13. A Proposal for Garbage-Collector-Safe C Compilation*

Hans-J. Boehm and David Chase

Xerox PARC Sun Microsystems, Inc., MS 12-40
3333 Coyote Hill Road 2550 Garcia Avenue
Palo Alto, CA 94304 Mountain View, CA 94043-1100
(Boehm) (Chase)
Abstract

Conservative garbage collectors are commonly used in combination with conventional C programs.
Empirically, this usually works well. However, there are no guarantees that this is safe in the
presence of “improved” compiler optimization. We propose that C compilers provide a facility to
suppress optimizations that are unsafe in the presence of conservative garbage collection. Such
a facility can be added to an existing compiler at very minimal cost, provided the additional
analysis is done in a machine-independent source-to-source prepass. Such a prepass may also
check the source code for garbage-collector-safety.

Garbage Collection and C

C programs normally allocate dynamic memory using malloc, and explicitly deallocate memory by calling
free when it is no longer needed. This approach is simple to describe and relatively simple to implement.
Both malloc and free can be implemented reasonably efficiently with fairly predictable execution time.
However, the need for explicit deallocation often becomes cumbersome for programs that manipulate com-
plicated linked structures. Worse yet, explicit deallocation can substantially complicate interfaces between
program units, and is likely to result in less general and thus less reusable code.

To illustrate these points, consider the implementation of a general “stack of void *” data type. Assume
we implement stacks as linked lists. Each node contains data and next fields. What does the “pop” operation
do? Presumably it returns a pointer to all but the first element of the list. If we assume the operation is
allowed to destroy the old stack, it will deallocate the first linked list element first. Should it deallocate
first -> data? If the stack contains pointers to data not otherwise referenced, the answer is “yes.” If
it points to entries in a statically allocated array, the answer is “no.” If it points to separately allocated
objects, but the same object may be pushed on more than one stack, the answer is “maybe.” Thus even
such a simple abstraction cannot be implemented with a clean interface; we must establish some convention
for deallocation which will either complicate the interface to the package, reduce its applicability, or force
the client to copy objects unnecessarily.

The need for explicit deallocation makes it much more difficult to use data type implementations that
scale well across input sizes, such as linked representations of strings, or large integers represented by pointers
to blocks of digits. A consequence of this is that C programmers are encouraged to use data representations
that involve few pointers. This results in either excessive copying of data (e.g., strings that are copied or
realloced whenever they outgrow a contiguous region of storage) or arbitrary size limitations (e.g., fixed
size string buffers).

*Reprinted from The Journal of C Language Translation, Volume 4, Number 2, December 1992, pages 126-141. Copyright
©1992, ILE.C.C.

2 The Journal of C Language Translation — REPRINT

These problems are aggravated by the fact that explicit deallocation of heap-allocated memory is a major
source of time-consuming errors. Premature deallocation bugs are extremely difficult to trace, in that their
symptoms usually do not appear until the cause of the problem is no longer visible. An arbitrary program
module A can cause arbitrary failures in some other module B by deallocating memory and then writing
into it after it has been reallocated by B. This makes it difficult to debug such problems without a person
who understands the entire system. For large systems, there is usually no such person.

The situation deteriorates further in a multi-threaded environment, both because it becomes even less
clear who will have the last reference to an object, and because the resulting problems are likely not to be
repeatable, thus making them even harder to trace.

Explicit deallocation is completely unsatisfactory if C is used as an intermediate language by compilers for
languages that require garbage collection (e.g., Common Lisp [16]), Scheme [4, 14], ML (cf. [8]), Cedar/Mesa
[2], or Sather [13]).

A garbage collecting storage allocator solves these problems. The client program still allocates memory
using a routine equivalent to malloc. In this paper, we will still call it malloc. However, it is no longer
necessary to call free. The garbage collector (GC) will run periodically, either as part of amalloc invocation,
or asynchronously in a separate thread, and reclaim memory that it can determine will no longer be accessed
by the client code, because it can no longer be reached by following a chain of pointers. Conceptually, the
garbage collector then invokes free on all such memory to again make it available for allocation.

