFA in Figure 2.3, but includes additional
ε-transitions that do not consume any input symbols when match-
ing an input string.

Finite automatons can also be represented by a transition table,
where table rows correspond to states and table columns correspond
to input symbols. The table representation has the disadvantage of
taking a great amount of space when the input alphabet Σ is large and
most states do not have any transitions on most of the input symbols.

2.2 finite automata 7

Table 2.1 shows such a table, clearly indicating the unused space taken
up by ∅ symbols.

State a b c ε

0 ∅ ∅ ∅ {1, 6}

1 ∅ ∅ ∅ {2, 4}

2 {3} ∅ ∅ ∅

3 ∅ ∅ ∅ {2, 4}

4 ∅ ∅ ∅ {5}

5 ∅ ∅ ∅ ∅

6 ∅ ∅ ∅ {7, 9}

7 ∅ {8} ∅ ∅

8 ∅ ∅ ∅ {9}

9 ∅ ∅ ∅ {10}

10 ∅ ∅ {11} ∅

11 ∅ ∅ ∅ {5}

Table 2.1: Transition table for the δ relation, where the rows represent states
∈ Q and the columns the input symbols ∈ Σ, the accepting state
∈ F is marked bold. It indicates the unused space taken up by ∅
symbols

As stated in the beginning of this chapter, finite automata are used
to recognize regular languages. If a DFA or (ε-)NFA accepts an input
string, the input string is a word of the language it recognizes. The
finite automaton accepts an inputs string s if there is a path from the
start state q0 using the transition function δ(q, a) for any symbol a in
s (mind that ε transitions do not consume any input symbols) to an
accepting state q f ∈ F. For example consider the DFA in Figure 2.3
and the input strings "aaa", "bc" and "b", Table 2.2 shows the paths for
each input string and if the string is accepted (i.e. the last state is an
accepting state).

String State Sequence Result

"aaa" 0 a−→ 1 a−→ 1 a−→ 1 accepted

"bc" 0 b−→ 2 c−→ 3 accepted

"b" 0 b−→ 2 rejected

Table 2.2: DFA acceptance table for the DFA shown in Figure 2.3. The first
column shows the input string, the second column shows the
sequence of states that has been taken in the DFA and the final
column shows if the input string is either accepted or rejected

All three of the above examples (Figure 2.3, Figure 2.4 and Table 2.1)
show a representation of the same automaton. They all denote finite

2.3 regular expressions 8

automatons that accept the same language. In general both NFAs
and DFAs are capable of recognizing regular languages and thus can
be used interchangeably [Sip06]. In order to describe a regular lan-
guage with a relatively simple string, instead of constructing relatively
complex automatons, regular expressions are used.

2.3 regular expressions

NFAs and DFAs can be described using regular expressions. The ad-
vantage of regular expressions over automata is that they describe the
strings which should be accepted and abstract the underlying states
and transitions. All languages expressed with regular expressions are
regular languages and can be used to check if a given string is part of
a given language or not.

Formally, a regular expression consists of constants, strings and spe-
cial operators that denote operations over these strings and constants
[Sak09; HMU07]. The following sections list and describe the constants
and operators used in this thesis.

2.3.1 Constants

Regular expression constants are the basis for building more complex
expressions. For an alphabet of input symbols Σ the following con-
stants are defined. The empty set ∅ and empty string ε constants are
not part of the set of input symbols Σ.

Meta character Definition

∅ Empty set

ε Empty string

a ∈ Σ Set containing only the character a

Table 2.3: The constants used in regular expressions to describe a regular
language.

To build more complex expressions, the constants are used together
with operators defined in the next section.

2.3.2 Operators

For any regular expressions A and B the following basic operators are
defined.

Here + and ? are simple additions to the other operators that can be
expressed as seen in Table 2.4. For convenience, several more additions
to the operators defined here are commonly used, but these can be
reduced to the minimal required set of operators: concatenation, union
and Kleene star. For example characters can be grouped by specifying

2.3 regular expressions 9

Operator Operation Definition

concatenation AB = {xy|x ∈ A ∧ y ∈ B}
| union A | B = {x|x ∈ A ∪ B}
∗ Kleene star A∗ = {x|x ∈ {ε, AA∗}}
+ repeat one or more times A+ = AA∗

? zero or once A? = ε | A

Table 2.4: Basic set of regular expression operators used in this thesis.

ranges like [0− 5], which means “any of the numbers between 0 and
”, which is equivalent to (0|1|2|3|4|5).

operator precedence Operators can only be applied to symbols
or well-formed regular expressions. Symbols and regular expressions
can be grouped using parentheses.

1. The star operator (∗), the plus operator (+) and the question
mark operator (?) are of the highest precedence. These operators
only apply to the smallest sequence of operands to their left that
form a regular expression.

2. Next in precedence is the implicit concatenation operator, which
groups all expressions consisting of adjacent operands that have
no intervening operators.

3. The union operator is of the lowest precedence.

examples The example automaton representations shown in Fig-
ure 2.3, Figure 2.4 and Table 2.1 can be described using the regular
expression a∗|b?c. In English, the automatons and the regular expres-
sion describe the language that contains the empty word ε, all words
consisting only of a’s and the words bc and c.

The above example is a fairly abstract one with no real practical
use, still it shows the concept of how regular expressions are used.
To give a more practical example consider a program that accepts
an Internet Protocol version 4 (IPv4) address as a user input. If the
program wants to validate the user input, before actually using it, it
can use a regular expression to test IPv4 address validity. To do that,
consider the following regular expression:

([01]?[0-9][0-9]?|2[0-4][0-9]|25[0-5]).
([01]?[0-9][0-9]?|2[0-4][0-9]|25[0-5]).
([01]?[0-9][0-9]?|2[0-4][0-9]|25[0-5]).
([01]?[0-9][0-9]?|2[0-4][0-9]|25[0-5])

It will accept "192.0.2.67", but not the invalid "012.345.678.9" as an
input.

2.4 converting regular expressions to automata 10

Another example for practical use of regular expressions is the
validation of e-mail addresses. The following regular expression1 can
be used to check if a given e-mail address is valid.

[a-z0-9!#$%&’*+/=?^_‘{|}~-]+

(?:\.[a-z0-9!#$%&’*+/=?^_‘{|}~-]+)*
@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9]

(?:[a-z0-9-]*[a-z0-9])?

Although this expression is already more complicated than the
IPv4 example above, it is not completely compatible with the official
RFC-822 standard. A fully standard compliant expression is presented
in Appendix C.1.

2.4 converting regular expressions to automata

Evaluating regular expressions is done by converting them to finite
automata. The automata are then simulated to process an input string
and decide if the given string is part of the language described by
the regular expression. Our approach is to perform the evaluation
of regular expressions in a distributed way that is also based on
the construction of finite automata. This section describes how finite
automata, in particular NFAs and DFAs, are constructed from regular
expressions.

The steps to construct a DFA out of a given regular expression are:

1. Parsing - parse the regular expression

2. NFA - construct an NFA from the parsed regular expression

3. DFA - convert the NFA into a DFA

2.4.1 NFA construction

Constructing an (ε-)NFA for any given regular expression R is done
by creating intermediate NFAs that are combined to the full NFA,
accepting the same regular language as R. The basic automatons that
accept the languages only consisting of either ε (a), ∅ (b) or one
character a (c) are shown in Figure 2.5.

More complex regular expressions are then constructed using the
NFA fragments shown in Figure 2.6 (R and S are itself regular expres-
sions). These represent the operators defined in Section 2.3.2, where
only the basic operations for concatenation (a), union (b) and star (c)
are needed here, because any regular expression can be reduced to
these operations.

1 Regular expression for e-mail address validation taken from http://www.

regular-expressions.info/email.html

http://www.regular-expressions.info/email.html
http://www.regular-expressions.info/email.html

2.4 converting regular expressions to automata 11

a bε0

(a) NFA accepting the expression ε

a b0

(b) NFA handling ∅

a ba0

(c) NFA accepting the regular expres-
sion a

Figure 2.5: Basic constructs for building an NFA

The described NFA structures are used to construct an NFA that
accepts the regular expression R, by parsing the regular expression
using a stack. For each character and operation one of the basic
structures is created by popping one or two elements from the stack
and building a new fragment that is pushed back onto the stack. The
following procedures show how the NFA fragments are created for
concatenation, union and star.

Procedure NFA concatenation
Procedure: Takes a stack S, containing at least two NFA fragments, pops

them from S, creates a new NFA fragment that concatenates the two
fragments and pushes the new fragment to the stack.

Input: Stack S containing at least two NFA n0, n1 ∈ (Q, Σ, δ, q, F)
Output: Stack S containing a new NFA fragment

1 (Q0, Σ0, δ0, q0, F0)← pop(S);
2 (Q1, Σ1, δ1, q1, F1)← pop(S);
3 δ′ ← δ0 ∪ δ1 ∪

⋃
q∈F0
{(ε, q, q1)};

4 push(S, (Q0 ∪Q1, Σ0 ∪ Σ1, δ′, q0, F1));

Procedure NFA union
Procedure: Takes a stack S, containing at least two NFA fragments, pops

them from S, creates a new NFA fragment that joins the two fragments
and pushes the new fragment to the stack.

Input: Stack S containing at least two NFA n0, n1 ∈ (Q, Σ, δ, q, F)
Output: Stack S containing a new NFA fragment

1 (Q0, Σ0, δ0, q0, F0)← pop(S);
2 (Q1, Σ1, δ1, q1, F1)← pop(S);
3 N ← (Q0 ∪Q1 ∪ {q′0, q′f }, Σ0 ∪ Σ1, δ′, q′0);
4 δ′ ← δ0 ∪ δ1 ∪ {(ε, q′0, q0), (ε, q′0, q1)} ∪

⋃
q∈F0∪F1

(ε, q, q′f);
5 push(S, N);

Parsing the regular expression R and building the corresponding
NFA as described above can be done in parallel, so that at the end the

2.4 converting regular expressions to automata 12

SR ε

(a) concatenation

S

R ε

ε

ε

ε

(b) union

R ε

ε

ε

ε
(c) star

Figure 2.6: Illustration of NFA fragments for the concatenation (a) and union
(b) of two regular expressions R and S and the star operation (c)
for a regular expression R.

Procedure NFA star
Procedure: Takes a stack S, containing at least one NFA fragment, pops

it from S, creates a new NFA star fragment and pushes the new
fragment to the stack.

Input: Stack S containing NFA n1, ..., nk ∈ (Q, Σ, δ, q, F)
Output: Stack S containing a new NFA fragment

1 (Q0, Σ0, δ0, q0, F0)← pop(S);
2 N ← (Q0 ∪ {q′0, q′f }, Σ0, δ′, q′0, {q′f });
3 δ′ ← δ0 ∪ {(ε, q′0, q0), (ε, q′0, q′f)} ∪

⋃
q∈F0
{(ε, q, q′f)};

4 push(S, N);

stack contains a single NFA that accepts the language described by R.
[HMU07]

2.4.2 DFA construction

Constructing a DFA is done by NFA conversion [App97]. As described
in Section 2.2, both NFAs and DFAs are used to recognize regular
languages and can be used interchangeably. Thus it is possible to
convert a NFA into a DFA. The basic idea of this conversion is that
each state in the newly constructed DFA is based on a set of NFA
states. Computing the sets of NFA states is done with the functions
defined in the following table.

2.4 converting regular expressions to automata 13

Closure function Description

closure(q, a) The set of NFA states that are reachable from
state q, only by using transitions with label a.
For the special case that a is ε, this is called
ε-closure(q) and the state q is included in this
set.

closure_set(M, a) The set of NFA states that are reachable from
the set M ⊆ Q of NFA states using only input
symbol a as the transition label.

Table 2.5: Closure functions for DFA construction

The first state of the new DFA, called qDFA
0 , is defined as qDFA

0 =

ε-closure(qNFA
0), which is the set of NFA states reachable from the

start state of of the NFA using ε-transitions only. Subsequent states
are created using ε-closure(closure_set(qDFA

0 , a)) for each a ∈ Σ and
adding new transitions from qDFA

o to the new subsequent states. If
the set of NFA states that is used to create a new DFA state contains
an accepting state, the new DFA state is also marked as an accepting
state. This is repeated until no new DFA states are created.

example The above algorithm is best validated and illustrated
by an example. Figure 2.7 shows an example NFA for the regular
expression a∗|b that is converted into it’s DFA counterpart.

0

1ε

6
ε

2ε

4ε

7b

3
a

5

ε

ε
ε

ε

Figure 2.7: Example NFA for DFA construction that accepts the regular ex-
pression a∗|b.

The first step is the DFA’s starting state, the ε-closure of the NFA’s
starting state: qDFA

0 = {0, 1, 2, 4, 5, 6}. This state is marked as an accept-
ing state, because it includes qNFA

5 , which is also an accepting state. Cal-
culating ε-closure(closure_set({0, 1, 2, 4, 5, 6}, a)) gives the next state
qDFA

1 = {2, 3, 4, 5} and qDFA
2 = {5, 7} is created by

ε-closure(closure_set({0, 1, 2, 4, 5, 6}, b)). Both qDFA
1 and qDFA

2 are ac-
cepting states and marked as such. From the newly created state qDFA

1 ,
the closure_set on a transitions to qDFA

1 itself. At this stage there are
no more possible transitions, which means the DFA construction is

2.4 converting regular expressions to automata 14

finished. The resulting automaton can be seen in Figure 2.8, showing
the NFA state id’s for each of the DFA states.

0 {0,1,2,4,5,6}

1 {2,3,4,5}

a

2 {5,7}
b

a

Figure 2.8: Resulting DFA that was constructed from the NFA shown in
Figure 2.7. It as well accepts the regular expression a∗|b. Each
state contains the set of NFA state ids it is based on. For example
state 2 in the DFA is based on NFA states 5 and 7.

2.4.3 DFA minimization

For each DFA there exists an equivalent minimal DFA, which is a DFA
that recognizes the same regular language, with a minimum number
of states. Moreover, the minimal DFA is also unique for the language,
except for the renaming of states [HMU07]. The creation of a DFA by
NFA conversion itself does not guarantee that the resulting DFA is
minimal. Minimization requires further steps that have to be applied
to the DFA, which are described in the following paragraphs.

1 . remove unreachable states Unreachable states are states
where there is no path leading from start state to the unreachable state
on any of the input symbols Σ. Removing them is done by traversing
the DFA from the start state and marking all visited states on each
path. The states that were not marked are not reachable and therefore
removed.

2 . remove dead states A dead state is a state that is not an
accepting state and does not transition to any other state than itself.
These states can be safely removed. Finding dead states is simply
done by iterating over all states contained in the DFA and marking
states that are not marked as accepting states, as well as do have either
no transitions or only transitions to itself. All marked states are then
removed.

2.4 converting regular expressions to automata 15

3 . merge non-distinguishable states The idea of this algo-
rithm is to find all states that can be distinguished and then merge
the states which were not found to be distinguishable. This is done
by first marking all pairs of states that are clearly distinguishable,
which are the pairs where one state is an accepting state (∈ F) and
the other is non accepting (/∈ F). By iteratively checking for all non
marked state pairs if they can transition to a pair of states that is
already marked until no new pairs are marked, all pairs of states that
are distinguishable can be found. So that all pairs that have not been
marked are the states that cannot be distinguished and can therefore
be merged [Sin06]. This process is shown in Algorithm 1.

ALGORITHM 1: Merging non-distinguishable DFA states
ALGORITHM: This algorithm takes a DFA D as an input and first

marks all clearly distinguishable pairs of states, which are the pairs,
where one state is in the set of accepting states and the other states is
not an accepting state. Thereafter it marks all pairs of distinguishable
states and merges the states that were not marked

Input: DFA D = (Q, Σ, δ, q0, F)
Output: Minimized DFA D

1 M← ∅;
2 foreach (q′, q) ∈ Q do
3 if q′ ∈ F ∧ q /∈ F then
4 M← M ∪ (q′, q);
5 end
6 end
7 repeat
8 foreach (q′, q) ∈ Q \M do
9 foreach a ∈ Σ do
10 if (δ(q′, a),δ(q, a)) ∈ M then
11 M← M ∪ (q′, q);
12 end
13 end
14 end
15 until M was not updated;
16 foreach (q′, q) ∈ Q \M do

/* Merge states q’ and q. */

17 Q← Q \ {q′};
18 foreach a ∈ Σ do
19 δ← δ ∪ {(q′, a) 7→ δ(q, a)}
20 end
21 foreach q̂ ∈ {qi|∀(qi, a) ∈ Q× Σ ∧ q′ = δ(qi, a)} do
22 δ← δ ∪ {(q̂, a) 7→ q};
23 end
24 end

2.5 dfa optimizations 16

2.5 dfa optimizations

There exist several approaches to how a DFA can be optimized. Cur-
rent research focuses on applications for high-throughput pattern
matching in the field of Deep Packet Inspection (DPI). These ap-
proaches can be grouped in the following four basic categories.

