Assignment 3: Interpreter 101

1 Implementation

You are to implement an interpreter for a simple operator language in Java.
The language is a subset of the Java expression language with integers, floats
and booleans for primitive types. The interpreter is to evaluate the expres-
sions in exactly the same way as a Java would.

You will implement a Java class Interpreter with a main method that
reads a file in the given language from standard input (System.in) and prints
the value to which the parsed expression evaluates to standard output using
System.out.println.

If the execution fails, the Interpreter should print the line and column
number of the failing operator (beginLine and beginColum fields of NodeToken)
with a descriptive error message to standard error. The format of the message
should be “LINE MESSAGE”.

If the file does not parse, the program should print “Parse error.” to
standard-error (System.err).

2 Remarks

The given grammar accepts expressions like “+45” or “-8”. You are not
expected to handle these, you can print “57, “77, “8” or even throw an
exception — the testcases will simply not cover these special cases. Note
that in a language which does support prefix and postfix increments and/or
decrements, the grammar would usually contain special productions for these
constructs (to make it easier for the compiler or interpreter to detect these
patterns).

Use the provided driver script to test your implementation. Run the
provided testcases, implement additional testcases and make sure that the
driver validates your implementation against the testcases.

Your project will be graded based on which fraction of our (partially
secret) testcases your code passes. Make sure you understand and use the
visitor pattern and write reasonably clean code. While your assignment will
not be graded on coding style or documentation, you will have to use it as
the basis for assignments P5, P6 and P7. For a reasonable implementation

of this project, you can expect to submit between 500 and 1500 lines of Java
code (excluding the code generated by JTB/JavaCC).

3 Submission

You must submit the implementations to your subversion repository to the
directory comp3351/£2007/$USER/P3/. Include only the provided grammar,
the Interpreter implementation and the provided build script. The files must
be called

® cxpressions.j]j
e Makefile

e src/edu/du/cs/comp3351/p3/Interpreter. java

You must check that the submitted code compiles by invoking make. Ver-
ify that the output of your program matches the expected output using your
own testcases.

You will not get any points if your submission does not compile without
modifications, fails to run with the provided testing script or if your submis-
sion is in the wrong directory. Make sure to use “P3” for the directory name
and not “p3”. Furthermore, make absolutely sure to use the correct package
(“edu.du.cs.comp3351.p3”) for your Interpreter class. Also make sure that
your main method is in Interpreter and not in Parser.

