
13. A Proposal for Garbage-Collector-Safe C Compilation�Hans-J. Boehm and David ChaseXerox PARC Sun Microsystems, Inc., MS 12-403333 Coyote Hill Road 2550 Garcia AvenuePalo Alto, CA 94304 Mountain View, CA 94043-1100(Boehm) (Chase)AbstractConservative garbage collectors are commonlyused in combinationwith conventional C programs.Empirically, this usually works well. However, there are no guarantees that this is safe in thepresence of \improved" compiler optimization. We propose that C compilers provide a facility tosuppress optimizations that are unsafe in the presence of conservative garbage collection. Sucha facility can be added to an existing compiler at very minimal cost, provided the additionalanalysis is done in a machine-independent source-to-source prepass. Such a prepass may alsocheck the source code for garbage-collector-safety.Garbage Collection and CC programs normally allocate dynamic memory using malloc, and explicitly deallocate memory by callingfree when it is no longer needed. This approach is simple to describe and relatively simple to implement.Both malloc and free can be implemented reasonably e�ciently with fairly predictable execution time.However, the need for explicit deallocation often becomes cumbersome for programs that manipulate com-plicated linked structures. Worse yet, explicit deallocation can substantially complicate interfaces betweenprogram units, and is likely to result in less general and thus less reusable code.To illustrate these points, consider the implementation of a general \stack of void *" data type. Assumewe implement stacks as linked lists. Each node contains data and next �elds. What does the \pop" operationdo? Presumably it returns a pointer to all but the �rst element of the list. If we assume the operation isallowed to destroy the old stack, it will deallocate the �rst linked list element first. Should it deallocatefirst -> data? If the stack contains pointers to data not otherwise referenced, the answer is \yes." Ifit points to entries in a statically allocated array, the answer is \no." If it points to separately allocatedobjects, but the same object may be pushed on more than one stack, the answer is \maybe." Thus evensuch a simple abstraction cannot be implemented with a clean interface; we must establish some conventionfor deallocation which will either complicate the interface to the package, reduce its applicability, or forcethe client to copy objects unnecessarily.The need for explicit deallocation makes it much more di�cult to use data type implementations thatscale well across input sizes, such as linked representations of strings, or large integers represented by pointersto blocks of digits. A consequence of this is that C programmers are encouraged to use data representationsthat involve few pointers. This results in either excessive copying of data (e.g., strings that are copied orrealloced whenever they outgrow a contiguous region of storage) or arbitrary size limitations (e.g., �xedsize string bu�ers).�Reprinted from The Journal of C Language Translation, Volume 4, Number 2, December 1992, pages 126{141. Copyrightc
1992, I.E.C.C. 1

2 The Journal of C Language Translation { REPRINTThese problems are aggravated by the fact that explicit deallocation of heap-allocated memory is a majorsource of time-consuming errors. Premature deallocation bugs are extremely di�cult to trace, in that theirsymptoms usually do not appear until the cause of the problem is no longer visible. An arbitrary programmodule A can cause arbitrary failures in some other module B by deallocating memory and then writinginto it after it has been reallocated by B. This makes it di�cult to debug such problems without a personwho understands the entire system. For large systems, there is usually no such person.The situation deteriorates further in a multi-threaded environment, both because it becomes even lessclear who will have the last reference to an object, and because the resulting problems are likely not to berepeatable, thus making them even harder to trace.Explicit deallocation is completely unsatisfactory if C is used as an intermediate language by compilers forlanguages that require garbage collection (e.g., Common Lisp [16]), Scheme [4, 14], ML (cf. [8]), Cedar/Mesa[2], or Sather [13]).A garbage collecting storage allocator solves these problems. The client program still allocates memoryusing a routine equivalent to malloc. In this paper, we will still call it malloc. However, it is no longernecessary to call free. The garbage collector (GC) will run periodically, either as part of a malloc invocation,or asynchronously in a separate thread, and reclaim memory that it can determine will no longer be accessedby the client code, because it can no longer be reached by following a chain of pointers. Conceptually, thegarbage collector then invokes free on all such memory to again make it available for allocation.There are a number of performance reasons not to implement a garbage collector on top of a standardmalloc/free implementation. Because garbage collectors deallocate objects in bulk and generate informa-tion about the state of the entire heap, they can realize signi�cant