
Christian Grothoff

COMP 2400 UNIX Tools

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

1



Christian Grothoff

Profiling: Basic Approach

1. Start with high-level testcases

2. Increase problem size

3. Use tools to determine crucial portion of code

4. Find or write testcases specific to crucial algorithm

5. Use tools to locate and resolve bottlenecks

6. Validate performance improvement using high-level
applications

2



Christian Grothoff

Profiling in C

• No JIT!

• No Garbage Collector!

⇒ More deterministic execution!

⇒ Profiling is much easier!

⇒ Expectations are also higher...

3



Christian Grothoff

Possible Expectations

• Include operating system calls and performance

• Give precise accounting of resource consumption: CPU,
memory, IO, code size, etc.

• Include low-level performance effects: scheduling,
locking, cache misses, branch prediction

4



Christian Grothoff

Important C Profiling Tools

• time – as used with Java

• gprof – similar to TPTP and java -Xprof

• oprofile – operating-system profiling

• valgrind – cache simulation, memory usage

5



Christian Grothoff

Using gprof

• Enable compiler optimizations (at least level -O2)

• Make sure problem size is appropriate (at least 5s
runtime)

• Compile with option -pg and -g

• Run application as usual (will generate gmon.out)

• Run gprof binary-name (will use gmon.out)

• Study output, improve performance, validate without
-pg

6



Christian Grothoff

Issues with gprof

- Does not work for multi-threaded applications

- Only gives per-function output

+ Lightweight instrumentation – programs run at near-
native speed

+ Lightweight instrumentation – results are quite accurate

7



Christian Grothoff

oprofile

• Can profile interrupt handlers

• Captures behavior of the entire system (including OS!)

• Can obtain hardware performance metrics

• Requires root permissions

• Linux only

⇒ Use if time shows significant time was spent in sys

8



Christian Grothoff

valgrind, callgrind, kcachegrind

• Interprets the application code

• Can simulate low-level behavior (different cache size)

• Can obtain tons of performance metrics

⇒ Simulation may not always be precise, verify results!

⇒ Simulation is costly, program will run very slow

9



Christian Grothoff

valgrind – massif

• Used to profile memory utilization

o Faster than memcheck or callgrind

o Requires specification of malloc wrappers

+ Precise analysis of allocation sites

- Ignores memory fragmentation

10



Christian Grothoff

What is “fast enough”

Rule of thumb:

You should stop trying to make your code run faster if the

programmer time spent to make it faster is close to the

savings in execution time (thougout the lifetime of the

code) that you hope to obtain.

11



Christian Grothoff

Questions

?

12