There are a number of performance reasons not to implement a garbage collector on top of a standard
malloc/free implementation. Because garbage collectors deallocate objects in bulk and generate informa-
tion about the state of the entire heap, they can realize significant performance advantages over object-at-
a-time deallocation. Garbage collection is usually competitive with explicit deallocation in overall execution
time. Some empirical comparisons of the performance of garbage collection and explicit deallocation are
given in [17].! But for the purposes of this paper, the reader may assume that the collector is simply a layer
on top of a malloc/free implementation that automatically performs free calls.

Traditional garbage collectors require data structure layout information, so that accessible data structures
can be traversed and identified. Conservative garbage collectors avoid this requirement by treating all bit
patterns that could conceivably represent pointers as pointers [6].

On a typical 32 bit RISC workstation, a very naive (and very inefficient) collector might work as follows.
When malloc allocates an object, it adds i1t to a hash table of allocated objects. When it discovers there is
no space available, it sets a mark bit associated with each object that may still be in use. It does this by
looking at each of the processor registers, each word in the stack, and each word in the statically allocated
data areas. Whenever one of these contains the address of an unmarked object (to be defined more carefully
later), the mark bit of that object is set, and each word in the object is recursively scanned for further
pointers. Finally the hash table is traversed and unmarked objects are deallocated.

Since the collector doesn’t distinguish pointers from other data, it may occasionally mark objects that
are in fact unreachable. This may occasionally result in retention of more memory than with a traditional
collector. Empirically, this is rarely observable in a well-designed system running in a 32-bit or larger address
space [6]. Clever allocators can reduce such retention dramatically by not allocating objects at locations
that are likely to be pointed to by integers and the like.

Conservative garbage collection is an appropriate tool for a large fraction of C code. It 1s particularly
appropriate for traditional compilers and similar applications, where the main performance criterion is overall
elapsed time. Garbage collection usually does not impose a significant penalty in overall execution time, and
may provide a gain, especially when the accounting includes extra copying and other overhead for explicit
deallocation. However it does impose two kinds of penalties. It may require more space, since a completely

1The reader is encouraged to make his/her own comparisons. A newer version of the collector described there is available
for anonymous FTP from parcftp.xerox.com: pub/russell/gc.tar.Z

A Proposal for GC-Safe C Compilation — Boehm and Chase 3

full heap would cause excessively frequent collections. And it may force the client program to periodically
pause for a collection.

Pauses for garbage collection generally prevent the use of conservative collection with programs that
involve hard real-time constraints. (But note that malloc/free is also problematic in such a context.) It is
usually not a problem for interactive applications. Very straightforward collectors can traverse on the order
of 3 MBytes of data per second on a SPARCstation 2. With a more sophisticated collector and minimal
operating system support, latencies can be reduced to the order of 100 milliseconds on the same machine,
largely independent of heap size [5]. Thus garbage collectors can meet response requirements similar to
those of virtual memory systems. Still smaller latencies can be obtained (at some cost in convenience) with
deferred reference count collectors [9].

Even if explicit storage management is chosen for the final version of a program, garbage collection may

be used in tools such as Purify [12] to identify storage leaks [6]. The concerns below also apply, though to a
lesser extent, to such systems.

GC-Safe Compilation

Empirically, there is rarely a problem with using conventional C compilers in combination with a conservative
collector. Well over a million lines of Cedar/Mesa code have been compiled to C and run without difficulty
in this way.

However, the ANSI C standard [1] does not preclude optimizations that are unsafe in this context. Indeed,
current C compiler optimizations are often unsafe in the presence of garbage collection, though only under
unlikely circumstances.

To illustrate the problem, consider the loop in a code fragment as compiled to a SPARC processor:

int £()

{
int *a, *b;
int i, sum;
a = (int *) malloc(100000 * sizeof (int));
b = (int *) malloc(100000 * sizeof (int));

for (i = 0; i < 100000; i++) {
sum += al[i] + b[il;
}

return(sum);

which could profitably be compiled to something like:

diff = b-a;
/* diff reuses b’s register, which is now dead. */
for(aptr = a; aptr < a + 100000; a++) {
sum += *aptr + *(aptr+diff);
}

(This is profitable on a SPARC because the aptr+diff addition is free, since it becomes part of a doubly
indexed load instruction. This stunt saves an increment instruction in the loop, and no shift operations are
necessary.) The result is that b does not appear accessible to a garbage collection occurring inside the loop.
(In a single threaded system, we would need a function call inside the loop to trigger the collection.)