performance advantages over object-at-a-time deallocation. Garbage collection is usually competitive with explicit deallocation in overall executiontime. Some empirical comparisons of the performance of garbage collection and explicit deallocation aregiven in [17].1 But for the purposes of this paper, the reader may assume that the collector is simply a layeron top of a malloc/free implementation that automatically performs free calls.Traditional garbage collectors require data structure layout information, so that accessible data structurescan be traversed and identi�ed. Conservative garbage collectors avoid this requirement by treating all bitpatterns that could conceivably represent pointers as pointers [6].On a typical 32 bit RISC workstation, a very naive (and very ine�cient) collector might work as follows.When malloc allocates an object, it adds it to a hash table of allocated objects. When it discovers there isno space available, it sets a mark bit associated with each object that may still be in use. It does this bylooking at each of the processor registers, each word in the stack, and each word in the statically allocateddata areas. Whenever one of these contains the address of an unmarked object (to be de�ned more carefullylater), the mark bit of that object is set, and each word in the object is recursively scanned for furtherpointers. Finally the hash table is traversed and unmarked objects are deallocated.Since the collector doesn't distinguish pointers from other data, it may occasionally mark objects thatare in fact unreachable. This may occasionally result in retention of more memory than with a traditionalcollector. Empirically, this is rarely observable in a well-designed system running in a 32-bit or larger addressspace [6]. Clever allocators can reduce such retention dramatically by not allocating objects at locationsthat are likely to be pointed to by integers and the like.Conservative garbage collection is an appropriate tool for a large fraction of C code. It is particularlyappropriate for traditional compilers and similar applications, where the main performance criterion is overallelapsed time. Garbage collection usually does not impose a signi�cant penalty in overall execution time, andmay provide a gain, especially when the accounting includes extra copying and other overhead for explicitdeallocation. However it does impose two kinds of penalties. It may require more space, since a completely1The reader is encouraged to make his/her own comparisons. A newer version of the collector described there is availablefor anonymous FTP from parcftp.xerox.com: pub/russell/gc.tar.Z

A Proposal for GC-Safe C Compilation | Boehm and Chase 3full heap would cause excessively frequent collections. And it may force the client program to periodicallypause for a collection.Pauses for garbage collection generally prevent the use of conservative collection with programs thatinvolve hard real-time constraints. (But note that malloc/free is also problematic in such a context.) It isusually not a problem for interactive applications. Very straightforward collectors can traverse on the orderof 3 MBytes of data per second on a SPARCstation 2. With a more sophisticated collector and minimaloperating system support, latencies can be reduced to the order of 100 milliseconds on the same machine,largely independent of heap size [5]. Thus garbage collectors can meet response requirements similar tothose of virtual memory systems. Still smaller latencies can be obtained (at some cost in convenience) withdeferred reference count collectors [9].Even if explicit storage management is chosen for the �nal version of a program, garbage collection maybe used in tools such as Purify [12] to identify storage leaks [6]. The concerns below also apply, though to alesser extent, to such systems.GC-Safe CompilationEmpirically, there is rarely a problem with using conventional C compilers in combination with a conservativecollector. Well over a million lines of Cedar/Mesa code have been compiled to C and run without di�cultyin this way.However, the ANSI C standard [1] does not preclude optimizations that are unsafe in this context. Indeed,current C compiler optimizations are often unsafe in the presence of garbage collection, though only underunlikely circumstances.To illustrate the problem, consider the loop in a code fragment as compiled to a SPARC processor:int f()f int *a, *b;int i, sum;a = (int *) malloc(100000 * sizeof (int));b = (int *) malloc(100000 * sizeof (int));...for (i = 0; i < 100000; i++) fsum += a[i] + b[i];greturn(sum);gwhich could pro�tably be compiled to something like:diff = b-a;/* diff reuses b's register, which is now dead. */for(aptr = a; aptr < a + 100000; a++) fsum += *aptr + *(aptr+diff);g(This is pro�table on a SPARC because the aptr+diff addition is free, since it becomes part of a doublyindexed load instruction. This stunt saves an increment instruction in the loop, and no shift operations arenecessary.) The result is that b does not appear accessible to a garbage collection occurring inside the loop.(In a single threaded system, we would need a function call inside the loop to trigger the collection.)