2.5.1 Edge compression

Edge compression [Kum06; Bec07; BC08] exploits redundancy present
in the transitions between states to minimize the number of edges
in the DFA. Several transitions of the automaton are incrementally
replaced with a single default transition that does not consume any
input symbols. This reduces space requirements for a given DFA by
eliminating redundant transitions. In [Kum06] a reduction of tran-
sitions by more than 95% is achieved. The trade-off for this space
reduction is the increase of required state traversals. [Bec07] proposes
an algorithm that results in at most 2n state visits for a matching string
of length n.

2.5.2 Increased stride

Increasing the stride of an automaton, as proposed in [Bro06], adds
new transitions to the original automaton. Algorithm 2 shows the
doubling of strides for a given DFA D.

ALGORITHM 2: Double Stride algorithm by Brodie et al. [Bro06]
ALGORITHM: Doubling stride in a DFA

Input: DFA D = (Q, Σk, δk, q0, F)
Output: DFA D2k = (Q, Σ2k, δ2k, q0, F)

1 foreach q ∈ Q do
2 Σ2k ← Σk;
3 foreach a ∈ Σk do
4 foreach a′ ∈ Σk do
5 δ2k(q, aa′)← δk(δk(q, a), a′);
6 Σ2k ← Σ2k ∪ {aa′};
7 end
8 end
9 end

Increasing the stride of a DFA has the advantage of decreasing the
number of required state traversals for string matching. For stride
doubling the decrease is n/2 for a string of length n. The disadvantage
is that the space requirement for storing the additional transitions
increases by |Σ|2 in the worst case. Thus stride increasing is always a

2.5 dfa optimizations 17

trade-off between fewer state traversals and an exponential increase of
transitions.

Figure 2.9 shows the double-strided DFA graph for the regular
expression abcde(f |g)∗.

0

1
a

2
ab

b

3bc

c

4cd

d 5
de

e

f
g

Figure 2.9: DFA graph with added double-strides for the regular expression
abcde(f |g)∗.

2.5.3 Path compression

For path compression, paths with multiple transitions through mul-
tiple states are replaced with a single transition that has a string
(consisting of the union of all traversed transition labels) as the label
and intermediate states are removed. For example consider the fol-
lowing regular expression: abc(d∗|e) f gh. Creating a DFA for it will
produce a graph with a linear structure shown in Figure 2.10.

0 1a 2b 3c

4
d

8e 5

f

d

f

f 6g 7h

Figure 2.10: DFA graph for the regular expression abc(d∗|e) f gh

Applying the path compression algorithm presented in Algorithm 3

will replace the linear path consisting of multiple transitions with a
single transition as illustrated in Figure 2.11.

2.5.4 Alphabet reduction

Alphabet reduction [Bec07; Bro06; BC08] maps sets of symbols from an
input alphabet Σ to a new input alphabet Σ∗ by grouping characters

2.5 dfa optimizations 18

0

4
abcd

5abcef
abcf

d

f

7gh

Figure 2.11: DFA graph with applied path compression for the regular ex-
pression abc(d∗|e) f gh

ALGORITHM 3: NFA path compression
ALGORITHM: Algorithm that compresses linear paths in the

automaton

Input: NFA N = (Q, Σ, δ, q0, F)
Output: Path-compressed NFA N

1 Sq ← {qi|qi ∈ F ∨ |{qa|(qa, a) ∈ Q× Σ ∧ (qa, a) 7→ qi ∈ δ}| = 1} \ {q0};
2 foreach q ∈ Sq do
3 δnew ←

⋃
(qk ,l) 7→q∈δ∧(q,m) 7→q′∈δ

{(qk, l + m) 7→ q′};

4 δdead ←
⋃

(qk ,l) 7→q∈δ∧(q,m) 7→q′∈δ
{(qk, l) 7→ q, (q, m) 7→ q′};

5 δ← {δ ∪ δnew} \ δdead;
6 end
7 Q← Q \ Sq;
8 Σ← {a|(q, a) 7→ q′ ∈ δ};

that label the same transitions in the automaton. In the worst case
Σ∗ = P(Σ), but depending on the actual implementation |Σ| can be
reduced, so that |Σ∗| < |Σ|. The idea is to partition Σ into classes of
symbols C1, . . . , Ck, where each class contains the input symbols that
are indistinguishable in the sense of DFA operations. Especially, given
a DFA D = (Q, Σ, δ, q0, F) then two input symbols a, b ∈ Σ are in the
same class Ci if and only if ∀qi ∈ Q : δ(qi, a) = δ(qi, b)

For example, consider a state that has three outgoing transitions
with three different labels to another state. These three transitions can
be replaced by one transition that has a new label in Σ∗, which is not
in the original input alphabet Σ. This is then repeated for all other
states that have the same three outgoing transitions to another state.
This process is illustrated in Figure 2.12.

In order to use the new DFA for string matching, a translation table
that maps labels from Σ∗ to sets of labels from Σ has to be provided.
Table 2.6 shows the translation table for the above example.

2.6 transitive closure method 19

0 1

a
b
c

2x 3

y

a
b
c

(a) DFA that recognizes the regular ex-
pression (a|b|c)x(y|a|b|c) and has
an input alphabet Σ = a, b, c, x, y
where |Σ| = 5.

0 1z 2x 3v

(b) Alphabet reduced DFA with a new
input alphabet Σ∗ = x, y, z and
|Σ∗| = 3, where the transitions for
a, b, c have been replaced with a new
transition z

Figure 2.12: Example for alphabet reduction on a DFA where the size of
the input alphabet is reduced from 5 to 3 and the number of
transitions in the graph have been reduced by 50%.

Σ∗ Σ

z {a, b, c}
v {y, z}

Table 2.6: Alphabet reduction transition table that is needed for string match-
ing with the alphabet-reduced DFA in Figure 2.12(a).

2.6 transitive closure method

The transitive closure algorithm [HMU07; Neu05] is a method for
calculating regular expressions from a DFA or NFA. We describe this
method here as it will be used as a key building block in our main
algorithm. The transitive closure algorithm incrementally constructs
a regular expression for each pair of states in a DFA. For example,
consider the simple DFA D shown in Figure 2.13.

q0 q1 (a)a q2 (ab)b q3 (abc)c

Figure 2.13: Simple DFA for the regular expression abc, showing the (partial)
regular expressions (a, ab, abc) for each state that are used as
state identifiers.

The regular expression for the transition from q0 to q1 is simply a,
for q1 to q2 the expression is b. In addition the regular expression from
q0 to q2 is the concatenation of the above sub-expressions and therefore
becomes ab. The complete regular expression for D is then abc. In
order to get the regular expression for each state in the automaton,
the concatenation of all sub-expressions on the paths leading to the
respective state has to be build. More generally suppose that for
some DFA A with n states the states are labeled {q1, q2, . . . , qn}. Then
R(k)

ij can be defined as the set of regular expressions on the path

2.6 transitive closure method 20

between states qi and qj ∈ A, with the restriction that this path has
no intermediate state qm ∈ A with m > k. Starting with k = 0, i.e. all
paths in the automaton that do not have any intermediate states, there
are only two possibilities:

1. A transition from qi to qj with some label w.

2. A self-transition consisting only of some state qi.

If i 6= j only the first case is possible and R(0)
ij is defined as follows:

R(0)
ij =


∅ if there is no transition from qi to qj

a if a transitions from qi to qj

a1|a2| . . . |ak for all k transitions from qi to qj

(2.1)

On the other hand if i = j than the path of length zero and all loops
from qi to itself are allowed. This defines R(0)

ij as follows:

R(0)
ij =


ε if there is no transition from qi to qj

ε|a if a transitions from qi to qj

ε|a1|a2| . . . |ak for all k transitions from qi to qj

(2.2)

For R(k)
ij where 0 < k <= n there are again two possible cases to

look at.

1. The path from qi to qj does not traverse through any state qm

where m > k and therefore the expression for this path is recur-
sively defined as R(k−1)

ij .

2. The path from qi to qj traverses through state qk at least once. In
this case the path can be divided into three parts as shown in
Figure 2.14. The first part transitions the automaton from qi to qk
without passing through qk, the last part transitions from qk to
qj without passing through qk. The middle part is the path from
qk to itself, zero, once or more times.

i k k k k j

In R
(k�1)
ik In R

(k�1)
ikZero or more strings in R

(k�1)
kk

Figure 2.14: Illustration of the path between states i and j through state k
(Illustration from [HMU07]).

Combining the above two cases results in Equation (2.3). Which is
the recursive definition for all R(k)

ij with 0 < k <= n. Constructing

2.6 transitive closure method 21

R(n)
ij for all qi, qj ∈ A leads to all (partial) regular expressions that are

needed to identify the sates of the DFA A.

R(k)
ij = R(k−1)

ij | R(k−1)
ik (R(k−1)

kk)∗ R(k−1)
kj (2.3)

The overall regular expression for A is the union of all R(n)
0j (i = 0 is

the starting state) where j ∈ F (i.e. j is an accepting state). Moreover
the partial regular expression for each state qj simply is R(n)

0j (i.e. the
regular expression for the path from the starting state to qj). The
complete algorithm is shown in Algorithm 4. It takes a DFA A with
states numbered 0, . . . , n− 1 and n = |Q| as the input and assigns a
regular expression to each state in A. Because R(k) only depends on
R(k−1), all other expressions can be discarded and therefore R_last =
R(k−1) and R_cur = R(k). Algorithm 4 uses an additional function,
named simplify, which is discussed in Section 2.6.1.

ALGORITHM 4: Transitive closure algorithm
ALGORITHM: Computes a (partial) regular expression for each state in

the given DFA.

Input: DFA D = (Q, Σ, δ, q0, F) with states qj ∈ Q for j ∈ {0, . . . , n− 1}
Output: Regular expressions R(n)

ij for i, j ∈ {0, . . . , n− 1}
1 foreach i ∈ {0, . . . , n− 1} do
2 foreach j ∈ {0, . . . , n− 1} do
3 if i = j then
4 R(0)

ij ← ε;

5 else
6 R(0)

ij ← ∅;

7 end
8 foreach a ∈ Σ ∧ qj = δ(qi, a) do
9 R(0)

ij ← R(0)
ij | a;

10 end
11 end
12 end
13 foreach k ∈ {0, . . . , n− 1} do
14 foreach i ∈ {0, . . . , n− 1} do
15 foreach j ∈ {0, . . . , n− 1} do
16 R(k+1)

ij ← simplify(R(k)
ij | R(k)

ik (R(k)
kk)∗ R(k)

kj);

17 end
18 end
19 end

The algorithm for computing regular expressions for each state in
a given automaton is expensive with a complexity of O(n3). Looping
over all n = |Q| states of the automaton for k, i, j ∈ {0, . . . , n − 1}.
[HMU07] describes another, less expensive algorithm that is based
on removing states of the automaton and focuses on the construction
of a regular expression for the whole DFA. Therefore it would have

2.6 transitive closure method 22

to be repeated n times for each state in the automaton to generate
an expression for each of the states, which is a requirement for the
approach of this work.

Another aspect of the transitive closure method are the space re-
quirements. On average the length of an expression can grow by a
factor of 4 (see Equation (2.3)). In the worst case, constructing the
basis for the iteration, R(0), will lead to the union of all input symbols
|Σ|. With n = |Q| iterations the expressions can expand on the order
of 4n, resulting in a worst case space complexity of O(|Σ| 4n). This
will cause problems in the implementation, where memory is limited.
Thus a simplification of the regular expression at each step in the
above algorithm is important.

2.6.1 Regex simplification

Building regular expressions from DFAs using the transitive closure
method described above is based mainly based on Equation (2.3).
Without any simplification of this equation, the space requirements of
the final regular expression, as well as the expressions used for state
identification, will quickly exceed the available memory. Moreover,
simplifying the final regular expressions is not enough. Therefore
simplification has to take place directly at each step in the above
algorithm by rewriting Equation (2.3). This is done by using the
knowledge of the basic structure and applying general algebraic rules
for regular expressions at each step of the iteration. The following
definitions show the main algebraic laws, where R, S and T are each
some regular expression.

• Identity
Union: (∅ | R) = (R | ∅) = R
Concatenation:
(εR) = (Rε) = R
(∅R) = (R∅) = ∅

• Associativity
Union: R | (S | T) = (R | S) | T
Concatenation: R(ST) = (RS)T

• Commutativity
R|S = S|R
Note that concatenation is not commutative.

• Distributivity
R(S | T) = (RS) | (RT)
(S | T)R = (SR) | (TR)

• Idempotency
R | R = R

2.6 transitive closure method 23

Where εεε is the identity for concatenation and ∅∅∅ is the identity for
union, as well as, the annihilator for concatenation.

To better illustrate application of algebraic rules to Equation (2.3), it
is rewritten to the following simpler form.

R︸︷︷︸
R(k)

ij

=

Rle f t︷︸︸︷
L |

Rright︷ ︸︸ ︷
M (N)∗ P︸ ︷︷ ︸

R(k−1)
ij | R(k−1)

ik (R(k−1)
kk)∗ R(k−1)

kj

(2.4)

These definitions already allow for some optimization of
Equation (2.4). Applying the rule for idempotency, if Rle f t equals
Rright, R can be simplified to L. Furthermore applying the rule for
identity of union, if either Rle f t or Rright is ∅ it can be simply omitted.

In addition to the above rules, [HMU07] defines the following alge-
braic rules involving closures.

• (S∗)∗ = S∗

• ∅∗ = ε

• ε∗ = ε

• S+ = SS∗ = S∗S

• S∗ = S+|ε

The defined general algebraic laws for regular expressions build
the foundation for defining specific rewriting rules that are used to
replace complex regular expressions of the form R = L | M (N)∗ P
to a simpler representation. Table 2.7 shows an excerpt with some
important rewrite rules used.

The goal is to simplify regular expressions at each step of the transi-
tive closure algorithm. This implies that rewriting regular expressions
of the form L = M (N)∗ P has to be efficient, because this is executed
at the inner loop of an already expensive algorithm, and still fulfill
the space requirements. Using the described method of defining and
applying algebraic rules that replace expressions is of complexity O(1)
while still significantly shortening the complex expressions. This, of
course, heavily depends on the input DFA.

2.7 summary 24

Result Rewrite rule for R = L | M (N)∗ P

S∗ S | (ε | S) S∗ (ε | S)

S | (ε | S) (ε | S)∗ (ε | S)

(ε | S) | S S∗ S

(ε | S) | S S∗ (ε | S)

(ε | S) | (ε | S) S∗ S

(ε | S) | (ε | S) S∗ (ε | S)

(ε | S) | (ε | S) (ε | S)∗ (ε | S)

S+ S | S S∗ S

S | (ε | S) S∗ S

S | S S∗ (ε | S)

S | (ε | S) (ε | S)∗ S

S | S (ε | S)∗ (ε | S)

ST∗ S | ST∗T

T∗S S | TT∗S

Table 2.7: Excerpt from regular expression rewriting rules

2.7 summary

This chapter gave an overview of the relevant fundamental concepts,
terminology and algorithms. First the concepts of DHTs, which pro-
vide a distributed key-value storage, was introduced. Moreover the
terminology of finite automata was presented and how they can be con-
structed from regular expressions. Central DFA optimizations where
presented, which essentially always imply a certain trade-off between
gains and losses of performance and memory consumption. Finally
the TCM was presented, which is a key foundation for the central
algorithm of this thesis.

The following table gives an overview and provides a central refer-
ence of the important symbols used throughout this thesis. It includes
descriptions of symbols that will be introduced later, in the following
chapters.

2.7 summary 25

Symbol Description

D, N Finite automata, DFA D and NFA N.

Q A set of states, where states are usually referred to as q

q0 Start state of a DFA or NFA, also referred to as q′0
Σ Input alphabet alphabet of a DFA or NFA

δ Transition function of a DFA or transition relation of an
NFA

F Set of final states of a DFA or NFA

a Input symbol a ∈ Σ

ε Empty word

|, ∗, +, ? Regular expression operators, defined in Table 2.4

R, S, T Regular expressions

S Stack, for which the operations push, pop, empty are
defined to add an element on top of the stack, retrieve
and remove and element from the top of the stack and
check if the stack is empty.