4 The Journal of C Language Translation — REPRINT

Current SPARC compilers do not appear to produce such code for this example. However, simpler
versions of the problem do appear in other contexts and on other machines. Consider the function £ in this
fragment:

struct s {
char space[35000];
struct s * next;

I¥

struct s * f(x)
struct s * x;

{
}

On an IBM RISC System/6000, this results in the following code (extracted from a compiler produced
listing):

return(x -> next);

ATIU r3=r3,1
L r3=SHADOW$ (r3,-30536)
BA 1r

The first instruction adds 1 to the upper half of the argument. If a garbage collection is triggered at this
point, e.g., by a concurrent thread, the only reference to x consists of x + 65536 stored in r3. The following
load instruction then supplies an offset of -30536 to compensate for the initial overshoot.

Optimizations on array index expressions can also result in a situation in which the only reference to a
heap allocated array maintained during the array access 1s an address well outside the object. Typically this
does not cause problems, since there are other references to an array. But there is no guarantee that this
will be the case.

Given current compilers, the only ways to avoid such problems are to disable optimization, to force
pointers such as a, b, or x to memory by declaring them as volatile, or by explicitly storing them into a
global data structure, thus effectively registering them as roots for the garbage collector. The first two
alternatives can be extraordinarily expensive, especially on modern architectures. The third alternative
requires a substantial preprocessor of some sort. It is less costly than the previous alternatives in this case.
But it appears difficult to both automate it and to keep the costs down in all cases. Explicit registration of
every local pointer variable is too expensive for many applications [11]. Anything else may require nontrivial
analysis of the entire program.

This proposal 1s intended to optionally limit C compiler optimizations to guarantee safety for collectors
such as those described in [6], [3], and [5]. The mostly copying collector of [3] further requires either a
preprocessor or programmer discipline to identify pointers in heap objects. This proposal should also be
sufficient to allow a safe, preprocessor-based implementation of delayed reference counting (cf. [15, 9]).
We do not address the more difficult problem of supporting collectors that can move all objects in order
to compact the heap. For a discussion of how to accomplish this for a language that provides more type
information than C, see [10].

The discussion here assumes C source code. Nearly all of it is equally applicable to C++.

Base Pointers and Derived Pointers

We define any pointer value directly recognizable by the garbage collector to be a base pointer. The value
returned by an allocation function (e.g., malloc) is a base pointer. A base pointer is not necessarily the base

A Proposal for GC-Safe C Compilation — Boehm and Chase 5

address of an object, but the garbage collector must be able to easily convert it to one. (For example, many
standard malloc implementations store bookkeeping information at the beginning of an object, and return
a displaced pointer. A Scheme implementation might add one to a pointer to distinguish it from a 30- or
31-bit integer.)

The rest of this proposal is independent of the precise definition of a base pointer, since that depends
on the particular style of garbage collector. As illustrations, we will refer to two possibilities. First, we
identify a restrictive base pointer definition, in which only pointer values returned by malloc (or realloc)
are considered to be valid base pointers. This has the advantage that there i1s a low probability of accidentally
misidentifying non-pointer data as pointers, and thus unnecessarily retaining memory. Second, we consider
a liberal base pointer definition, in which a pointer to any position inside an object, or to one past the end
of the object, is considered a valid base pointer. This requires somewhat more sophisticated support by
the collector and allocator to be practical, and may require more memory. But it has the advantage that
otherwise arbitrary C programs that strictly conform to [1] can be used with a garbage collector.

Intermediate base pointer definitions are common and quite useful. It is also common to treat pointers
originating in the stack or registers more liberally than the notion of base pointer used elsewhere. This can
reduce the chances of a pointer being hidden by a compiler optimization, but it can’t eliminate it. Neither
of these variations has much effect on this discussion.