4 The Journal of C Language Translation { REPRINTCurrent SPARC compilers do not appear to produce such code for this example. However, simplerversions of the problem do appear in other contexts and on other machines. Consider the function f in thisfragment:struct s fchar space[35000];struct s * next;g;struct s * f(x)struct s * x;f return(x -> next);gOn an IBM RISC System/6000, this results in the following code (extracted from a compiler producedlisting):AIU r3=r3,1L r3=SHADOW$(r3,-30536)BA lrThe �rst instruction adds 1 to the upper half of the argument. If a garbage collection is triggered at thispoint, e.g., by a concurrent thread, the only reference to x consists of x + 65536 stored in r3. The followingload instruction then supplies an o�set of -30536 to compensate for the initial overshoot.Optimizations on array index expressions can also result in a situation in which the only reference to aheap allocated array maintained during the array access is an address well outside the object. Typically thisdoes not cause problems, since there are other references to an array. But there is no guarantee that thiswill be the case.Given current compilers, the only ways to avoid such problems are to disable optimization, to forcepointers such as a, b, or x to memory by declaring them as volatile, or by explicitly storing them into aglobal data structure, thus e�ectively registering them as roots for the garbage collector. The �rst twoalternatives can be extraordinarily expensive, especially on modern architectures. The third alternativerequires a substantial preprocessor of some sort. It is less costly than the previous alternatives in this case.But it appears di�cult to both automate it and to keep the costs down in all cases. Explicit registration ofevery local pointer variable is too expensive for many applications [11]. Anything else may require nontrivialanalysis of the entire program.This proposal is intended to optionally limit C compiler optimizations to guarantee safety for collectorssuch as those described in [6], [3], and [5]. The mostly copying collector of [3] further requires either apreprocessor or programmer discipline to identify pointers in heap objects. This proposal should also besu�cient to allow a safe, preprocessor-based implementation of delayed reference counting (cf. [15, 9]).We do not address the more di�cult problem of supporting collectors that can move all objects in orderto compact the heap. For a discussion of how to accomplish this for a language that provides more typeinformation than C, see [10].The discussion here assumes C source code. Nearly all of it is equally applicable to C++.Base Pointers and Derived PointersWe de�ne any pointer value directly recognizable by the garbage collector to be a base pointer. The valuereturned by an allocation function (e.g., malloc) is a base pointer. A base pointer is not necessarily the base

A Proposal for GC-Safe C Compilation | Boehm and Chase 5address of an object, but the garbage collector must be able to easily convert it to one. (For example, manystandard malloc implementations store bookkeeping information at the beginning of an object, and returna displaced pointer. A Scheme implementation might add one to a pointer to distinguish it from a 30- or31-bit integer.)The rest of this proposal is independent of the precise de�nition of a base pointer, since that dependson the particular style of garbage collector. As illustrations, we will refer to two possibilities. First, weidentify a restrictive base pointer de�nition, in which only pointer values returned by malloc (or realloc)are considered to be valid base pointers. This has the advantage that there is a low probability of accidentallymisidentifying non-pointer data as pointers, and thus unnecessarily retaining memory. Second, we considera liberal base pointer de�nition, in which a pointer to any position inside an object, or to one past the endof the object, is considered a valid base pointer. This requires somewhat more sophisticated support bythe collector and allocator to be practical, and may require more memory. But it has the advantage thatotherwise arbitrary C programs that strictly conform to [1] can be used with a garbage collector.Intermediate base pointer de�nitions are common and quite useful. It is also common to treat pointersoriginating in the stack or registers more liberally than the notion of base pointer used elsewhere. This canreduce the chances of a pointer being hidden by a compiler optimization, but it can't eliminate it. Neitherof these variations has much e�ect on this discussion.We propose that the C compiler remain ignorant of the base pointer de�nition. It will however be usefulto introduce# pragma base pointer (list of identi�ers)to indicate that either the