Rij Set of regular expressions between all n states of an
NFA or DFA where states are indexed 0 <= i, j < n

m Merge bijection between sets of states (see Definition 1)

k Length of the initial key for decentralizing the start state

Table 2.8: Reference table for symbols used throughout the thesis

3
D E S I G N

This chapter lays out the design of our approach to support decentral-
ized evaluation of regular expressions on DHT-based overlays.

Offerers of services describe them using regular expressions. First,
each regular expression is converted to a DFA by the offerer. The DFA
is then published in the DHT. Specifically, each of the automaton’s
states, as well as its outgoing transitions are stored under a certain
key in the DHT. Additionally, the identity of the participant is stored
under the keys that correspond to accepting states in the automaton.
As multiple offerers store DFAs in the DHT, the resulting structure in
the DHT is an NFA.

Patrons search for a particular service using a string. They follow
the transitions of the resulting NFA to learn the identities of offerers
with matching services. Patrons begin their search at a starting state by
retrieving the corresponding data from the DHT. They then match the
edges of the state against their search string, obtaining a fresh set of
states (and corresponding keys) to process until the full search string
is matched and an accepting state is reached. As the DHT contains an
NFA, the number of DHT GET operations that needs to be performed
is not bounded by the length of the search string.

Offerer Patron

PUT GET

DFA

DHT

Search string

NFA

Figure 3.1: Schematic overview of the presented approach. An offerer that is
offering certain capabilities compiles a regular expression into a
DFA and stores it in the DHT. A patron searching for a particular
string traverses the NFA stored in the DHT to find matching
offerers.

26

3.1 mapping of states to keys 27

3.1 mapping of states to keys

The description above does not explain how exactly DFA states are
mapped to keys for the DHT. This is a central problem as the mapping
has a significant impact on network performance. For example, sup-
pose the initial state is mapped to a well-known key and each offerer
maps each state of his DFA to a (fresh) random key. Then the initial
state in the DHT would have n (largely non-deterministic) transitions
for n offerers. This would both be terrible for DHT performance for
this key and require patrons to perform a very large number of DHT
lookups as they traverse the NFA that begins with massive branching.
Thus, a mapping of DFA states to DHT keys is required that minimizes
the creation of additional edges from the same source with the same
label to a different target state in the DHT.

3.1.1 Illustrative Examples

We will now illustrate some of the key considerations using concrete
examples.

The simplest problem is that of having two regular expressions, for
example aa∗|b and b|a+, that describe the same language and are thus
equivalent. As these two expressions are equivalent, they produce
equivalent automata and the different corresponding states in the
automata should be mapped to the same keys.

Another problem is the desired merging of states from two or
more regular expressions that begin with equivalent prefixes. For
example, consider the two simple regular expressions ab and ac and
the corresponding DFAs in Figure 3.2.

0 1a 2b

(a) DFA accepting ab

0 1a 2c

(b) DFA accepting ac

Figure 3.2: DFAs for the regular expressions ab (a) and ac (b) that should be
merged in the DHT.

When inserting these two DFAs into the DHT there are two possible
outcomes, shown in Figure 3.3.

Both of the resulting automata accept the same language, but Fig-
ure 3.3 (a) is an NFA and Figure 3.3 (b) is a DFA. Producing the DFA is
desirable as the DHT will have fewer transitions to store and patrons
will need significantly fewer costly network operations to evaluate the
DFA.

3.1 mapping of states to keys 28

0

1a

3
a

2b

4
c

(a) Merged NFA accepting ab|ac

0 1a

2
b

3

c

(b) Merged DFA accepting ab|ac

Figure 3.3: Two possibilities for merging the DFAs for the regular expressions
ab and ac.

However, not all structurally similar regular expressions can be
safely merged. Consider the regular expressions ax∗b and ay∗b and
the corresponding DFAs in Figure 3.4.

q0 q1a

x

q2b

(a) DFA accepting ax*b

q0 q1a

y

q2b

(b) DFA accepting ay*b

q0 q1a

x
y

q2b

(c) Incorrectly combined DFA for the ex-
pressions ax*b and ay*b, accepting
a(x|y)*b

Figure 3.4: Example for an incorrect merge of two DFAs that does not result
in the union of the two languages of the individual DFAs and
thus must be avoided.

The merge illustrated in Figure 3.4 is incorrect, as the resulting DFA
will accept strings (such as axyxyb) which are not legal for either of
the regular expressions. Hence, merging of states that would result
in such incorrect matches has to be prevented. Figure 3.5 shows a
correctly merged automaton for ax∗b and ay∗b. Here, the merging of
the two DFAs creates an NFA.

Note that a DFA for ax∗b|ay∗b exists. However, as the two offerers
cannot know about each other, it is not practical to construct such
a DFA in a distributed system. In particular, as both offerers may
concurrently publicise their regular expressions, attempts to lookup

3.2 problem statement 29

q0

q1
a

q3

a

x

q2b

y

q4b

Figure 3.5: Correctly combined DFAs with separation of SCCs, resulting in an
NFA that accepts the union of the languages of the two individual
DFAs.

existing DFAs in the DHT cannot be guaranteed to succeed. Addi-
tionally, updating records in the DHT is generally undesirable due
to the need for locking, the DHT performing distributed caching and
the possibility of security implications1. In contrast, supplementing
records by adding additional edges is much less problematic for the
DHT.

3.2 problem statement

Before presenting the algorithm to merge DFAs to create a distributed
NFA, we will first formally define the requirements for the operation.
Our definition of a feasible merge of a DFA with an NFA ensures that
the resulting NFA accepts the correct language, and that the operation
can be executed in a distributed computer system without consistency.

Definition 1 (Feasible merge). A merge bijection m ∈ M′ → M,
with M ⊆ Q and M′ ⊆ Q′ of an NFA (Q, Σ, δ, q0, F) with a DFA
(Q′, Σ′, δ′, q′0, F′) is feasible if and only if q0 ∈ M and q′0 ∈ M′, and
the resulting merged NFA (Q ∪ (Q′ \M′), Σ ∪ Σ′, δ̂, q0, F̂) accepts exactly
the union of the two original languages. Here, δ̂ is the merged relation

δ̂(q, a) := δ(q, a) ∪ {m(δ′(m−1(q), a))} (3.1)

and F̂ is the set of merged accept states

F̂ := F ∪m(F′ ∩M′) ∪ (F′ \M′). (3.2)

Note that the above definition of a feasible merge operation using the
bijection m excludes the possibility of creating new states — existing
states and edges in the NFA are always preserved.

The CAP theorem [GL02] states that a distributed computer system
cannot satisfy consistency, availability and partition tolerance at the
same time. As availabiltiy and partition tolerance are hard require-
ments for our application domain, our defintion of an independent

1 An update mechanism might enable evil peers to delete information.

3.3 mapping dfa states to dht keys 30

feasible merge requires that the feasible merge operation does not re-
quire consistency. It must be possible for many merge operations to be
executed in parallel (the resulting NFA is still well-defined, as the ∪
operation is associative and commutative). We define an independent
feasible merge as follows:

Definition 2 (Independent merge operation). An independent merge
operation is a merge operation that computes a feasible merge in a distributed
system and permits the concurrent execution of other independent merge
operations (without knowledge or communication between the independent
operations). Upon completion of all independent merge operations, the re-
sulting NFA must still only accept the union of the merged DFAs and the
original NFA.

The above characterization of an independent merge operation
creates the necessary and sufficient conditions to be placed on a
decentralized algorithm for mapping DFA states to DHT keys.

3.3 mapping dfa states to dht keys

We will now present an algorithm to compute the maximal feasible
merge bijection (Algorithm 5), that is the largest (in number of mapped
elements) bijection that represents a feasible merge. The basic idea is
to first derive the regular expression R0j between the start state q0 and
each other state qj ∈ Q and then add a mapping for states with equal
regular expressions to the bijection. Deriving regular expressions is
done using the TCM (Algorithm 4) described in Section 2.6.

In order to make regular expressions easy to compare for equiv-
alence, we need to preprocess the DFA to ensure deterministic pro-
cessing by the algorithm. Specifically, the transitive closure algorithm
relies on a numbering of the DFA states. The order of numbering
is not important when simply computing a regular expression that
accepts the same language as the given DFA, but when using these
(partial) regular expressions for unique state identification, we need
to ensure that these expressions are canonical. Thus the numbering of
states also needs to be canonical.

Figure 3.6 illustrates an example DFA that has (partial) regular
expressions assigned to each state.

The numbering of states in this example is important. For example,
if renaming state q1 to q2 and q2 to q1 the expression for q3 will be
computed as (cd|ab)e∗, which is not a wrong partial regular expression
for that state, but will lead to a different string. Solving this problem
is done by first sorting the outgoing transitions of each state in the
DFA graph using the names of the corresponding labels and then
numbering the states by performing a depth-first-search on the DFA
graph.

Starting with a canonical DFA, we can now describe the algorithm
for executing a maximal feasible merge that satisfies Definition 1.

3.3 mapping dfa states to dht keys 31

q0

q1 (a)
a

q2 (c)

c
q3 (ab|cd)e*

b

d

e

q4 (ab|cd)e*ff

Figure 3.6: DFA graph for the regular expression "(ab|cd)e*f" with partial
regular expressions assigned to each state.

ALGORITHM 5: Mapping DFA states to DHT keys
ALGORITHM: The algorithm starts with an empty bijection

m ∈ M′ → M and computes the maximal feasible merge bijections. It
uses the Transitive Closure Algorithm (TCA) presented in Algorithm 4

Input: NFA N = (Q, Σ, δ, q0, F) and DFA D = (Q′, Σ′, δ′, q′0, F′)
Output: Maximal feasible merge bijection m ∈ M′ → M with M ⊆ Q

and M′ ⊆ Q′

1 Rij ← TCA(N);
2 R′ij ← TCA(D);
3 foreach (qj, q′j′) ∈ Q×Q′ do
4 if R0j = R′0j′ then
5 m← m ∪ {q′j′ 7→ qj};
6 end
7 end

Lemma 1 (Feasible merge). Algorithm 5 computes a feasible merge.

Proof. First, we show that the algorithm computes a feasible merge.
For a feasible merge, q0 and q′0 need to be in M and M′ respectively. As
q0 and q′0 are both start states, the corresponding regular expressions
are in both cases the empty string. Hence R00 = R′00′ and thus the
algorithm would include m(q′0) 7→ q0 in the bijection.

Next, we need to show that the merged NFA (Q ∪ (Q′ \M′), Σ ∪
Σ′, δ̂, q0, F̂) accepts exactly the union of the two original languages.
Suppose a word A is accepted by the NFA via some sequence of
transitions τ ∈ (Q × Σ)n with qi ∈ δ(qi−1, ai) for (qi, ai) ∈ τ and
qn ∈ F. Then the union in Equation (3.1) ensures that those transitions
still exist in δ̂. Suppose a word B is accepted at state q′n′ ∈ F′ by the DFA
via some sequence of transitions τ ∈ (Q′ × Σ′)n′ with q′i ∈ δ′(q′i−1, a′i)
for (q′i, a′i) ∈ τ′. Then for i ∈ [1, . . . , n′] the sequence τ̂i := (m(q′i), a′i)
is an equivalent sequence of transitions τ̂ ∈ (Σ̂× Q̂)n′ with m(q′i) ∈
δ̂(m(q′i−1), a′i) for (m(q′i), a′i) ∈ τ̂ and m(q′n′) ∈ F̂.

Finally, we need to show that the merged NFA does not accept any
word that is not accepted by the original NFA or the DFA. Suppose
there exists a word A which is accepted by the merged NFA but

3.3 mapping dfa states to dht keys 32

not the original NFA or DFA. Then this word must correspond to
a sequence of transitions τ̂ ∈ (Σ̂× Q̂)n such that q̂i ∈ δ̂(ˆqi−1, ai) for
(q̂i, ai) ∈ τ̂. As A was not accepted by the original NFA N, it must
either end at an accept state qn ∈ F̂ \ F or there must exist a smallest
index j for which the transition τ̂j does not exist in the original NFA
N.

1. If qn ∈ F̂ \ F, then the DFA D must accept A at state m−1(qn) ∈ F′.
(as qn and m−1(qn) correspond to a pair of equivalent regular
expressions R0n and R′0n, they must accept the same language in
the DFA D and the merged NFA; note further that the construc-
tion preserves the edges and thus the subgraph isomorphism
induced by m).

2. Suppose there exists a smallest index j for which the transi-
tion τ̂j does not exist in N. Then q̂j /∈ δ(qj−1, aj) must hold.
Given the construction of δ̂ (by Equation 3.1), this implies that
q̂j ∈ m(δ′(m−1(qj−1), aj)). As the algorithm merges states with
equivalent regular expressions, m−1(qj) /∈ M′ (if an equivalent
regular expression existed in the NFA, then j would not have
been the smallest index j for which τ̂j does not exist in the
original NFA). We now show by induction that A has to be
accepted by the DFA. If m−1(qj) is an accept state, A is clearly
accepted by the DFA. If not, q̂j /∈ F̂ as qj /∈ Q implies that qj /∈ F.
Then, the fact that A was accepted by the merged NFA means
that there is an transition τ̂j+1, which again from the construc-
tion of δ̂ must have come from the DFA, implying a transition
q′j+1 ∈ q′(m−1(qj), aj+1). As A is a finite word, the induction
must end with a corresponding accept state in F′. Thus A is
accepted by the DFA D.

A must thus have been accepted by the DFA D, contradicting our
assumption that A was a word not accepted by the DFA. Thus, no
word exists that is accepted by the merged NFA, but not accepted by
either the DFA D or the original NFA N.

Lemma 2 (Independent merge). Algorithm 5 directly leads to an indepen-
dent merge operation to compute a feasible merge.

Proof. The algorithm states how to derive a bijection m ∈ M′ → M.
Combined with Equation (3.1), the algorithm is easily turned into a
decentralized independent merge operation as follows.

A independent merge operation first computes canonical regular
expressions R′0j for each state q′j ∈ Q′. Then, the operation hashes
R′0j to derive a key which then describes the location in the DHT for
storing the union of all δ(q′j, a) (for all a ∈ Σ′). Note that prior to the
DHT PUT operation, the operation needs no knowledge about the
existing NFA in the DHT.

3.3 mapping dfa states to dht keys 33

The peer responsible for the key derived from hashing R′0j can
then perform the commutative and associative union operation on the
δ-mappings for the respective q′j (and all a ∈ Σ) locally in any order.

The complete merge operation is clearly independent as the cor-
responding transformations to the NFA are all commutative and
associative, and the steps can be executed without having a consistent
global view of the NFA. It is based on Algorithm 5 and thus computes
a feasible merge.

Theorem 1 (Maximal feasible merge). Algorithm 5 computes the maximal
feasible merge that can be executed using an independent merge operation.

Proof. With the previous lemmas, we only need to show that the
merged NFA is maximal, that is, adding an additional element q′

to M′ would not result in a feasible merge. We will give a proof by
contradiction. Suppose there exists an element q′k /∈ M′ and a value
qk /∈ M such that m := m ∪ {q′k 7→ qk} is still a feasible bijection.

Furthermore, note that R0k 6= R′0k′ as otherwise Algorithm 5 would
have already added qk′ 7→ qk to the bijection m. As the regular expres-
sions have been canonicalized, R0k 6= R′0k′ means that the respective
languages are different. We distinguish two cases (both of which can
be true, and one of which must be true):

1. The languages are different because there exists a word A ∈
R0k \ R′0k′ . As neither the canonicalized DFAs nor the resulting
NFA contain any states that are not between the start state
and an accept state, there must exist a word A from q′0 to q′.
Note that we required a feasible merge algorithm to not make
any assumptions about the existing NFA N (due to the lack of
consistency). Thus, we can assume that there exists a word B′

corresponding to a path from q to some accept state qb ∈ F such
that AB′ is not accepted by D or N. However, the word AB′

will be accepted by the merged NFA. Thus m is not (always) a
feasible merge.

2. The languages are different because there exists a word A′ ∈
R′0k′ \R0k. Note again that A′ can be chosen freely as details about
the NFA are not available to an independent merge operation.
Furthermore, suppose B is the word corresponding to the path
from q′ to some accept state q′b′ ∈ F′. As an algorithm executing
an independent merge operation cannot know all possible words
A′, it cannot guarantee that A′B exists in D or N. However, the
word A′B will be accepted by the merged NFA. Thus m is not
(always) a feasible merge.