We propose that the C compiler remain ignorant of the base pointer definition. It will however be useful
to introduce

pragma base_pointer (list of identifiers)

to indicate that either the given variables contain base pointers at this point, or that the given functions
return base pointer values. This makes it possible to inform the compiler that functions like malloc return
base pointers with just a header file declaration.

We may perform arithmetic or logical operations on a base pointer to derive another value that may still
be used to dereference the original object. The resulting value may still be a base pointer (the usual case
under the liberal definition) or it may no longer be recognizable by the collector, and thus become a derived
pointer (the usual case under the restrictive definition). Any value computed from a derived pointer and
that may still be used to access the object is also a derived pointer. (This is true even if its value becomes
identical to a base pointer to the object. This aspect of the definition is unimportant to the client, but
simplifies the task of GC-proofing existing compilers.)

GC-Safe C Programs

At any particular point of execution in a C function £, we define the local root set to be the set of

1. In-scope auto and register variables declared in £ and visible at the point of execution.

2. All previously computed values of direct subexpressions of incompletely evaluated expressions. For
example, if we are about to perform the addition in (char *) malloc(N) + 4, then the value computed
by (char *) malloc(N) is a local root.

At a particular point of execution in a C program, we define the global root set or just root set to consist

of:

1. All values of static and extern variables declared in the program.

2. All values in the local root set at the current execution point.

6 The Journal of C Language Translation — REPRINT

3. All values in the local root set at any of the call sites in the call chain.

4. Values stored in other areas of memory not under the control of the collector, but scanned by the
collector. Memory allocated by sbrk might be a candidate.? The presence of such other roots doesn’t
affect the rest of this presentation, and will be ignored for the rest of the discussion.

A C program may safely use a conservative garbage collector if it satisfies the following criteria.

(I) Every object allocated through a garbage collecting allocator that may still be accessed is accessible by
following chains of base pointers originating with a value in the root set. For purposes of the analysis
described below, we assume that all such base pointers are stored in variables or fields of composite
data structures declared to hold either C language pointers, or a sufficiently large integral type to hold
a pointer.

(IT) (This is a technical restriction for concurrent or generational collectors.) Every statement that causes
a variable to hold a valid reference to an object involves an assignment to that variable. This is
impossible to violate in a program that strictly conforms to [1]. There are no known cases in which it
would otherwise be beneficial to violate it. The C block:

{ char *x;
{ char *y = malloc(5);
if (x '=y) x = y;
y = 0;

1

may violate it, but the comparison may fail in strict ANSI C. If malloc happened to return the value
of the uninitialized x, then the only reference to the newly allocated storage would be through x, which
had never been written.

Clearly only condition (I) is of real interest. It is automatically satisfied by the liberal base pointer
definition, if we restrict ourselves to programs that strictly conform to [1].> Recall that in this case, all
interior pointers are considered to be base pointers, unless they were derived from exterior pointers.

In practice, more restrictive base pointer definitions are often preferable, even though they impose more
complicated restrictions on the source code. The liberal base pointer definition can make it difficult to
allocate very large objects without making them likely to be accidentally retained. Nearly all C programs
can operate with a more restrictive definition. In most respects, strict conformance to ANSI C is much
more than we require, and it is unclear how many strictly conforming programs there are. Hence we don’t
constrain ourselves to this definition.

Proposal

We propose that C compilers support a flag ~GCSAFE that forces garbage-collector-safe C source code to
be compiled to GC-safe object code. In making this guarantee, the compiler is allowed to assume that all

2 Typically, the collector must be explicitly notified of such memory.

3Based on the most natural interpretation of the Standard, we have to disallow writing the last pointer to an object to a file
and then reading it back in, unless furite and fprintf are modified to keep copies of all such pointers. Recall that ANSI C
generally restricts pointer arithmetic to yield a pointer inside the same object. Casts to and from integers yield implementation
dependent results, and are thus not strictly conforming.

A Proposal for GC-Safe C Compilation — Boehm and Chase 7

pointers are stored in variables or fields of composite data structures (including unions) declared to hold
either C language pointers, or a sufficiently large integral type to hold a pointer.