given variables contain base pointers at this point, or that the given functionsreturn base pointer values. This makes it possible to inform the compiler that functions like malloc returnbase pointers with just a header �le declaration.We may perform arithmetic or logical operations on a base pointer to derive another value that may stillbe used to dereference the original object. The resulting value may still be a base pointer (the usual caseunder the liberal de�nition) or it may no longer be recognizable by the collector, and thus become a derivedpointer (the usual case under the restrictive de�nition). Any value computed from a derived pointer andthat may still be used to access the object is also a derived pointer. (This is true even if its value becomesidentical to a base pointer to the object. This aspect of the de�nition is unimportant to the client, butsimpli�es the task of GC-proo�ng existing compilers.)GC-Safe C ProgramsAt any particular point of execution in a C function f, we de�ne the local root set to be the set of1. In-scope auto and register variables declared in f and visible at the point of execution.2. All previously computed values of direct subexpressions of incompletely evaluated expressions. Forexample, if we are about to perform the addition in (char *) malloc(N) + 4, then the value computedby (char *) malloc(N) is a local root.At a particular point of execution in a C program, we de�ne the global root set or just root set to consistof:1. All values of static and extern variables declared in the program.2. All values in the local root set at the current execution point.

6 The Journal of C Language Translation { REPRINT3. All values in the local root set at any of the call sites in the call chain.4. Values stored in other areas of memory not under the control of the collector, but scanned by thecollector. Memory allocated by sbrk might be a candidate.2 The presence of such other roots doesn'ta�ect the rest of this presentation, and will be ignored for the rest of the discussion.A C program may safely use a conservative garbage collector if it satis�es the following criteria.(I) Every object allocated through a garbage collecting allocator that may still be accessed is accessible byfollowing chains of base pointers originating with a value in the root set. For purposes of the analysisdescribed below, we assume that all such base pointers are stored in variables or �elds of compositedata structures declared to hold either C language pointers, or a su�ciently large integral type to holda pointer.(II) (This is a technical restriction for concurrent or generational collectors.) Every statement that causesa variable to hold a valid reference to an object involves an assignment to that variable. This isimpossible to violate in a program that strictly conforms to [1]. There are no known cases in which itwould otherwise be bene�cial to violate it. The C block:f char *x;f char *y = malloc(5);if (x != y) x = y;y = 0;g: : :gmay violate it, but the comparison may fail in strict ANSI C. If malloc happened to return the valueof the uninitialized x, then the only reference to the newly allocated storage would be through x, whichhad never been written.Clearly only condition (I) is of real interest. It is automatically satis�ed by the liberal base pointerde�nition, if we restrict ourselves to programs that strictly conform to [1].3 Recall that in this case, allinterior pointers are considered to be base pointers, unless they were derived from exterior pointers.In practice, more restrictive base pointer de�nitions are often preferable, even though they impose morecomplicated restrictions on the source code. The liberal base pointer de�nition can make it di�cult toallocate very large objects without making them likely to be accidentally retained. Nearly all C programscan operate with a more restrictive de�nition. In most respects, strict conformance to ANSI C is muchmore than we require, and it is unclear how many strictly conforming programs there are. Hence we don'tconstrain ourselves to this de�nition.ProposalWe propose that C compilers support a
ag -GCSAFE that forces garbage-collector-safe C source code tobe compiled to GC-safe object code. In making this guarantee, the compiler is allowed to assume that all2Typically, the collector must be explicitly noti�ed of such memory.3Based on the most natural interpretation of the Standard, we have to disallow writing the last pointer to an object to a �leand then reading it back in, unless fwrite and fprintf are modi�ed to keep copies of all such pointers. Recall that ANSI Cgenerally restricts pointer arithmetic to yield a pointer inside the same object. Casts to and from integers yield implementationdependent results, and are thus not strictly conforming.