In conclusion, the merged NFA is maximal as any independent merge
operation with its restricted knowledge of the existing NFA cannot
ensure that adding additional elements to the bijection would still
always result in a feasible merge.

3.4 decentralizing the start state 34

3.4 decentralizing the start state

When mapping the DFA to DHT keys as described so far, all starting
states of all DFAs would correspond to the same regular expression
— the empty string — and thus be mapped to the same key in the
DHT. As a result, the nodes responsible for this particular key would
be expected to experience significant load, both in terms of GET and
PUT operations and the result set might also be rather large (O(|Σ|)).

We solve this problem by using the first k characters of any string in
the language corresponding to the regular expression to determine an
initial set of keys. Specifically, if a regular expression matches several
different prefixes for the first k characters, the peer has to insert a start
state under the hash of each prefix into the DHT. Those synthetic start
states are then connected to the rest of the DFA as necessary.

The searching peer can now hash the first k characters of the string
that should be matched, and look up the information stored under
this hash to find the entry point of the corresponding NFA.

3.4.1 Example

For example, consider the regular expression abc∗de f g∗h and k = 4.
The entry states for this example are abcc, abcd and abde. Figure 3.7
shows the graph that is then inserted into the DHT. The original
starting state q0, which corresponds to the empty string, will not be
inserted. The synthetic start states are highlighted using a dashed line.

abc*

c
abc*defg*

def

g

abc*defg*hh

q0 ab

abcc

c

def

abcd
ef

abde
f

Figure 3.7: DFA graph illustrating the concept of synthetic start states, which
are highlighted with a dashed line. The original start state q0,
which corresponds to the empty string, will not be inserted into
the DHT.

3.4 decentralizing the start state 35

This strategy can lead to an exponential increase in the number of
synthetic entry states. For an input alphabet Σ and k initial characters,
this leads in the worst case to |Σ|k additional states. This initial states
explosion is effectively prohibited by the design of our policies.

3.4.2 Policies

Our implementation standardizes a particular prefix format that
should be used by all applications using the service discovery in-
frastructure. The prefix begins with a unique application identifier
followed by a version number to indicate compatibility between dif-
ferent revisions of the same application. This ensures that DFAs from
different applications are kept separate. The prefix is followed by a
certain number of bytes of padding. The actual application-specific
regular expression is specified after the padding. Within an application
and version combination, semantics of the strings described by the
regular expression are supposed to be fixed to ensure compatibility.
We refer to the complete string with application identifier, version,
padding and the actual regular expression as a policy.

Table 3.1 gives some examples for policies. The first policy is for the
“GNUNET-VPN” application in version “0001”. The regular expression
then describes a service for IPv4 and TCP and the 192.0.2.*-subnet.
Here, “GNUNET-VPN” in version 1 specifies that a service is described
by first specifying the IP version, then the transport protocol and finally
the IP prefix for which the service is offered.

App. ID Version Padding Regular Expression

GNUNET-VPN 0001 0000000 V4-TCP-192.0.2.([0-9])*

COMP-POWER-NET 0001 000 GAME1-GHZ(0|1|2|3)

Table 3.1: Example policy description, consisting of a fixed-length prefix
that includes an application identifier, a version string and some
padding, followed by the actual regular expression.

The padding in a policy is used to control the possible exponential
growth in initial states. Given a fixed value of k that is a bit larger than
the number of tokens used for the application identifier and the version
number, each application can choose a padding value that results in
(roughly) the desired number of initial states. For example, “GNUNET-
VPN” might know that the IP-version and transport protocol specifiers
have only a few bits of information, but that the IP address range
is likely to cause significant branching in the NFA. Thus, a padding
length would be specified to ensure that the first k characters of a
policy end after the first 4–8 bits of the IP network, resulting in a
reasonably large number of initial states. In summary, padding solves
the problem allowing diverse applications with their specific regular

3.5 optimizing the dfa to minimize dht lookups 36

expression structures to control the upper bound of synthetic initial
states (despite k being a global constant).

3.5 optimizing the dfa to minimize dht lookups

All network operations are expensive and following the transitions
stored in the DHT requires a network lookup for each of the states
of the NFA. Thus the idea is to decrease the number of required
DHT operations for the patrons by optimizing the offerers DFA be-
fore storing it in the DHT. Section 2.5 presented four categories of
DFA optimization approaches, edge compression, increased stride,
path compression and alphabet reduction. We will now discuss the
applicability of these optimizations for decentralized evaluation.

3.5.1 Edge Compression

Edge compression is useful when the space requirements of a DFA
should be reduced. The trade-off for this approach is the increase of re-
quired state traversals, for a string of length n that should be matched
this optimization results in at most 2n state visits. For our approach
there is no change in terms of DHT PUT operations, because these
are only relevant for states and not for edges. Moreover the number
of required state traversals increases with applied edge compression,
which counterfeits our goal of optimizing the number of required state
traversals.

3.5.2 Increased Stride

Increasing the stride of a DFA has the advantage of decreasing the
number of required state traversals for string matching. For stride
doubling the decrease is n/2 for a string of length n. The disadvantage
is that the space requirement for storing the additional transitions
increases by |Σ|2 in theory. Therefore this optimization is a trade-off
between faster string matching and storage overhead. Applications
where the number of searches by patrons is significantly higher than
the number of DFAs published by the offerers can benefit from in-
creased stride. Given that self-loops do not require network opera-
tions, our implementation deviates from the standard approach by not
adding strides for self-loops.

3.5.3 Path Compression

Path compression is similar to stride doubling, as it introduces edges
that have a string as their label. However path compression strictly
reduces the number of states and state transitions, by replacing linear

3.5 optimizing the dfa to minimize dht lookups 37

paths in the DFA with a single transition and removing intermediate
states. Applying maximal path compression will result in an optimal
DFA. However as we are merging multiple DFAs in the DHT to
an NFA, applying maximal path compression to each DFA will
not merge to an ideal NFA in the DHT. For example, consider the
following three policies:

GNUNET−VPN00010000−V4TCP110000000000000000000010(0|1)∗
GNUNET−VPN00010000−V4TCP110000000000000000000011(0|1)∗
GNUNET−VPN00010000−V4TCP110000010000000000000011(0|1)∗

They describe the GNUNET − VPN application in version 1 and
accept different IPv4 prefixes for TCP connections. For k = 24 beeing
the initial key length and with maximal path compression, Figure 3.8
illustrates the merging of these policies in the DHT.

GNUNET-VPN00010000-V4TCP

1
110000000000000000000010

2110000000000000000000011

3

110000010000000000000011

0
1

0
1

0
1

Figure 3.8: Merging of DFAs from the same application where maximal path
compression was applied. The stride length is minimal, so that
reaching a start state in the DFA only requires one state traversal.
The downside is that only the starting states could be merged
and the branching at this state is increased.

This example illustrates that maximal path compression does not
benefit the resulting NFA in the DHT, as the number of outgoing edges
at the GNUNET −VPN00010000−V4TCP state will potentially ex-
plode to 224 transitions. Hence in general it is necessary to limit the
path compression length. For example with the GNUNET − VPN
application for IPv4 prefixes, limiting the path compression length
to 8 bits would be a reasonable trade-off between the number of re-

3.5 optimizing the dfa to minimize dht lookups 38

quired state traversals and the possible merging of states in the DHT.
Figure 3.9 illustrates the resulting NFA for a limited path compression
of 8 bits.

GNUNET-VPN00010000-V4TCP

111000000

5
11000001

200000000

3

00000010

400000011

0
1

0
1

600000000

7

00000010 0
1

Figure 3.9: Merging of DFA states with a path compression length of 8.
The starting state and states 1 and 2 have been merged and the
branching at the starting state decreased.

Our implementation allows the application to choose a path com-
pression length, where any value larger or equal to the longest path
in the DFA will result in maximum path compression.

3.5.4 Alphabet Reduction

The strategy of alphabet reduction groups indistinguishable sets of
transitions, replaces them with a new transition and stores this map-
ping in a table. This optimization is implicitly included in our ap-
proach, as all edges of a state are stored under the same entry in
the DHT. Each PUT operation stores a value under a certain key. We
use the hash of the state identification as the key. For the value we
store mappings from sets of labels to DHT keys. Thus our alphabet is
already reduced in the sense of DFA alphabet reduction optimization,
since only one transition, namely a set of labels mapped to a DHT key,
for each next state is stored at each state.

4
I M P L E M E N TAT I O N

In this chapter the implementation of our approach to distributed
regex evaluation is described. First the overall architecture is presented,
followed by the description of the relevant services and the interaction
between the individual components. This is followed by a detailed
description of the implemented Regex library. Finally, as in this thesis
we focused on the problem of finding users that are willing to provide
network access using a specified protocol to a particular destination,
we describe the Protocol Translation (PT) application that uses the
distributed regular expression evaluation as a solution to this problem.

4.1 architecture

The implementation of this thesis’ approach is based on GNU’s Frame-
work for Secure Peer-to-Peer Networking (GNUnet) [Gro12]. The
GNUnet system consists of services, daemons, libraries and user
interfaces that are combined into a layered peer instance. Thus the im-
plementation of our system is also organized in a layered architecture
consisting of encapsulated components that communicate through
APIs. The relevant components are the DHT and Mesh services, the
Regex library as well as an application that uses the services. These
components are organized in the following layers.

The DHT service builds the foundation layer. On top of the DHT
is a layer consisting of the Mesh service and the Regex library. The
Mesh service uses the DHT and Regex library. The topmost layer
represents the application that communicates with the Mesh service
API to integrate regular expression based announcing and discovery
of services into a concrete application.

Figure 4.1 illustrates this overall architecture, how the individual
components are connected and shows a simplified version of the rele-
vant APIs. Note that this overview does not show all involved GNUnet
services, such as Transport (responsible for low level P2P packet trans-
mission), as they are not directly relevant for the architecture overview.

39

4.1 architecture 40

Mesh Service

Applications

Regex Library

DHT Service

- VPN Application
- Computational Power Network
- ...

uses

DHT API

put (key, value)

get (key)

Regex Library API

get_first_key (string)

construct_DFA (regex)

iterate_all_edges (dfa)

Mesh Service API

announce_regex (regex)

connect_by_string (string) uses

uses

Figure 4.1: Architecture overview diagram with API descriptions for the
Mesh Service, Regex Library and DHT Service. The Applications
are build on top of the system and use the Mesh Service to
announce regular expressions and find peers that match a string.

As illustrated in the architecture overview, the GNUnet services
directly relevant to our implementation are the Mesh and DHT service.
The following paragraphs give a brief overview of these two services.

mesh service In GNUnet, the Mesh service is used to establish
tunnels to distant peers in the overlay network. For our implementa-
tion the Mesh service is extended to provide functionality for announc-
ing regular expressions and find peers matching a search string. Thus
it mediates between the applications and the DHT service, as well
as uses the Regex library to create DFAs. Apart from abstracting the
interaction with the DHT, it also takes care of repeatedly announcing
regular expressions as long as the application that is using the service
is connected.

dht service GNUnet’s DHT service implements the Random-
ized Recursive Routing for Restricted-Route Networks (R5N) routing
algorithm [EG11#2] and provides a simple PUT/GET API. The re-
cursive routing is non-deterministic for the PUT and GET operations

4.2 regular expression library 41

as each time a different routing path is taken with high probability.
This results in (unpredictable) latency. Furthermore the GNUnet DHT
provides content validation to ensure integrity of the content stored
in the system. This is done by providing the application that uses the
DHT with hooks to detect malformed key-value pairs. Bad key-value
pairs are not stored or forwarded by non-malicious peers.

4.1.1 Component Interaction

The following description provides a detailed look at the interaction
between the four components shown in the architecture overview.
Consider two peers that run an application app. The first peer A is the
offerer and the second peer B acts as the patron. The component inter-
action is separated into announcing — storing a regular expression
as a NFA in the DHT — and discovery — traversing the NFA with a
search string.

4.1.1.1 Announcing

Using app, A specifies a policy that describes the offered service. app
then connects to the Mesh service and instructs it to announce the
policy. The Mesh service asks the Regex library to construct a DFA
for the given policy. The Regex library creates the DFA and returns it
to the Mesh service. For each state of the DFA the Mesh service uses
the DHT service to store the state in the DHT. At the accepting states,
Mesh stores the identification of peer A. The announcing of the policy
is now completed.

4.1.1.2 Discovery

Peer B, that is running the same application app, is searching for a
specific service. Using app, it defines a string describing that service.
The application then asks the Mesh service for peers that match the
string. To get the first DHT key, Mesh uses Regex to get the first key
and the number of characters that were consumed. Mesh then does
a GET for this key and matches the remaining string against the set
of labels. The NFA stored in the DHT is traversed until the string
is completely matched and an accepting state is reached. Mesh then
returns the identification of peer A to the application of peer B.

4.2 regular expression library

The Regex library implements the approach presented in Chapter 3. It
is used to construct optimized DFAs for a given regular expression. It
uses a graph representation of the automatons — NFAs and DFAs —
it constructs, where each automaton consists of a list of states which
itself manage a list of transitions.

4.2 regular expression library 42

4.2.1 API Description

The Regex library provides an API — which is already briefly shown
in Figure 4.1 — that is described in this section. Note that details like
type information are omitted.

• construct_dfa(regex, max_path_len) - This function is called
by the Mesh service to construct a DFA for a regular expression
that should be announced. It takes a regular expression string
and an maximum path compression length integer and returns
a DFA representation. It then constructs a DFA representation.
This is done by first creating an NFA (see Section 2.4.1) and then
converting it to a DFA (see Section 2.4.2). After that it converts
the DFA into its canonical form (see Section 2.4.3) and creates
state identification using Algorithm 4. Finally it compresses the
DFA paths using Algorithm 3 with the given maximum path
compression length.

• iterate_all_edges(DFA, iterator) - The Mesh service calls
this function to iterate over all edges of the given DFA, including
all the synthetic start states. The function calls iterator for
each state, passing the outgoing edges, which have labels and
target states, the state identification and whether or not it is an
accepting state.

• get_first_key(string) - This function takes a string, which is
a search string that should be matched against the NFA stored in
the DHT. The function returns the hash of the synthetic starting
state. This is done by hashing the first k characters of the string.
k is a global constant of the system.

The following additional functions are used for debugging, testing
and creation of regular expressions.

• eval(DFA, string) - This function takes a DFA representation
and a string and matches the string. It returns true if the string

is accepted by the DFA and false otherwise. This API call is used
for testing purposes, which are described in the next chapter.

• ipv4toregex (ip,netmask) and ipv6toregex(ip6,prefixlen) -
These two functions take an ip address (IPv4 in dotted deci-
mal, Internet Protocol version 6 (IPv6) in colon hexadecimal
representation) and a netmask or prefix length and return a
regular expression. For example, for the IPv4/netmask pair
192.0.2.0/255.255.255.0 it would return the regular expression
110000000000000000000010(0|1)∗. This is used in the PT applica-
tion, described in Section 4.3.

4.2 regular expression library 43

• automaton_save_graph (automaton, options) - This function
creates a graph in the dot [Gra12] format for the given automaton.
The options allow coloring of the graph’s Strongly Connected
Components (SCCs) and adding verbosity. Most of the figures
containing automatons in this thesis were created with this API.

The next section describes how the components and the API of the
implemented library are tested.

4.2.2 Testing

In order to test the Regex library several tests have been implemented.
As a basis for the tests sets of predefined regular expressions as well
as randomly generated regular expressions and strings are used. The
tests are structured into the following parts.

First, to test the correctness of the NFA and DFA construction from
regular expressions, we use an evaluation test. This test creates an NFA
and a DFA representation using the Regex library and compiles the
regex using the GNU C Regular Expression Library [GNU12]. These
three representations are then matched against a set of strings and
their output (accepting or not accepting) is compared against each
other. For the set of predefined static regular expressions these results
are also compared to a predefined expected result. The test succeeds if
all three give the same output for all strings and regular expressions.

Next, the correctness of state id computation, which implements
Algorithm 4, is tested. For a set static set of equal regular expression
pairs, each regular expression is used to construct a DFA, which in-
cludes computation of the canonical regular expression, which is the
union of all regular expressions of the accepting states. The canonical
regular expressions of each pair of equal regular expressions are then
string compared for equality. Furthermore, for a set of random regular
expressions and their corresponding DFAs the canonical regular ex-
pression of each DFA is compared to the canonical regular expression
of the DFA that is constructed using the original canonical regular
expression.