To ensure GC-safety of the object code the compiler must ensure that conditions (I) and (IT) above are
maintained.* It should further attempt to meet the following somewhat less precise requirements designed
to minimize the amount of work and degree of conservativism required of the collector:

(ITI) Any given pointer is stored in contiguous memory. On a machine with a segmented memory ar-
chitecture, the segment descriptor and the offset are stored in adjacent locations. This requirement
is trivially satisfiable for most architectures. It is unfortunately nontrivial to satisfy on Intel 80X86
machines with X < 2.

(IV) If feasible on the architecture, pointers should be n-byte aligned, where n is sizeof(char *). Other-
wise, there should be as few addresses as possible at which pointers can be stored.

Conditions (IT)-(IV) are normally maintained by modern compilers for modern architectures, for reasons
other than GC-safety. Condition (I) is much more easily violated. The following discussion addresses (I).

We propose that condition (I) be maintained for all possible definitions of base pointer, subject only to
the constraint that base pointer pragmas, if any, are correct. Assuming a liberal base pointer definition
would greatly decrease the probability of introducing a problem (and thus make ~GCSAFE harder to test), but
doesn’t appear to significantly simplify the compiler’s task or improve the quality of its output. Automatic
transformations that introduce derived pointers are usually also capable of introducing derived pointers that
point outside the object.

Implementation

We assume that the source program guarantees that every accessible object is accessible via a chain of base
pointers. Naive C compilers are likely to preserve this property in the object code, as will most sophisticated
compilers when asked to produce fully debuggable object code. Our goal is to ensure that this property is
maintained at minimal cost by an optimizing compiler.

In order to make this problem tractable, we assume that the compiler satisfies the following properties
with ~GCSAFE. In our experience, these are satisfied by most existing compilers, even in the absence of such
a flag:

(A) The C compiler never generates code to recompute the value of a live base pointer from a derived pointer.
In other words, all live base pointers are explicitly stored at run-time. Most compilers explicitly store
all live values.®

(B) At every procedure call or pointer dereference, all heap locations that could possibly contain a pointer
and all non-automatic variables either have their intended value, or their intended value is on the stack
or in a register.

4 At the object code level, the root set should be defined as the values scanned by the garbage collector to begin its traversal.
This normally includes all values stored in the stack, the registers, and various statically allocated data segments.

5There are sometimes reasons not to do so [7]. An optimizer could violate this property as follows. Assume a restrictive
base pointer definition. Consider a loop that sums the entries of the heap allocated array a in order, and that a is live at the
end of the loop. On many machines, the compiler is likely to perform induction variable elimination, and instead step a pointer
through the array. If there is a lot of register pressure, and the array has known size, it may fail to store the pointer to the base
of the array, and instead recompute it by subtracting the size of the array from the final value of the pointer that was stepped
through the array.

8 The Journal of C Language Translation — REPRINT

It follows from property (A) that objects that are accessible via base pointers visible to the collector have
always been accessible via base pointers. (Assume that z was not accessible via base pointers, and then
becomes accessible via base pointers. This 1s impossible at the source level, since pointers computed from
derived pointers are never considered to be base pointers. Property (A) ensures that the compiler does not
introduce a violation of this rule.)

Hence property (B) could fail to hold only if the location or variable were dead. Tt is extremely rare that
a C compiler can safely determine this for anything other than an automatic variable.

Note that the lifetime of a derived pointer ends at an instruction that dereferences it. The pointer may
be compared or otherwise manipulated afterwards, but for purposes of GC-safety there is no longer a need
to consider it a pointer. Thus, under assumption (A), the real requirement for the compiler is that whenever
a derived pointer to x is dereferenced, x must be accessible via base pointers. This can be ensured if we
guarantee that:

(I’) At every dereference of a possibly derived pointer #, a base pointer (possibly indirectly) pointing to the
same object as x is live and visible to the collector.

Requirement (I’) can be satisfied by ensuring the following:

(Ia) All local roots have their value visible to the collector (i.e., are stored in a register or on the stack) at
every procedure call. (Variables that are known to point to an otherwise accessible object do not have
to be made available. It is not necessary to meet this requirement if the called function is known not
to dereference derived pointers.)