A Proposal for GC-Safe C Compilation | Boehm and Chase 7pointers are stored in variables or �elds of composite data structures (including unions) declared to holdeither C language pointers, or a su�ciently large integral type to hold a pointer.To ensure GC-safety of the object code the compiler must ensure that conditions (I) and (II) above aremaintained.4 It should further attempt to meet the following somewhat less precise requirements designedto minimize the amount of work and degree of conservativism required of the collector:(III) Any given pointer is stored in contiguous memory. On a machine with a segmented memory ar-chitecture, the segment descriptor and the o�set are stored in adjacent locations. This requirementis trivially satis�able for most architectures. It is unfortunately nontrivial to satisfy on Intel 80X86machines with X � 2.(IV) If feasible on the architecture, pointers should be n-byte aligned, where n is sizeof(char *). Other-wise, there should be as few addresses as possible at which pointers can be stored.Conditions (II)-(IV) are normally maintained by modern compilers for modern architectures, for reasonsother than GC-safety. Condition (I) is much more easily violated. The following discussion addresses (I).We propose that condition (I) be maintained for all possible de�nitions of base pointer, subject only tothe constraint that base pointer pragmas, if any, are correct. Assuming a liberal base pointer de�nitionwould greatly decrease the probability of introducing a problem (and thus make -GCSAFE harder to test), butdoesn't appear to signi�cantly simplify the compiler's task or improve the quality of its output. Automatictransformations that introduce derived pointers are usually also capable of introducing derived pointers thatpoint outside the object.ImplementationWe assume that the source program guarantees that every accessible object is accessible via a chain of basepointers. Naive C compilers are likely to preserve this property in the object code, as will most sophisticatedcompilers when asked to produce fully debuggable object code. Our goal is to ensure that this property ismaintained at minimal cost by an optimizing compiler.In order to make this problem tractable, we assume that the compiler satis�es the following propertieswith -GCSAFE. In our experience, these are satis�ed by most existing compilers, even in the absence of sucha
ag:(A) The C compiler never generates code to recompute the value of a live base pointer from a derived pointer.In other words, all live base pointers are explicitly stored at run-time. Most compilers explicitly storeall live values.5(B) At every procedure call or pointer dereference, all heap locations that could possibly contain a pointerand all non-automatic variables either have their intended value, or their intended value is on the stackor in a register.4At the object code level, the root set should be de�ned as the values scanned by the garbage collector to begin its traversal.This normally includes all values stored in the stack, the registers, and various statically allocated data segments.5There are sometimes reasons not to do so [7]. An optimizer could violate this property as follows. Assume a restrictivebase pointer de�nition. Consider a loop that sums the entries of the heap allocated array a in order, and that a is live at theend of the loop. On many machines, the compiler is likely to perform induction variable elimination, and instead step a pointerthrough the array. If there is a lot of register pressure, and the array has known size, it may fail to store the pointer to the baseof the array, and instead recompute it by subtracting the size of the array from the �nal value of the pointer that was steppedthrough the array.

8 The Journal of C Language Translation { REPRINTIt follows from property (A) that objects that are accessible via base pointers visible to the collector havealways been accessible via base pointers. (Assume that x was not accessible via base pointers, and thenbecomes accessible via base pointers. This is impossible at the source level, since pointers computed fromderived pointers are never considered to be base pointers. Property (A) ensures that the compiler does notintroduce a violation of this rule.)Hence property (B) could fail to hold only if the location or variable were dead. It is extremely rare thata C compiler can safely determine this for anything other than an automatic variable.Note that the lifetime of a derived pointer ends at an instruction that dereferences it. The pointer maybe compared or otherwise manipulated afterwards, but for purposes of GC-safety there is no longer a needto consider it a pointer. Thus, under assumption (A), the real requirement for the compiler is that whenevera derived pointer to x is dereferenced, x must be accessible via base pointers. This can be ensured if weguarantee that:(I') At every dereference of a possibly derived pointer x, a base pointer (possibly indirectly) pointing to thesame object as x is live and visible to the collector.Requirement (I') can be satis�ed by ensuring the following:(Ia) All local roots have their value visible to the collector (i.e., are stored in a register or on the stack) atevery procedure call. (Variables that are known to point to an otherwise accessible object do not haveto be made available. It is not necessary to meet this requirement if the called function is known notto dereference derived pointers.)