Moreover, the edge iteration API call that iterates over all states and
edges of the constructed DFA, including the synthetic start states (see
Section 3.4) is tested. For that, a set of DFAs, that are constructed from
static regular expressions with sets of expected synthetic start states for
each of them, is iterated. For each of the DFAs we check if the defined
expected start states are included in the iteration, if the number of
iterated transitions is larger or equal to the number of transitions
in the DFA and assert that there are no duplicate initial transitions.
Additionally, this test includes the option to save the resulting graph
in the dot [Gra12] format.

4.3 gnunet protocol translation (pt) application 44

In addition to these tests there are two small tests that check the
correctness of IPv4 and IPv6 to regular expression conversion and the
graph export function.

4.3 gnunet protocol translation (pt) application

The GNUnet PT / Virtual Public Network (VPN) application imple-
ments discovery of peers that are willing to provide network access
using a specified protocol to a particular destination. It is composed
of the VPN service and the Exit daemon.

The Exit daemon is a program that can be configured to share the
Internet connection of the peer. It provides three types of exit functions,
Domain Name System (DNS), which allows other peers to use the
DNS resolver and IPv4, IPv6 Internet connection access.

The VPN service is the counterpart to the Exit daemon, which
provides peers with the ability to route traffic via a virtual network in-
terface to a peer that is running an Exit node. It uses DNS-ALG [Sri12]
to hijack the hosts IP traffic. Then, each time an application tries to
resolve a hostname, for example when using a web browser to visit
gnunet.org, the PT application intercepts the request and replaces the
reply with an address in the range of the virtual network interface. All
traffic received on the virtual network interface is then forwarded to
the original destination.

Moreover it is possible to run an Exit daemon and the VPN service
on the same host which can be useful for protocol translation between
IPv4 and IPv6.

Mesh
Service

Regex
Library

DHT

Protocol Translation (PT) Application

VPN Service Exit Daemon

Mesh
Service

Regex
Library

Mesh tunnel

DHT Service DHT Service

Figure 4.2: Protocol Translation (PT) application overview diagram for two
peers, one acting as offerer (highlighted with light grey) that is
running the exit daemon and one acting as patron (highlighted
with dark grey) that is requesting an exit using the VPN service.

4.3 gnunet protocol translation (pt) application 45

In order to discover peers that are willing to share their Internet
connection with a GNUnet Exit daemon, the Mesh service in conjunc-
tion with the developed Regex library is used. Figure 4.2 shows an
overview diagram for this application.

In the current implementation this system supports differentiation
between IPv4 and IPv6 exit nodes for a specified subnet and prefix
length, the policy format is defined as follows:

GNEX0001PADPADPA (4|6) <IP-BITSTRING>

The first part contains the GNUnet Exit application identifier GNEX,
followed by a version string 0001 and padding. This part is followed
by 4 or 6, which indicates an IPv4 or IPv6 address respectively. The
last part is the actual IP bitstring created by the ipv4toregex or
ipv6toregex API.

5
E VA L UAT I O N

In this thesis we focus on the problem of finding users that are willing
to provide network access using a specified protocol to a particular
destination. In practice this means that some peers act as offerers that
publish policies describing the network access they are providing and
other peers act as patrons that are requesting particular services. For
the evaluation we use a set of policies that describe the IPv4 prefixes
routed by each Autonomous System (AS) on the Internet. Before
describing the conducted experiments, the next section describes this
dataset in more detail.

5.1 dataset

The Cooperative Association for Internet Data Analysis (CAIDA) is an
association that collects data sets of the Internet topology at geograph-
ically and topologically diverse locations and provides these data sets
for the research community. The Routeviews Prefix to AS mappings
Dataset (pfx2as) is one of such and contains IPv4 prefix to AS map-
pings [Coo12], derived from the University of Oregon’s Route Views
Project [Uni12]. It contains a mapping from IPv4 prefix including the
prefix length, to a unique AS ID. This dataset is updated daily and
as of this writing contains 440, 448 lines with 40, 696 unique AS IDs,
where some IPv4 prefixes are assigned to more than one AS ID. As
already mentioned, for the purpose of this evaluation we need to have
a set of policies that describe the IPv4 addresses routed for each AS.
Thus the pfx2as data is parsed using a script where the output is a
set of files — one for each AS ID — that contain the corresponding
policies. The following is an example policy from this dataset:
GNUNET −VPN − 0001P110000011001011000101001(0|1)∗
For the dataset this results in 40, 696 files, one for each AS ID contain-
ing 451, 282 lines in total.

5.2 theory

As shown in Section 3.3, announcing each regular expression from the
pfx2as dataset and thus publishing the individual DFAs results in a
merged NFA. For the used dataset, this merged NFA is expected to
have the following properties.

• For the 451,282 lines lines, containing a regular expression in
each line, the merged NFA is expected to have at most 451,282

accepting states.

46

5.3 simulation 47

• Predicting the exact number of states in the merged NFA is not
possible, as we cannot say in advance how many states will be
merged. Furthermore this depends on the chosen path compres-
sion length as well as the IPv4 prefix length of the AS policies.
Assuming no state can be merged, an average IPv4 prefix length
of 20 and disabling path compression, this maximum number of
states is bound by 20 ∗ 451, 282 = 9, 025, 640 states.

• The number of synthetic start states depends on the prefix length.
For a prefix length k = 24 and a fixed prefix of length 16 the
expected number of synthetic start states is 28.

• The non-determinism at each state — meaning outgoing edges
with the same label to different states — is expected to be
low. This is because only states with overlapping policies will
have non-deterministic transitions, for example when merg-
ing the following two regular expressions: 010101(0|1)∗ and
0101011010(0|1)∗.

• The decrease of states and transitions for increased maximum
path compression length is expected to be equal. For this con-
sider a linear path in the DFA with n states (including start and
end state of the linear path) and m = n− 1 transitions. When
replacing the m transitions with one, the start and end state are
kept. Thus nnew = 2 and mnew = 1 and the decrease of states is
n− 2 and of transitions m− 1 = n− 2.

In the following sections we first conduct a simulation, followed by
an emulation in order to evaluate the implemented system and check
the above assumptions.

5.3 simulation

Simulating the distributed merging of DFAs into an NFA allows us to
analyze the NFA that should result in the DHT without the need for
setting up and deploying a P2P network.

5.3.1 Experimental Setup

Instead of using the Mesh service to announce regular expressions,
this simulation replaces it with a profiler. The profiler substitutes the
DHT with a database and uses the Regex library to construct DFAs
for each of the policies in the pfx2as data set. All edges of each DFA
are inserted into a table. Such a table then represents the merged NFA.
Figure 5.1 illustrates this setup.

The database used in this setup is a MySQL database and the
schema for the tables is shown in Appendix A.1. Appendix A.2.1 lists
the information needed to run the profiler.

5.3 simulation 48

Profiler Regex Library

Database

uses

uses

Figure 5.1: Experimental setup for simulation. Compared to the architecture
of the implementation illustrated in Figure 4.1, this setup replaces
the Mesh service with a profiler and substitutes the DHT with
a database. This system provides a way to analyze the resulting
merged NFA without having to deploy it to a distributed setup.

5.3.2 Measurements

To evaluate different scenarios the simulation has been conducted
for different path lengths. We will now present the results of our
measurements.

Figure 5.2 shows the number of transitions and states for different
path compression lengths.

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

no compr. 2 4 6 8 16

o

f
tr

an
si

ti
o

n
s

/
 s

ta
te

s

Maximum path compression length

transitions states

Figure 5.2: Number of transitions and states in the merged NFA for different
path lengths.

As expected, the number of states and transitions decreases with
increased path compression and the absolute number of decreased
states and transitions are equal. A simple path compression of length
two already decreases the number of required states from 1, 095, 441
to 723, 398. Moreover there is another significant change of required

5.3 simulation 49

states and transitions from maximum path length 2 to 4 and 6 to 8.
These observations can be explained by the class-based routing scheme
and the dotted decimal format used for IPv4 addresses. Moreover,
when choosing an optimal maximum path length for deploying this
application this figure suggests that a longer path length results in
fewer states and transitions and therefore the optimum would be max-
imum path compression. However, studying the number of outgoing
transitions at each state is another important criterion that has to be
taken into account.

Figure 5.3 shows — for different path lengths — the number of
outgoing transitions on states in the NFA graph and how many states
have this particular number of outgoing transitions. Note that this
graph contains only information for maximum path lengths 1,2 and 4,
as the number of outgoing transitions increases to a high value.

 1

 10

 100

 1000

 10000

 100000

 1e+06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39

#
 s

ta
te

s

outgoing transitions

no path compression
max. path compression length 2

max. path compression length 4

Figure 5.3: Count of states in the merged NFA grouped by their outgoing
transitions, for maximum path lengths 1, 2, 4.

In Figure 5.4 we show the Complementary Cumulative Distribution
Function (CCDF) for maximum path lengths 6, 8 and 16. It illustrates
that for longer path lengths the number of outgoing edges at a few
percentage of the states grows quickly. For a path length of 16 there
exists a state that has 12, 645 outgoing transitions.

When observing the values for disabled path compression it is
remarkable that there exist states that have more than two outgoing
transitions. Instead there is a few percentage of states that have 3, 4
and 6 outgoing transitions. This is explained by the non-determinism
at some states.

Now we examine the non-determinism distribution among all states.
A non-determinism at a state in the merged NFA indicates the number
of outgoing transitions that have the same label and thus there exist
several paths in the NFA that need to be traversed when matching a

5.3 simulation 50

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

%
 o

f
st

at
es

>= k out degree

max. path compression length 6
max. path compression length 8

max. path compression length 16

Figure 5.4: Complementary Cumulative Distribution Function of states and
their corresponding outgoing transitions, for path lengths 6, 8

and 16

string. Figure 5.5 shows that the maximum number of transitions with
the same label at any state in the merged NFA is 3 and only if path
compression is disabled. If path compression is enabled the maximum
number of non-determinism is 2.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

1 2 3

#
 s

ta
te

s

degree of non-determinism
max path length 1
max path length 2

max path length 4
max path length 6

max path length 8
max path length 16

Figure 5.5: Degree of non-nondeterminism at states in the merged NFA

Additionally we examined the state increase in the merged NFA
with enabled double striding, for maximum path compression lengths
4, 6 and 8. As expected, the number of states did not change. The num-
ber of transitions increased by 38%, 36.88% and 31.78% respectively.

5.4 emulation 51

As already discussed at the beginning of this section, there are more
IPv4 prefixes then total ASs. The average number of IPv4 prefixes per
AS is 11.08. However there exist some ASs, where the number of IPv4

prefixes is larger than 100. Thus creating a regular expression for each
prefix and announcing it will produce a high number of duplicate (key,
value) pairs at the same peer that is responsible for one AS. This is
not desirable as this will generate redundant PUT operations for each
duplicate (key, value) pair. For this reason the regular expressions are
combined to a union. The example shown in Appendix B.1 shows that
combining the prefixes to one large regular expression and converting
it to a minimized DFA results in fewer states and transitions. We have
conducted a simulation for a subset of 100 ASs with 2778 regular
expressions and a maximum path length of 4. As to be expected the
number of accepting states decreased from 2778 to 100. Moreover the
number of transitions in the merged NFA decreased from 9901 to
2641 and the number of states from 4424 to 1536. While this approach
reduces the number required PUT operations for each peer, the NFA
non-determinism increases slightly from a maximum of 2 outgoing
transitions with the same label at 42 out of 9901 states to a maximum
of 3 equal outgoing transitions at 3 out of 2641 states and 2 at 23 states.

5.4 emulation

To evaluate the implemented system in an emulated environment,
the GNUnet testbed service is used. This is an updated version of
the GNUnet testing framework [EG11#1]. It facilitates the setup of a
distributed GNUnet deployment and enables us to start several peers
on several different hosts.

5.4.1 Experimental Setup

The experimental setup for this evaluation uses the CAIDA database
for the pfx2as data, as described above. Each AS ID corresponds to
a peer, which is then responsible for announcing the policies of this
AS. The InfiniBand cluster at LRR-TUM [TUM12] is used to execute
a distributed deployment of the implemented system. The cluster
contains 25 nodes, with a 4x Opteron 850 2,4 GHz core and 8 GB
memory each, that are interconnected via an InfiniBand 4x switch.
Figure 5.6 illustrates the testbed setup for this evaluation. A master
controller is created on one dedicated host which then connects to slave
controllers, one for each host machine. On each host a number of peers
are started and the started peers on the slaves are randomly linked.
Each of the peers is responsible for announcing its corresponding
regular expressions. This is done when a peer is started on the slave
controllers. A simple daemon is started automatically that connects
to the peer’s Mesh service and announces the corresponding regular

5.4 emulation 52

expression read from a file. In Appendix B.1 we show an example
regular expression and the corresponding generated DFA for an AS
with a long list of IPv4 prefixes.

Master Controller

Slave Controller 1 Slave Controller 2 Slave Controller n...

Peer 1

Peer m

...
Peer m*n+1

Peer 2m*n

...
Peer m+1

Peer 2m

...randomly linked randomly linked

Figure 5.6: Illustration of the InfiniBand testbed setup where the master
controller is started on the first host, which then connects to the
slave hosts where a number of peers are started. All started peers
are then randomly linked.

In addition to the LRR-TUM [TUM12] InfiniBand cluster, a set of
experiments have also been conducted successfully on single hosts.
For this the one master testbed controller and one slave controller as
well as all the peers are started on one machine.

Searching of strings is triggered from the profiler running on the
master controller. After all links between peers have been established,
the profiler reads a set of strings from a file and for each file connects
to the mesh service of a different peer and starts the string search.
Appendix A.2.2 lists the information needed to run the profiler.

5.4.2 Measurements

In this section we present the results of our measurements. The eval-
uation has been conducted for four different testbed scales, 100, 500,
1, 000 and 5, 000 peers.

In Table 5.1 we compare the statistic for the differently scaled ex-
periments from 100 to 1, 000 peers. Each of the experiments has been
repeated five times and for each run the search strings have been ran-
domly sorted. This ensures, that the chance of one peer matching its
own regular expressions is low. The number of random links between
the peers has been set to number of peers×10. Note that the absolute
values cannot be directly compared in this evaluation, as each test was
run on a different system.

The results for the regular expression statistics show, that our ap-
proach scales well for the conducted evaluations, as the number of

5.4 emulation 53

Average 100 peers 500 peers 1, 000 peers

kilobytes PUT 70.71 5, 095.94 7, 437.57

kilobytes GET 55.85 556.29 895.92

regex DHT blocks iterated 9.35 9.62 9.59

regex nodes traversed 4.78 4.28 4.65

regex edges iterated 27.49 27.52 28.27

peers connected 28.66 43.21 48.44

search duration 12.48 s 13.28 s 101.94 s

Table 5.1: Average statistics per peer for emulations with 100, 500 and 1000

peers.

iterated edges, the number of traversed nodes and iterated mesh
blocks did not change significantly, although the number of peers was
increased. Note that the number of iterated edges is much higher than
the traversed nodes. This is due to the fact that each edge of a in the
value of a (key, value) pair stored in the DHT is iterated and because
the DFA, as shown in Figure B.1, has two closures at the accepting
state.

Figure 5.7 and Figure 5.8 illustrate the search duration for the runs
with 100 peers and 500 peers accordingly.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

#
 s

tr
in

g
s
 m

a
tc

h
e
d

search duration in s

Figure 5.7: Search duration for five runs with 100 randomly connected peers,
100 regular expressions and 100 search strings.

Although the absolute values for search duration cannot be com-
pared directly, as explained above, both figures show the same pattern.
The majority of the strings is found after the same amount of time.
Some strings are found quickly, which can be explained with the fact
that some strings are searched from the same peer that stored a match-
ing regular expression. Furthermore it might happen that a direct
neighbor has announced a matching regular expression, in which case
it will also match fast. Finally some strings take a long time to match
or even fail to match after a certain timeout. This can be explained

5.4 emulation 54

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100

#
 s

tr
in

g
s
 m

a
tc

h
e
d

search duration in s

Figure 5.8: Search duration for five runs with 500 randomly connected peers,
500 regular expressions and 500 search strings.

with the unpredictable latency of the underlying GNUnet DHT, which
performs randomized routing.

In addition to the above measurements, we conducted an experiment
in the cluster with 5, 000 peers connected with 10, 000 random links
and a maximum path compression length of 4, 8 and 16. The string
matching was run for 20 minutes. Table 5.2 shows the average statistics
for the three maximum path compression lengths.