(Ib) At every dereference of z, either a known base pointer for « is visible to the collector, or all local roots
are visible. (If x is known to be derived from either y or z, then it suffices to keep both y and z live
at the dereference.)

Both (Ia) and (Ib) require that a few otherwise dead variables may have to be either maintained in
registers or spilled onto the stack. We expect that they will typically require that very few variables be
kept live. User introduced variables that are dead at call-sites or dereference sites are probably not all that
frequent to start with. Many of them can be determined not to contain heap pointers. Others can be
determined to point to the same object as a parameter, in which case the caller will already have satisfied
the requirement. Stores introduced by (Ta) and (Ib) can usually be moved out of loops, further reducing the
cost.

The added cost 1s likely to be essentially zero on register window architectures with large windows
(notably SPARC) where there is typically an ample supply of registers for pointer-intensive code, and there
is no incremental cost for saving these registers across procedure calls. It 1s likely to be more noticeable, but
still minor, for architectures with fewer registers, such as the Intel 80X86 processors.

Source-Level Implementation

Under most circumstances, an existing compiler will already satisfy all requirements except (I'). We further
assume that an existing compiler will not generate code that introduces pointer dereferences that do not
correspond to any source expression. Ideally we would like to ensure that all compiler back-ends be modified
to guarantee (I’). This is probably not practical in all cases. Here we present a strategy for implementing
this proposal that requires at most minimal modifications to compiler back-ends, at the expense of requiring
an additional source-to-source translation pass. This clearly involves a cost in compilation speed when
GC-safety 1s needed. On the other hand, nearly all of the work needs to be done only once.

A Proposal for GC-Safe C Compilation — Boehm and Chase 9

A more direct implementation in the C compiler itself could use a very similar approach. A compiler
that generates C as its intermediate language could incorporate a greatly simplified version of the prepass.
Instead of guaranteeing (I’), the C compiler itself must provide the following:

(C) We must be able to define a macro KEEP LIVE(e, y,t,tmp) whose value is the value of e, but that
guarantees that the pointer or integer variable y is accessible to the collector until any dereferences
within e are completely evaluated. The parameter ¢t will always be the type of e, and tmp will always
be a local register variable of type ¢ that is not otherwise in use during the macro invocation. We
assume there is a special version of this macro KEEP_LIVE VOID(e, y) for the case in which ¢ is void.
Both ¢t and tmp will be omitted in some of the following discussion. Evaluation of KEEP_LIVE(e,y)
should not be appreciably more expensive than evaluating e.

The precise definition of KEEP LIVE will probably be compiler dependent. The following definition of
KEEP_LIVE(e, y,t,tmp) is likely to suffice for most compilers:

(tmp = (e), SINK = (void *)y, tmp)

where _SINK is an extern void * volatile variable. This makes it extremely difficult for a compiler
to permute the assignment to _SINK with dereferences in e and still be standard conforming. The extra
assignment to tmp can easily be optimized out on a register-based machine architecture. Eliminating
the assignment to _SINK requires either a postpass over the assembly code, or a corresponding facility
built into the compiler back-end.® In addition to the increased register pressure mentioned above,
this implementation of KEEP_LIVE may inhibit instruction scheduling by adding spurious dependencies
between memory reference instructions. Some scheduling can be performed after removing assignments
to _SINK, but careless scheduling is unsafe.

This definition of KEEP_LIVE assumes that e may terminate. To verify this, consider the expression
KEEP LIVE(f£(), y), where f contains dereferences inside an easily recognizable infinite loop. The
compiler would be fully justified in optimizing out the assignment to _SINK, since it is provably never
executed. In practice, this may happen if the call to f is in-lined. It is hard to define KEEP_LIVE
without such an assumption. To make it possible for the prepass to ensure that all function calls are
viewed by the compiler as possibly terminating, we need the following:

(D) We must be able to define a macro DISGUISED ZERO that always returns the constant 0, but is treated
by compiler optimizations as returning an unknown value. The one exception should be that all
instructions that will never be executed as a result of DISGUISED _ZERQ’s value, and all branches that
are never taken, should be eliminated. This could be implemented by defining DISGUISED_ZERO to be
_zero where _zero is an external volatile variable initialized to 0. A simple postpass over the compiler
output could again eliminate the resulting dead code.