(Ib) At every dereference of x, either a known base pointer for x is visible to the collector, or all local rootsare visible. (If x is known to be derived from either y or z, then it su�ces to keep both y and z liveat the dereference.)Both (Ia) and (Ib) require that a few otherwise dead variables may have to be either maintained inregisters or spilled onto the stack. We expect that they will typically require that very few variables bekept live. User introduced variables that are dead at call-sites or dereference sites are probably not all thatfrequent to start with. Many of them can be determined not to contain heap pointers. Others can bedetermined to point to the same object as a parameter, in which case the caller will already have satis�edthe requirement. Stores introduced by (Ia) and (Ib) can usually be moved out of loops, further reducing thecost.The added cost is likely to be essentially zero on register window architectures with large windows(notably SPARC) where there is typically an ample supply of registers for pointer-intensive code, and thereis no incremental cost for saving these registers across procedure calls. It is likely to be more noticeable, butstill minor, for architectures with fewer registers, such as the Intel 80X86 processors.Source-Level ImplementationUnder most circumstances, an existing compiler will already satisfy all requirements except (I'). We furtherassume that an existing compiler will not generate code that introduces pointer dereferences that do notcorrespond to any source expression. Ideally we would like to ensure that all compiler back-ends be modi�edto guarantee (I'). This is probably not practical in all cases. Here we present a strategy for implementingthis proposal that requires at most minimal modi�cations to compiler back-ends, at the expense of requiringan additional source-to-source translation pass. This clearly involves a cost in compilation speed whenGC-safety is needed. On the other hand, nearly all of the work needs to be done only once.

A Proposal for GC-Safe C Compilation | Boehm and Chase 9A more direct implementation in the C compiler itself could use a very similar approach. A compilerthat generates C as its intermediate language could incorporate a greatly simpli�ed version of the prepass.Instead of guaranteeing (I'), the C compiler itself must provide the following:(C) We must be able to de�ne a macro KEEP LIVE(e; y; t; tmp) whose value is the value of e, but thatguarantees that the pointer or integer variable y is accessible to the collector until any dereferenceswithin e are completely evaluated. The parameter t will always be the type of e, and tmp will alwaysbe a local register variable of type t that is not otherwise in use during the macro invocation. Weassume there is a special version of this macro KEEP LIVE VOID(e; y) for the case in which t is void.Both t and tmp will be omitted in some of the following discussion. Evaluation of KEEP LIVE(e; y)should not be appreciably more expensive than evaluating e.The precise de�nition of KEEP LIVE will probably be compiler dependent. The following de�nition ofKEEP LIVE(e; y; t; tmp) is likely to su�ce for most compilers:(tmp = (e), SINK = (void *)y, tmp)where SINK is an extern void � volatile variable. This makes it extremely di�cult for a compilerto permute the assignment to SINK with dereferences in e and still be standard conforming. The extraassignment to tmp can easily be optimized out on a register-based machine architecture. Eliminatingthe assignment to SINK requires either a postpass over the assembly code, or a corresponding facilitybuilt into the compiler back-end.6 In addition to the increased register pressure mentioned above,this implementation of KEEP LIVE may inhibit instruction scheduling by adding spurious dependenciesbetween memory reference instructions. Some scheduling can be performed after removing assignmentsto SINK, but careless scheduling is unsafe.This de�nition of KEEP LIVE assumes that e may terminate. To verify this, consider the expressionKEEP LIVE(f(), y), where f contains dereferences inside an easily recognizable in�nite loop. Thecompiler would be fully justi�ed in optimizing out the assignment to SINK, since it is provably neverexecuted. In practice, this may happen if the call to f is in-lined. It is hard to de�ne KEEP LIVEwithout such an assumption. To make it possible for the prepass to ensure that all function calls areviewed by the compiler as possibly terminating, we need the following:(D) We must be able to de�ne a macro DISGUISED ZERO that always returns the constant 0, but is treatedby compiler optimizations as returning an unknown value. The one exception should be that allinstructions that will never be executed as a result of DISGUISED ZERO's value, and all branches thatare never taken, should be eliminated. This could be implemented by de�ning DISGUISED ZERO to bezero where zero is an external volatile variable initialized to 0. A simple postpass over the compileroutput could again eliminate the resulting dead code.Our prepass then transforms the code in the following ways:1. All immediate subexpressions e of function calls and dereferences whose result may contain an otherwiseinaccessible base pointer are replaced by (tmp = (e)), where tmp is a newly introduced temporaryregister value of the right type. For our purposes, a dereference is an expression that uses *, ->, or []as its outer operand.2. All functions that may directly or indirectly reference derived pointers and cannot be guaranteed toalways return are augmented with the initial statement6Use of a reserved identi�er such as SINK ensures that con
icts with other identi�ers are unlikely.