Average for max. path len: 4 8 16

kilobytes PUT 2, 316.32 1, 726.67 1, 358.97

kilobytes GET 747.34 650.74 591.12

regex DHT blocks iterated 11.93 9.85 9.72

regex nodes traversed 6.85 5.43 4.61

regex edges iterated 39.33 29.61 28.65

peers connected 36.52 38.75 40.06

search duration 232.30 s 183.52 s 164.14 s

Table 5.2: Comparison of maximum path length 4, 8 and 16 for 5000 peers.

As already discussed in the simulation, we notice a significant de-
crease of average required edge iterations and node traversals from
maximum path compression length 4 to 8. Furthermore the aver-
age search duration decreases significantly for longer path compres-
sion and increased average peer connections. Furthermore, for this
moderate-sized testbed, the average number of bytes that have been
consumed for PUT and GET operations is acceptably.

Figure 5.9 illustrates the change in search duration for the three
different maximum path compression lengths.

This illustration shows that not only the average search duration
is performing better for increased path compression, but also the

5.5 summary 55

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 200 400 600 800 1000 1200 1400

#
 s

tr
in

g
s
 m

a
tc

h
e
d

search duration in s

max. path compression length 4
max. path compression length 8

max. path compression length 16

Figure 5.9: Search duration for 5000 peers and maximum path compressions
4, 8 and 16.

absolute number of successfully matched strings in the time frame of
the evaluation is higher.

5.5 summary

Our evaluations show that merging of the DFAs using the indepen-
dent feasible merge described in Section 3.3 to an NFA is feasible
and performs well for our scenario. The simulation shows that the
resulting NFA has the expected properties and the non-determinism
of transitions at states is low for the evaluated dataset. The emulation
shows that our approach is actually viable for a deployment in a
moderate-size testbed and suitable for applications that can tolerate
moderate latency.

6
R E L AT E D W O R K

The work related to our presented approach is structured into three
different categories. Section 6.1 contains approaches that build a struc-
ture on top of an existing DHT, which is what our approach is also
based on. Section 6.2 discusses approaches that construct a new P2P
overlay and Section 6.3 presents works that follow other methods to
provide advanced queries on structured P2P overlays.

6.1 structure on top of dht

This section presents selected approaches — Data Indexing in Peer-to-
Peer DHT Networks, PastryStrings and Prefix Hash Tree (PHT) — that
provide support for advanced queries in DHT-based overlays by build-
ing a structure on top of an existing DHT.

6.1.1 Data Indexing in Peer-to-Peer DHT Networks

Garcés-Erice et al. propose a system [Gar+04] to discover objects stored
in a DHT. A loose information structure is build on top of a DHT by
indexing the objects under a trail of their associated keywords.

In this approach the objects are indexed under their descriptor’s
hash. The descriptor consists of the object’s keywords that are struc-
tured in an XML format. File descriptors can contain arbitrary in-
formation about the file, for example the filename, the creation date,
the file size and the author. When indexing a file, an arbitrary num-
ber of sets of keywords, that can be freely chosen by the application,
are inserted into the DHT with links to more specific keyword sets.
Keyword sets have an XML Path Language (XPath)-like syntax that
contains information from the files descriptor. Figure 6.1 shows an
example taken from [Gar+04] with distributed indexes for three files
from a bibliographic database.

Searching for files that are indexed in the DHT is done with a
general query that consists of keywords with an XPath-like syntax.
The hash of this query is used to follow the previously inserted trail
of more specific keyword sets until the most specific set of keywords
is found. The search ends at the most specific set of keywords, which
is the objects descriptor, as this is where the searched file is stored (or
the peer that offers this file).

Building and maintaining the indexes in this approach is arbi-
trary and left to the application. This makes it possible to speed
up popular queries by inserting a direct link from a generic query

56

6.1 structure on top of dht 57

Alan/Doe Alan/Doe/Wavelets
John/Smith/IPV6
John/Smith/TCP

John/Smith

Alan/Doe/Wavelets
John/Smith/IPV6
John/Smith/TCP

Alan/Doe/Wavelets/INFOCOM/1996/...
John/Smith/IPV6/INFOCOM/1996/...
John/Smith/TCP/SIGCOMM/1989/...

Alan/Doe/Wavelets/INFOCOM/1996/...
John/Smith/IPV6/INFOCOM/1996/...
John/Smith/TCP/SIGCOMM/1989/...

x.pdf
y.pdf
z.pdf

INFOCOM/1996

SIGCOMM/1989

John/Smith/IPV6/INFOCOM/1996/...
Alan/Doe/Wavelets/INFOCOM/1996/...
John/Smith/TCP/SIGCOMM/1989/...

INFOCOM/1996
SIGCOMM/19891989

1996INFOCOM
SIGCOMM

INFOCOM/1996
SIGCOMM/1989

Alan/Doe/Wavelets

John/Smith/IPV6
John/Smith/TCP

Wavelets
TCP
IPV6Alan/Doe

John/SmithSmith
Doe

Author Proceedings

Article

Publication

Last name Title Conference Year

Figure 6.1: Distributed indexes for three documents from a bibliographic
database (Illustration from [Gar+04]). The publication index is the
most specific query that is used as a the descriptor d, which itself
is hashed to derive the key for storing the files in the DHT. For
example, a query for the generic query IPV6 would lead to the
more specific query John/Smith/IPV6 and finally to the file stored
under the query John/Smith/IPV6/INFOCOM/1996/... (Illustration
from [Gar+04]).

directly to the file, for instance adding an entry for Smith to John/-
Smith/IPV6/INFOCOM/1996/... in the above example. Performance and
usability of this approach heavily depend on the underlying data and
query structure.

6.1.2 PastryStrings

PastryStrings [AT06] is an infrastructure on top of a DHT for support-
ing numerical range and comparison queries, as well as prefix, suffix
and containment string matching.

The architechture is based on a tree structure for storing and match-
ing events to subscriptions in the DHT. A forest of dynamically created
string trees is build when new requests for storing subscriptions arrive.
The root node of each tree corresponds to the first character of the
string that should be stored. Storing the root is done by hashing the
first character of the string and performing a PUT on the underlying
Pastry DHT. Each node of the tree maintains a routing table. The
routing table contains a mapping from the next character in the stored
string to child nodes.

To find the peers that store a subscription to an event, the tree is
recursively traversed. Each peer that stores a matching subscription at
any of the traversed leaf-nodes is send a message. Figure 6.2 shows an
example for the string-typed event to subscription matching.

PastryStrings supports the "*" prefix and suffix predicate on strings,
which is done by storing a subscription for strings ending in "*", for
example abc*, at each child-tree of the node that is responsible for

6.1 structure on top of dht 58

Match stored subscriptions to the incoming event with value 010

000

0

Event value
locate the root
hash("0") = 000

001 011

100

Check 2nd character:
locate Tnode01 and
forward the event

00 01

0 1

0 1

010

Check 3rd character:
locate Tnode010 and
forward the event

Event matches subscription
and delivered to user

001 011

100 -SubID2

SubID1

"00"

"010"

Figure 6.2: PastryStrings string-typed event to subscription matching for the
string 010. The root is found by hashing the first character of the
string hash(”0”) = 000 and then the tree is traversed using the
routing tables stored at each node, until the matching leaf node
is found (Illustration from [AT06]).

storing subscriptions for abc. In order to support numerical attributes
to subscriptions, sub-ranges of numerical values are assigned to each
node. Leaf-nodes just store the value and their parents store the range
that includes all of their child-nodes. For example, for the two leaf-
nodes 0000 and 0001, their parent 000 stores the range [0,2). Thus a
subscription for the range [0,2) is stored at the node responsible for
000.

To balance the load on popular nodes (i.e. nodes that are close to
the root of a tree) the tree forest is replicated so that storage load is
partitioned over several nodes. The number of replications is defined
by a global replication factor f , which corresponds to the number of
replica trees in the DHT. When inserting a new root it is inserted f
times and each replica’s id contains its number. Lookup is done by
randomly choosing a number r < f and hashing it together with the
first character, so that the replica tree is randomly chosen.

6.1.3 Prefix Hash Tree (PHT)

A PHT is a data structure presented in [RHS03] that is used to build
a trie on top of any given DHT implementation in order to support
range queries over DHTs.

Every node in a PHT has an associated prefix label. The root of a
PHT is labeled with an attribute name defined by the application. For

6.1 structure on top of dht 59

a node with a label l, its left child node is labeled l0 and its right child
node is labeled l1. Data items are stored at the nodes with the longest
common prefix between the nodes label and the data item to be stored.
Data items are only stored at the leaf nodes of a PHT. If the parameter
of maximum allowed number of data items, that can be stored at each
node, is exceeded, the corresponding node is split into child nodes.

Lookup of bitstrings can be directly performed by hashing the
string and using the hash as the key for the DHT GET operation. The
additional benefit of this approach is the support for range queries. In
order to do that the subtree in a PHT with the longest common prefix
is traversed to find all the leaf nodes of a specified range.

To avoid overloading of root nodes, not all traversals have to start
from the root node. Lookups are executed by hashing possible prefixes
of the search keyword and performing a GET for each of these hashes,
where the PHT node with the longest common prefix provides the
result. Thus for a string 011∗ the prefixes 0110 and 0111 could be used
to perform a GET and avoid overloading of the node storing 001.

6.1.4 Comparison to our approach

Similar to our approach, the approaches presented in this section all
build a certain structure on top of a DHT.

The system by Garcés-Erice et al. is similar to our approach, as both
approaches use a string that describes indexed data to find appropriate
matches. However Garcés-Erice et al. approach is limited to simple
keywords that describe indexed data, where our approach allows
indexing with regular expressions.

When comparing our approach to PastryStrings the subscriptions
can be seen as offering a service using a policy. The publishing part
can be seen as a patron, which is searching for a service using a string.
We, as well, use the hash of the first characters to find the start of
the graph structure contained in the DHT. Both approaches do not
allow direct jumping to a particular node. However, in contrast to
PastryStrings, which is limited to range, string prefix and string suffix
queries, we support regular expressions, which has more flexibility and
is essentially a superset of the mentioned types of queries. Moreover
in our approach we avoid overloading of initial peers by using policies
which let the application choose a reasonable prefix. In contrast to this,
PastryStrings replicates the entire tree forest to avoid overloading of
peers.

PHT is similar to PastryStrings, but allows direct lookup of any node
in the tree and uses this to avoid overloading of higher level nodes.

Using these approaches for the discovery of offerers that provide
a certain service, the service descriptions are limited to simple range
queries or string prefix/suffix matching, as none of the named ap-

6.2 p2p overlay 60

proaches provides more advanced query types than the ones men-
tioned.

6.2 p2p overlay

In this section we present selected approaches — Cubit and DPMS —
that build structured P2P overlay networks with support for advanced
query matching.

6.2.1 Cubit

Cubit [BS08] is a loosely structured overlay network providing approx-
imate keyword matching by mapping objects to keywords, which are
then stored at nodes with related keywords.

Each Cubit node organizes its peers into concentric rings (see Fig-
ure 6.3), where it retains links to neighbors in each ring. Thus each
node has links to nearby, as well as, far away peers. Each node stores
the objects to which it is the closest (in the sense of edit distance
between keywords). Keywords are derived from the information as-
sociated with an object. For example for files it could be the filename
plus some tags. The nodes are distributed in the same space as the
keywords. Node IDs are randomly chosen from the set of keywords
and uniqueness is ensured by detecting ID collisions. Each object is
fully described by a set of keywords. When inserting a new object,
the object descriptor is replicated at the closest nodes for each of the
keywords by first inserting the object at the closest node and this node
then performs the replication at its closest neighbors.

Searching for approximate matches to a keyword is provided by
looking up the nearby nodes to a given keyword. The search starts
at the local peer and iteratively queries nearby nodes close to the
keyword, until no nodes can be found that is closer to the keyword.

As stated above, Cubit supports approximate string keyword search.
In addition it also supports queries with logic operators. For that
searches are converted to a set of conjunction clauses that are con-
nected by OR operators. The standard search described above is per-
formed to find close matches to the positive terms in each clause, as
well as to find all negative terms (NOT) that then act as a filter. The
union of the filtered results is returned.

Load balancing of popular keywords stored at one node is done
by creating a virtual copy of the node and storing this copy at its
neighbors, so that queries that arrive at the neighbors can be answered
without involving the original node.

6.2 p2p overlay 61

A

Figure 6.3: Illustration of a cubit node A that shows the concentric rings into
which the node organizes its peers. Each concentric ring stands
for a specific keyword distance. The outer rings have a bigger
keyword distance than the inner rings. The solid circles are the
peers to which A retains connections, empty circles are other
nodes. The squares represent object keywords in the system. Each
keyword in the shaded region is in the keyword subspace where
A is the closest node.

6.2.2 DPMS

The Distributed Pattern Matching System (DPMS) [AB06] is a struc-
tured P2P network that supports string pattern matching based on
Bloom filters.

In DPMS each object is indexed using a bitstring. For each keyword
to an object (for example files) a bit in the string is set to 1. To index
a file with several keywords, the keywords are split into n-grams
and then encoded in a single bitstring. To efficiently encode a set of
keywords to a bitstring a Bloom filter is used. Each peer advertises its
bitstring index. The advertised patterns are organized in a latice-like
hierarchy. Peers have two roles, they act as offerers that advertise their
indices and/or as indexing peers. Indexing peers are positioned above
the lowest level in the lattice hierarchy and aggregate multiple indices
from lower level peers. They help in routing requests to the offerers.
[AB06] suggest a special aggregation scheme that aggregates several
index bitstrings into one: if two bitstrings have different bits at the
same position, the bit in the aggregated bitstring is set to X, which
indicates that at this position both 0 or 1 are possible values.

Querying for indexed content is done by splitting the search key-
word into n-grams and encoding it to a bitstring using a Bloom filter.
Matching to advertised bitstrings is done by comparing the 1-bits of
the search query to the advertised bitstrings. For example the query
bitstring 0101 would find a match in the advertised bitstrings 0111
and 1101, but not 1011. The query is then routed by first checking the
local information and if no match was found, forwarding the request
to the higher level indexing peers until a aggregate match is found.

6.3 other 62

The peer with a matching aggregate bitstring then forwards the query
down in the hierarchy until an offerer that advertises a matching index
is found.

DPMS supports Bloom filter based partial- and multi-keyword
search. For example a offerer might index the keywords "invisible
man" and another offerer the keywords "visible woman", these are
split into tri-grams "inv, nvi, vis, isi, sib, ibl, ble" and "vis, isi, sib, ibl,
ble, wom, oma, man". Searching for the partial keyword "*visi*man*",
which is split into the tri-grams "vis, isi, man", will find both advertised
keywords.

An additional optimization is presented to minimize the number
of X-bits in the aggregated Bloom filter bitstrings — which is an
NP-complete problem — by using a heuristic approach.

6.2.3 Comparison to our approach

When comparing our approach to the approaches presented in this
section, the main difference is, that both systems construct a new
overlay P2P network, where we build on top of an existing DHT.
In contrast to our approach, where indexing is done with regular
expressions, both Cubit and DPMS use keywords consisting of plain
strings to index data and then use more expressive queries to match a
number of stored keywords. This does not fit to our approach where
a specific string is searched and the offerer stores the data structure
(DFA) in the DHT. Thus using these approaches is generally not
feasible for our scenario.

Apart from this major limitation these approaches could be applied
to our scenario. The approximate matching and boolean search fa-
cilities in Cubit could be used to find matching services, given that
all possible service descriptions are indexed using keywords. Ser-
vice discovery with DPMS could be achieved by constructing service
descriptions that benefit from the splitting into n-grams. Neverthe-
less neither of these approaches supports the flexibility provided by
general purpose regular expressions.

6.3 other

This section presents two approaches that use other methods to pro-
vide advanced queries on structured overlays. The work by Karnstedt
et al. — Similarity Queries on Structured Data in Structured Overlays —
provides support for databases on DHT-based overlays and Coopera-
tive Information Sharing System (CISS) alters the hash function of the
underlying DHT to allow range queries.

6.3 other 63

6.3.1 Similarity Queries on Structured Data in Structured Overlays

Karnstedt et al. present an approach [Kar+06] to store and select
entries of relational databases on DHT-based overlays. The approach
allows database-like similarity queries.