Our prepass then transforms the code in the following ways:

1. All immediate subexpressions e of function calls and dereferences whose result may contain an otherwise
inaccessible base pointer are replaced by (tmp = (e)), where tmp is a newly introduced temporary
register value of the right type. For our purposes, a dereference is an expression that uses *, -> or []
as its outer operand.

2. All functions that may directly or indirectly reference derived pointers and cannot be guaranteed to
always return are augmented with the initial statement

6Use of a reserved identifier such as _SINK ensures that conflicts with other identifiers are unlikely.

10 The Journal of C Language Translation — REPRINT

if (DISGUISED ZERQ) { build C'; return C; }

where C is some expression of the correct type. This ensures that the compiler may not eliminate code
immediately following a function call.

3. Whenever requirement (Ta) implies that variables xy, #a, ..., £, must be live at a call to f, we replace
the call by:

KEEP_LIVE(...KEEP_LIVE(KEEPLIVE(S (...), 1), @2),..., &n)

If the type of e is void, we use KEEP_LIVE VOID instead. Note that step 1 guarantees that all local roots
are either in local variables or, in very unusual cases, in fields of local union or structure variables.

4. Whenever requirement (Ib) implies that variables z1, #2 , ..., &, must be live at a dereference expres-
sion e, we replace e by:

KEEP_LIVE(...KEEP LIVE(KEEP LIVE(e, 1), 22),..., &n)
5. We add declarations for the local variables required by any of the above steps.

Further optimizations are possible. For example, nested KEEP _LIVEs for the same variable can usually be
coalesced.
Our first example might be annotated as:

int £Q)
int *a, *b;
int i, sum;
register int * tmpi;
register int tmp2;

if (DISGUISED_ZERO) return(0);

a = (int *)malloc(100000 * sizeof (int));

b = KEEP_LIVE((int *)malloc(100000 * sizeof (int)),
a, int *, tmpl);

for (i = 0; i < 100000; i++) {
sum += KEEP_LIVE(al[il, a, int, tmp2) +
KEEP_LIVE(b[il, b, int, tmp2);
}
return(sum);

1

This assumes that malloc appeared in a base_pointer pragma. It otherwise assumes that the prepass
is not particularly clever. The output would be simpler if it could determine that the body of the function
always terminates, or that malloc does not dereference derived pointers, or that the second KEEP_LIVE implies
the first. (Note that there are possible definitions of malloc such that the first KEEP_LIVE is necessary. Also
the other statements would be falsified if the code in the ellipsis provably failed to terminate.)

Although we have added a significant amount of clutter to a version of the program that the programmer
will hopefully never see, none of this would normally add any runtime overhead. The conditional return could
be easily eliminated. The KEEP _LIVE calls force the variables a and b to be kept in registers throughout the

A Proposal for GC-Safe C Compilation — Boehm and Chase 11

loop. Since they would need to be there at some point anyway, this adds instructions only if too few registers
are available. The optimization we discussed at the beginning could still be performed, if it were found to

be desirable.

Summary

Ideally C compilers would provide a —~GCSAFE flag that ensures that only garbage collector safe transformations
are performed on the code. However, this is not always practical. Here we repeat the minimum set of essential
and interesting requirements on a C compiler such that GC safety can be guaranteed by an additional prepass
over the source code. We consider a requirement to be interesting if we are aware of a violation by an existing
compiler, or we feel it could be violated in the interest of a legitimate optimization. We would expect that
most compilers could meet these requirements for all compilations, and in fact, that many already do.
However, it suffices that these be met when an appropriate compilation flag is specified.

(ITI) Any given pointer is stored in contiguous memory, or in locations that can be recognized by the
collector as related.

A) The compiler never generates code to recompute the value of a live base pointer from a derived pointer.
g
In other words, all live base pointers are explicitly stored at run-time.

(C) We must be able to define the macro KEEP_LIVE(e, y,t,tmp).

(D) We must be able to define a macro DISGUISED_ZERO.