10 The Journal of C Language Translation { REPRINTif (DISGUISED ZERO) f build C ; return C ; gwhere C is some expression of the correct type. This ensures that the compiler may not eliminate codeimmediately following a function call.3. Whenever requirement (Ia) implies that variables x1, x2, : : : , xn must be live at a call to f , we replacethe call by:KEEP LIVE(: : :KEEP LIVE(KEEP LIVE(f (: : :), x1), x2),: : :, xn)If the type of e is void, we use KEEP LIVE VOID instead. Note that step 1 guarantees that all local rootsare either in local variables or, in very unusual cases, in �elds of local union or structure variables.4. Whenever requirement (Ib) implies that variables x1, x2 , : : : , xn must be live at a dereference expres-sion e, we replace e by:KEEP LIVE(: : :KEEP LIVE(KEEP LIVE(e, x1), x2),: : :, xn)5. We add declarations for the local variables required by any of the above steps.Further optimizations are possible. For example, nested KEEP LIVEs for the same variable can usually becoalesced.Our �rst example might be annotated as:int f()f int *a, *b;int i, sum;register int * tmp1;register int tmp2;if (DISGUISED_ZERO) return(0);a = (int *)malloc(100000 * sizeof (int));b = KEEP_LIVE((int *)malloc(100000 * sizeof (int)),a, int *, tmp1);...for (i = 0; i < 100000; i++) fsum += KEEP_LIVE(a[i], a, int, tmp2) +KEEP_LIVE(b[i], b, int, tmp2);greturn(sum);gThis assumes that malloc appeared in a base pointer pragma. It otherwise assumes that the prepassis not particularly clever. The output would be simpler if it could determine that the body of the functionalways terminates, or that malloc does not dereference derived pointers, or that the second KEEP LIVE impliesthe �rst. (Note that there are possible de�nitions of malloc such that the �rst KEEP LIVE is necessary. Alsothe other statements would be falsi�ed if the code in the ellipsis provably failed to terminate.)Although we have added a signi�cant amount of clutter to a version of the program that the programmerwill hopefully never see, none of this would normally add any runtime overhead. The conditional return couldbe easily eliminated. The KEEP LIVE calls force the variables a and b to be kept in registers throughout the

A Proposal for GC-Safe C Compilation | Boehm and Chase 11loop. Since they would need to be there at some point anyway, this adds instructions only if too few registersare available. The optimization we discussed at the beginning could still be performed, if it were found tobe desirable.SummaryIdeally C compilers would provide a -GCSAFE
ag that ensures that only garbage collector safe transformationsare performed on the code. However, this is not always practical. Here we repeat the minimumset of essentialand interesting requirements on a C compiler such that GC safety can be guaranteed by an additional prepassover the source code. We consider a requirement to be interesting if we are aware of a violation by an existingcompiler, or we feel it could be violated in the interest of a legitimate optimization. We would expect thatmost compilers could meet these requirements for all compilations, and in fact, that many already do.However, it su�ces that these be met when an appropriate compilation
ag is speci�ed.(III) Any given pointer is stored in contiguous memory, or in locations that can be recognized by thecollector as related.(A) The compiler never generates code to recompute the value of a live base pointer from a derived pointer.In other words, all live base pointers are explicitly stored at run-time.(C) We must be able to de�ne the macro KEEP LIVE(e; y; t; tmp).(D) We must be able to de�ne a macro DISGUISED ZERO.On standard RISC architectures with existing compilers, we expect that only (C) and (D) may beproblematic. We claim that they are easy to support directly in a compiler back-end, or can be implementedwith a postpass on the compiler output.AcknowledgmentsRevisions to earlier versions of this proposal were inspired by [10] and discussions with various others,including Alan Demers, John Ellis, and Thomas Breuel.References[1] ANSI. Programming Language C, X3.159-1989. American National Standards Institute, 1989.[2] Russ Atkinson, Alan Demers, Carl Hauser, Christian Jacobi, Peter Kessler, and Mark Weiser. Expe-riences creating a portable Cedar. ACM SIGPLAN Notices, 24(7):322{329, July 1989. Proceedings ofthe ACM SIGPLAN '89 Conference on Programming Language Design and Implementation.[3] Joel F. Bartlett. Compacting garbage collection with ambiguous roots. WRL Research Report 88/2,Digital Equipment Corporation Western Research Laboratory, February 1988. Also in Lisp Pointers 1,6 (April-June 1988), pp. 3{12.[4] Joel F. Bartlett. Scheme) C: a portable Scheme-to-C compiler. WRL Research Report 89/1, DigitalEquipment Corporation Western Research Laboratory, January 1989.