In a classic relational model the relations R(A1, . . . , An), where
Ai represents the attribute name (or column name), with tuples of
values (id, v1, . . . , vn) would be stored in a horizontal organization, for
example a table in an SQL database. This organization requires that all
users agree on a common database schema. This is not feasible, as the
motivation for supporting similarity queries on DHT-based overlays
in this work is grounded on public management of structured data
(e.g. LDAP). The presented approach organizes the relation vertically
by indexing triples of the form (id, A1, v1), . . . , (id, An, vn) in the DHT.
Indexing is done by hashing different parts of the triples and using
this hash as the key to store the triples in the DHT. To support object
lookups each triple is hashed using the respective id. Supporting
selections on the stored data that are of the form Ai ≥ v, for example
price ≥ 50, is done by hashing each triple under Ai#vi (# denotes
concatenation). And finally hashing on vi allows for keyword-like
queries like any attribute = v, for example price = 100. This storage
strategy causes an overhead in storing space, but allows for relational
queries on the stored data without the need for a fixed schema.

The system is based on the P-Grid DHT [Abe+03], which uses
a binary trie structure to organize each peers routing table. P-Grid
allows for exact and sub-string search, as well as range queries on
keys, which is necessary for querying the data indexed in the DHT by
using a relational query language that supports SELECT queries with
WHERE, ORDER BY, LIMIT and OFFSET statements. For example
consider the following query:

Select name, horsepower (hp) and price of the 5 most powered cars below a
price of 50000 from a collection of cars, represented in a database by typical
attributes such as name, mileage, price, etc. which is expressed as:

SELECT ?n,?h,?p

WHERE { (?o,name,?n) (?o,hp,?h) (?o,price,?p)

FILTER (?p < 50000) }

ORDER BY ?h DESC LIMIT 5

Moreover, similarity queries, which return results that are similar
to a given search string, are proposed. These are based on inserting
q-grams for each Ai ∈ R.

6.3.2 Cooperative Information Sharing System

CISS ([Lee+07]) mediates between P2P applications and an existing
DHT. Instead of using a hash function for mapping objects to DHT

6.3 other 64

keys, which facilitates de-clustering and is adverse to advanced access
operations (such as range queries), CISS uses a locality preserving
function to achieve a high level of clustering.

The locality preserving function defines two different key encodings
that preserve clustering. Numerical types are simply rescaled and
attribute clustering is preserved, because the numeric type is a total
ordered set. To support clustering of strings, the strings have to be
hierachically ordered by the application. For example consider strings
that describe locations, which can be ordered by generality: "Europe,
Germany, Bavaria, Munich". A prefix is added to each string by the
locality preserving function, to preserve the clustering.

Efficient range queries are suppported by clustering semantically
related objects, which allows searching for multiple key-values by a
single DHT lookup. A forwarding-based routing protocol for queries
is used to route multi-dimensional range queries. This is done by
only looking up the nodes that correspond to the first key of each
cluster. The query is then forwarded to succeeding nodes until all
relevant objects are retrieved. Relevant objects are directly returned to
the searching peer.

In addition to multi-dimensional range queries, CISS also supports
continuous updates, because semantically related objects are clus-
tered, continuous updates can be routed to the same node without
performing additional DHT operations.

6.3.3 Comparison to our approach

The only similarity of the presented works in comparison to our ap-
proach and with respect to the underlying structure is the usage of
a DHT. Applying CISS to our scenario — discovery of peers that
offer a certain service — would mean that an offerer would have to
explicitly insert strings that fully describe the offered service. Similar
services would then be clustered and the patron can discover services
using range queries. The insertion of all strings that describe a service
would only be feasible for a small number of strings. The approach
of Karnstedt et al. could be applied to our scenario by mapping poli-
cies to database tables that can be stored in the DHT. This requires
storing each capability description under several entries in the table,
for example each IPv4 address for which the peer provides an exit.
Searching for capabilities would then be done using SQL-like queries
and. Thus, although it would be possible to use their approach, our
approach requires less storage space (one regular expression in con-
trast to several table entries) and searching for a particular service can
performed using simple strings instead of complex queries.

7
C O N C L U S I O N A N D F U T U R E W O R K

This thesis describes a method to search a DHT-based overlay network
using a string that matches an advertised regular expression. The
communication complexity of the approach depends heavily on the
specifics of the DFAs and the implementation of the DHT. The ex-
pected latency is linear in the length of the search string and generally
suitable for applications that can tolerate moderate latency.

In future work, the performance of the new method should be
compared to other approaches to distributed search. We also hope
that the new expressive search method will support the development
of new applications which were previously difficult to implement due
to the lack of an efficient and expressive search mechanism.

Furthermore, as the method only covers searching using a string, an
open problem is searching using a regular expression for an advertised
string. Finally, our experimental evaluation was performed using a
moderate-size testbed; in the future, experiments using a testbed with
a more realistic number of peers and a broader range of applications
might provide additional insights.

65

B I B L I O G R A P H Y

[AB06] R. Ahmed and R. Boutaba. “Distributed Pattern Match-
ing: A Key to Flexible and Efficient P2P Search”. In: 2006
IEEE/IFIP Network Operations and Management Sympo-
sium NOMS 2006. Vancouver, BC, Canada: IEEE, 2006,
pp. 198–208.

[Abe+03] K. Aberer et al. “P-Grid: a self-organizing structured P2P
system”. In: SIGMOD Rec. 32.3 (Sept. 2003), pp. 29–33.

[Aho+06] A. V. Aho et al. Compilers: Principles, Techniques, and Tools
(2nd Edition). Prentice Hall, 2006.

[App97] A. W. Appel. Modern Compiler Implementation in Java.
Cambridge University Press, Dec. 1997, pp. 27–30.

[AT06] I. Aekaterinidis and P. Triantafillou. “PastryStrings: A
Comprehensive Content-Based Publish/Subscribe DHT
Network”. In: Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems. ICDCS ’06.
Washington, DC, USA: IEEE Computer Society, 2006,
pp. 23–.

[Bal+03] H. Balakrishnan et al. “Looking up data in P2P systems”.
In: Commun. ACM 46.2 (Feb. 2003), pp. 43–48.

[BC08] M. Becchi and P. Crowley. “Efficient regular expression
evaluation: theory to practice”. In: Proceedings of the 4th
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems. ANCS ’08. San Jose, California:
ACM, 2008, pp. 50–59.

[Bec07] Becchi, Michela and Crowley, Patrick. “An improved al-
gorithm to accelerate regular expression evaluation”. In:
Proceedings of the 3rd ACM/IEEE Symposium on Architec-
ture for networking and communications systems. ANCS ’07.
Orlando, Florida, USA: ACM, 2007, pp. 145–154.

[Bro06] Brodie, Benjamin C. and Taylor, David E. and Cytron,
Ron K. “A Scalable Architecture For High-Throughput
Regular-Expression Pattern Matching”. In: SIGARCH
Comput. Archit. News 34.2 (May 2006), pp. 191–202.

[BS08] A. S. Bernard Wong and E. G. Sirer. Approximate Match-
ing for Peer-to-Peer Overlays with Cubit. 2008.

[Cho56] N. Chomsky. “Three models for the description of lan-
guage”. In: Information Theory, IRE Transactions on 2.3
(Sept. 1956), pp. 113–124.

67

bibliography 68

[Coo12] Cooperative Association for Internet Data Analysis.
CAIDA Routeviews Prefix to AS mappings Dataset @online.
Sept. 2012. url: http://www.caida.org/data/routing/
routeviews-prefix2as.xml.

[EG11#1] N. S. Evans and C. Grothoff. “Beyond Simulation: Large-
Scale Distributed Emulation of P2P Protocols”. In: 4th
Workshop on Cyber Security Experimentation and Test (CSET
2011). USENIX Association. San Francisco, California:
USENIX Association, 2011.

[EG11#2] N. S. Evans and C. Grothoff. “R5N : Randomized Re-
cursive Routing for Restricted-Route Networks”. In: 5th
International Conference on Network and System Security
(NSS 2011). IEEE. Milan, Italy: IEEE, Sept. 2011.

[Gar+04] L. Garcés-Erice et al. “Data Indexing in Peer-to-Peer
DHT Networks”. In: Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS’04).
ICDCS ’04. Washington, DC, USA: IEEE Computer Soci-
ety, 2004, pp. 200–208.

[GL02] S. Gilbert and N. Lynch. “Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services”. In: SIGACT News 33.2 (June 2002), pp. 51–59.

[GNU12] GNU Developer Team. GNU C Regular Expression Library
@online. Oct. 2012. url: http://www.gnu.org/software/
libc/manual/html_node/Regular-Expressions.html.

[Gra12] Graphviz. Graphviz - Graph Visualization Software @online.
Oct. 2012. url: http://www.graphviz.org.

[Gro12] Grothoff, Christian. GNU’s Framework for Secure Peer-
to-Peer Networking @online. Sept. 2012. url: https://
gnunet.org.

[HMU07] J. E. Hopcroft, R. Motwani and J. D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Pearson-
/Addison Wesley, 2007.

[Kar+06] M. Karnstedt et al. “Similarity Queries on Structured
Data in Structured Overlays”. In: Proceedings of the 22nd
International Conference on Data Engineering Workshops.
ICDEW ’06. Washington, DC, USA: IEEE Computer Soci-
ety, 2006, pp. 32–.

[Kum06] Kumar, Sailesh and Dharmapurikar, Sarang and Yu,
Fang and Crowley, Patrick and Turner, Jonathan. “Algo-
rithms to accelerate multiple regular expressions match-
ing for deep packet inspection”. In: SIGCOMM Comput.
Commun. Rev. 36.4 (Aug. 2006), pp. 339–350.

http://www.caida.org/data/routing/routeviews-prefix2as.xml
http://www.caida.org/data/routing/routeviews-prefix2as.xml
http://www.gnu.org/software/libc/manual/html_node/Regular-Expressions.html
http://www.gnu.org/software/libc/manual/html_node/Regular-Expressions.html
http://www.graphviz.org
https://gnunet.org
https://gnunet.org

bibliography 69

[Lee+07] J. Lee et al. “CISS: An efficient object clustering frame-
work for DHT-based peer-to-peer applications”. In: Com-
put. Netw. 51.4 (Mar. 2007), pp. 1072–1094.

[Neu05] C. Neumann. “Converting Deterministic Finite Au-
tomata to Regular Expressions”. In: (2005).

[Rat+01] S. Ratnasamy et al. “A Scalable Content-Addressable
Network”. In: IN PROC. ACM SIGCOMM 2001. 2001,
pp. 161–172.

[Sak09] J. Sakarovitch. Elements of Automata Theory. Encyclope-
dia of Mathematics and its Applications. Cambridge
University Press, 2009.

[She+09] X. Shen et al. Handbook of Peer-to-Peer Networking. Lecture
Notes on Coastal and Estuarine Studies. Springer, 2009.

[Sin06] Y. Singh. Mathematical Foundation Of Computer Science.
New Age International (P) Limited, 2006, pp. 267–271.

[Sip06] M. Sipser. Introduction to the Theory of Computation.
Thomson Course Technology, 2006, pp. 31–77.

[Sri12] Srisuresh, P. et al. RFC-2694: DNS extensions to Network
Address Translators (DNS_ALG) @online. Sept. 2012. url:
http://tools.ietf.org/html/rfc2694.

[TUM12] TUM Lehrstuhl für Rechnertechnik und Rechnerorgan-
isation / Parallelrechnerarchitektur. INFINIBAND at
LRR-TUM @online. Oct. 2012. url: http://www.lrr.in.
tum.de/Par/arch/infiniband/.

[Uni12] University of Oregon. University of Oregon Route Views
Project @online. Sept. 2012. url: http://www.routeviews.
org/.

[War12] Warren, Paul. RFC-822 compliant regular expression @on-
line. Sept. 2012. url: http://ex-parrot.com/~pdw/Mail-
RFC822-Address.html.

http://tools.ietf.org/html/rfc2694
http://www.lrr.in.tum.de/Par/arch/infiniband/
http://www.lrr.in.tum.de/Par/arch/infiniband/
http://www.routeviews.org/
http://www.routeviews.org/
http://ex-parrot.com/~pdw/Mail-RFC822-Address.html
http://ex-parrot.com/~pdw/Mail-RFC822-Address.html

A P P E N D I X

70

A
P R O F I L I N G

a.1 database information for simulated evaluation

a.1.1 Table Schema

CREATE TABLE ‘ tes t_100 ‘ (
‘ id ‘ i n t NOT NULL AUTO_INCREMENT,
‘ key ‘ BINARY(6 4) NOT NULL,
‘ l a b e l ‘ varchar (3 2) DEFAULT NULL,
‘ to_key ‘ BINARY(6 4) DEFAULT NULL,
‘ accepting ‘ t i n y i n t (1) DEFAULT ’ 0 ’ ,

PRIMARY KEY (‘ id ‘) ,
INDEX idx_key (‘ key ‘ (6 4)) ,
INDEX idx_key_id (‘ key ‘ (6 4) , id) ,
INDEX idx_key_lbl_to_key (

‘ key ‘ (6 4) , ‘ l a b e l ‘ (3 2) , ‘ to_key ‘ (6 4)) ,
INDEX idx_key_acc (‘ key ‘ (6 4) , ‘ accepting ‘) ,
UNIQUE KEY ‘ unique ‘ (

‘ key ‘ (6 4) , ‘ l a b e l ‘ , ‘ to_key ‘ (6 4) , ‘ accepting ‘)
) ENGINE=InnoDB DEFAULT CHARSET=u t f 8 ;

a.1.2 Prepared Insert Statement

INSERT IGNORE INTO NFA
(‘ key ‘ , ‘ l a b e l ‘ , ‘ to_key ‘ , ‘ accepting ‘)
VALUES (? , ? , ? , ?) ;

a.2 profiling tools reference

In this section the usage of the profiling tools is described. Important
options are highlighted.

a.2.1 gnunet-regex-simulation-profiler

gnunet-regex-simulationprofiler [OPTIONS] policy-dir
Profiler for regex library
Arguments mandatory for long options are also mandatory for short options.
-c, --config=FILENAME use configuration file FILENAME
-h, --help print this help
-L, --log=LOGLEVEL configure logging to use LOGLEVEL
-l, --logfile=LOGFILE configure logging to write logs to LOGFILE
-p, --max-path-compression=LENGTH

maximum path compression length
-s, --stride-len=LENGTH length of additional multi strides in the DFA
-t, --table=TABLENAME name of the table to write DFAs
-v, --version print the version number

Report bugs to gnunet-developers@gnu.org.
GNUnet home page: http://www.gnu.org/software/gnunet/
General help using GNU software: http://www.gnu.org/gethelp/

71

A.2 profiling tools reference 72

The configuration file, specified with the -c option should con-
tain the information needed to connect to a MySQL database with
the schema shown above. The following is an example for such a
configuration file.