On standard RISC architectures with existing compilers, we expect that only (C) and (D) may be
problematic. We claim that they are easy to support directly in a compiler back-end, or can be implemented
with a postpass on the compiler output.

Acknowledgments

Revisions to earlier versions of this proposal were inspired by [10] and discussions with various others,
including Alan Demers, John Ellis, and Thomas Breuel.

References

[1] ANSI. Programming Language C, X3.159-1989. American National Standards Institute, 1989.

[2] Russ Atkinson, Alan Demers, Carl Hauser, Christian Jacobi, Peter Kessler, and Mark Weiser. Expe-
riences creating a portable Cedar. ACM SIGPLAN Notices, 24(7):322-329, July 1989. Proceedings of
the ACM SIGPLAN ’89 Conference on Programming Language Design and Implementation.

[3] Joel F. Bartlett. Compacting garbage collection with ambiguous roots. WRL Research Report 88/2,
Digital Equipment Corporation Western Research Laboratory, February 1988. Also in Lisp Pointers 1,
6 (April-June 1988), pp. 3-12.

[4] Joel F. Bartlett. Scheme = C: a portable Scheme-to-C compiler. WRL Research Report 89/1, Digital
Equipment Corporation Western Research Laboratory, January 1989.

12 The Journal of C Language Translation — REPRINT

[5] Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage collection. ACM SIGPLAN
Notices, 26(6):157-164, June 1991. Proceedings of the ACM SIGPLAN ’91 Conference on Programming

Language Design and Implementation.

[6] Hans-J. Boehm and Mark Weiser. Garbage collection in an uncooperative environment. Software
Practice and Fxperience, 18(9):807-820, September 1988.

[7] P. Briggs, K. Cooper, and L. Torczon. Rematerialization. ACM SIGPLAN Notices, 27(7):311-321,
July 1992. Proceedings of the ACM SIGPLAN 92 Conference on Programming Language Design and
Implementation.

[8] Regis Cridlig. An optimizing ML to C compiler. In ACM SIGPLAN Workshop on ML and Its Appli-

cations, San Francisco, June 1992.

[9] L. Peter Deutsch and Daniel G. Bobrow. An efficient incremental automatic garbage collector. Com-

munications of the ACM, 19(9), September 1976.

[10] A. Diwan, E. Moss, and R. Hudson. Compiler support for garbage collection in a statically typed
language. In Proceedings of the ACM SIGPLAN ’92 Conference on Programming Language Design and
Implementation, number 7 in SIGPLAN Notices 27, pages 273-282, July 1992.

[11] Daniel Edelson. A mark-and-sweep collector for C++. In Conference Record of the Nineleenth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages b1-58, 1992.

[12] Reed Hastings and Bob Joyce. Fast detection of memory leaks and access errors. In Proceedings of the

Winter "92 USENIX conference, pages 125-136, 1992.
[13] Stephen M. Omohundro. The Sather Language. ICSI, Berkeley, 1991.

[14] John R. Rose and Hans Muller. Integrating the Scheme and C languages. In Proceedings of the 1992
ACM Conference on Lisp and Functional Programming, pages 247-259, 1992.

[15] Paul Rovner. On adding garbage collection and runtime types to a strongly-typed, statically checked,
concurrent language. Technical Report CSL-84-7, Xerox Palo Alto Research Center, 1984.

[16] W. F. Schelter and M. Ballantyne. Kyoto Common Lisp. AT Ezpert, 3(3):75-77, 1988.

[17] Benjamin Zorn. The measured cost of conservative garbage collection. Department of Computer Science

Technical Report CU-CS-573-92; University of Colorado at Boulder, 1992.

Hans-J. Boehm is a member of the research staff at the Xerox Palo Alto Research Center, in the Computer
Science Laboratory. Previously he taught at the University of Washington and at Rice University. He has
a Ph.D. in Computer Science from Cornell University. He can be reached as boehm@parc.xerox.com or at
+1 415 812 4435.

David Chase is a staff engineer working on compilers at SunPro, a business of Sun Microsystems, Inc.
in Mountain View. He has a Ph.D. from Rice University. He can be reached at +1 415 336 1587 or
dchase@eng.sun.com.