12 The Journal of C Language Translation { REPRINT[5] Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage collection. ACM SIGPLANNotices, 26(6):157{164, June 1991. Proceedings of the ACM SIGPLAN '91 Conference on ProgrammingLanguage Design and Implementation.[6] Hans-J. Boehm and Mark Weiser. Garbage collection in an uncooperative environment. SoftwarePractice and Experience, 18(9):807{820, September 1988.[7] P. Briggs, K. Cooper, and L. Torczon. Rematerialization. ACM SIGPLAN Notices, 27(7):311{321,July 1992. Proceedings of the ACM SIGPLAN '92 Conference on Programming Language Design andImplementation.[8] Regis Cridlig. An optimizing ML to C compiler. In ACM SIGPLAN Workshop on ML and Its Appli-cations, San Francisco, June 1992.[9] L. Peter Deutsch and Daniel G. Bobrow. An e�cient incremental automatic garbage collector. Com-munications of the ACM, 19(9), September 1976.[10] A. Diwan, E. Moss, and R. Hudson. Compiler support for garbage collection in a statically typedlanguage. In Proceedings of the ACM SIGPLAN '92 Conference on Programming Language Design andImplementation, number 7 in SIGPLAN Notices 27, pages 273{282, July 1992.[11] Daniel Edelson. A mark-and-sweep collector for C++. In Conference Record of the Nineteenth AnnualACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 51{58, 1992.[12] Reed Hastings and Bob Joyce. Fast detection of memory leaks and access errors. In Proceedings of theWinter '92 USENIX conference, pages 125{136, 1992.[13] Stephen M. Omohundro. The Sather Language. ICSI, Berkeley, 1991.[14] John R. Rose and Hans Muller. Integrating the Scheme and C languages. In Proceedings of the 1992ACM Conference on Lisp and Functional Programming, pages 247{259, 1992.[15] Paul Rovner. On adding garbage collection and runtime types to a strongly-typed, statically checked,concurrent language. Technical Report CSL-84-7, Xerox Palo Alto Research Center, 1984.[16] W. F. Schelter and M. Ballantyne. Kyoto Common Lisp. AI Expert, 3(3):75{77, 1988.[17] Benjamin Zorn. The measured cost of conservative garbage collection. Department of Computer ScienceTechnical Report CU-CS-573-92, University of Colorado at Boulder, 1992.Hans-J. Boehm is a member of the research sta� at the Xerox Palo Alto Research Center, in the ComputerScience Laboratory. Previously he taught at the University of Washington and at Rice University. He hasa Ph.D. in Computer Science from Cornell University. He can be reached as boehm@parc.xerox.com or at+1 415 812 4435.David Chase is a sta� engineer working on compilers at SunPro, a business of Sun Microsystems, Inc.in Mountain View. He has a Ph.D. from Rice University. He can be reached at +1 415 336 1587 ordchase@eng.sun.com. 1