[regex-mysql]

DATABASE = dbname

USER = dbuser

PASSWORD = dbpass

HOST = localhost

PORT = 3306

a.2.2 gnunet-regex-profiler

gnunet-regex-profiler [OPTIONS] hosts-file policy-dir search-strings-file
Profiler for regex/mesh
Arguments mandatory for long options are also mandatory for short options.
-a, --num-search-strings=COUNT

number of search strings to read from search
strings file

-c, --config=FILENAME use configuration file FILENAME
-d, --details=FILENAME name of the file for writing statistics
-h, --help print this help
-L, --log=LOGLEVEL configure logging to use LOGLEVEL
-l, --logfile=LOGFILE configure logging to write logs to LOGFILE
-n, --num-links=COUNT create COUNT number of random links

between peers
-p, --max-path-compression=MAX_PATH_COMPRESSION

maximum path compression length
-s, --search-delay=DELAY wait DELAY before starting string search
-t, --matching-timeout=TIMEOUT

wait TIMEOUT before considering a string
match as failed

-v, --version print the version number
Report bugs to gnunet-developers@gnu.org.
GNUnet home page: http://www.gnu.org/software/gnunet/
General help using GNU software: http://www.gnu.org/gethelp/

B
R E G E X L I B R A RY

b.1 example regex dfa

GNVPN-0001-PAD(001110101001001010(0|1)*|001110101001001010000(0|1)*
|001110101001001010001(0|1)*|001110101001001010010(0|1)*|001110101001001010011(0|1)*
|001110101001001010100(0|1)*|001110101001001010101(0|1)*|001110101001001010110(0|1)*
|001110101001001010111(0|1)*|0011101010110110(0|1)*|001110101011011000000(0|1)*
|001110101011011000001(0|1)*|001110101011011000010(0|1)*|001110101011011000011(0|1)*
|001110101011011000100(0|1)*|001110101011011000101(0|1)*|001110101011011000110(0|1)*
|001110101011011000111(0|1)*|001110101011011001000(0|1)*|001110101011011001001(0|1)*
|001110101011011001010(0|1)*|001110101011011001011(0|1)*|001110101011011001100(0|1)*
|001110101011011001101(0|1)*|001110101011011001110(0|1)*|001110101011011001111(0|1)*
|001110101011011010000(0|1)*|001110101011011010001(0|1)*|001110101011011010010(0|1)*
|001110101011011010011(0|1)*|001110101011011010100(0|1)*|001110101011011010101(0|1)*
|001110101011011010110(0|1)*|001110101011011010111(0|1)*|001110101011011011000(0|1)*
|001110101011011011001(0|1)*|001110101011011011010(0|1)*|001110101011011011011(0|1)*
|001110101011011011100(0|1)*|001110101011011011101(0|1)*|001110101011011011110(0|1)*
|001110101011011011111(0|1)*|0011101110111101(0|1)*|001110111011110100000(0|1)*
|001110111011110100001(0|1)*|001110111011110100010(0|1)*|001110111011110100011(0|1)*
|001110111011110100100(0|1)*|001110111011110100101(0|1)*|001110111011110100110(0|1)*
|001110111011110100111(0|1)*|001110111011110101000(0|1)*|001110111011110101001(0|1)*
|001110111011110101010(0|1)*|001110111011110101011(0|1)*|001110111011110101100(0|1)*
|001110111011110101101(0|1)*|001110111011110101110(0|1)*|001110111011110101111(0|1)*
|001110111011110110000(0|1)*|001110111011110110001(0|1)*|001110111011110110010(0|1)*
|001110111011110110011(0|1)*|001110111011110110100(0|1)*|001110111011110110101(0|1)*
|001110111011110110110(0|1)*|001110111011110110111(0|1)*|001110111011110111000(0|1)*
|001110111011110111001(0|1)*|001110111011110111010(0|1)*|001110111011110111011(0|1)*
|001110111011110111100(0|1)*|001110111011110111101(0|1)*|001110111011110111110(0|1)*
|0111010001010110(0|1)*|011101000101011000000(0|1)*|011101000101011000001(0|1)*
|011101000101011000010(0|1)*|011101000101011000011(0|1)*|011101000101011000100(0|1)*
|011101000101011000101(0|1)*|011101000101011000110(0|1)*|011101000101011000111(0|1)*
|011101000101011001000(0|1)*|011101000101011001001(0|1)*|011101000101011001010(0|1)*
|011101000101011001011(0|1)*|011101000101011001100(0|1)*|011101000101011001101(0|1)*
|011101000101011001110(0|1)*|011101000101011001111(0|1)*|011101000101011010000(0|1)*
|011101000101011010001(0|1)*|011101000101011010010(0|1)*|011101000101011010011(0|1)*
|011101000101011010100(0|1)*|011101000101011010101(0|1)*|011101000101011010110(0|1)*
|011101000101011010111(0|1)*|011101000101011011000(0|1)*|011101000101011011001(0|1)*
|011101000101011011010(0|1)*|011101000101011011011(0|1)*|011101000101011011100(0|1)*
|011101000101011011101(0|1)*|011101000101011011110(0|1)*|011101000101011011111(0|1)*
|0111010001010111(0|1)*|011101000101011100000(0|1)*|011101000101011100001(0|1)*
|011101000101011100010(0|1)*|011101000101011100011(0|1)*|011101000101011100100(0|1)*
|011101000101011100101(0|1)*|011101000101011100110(0|1)*|011101000101011100111(0|1)*
|011101000101011101000(0|1)*|011101000101011101001(0|1)*|011101000101011101010(0|1)*
|011101000101011101011(0|1)*|011101000101011101100(0|1)*|011101000101011101101(0|1)*
|011101000101011101110(0|1)*|011101000101011101111(0|1)*|011101000101011110000(0|1)*
|011101000101011110001(0|1)*|011101000101011110010(0|1)*|011101000101011110011(0|1)*
|011101000101011110100(0|1)*|011101000101011110101(0|1)*|011101000101011110110(0|1)*
|011101000101011110111(0|1)*|011101000101011111000(0|1)*|011101000101011111001(0|1)*
|011101000101011111010(0|1)*|011101000101011111011(0|1)*|011101000101011111100(0|1)*
|011101000101011111101(0|1)*|011101000101011111110(0|1)*|011101000101011111111(0|1)*
|0111010001011000(0|1)*|011101000101100000000(0|1)*|011101000101100000001(0|1)*
|011101000101100000010(0|1)*|011101000101100000011(0|1)*|011101000101100000100(0|1)*
|011101000101100000101(0|1)*|011101000101100000110(0|1)*|011101000101100000111(0|1)*
|011101000101100001000(0|1)*|011101000101100001001(0|1)*|011101000101100001010(0|1)*
|011101000101100001011(0|1)*|011101000101100001100(0|1)*|011101000101100001101(0|1)*
|011101000101100001110(0|1)*|011101000101100001111(0|1)*|011101000101100010000(0|1)*
|011101000101100010001(0|1)*|011101000101100010010(0|1)*|011101000101100010011(0|1)*
|011101000101100010100(0|1)*|011101000101100010101(0|1)*|011101000101100010110(0|1)*
|011101000101100010111(0|1)*|011101000101100011000(0|1)*|011101000101100011001(0|1)*
|011101000101100011010(0|1)*|011101000101100011011(0|1)*|011101000101100011100(0|1)*
|011101000101100011101(0|1)*|011101000101100011110(0|1)*|011101000101100011111(0|1)*

73

B.1 example regex dfa 74

|01110100010110010(0|1)*|011101000101100100000(0|1)*|011101000101100100001(0|1)*
|011101000101100100010(0|1)*|011101000101100100011(0|1)*|011101000101100100100(0|1)*
|011101000101100100101(0|1)*|011101000101100100110(0|1)*|011101000101100100111(0|1)*
|011101000101100101000(0|1)*|011101000101100101001(0|1)*|011101000101100101010(0|1)*
|011101000101100101011(0|1)*|011101000101100101100(0|1)*|011101000101100101101(0|1)*
|011101000101100101110(0|1)*|011101000101100101111(0|1)*|011101000101100101111000(0|1)*
|1100101010011100(0|1)*|110010101001110000000(0|1)*|110010101001110000000001(0|1)*
|110010101001110000000010(0|1)*|110010101001110000000110(0|1)*|110010101001110000001(0|1)*
|110010101001110000001000(0|1)*|110010101001110000001001(0|1)*|110010101001110000001010(0|1)*
|110010101001110000001011(0|1)*|110010101001110000001101(0|1)*|110010101001110000001110(0|1)*
|110010101001110000010(0|1)*|110010101001110000011(0|1)*|110010101001110000100(0|1)*
|110010101001110000101(0|1)*|110010101001110000110(0|1)*|110010101001110000111(0|1)*
|110010101001110001000(0|1)*|110010101001110001001(0|1)*|110010101001110001010(0|1)*
|110010101001110001011(0|1)*|110010101001110001100(0|1)*|110010101001110001101(0|1)*
|110010101001110001110(0|1)*|110010101001110001111(0|1)*|110010101001110010000(0|1)*
|110010101001110010001(0|1)*|110010101001110010010(0|1)*|110010101001110010011(0|1)*
|110010101001110010100(0|1)*|110010101001110010101(0|1)*|110010101001110010110(0|1)*
|110010101001110010111(0|1)*|110010101001110011000(0|1)*|110010101001110011001(0|1)*
|110010101001110011010(0|1)*|110010101001110011011(0|1)*|110010101001110011100(0|1)*
|110010101001110011101(0|1)*|110010101001110011110(0|1)*|110010101001110011111(0|1)*
|1101101010111010(0|1)*|110110101011101000000(0|1)*|110110101011101000000001(0|1)*
|110110101011101000001000(0|1)*|110110101011101000001001(0|1)*|110110101011101000001010(0|1)*
|110110101011101000001011(0|1)*|110110101011101000001100(0|1)*|110110101011101000001110(0|1)*
|110110101011101000001111(0|1)*|110110101011101000010(0|1)*|110110101011101000010000(0|1)*
|110110101011101000010001(0|1)*|110110101011101000010010(0|1)*|110110101011101000010011(0|1)*
|110110101011101000011(0|1)*|110110101011101000100(0|1)*|110110101011101000101(0|1)*
|110110101011101000110(0|1)*|110110101011101000111(0|1)*|110110101011101001000(0|1)*
|110110101011101001001(0|1)*|110110101011101001010(0|1)*|110110101011101001011(0|1)*
|110110101011101001100(0|1)*|110110101011101001101(0|1)*|110110101011101001110(0|1)*
|110110101011101001111(0|1)*|110110101011101010000(0|1)*|110110101011101010001(0|1)*
|110110101011101010010(0|1)*|110110101011101010011(0|1)*|110110101011101010100(0|1)*
|110110101011101010101(0|1)*|110110101011101010110(0|1)*|110110101011101010111(0|1)*
|110110101011101011000(0|1)*|110110101011101011001(0|1)*|110110101011101011010(0|1)*
|110110101011101011011(0|1)*|110110101011101011100(0|1)*|110110101011101011101(0|1)*
|110110101011101011110(0|1)*|110110101011101011111(0|1)*|1101101011010100(0|1)*
|110110101101010000000(0|1)*|110110101101010000001(0|1)*|110110101101010000010(0|1)*
|110110101101010000011(0|1)*|110110101101010000100(0|1)*|110110101101010000101(0|1)*
|110110101101010000110(0|1)*|110110101101010000111(0|1)*|110110101101010001000(0|1)*
|110110101101010001001(0|1)*|110110101101010001010(0|1)*|110110101101010001011(0|1)*
|110110101101010001100(0|1)*|110110101101010001101(0|1)*|110110101101010001110(0|1)*
|110110101101010001111(0|1)*|110110101101010010000(0|1)*|110110101101010010001(0|1)*
|110110101101010010010(0|1)*|110110101101010010011(0|1)*|110110101101010010100(0|1)*
|1101101011010100101000(0|1)*|110110101101010010101(0|1)*|110110101101010010110(0|1)*
|110110101101010010111(0|1)*|110110101101010011000(0|1)*|110110101101010011010(0|1)*
|110110101101010011011(0|1)*|110110101101010011100(0|1)*|110110101101010011101(0|1)*
|110110101101010011110(0|1)*|110110101101010011111(0|1)*|1101111010100100(0|1)*
|110111101010010000000(0|1)*|110111101010010000001(0|1)*|110111101010010000010(0|1)*
|110111101010010000011(0|1)*|110111101010010000100(0|1)*|110111101010010000101(0|1)*
|110111101010010000110(0|1)*|110111101010010000111(0|1)*|110111101010010001000(0|1)*
|110111101010010001001(0|1)*|110111101010010001010(0|1)*|110111101010010001011(0|1)*
|110111101010010001100(0|1)*|110111101010010001101(0|1)*|110111101010010001110(0|1)*
|110111101010010001111(0|1)*|110111101010010010000(0|1)*|110111101010010010001(0|1)*
|110111101010010010010(0|1)*|110111101010010010011(0|1)*|110111101010010010100(0|1)*
|110111101010010010101(0|1)*|110111101010010010110(0|1)*|110111101010010010111(0|1)*
|110111101010010011000(0|1)*|110111101010010011001(0|1)*|110111101010010011010(0|1)*
|110111101010010011011(0|1)*|110111101010010011100(0|1)*|110111101010010011101(0|1)*
|110111101010010011110(0|1)*|110111101010010011111(0|1)*|11011110101001010(0|1)*
|110111101010010100000(0|1)*|110111101010010100001(0|1)*|110111101010010100010(0|1)*
|110111101010010100011(0|1)*|110111101010010100100(0|1)*|110111101010010100101(0|1)*
|110111101010010100110(0|1)*|110111101010010100111(0|1)*|110111101010010101000(0|1)*
|110111101010010101001(0|1)*|110111101010010101010(0|1)*|110111101010010101011(0|1)*
|110111101010010101100(0|1)*|110111101010010101101(0|1)*|110111101010010101110(0|1)*
|110111101010010101111(0|1)*)"

B.1 example regex dfa 75

0

24

G
N

V
PN

-0
00

1-
PA

D
00

11
10

10
10

38

G
N

V
PN

-0
00

1-
PA

D
00

11
10

11
10

52

G
N

V
PN

-0
00

1-
PA

D
01

11
01

00
01

70
G

N
V

PN
-0

00
1-

PA
D

11
00

10
10

10

81

G
N

V
PN

-0
00

1-
PA

D
11

01
10

10
10

83
G

N
V

PN
-0

00
1-

PA
D

11
01

10
10

11

90
G

N
V

PN
-0

00
1-

PA
D

11
01

11
10

10

28

01
00

30
11

01

42
11

11

56
01

01 59

01
10

73
01

1

1101
0

10
01

10

31

1

32

0

01

01

10 11

01

00

10

Figure B.1: DFA for the above regular expression describing an AS, generated
using the GNUnet Regex Library.

C
W E B R E S O U R C E S

c.1 rfc-822 compliant regular expression

A regular expression that is compliant to the RFC-822 standard ac-
cording to [War12].

(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:
\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(
?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\0
31]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\
](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+
(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)
?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\
r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n) ?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t]
)*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*
)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)

:(?:(?:\r\n)?[\t]))?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+
|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r
\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:
\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t
]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031
]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?
:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?
:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?
:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|
\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>
@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?
:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(
?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;
:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\"
.\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\
]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\
[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\
r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]
|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \0
00-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\
.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,
;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?
:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[
^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]

76

C.1 rfc-822 compliant regular expression 77

]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)(?:,\s*(
?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(
?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[
\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t
])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t
])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?
:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\
]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)
?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["
()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)
?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>
@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[
\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,
;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:
\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\[
"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])

))@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\
.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(
?:\r\n)?[\t])*))*)?;\s*)

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	1 Introduction
	2 Background
	2.1 Distributed Hash Tables
	2.2 Finite Automata
	2.3 Regular Expressions
	2.3.1 Constants
	2.3.2 Operators

	2.4 Converting Regular Expressions to Automata
	2.4.1 NFA construction
	2.4.2 DFA construction
	2.4.3 DFA minimization

	2.5 DFA Optimizations
	2.5.1 Edge compression
	2.5.2 Increased stride
	2.5.3 Path compression
	2.5.4 Alphabet reduction

	2.6 Transitive closure method
	2.6.1 Regex simplification

	2.7 Summary

	3 Design
	3.1 Mapping of States to Keys
	3.1.1 Illustrative Examples

	3.2 Problem Statement
	3.3 Mapping DFA states to DHT keys
	3.4 Decentralizing the Start State
	3.4.1 Example
	3.4.2 Policies

	3.5 Optimizing the DFA to Minimize DHT Lookups
	3.5.1 Edge Compression
	3.5.2 Increased Stride
	3.5.3 Path Compression
	3.5.4 Alphabet Reduction

	4 Implementation
	4.1 Architecture
	4.1.1 Component Interaction

	4.2 Regular Expression Library
	4.2.1 API Description
	4.2.2 Testing

	4.3 GNUnet Protocol Translation (PT) Application

	5 Evaluation
	5.1 Dataset
	5.2 Theory
	5.3 Simulation
	5.3.1 Experimental Setup
	5.3.2 Measurements

	5.4 Emulation
	5.4.1 Experimental Setup
	5.4.2 Measurements

	5.5 Summary

	6 Related Work
	6.1 Structure on top of DHT
	6.1.1 Data Indexing in Peer-to-Peer DHT Networks
	6.1.2 PastryStrings
	6.1.3 Prefix Hash Tree (PHT)
	6.1.4 Comparison to our approach

	6.2 P2P Overlay
	6.2.1 Cubit
	6.2.2 DPMS
	6.2.3 Comparison to our approach

	6.3 Other
	6.3.1 Similarity Queries on Structured Data in Structured Overlays
	6.3.2 Cooperative Information Sharing System
	6.3.3 Comparison to our approach

	7 Conclusion and Future Work
	 Bibliography
	Appendix
	A Profiling
	A.1 Database information for simulated evaluation
	A.1.1 Table Schema
	A.1.2 Prepared Insert Statement

	A.2 Profiling Tools Reference
	A.2.1 gnunet-regex-simulation-profiler
	A.2.2 gnunet-regex-profiler

	B Regex Library
	B.1 Example Regex DFA

	C Web Resources
	C.1 RFC-822 compliant regular expression

