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ABSTRACT

Experimentation is an essential tool employed by the devel-
opers of software systems, especially distributed systems. In
prior work we developed a model-driven framework for au-
tomating various experimentation tasks, such as workload
generation, and demonstrated that it gives the engineer a
cost-effective means to conduct large-scale experiments on
distributed testbeds. We have enhanced the methods under-
lying the framework in four significant ways: (1) increasing
the expressiveness of workloads by allowing for conditional
and reactive behaviors; (2) supporting the repeatability of
experiments through the creation of environment workloads
that can control the operational context; (3) enabling the
composability of application and environment workloads to
obtain a broader class of experiments; and (4) extending
the scope of experiment management to include control over
multiple runs. We use the enhancements to conduct a series
of interesting new experiments. Specifically, the enhance-
ments allow us to manipulate a fixed-wired testbed so that
it simulates a mobile-wireless environment, and to selectively
and maliciously inject faults into a system.
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1. INTRODUCTION
Experimentation is an essential tool employed by the de-

velopers of software systems. It allows them to gain an un-
derstanding of various dynamic system properties and to
help tune their systems prior to deployment [14]. Experi-
mentation with distributed systems is particularly important
and particularly challenging: important in that distributed
systems can exhibit a far greater range of behaviors than
centralized systems; and challenging in that it can be dif-
ficult, costly, and time consuming to reproduce in the lab-
oratory all possible configurations of a distributed system,
under all possible usage scenarios, and under all possible
environmental conditions or operational contexts.

The terminology of experimentation is not universal. For
purposes of this paper we use the following concepts and
terms. An individual run of a distributed system is called
a trial and embodies a particular vector of input values,
configuration of components, and mapping of components
to network elements. To dampen the effects of unwanted
randomness, a series of identical trials is typically executed.
We refer to this series of repeated executions of a trial as
an experiment. A series of different experiments is used to
answer an experimental question, such as finding the optimal
setting for a system parameter by varying the value of that
parameter across the experiments.

At a minimum, experimentation with a distributed sys-
tem consists of deploying and executing its components on
some sort of testbed. But in many cases, the size and de-
gree of distribution of that testbed are crucial to the validity
of the experimental results. Recent efforts have led to the
development of large, general-purpose testbeds. The best-
known example is PlanetLab [13], which is a collection of
more than 800 hosts located at over 400 sites around the
world that communicate over the live Internet.1 Planet-
Lab provides a generic platform on which software systems
can be deployed and executed in a realistic multi-host en-
vironment. It also has associated with it some tools, such
as Plush,2 for automating deployment and execution. How-
ever, PlanetLab does not provide comprehensive support for
large-scale experimentation activities.

Experimentation is much more than simple deployment
and execution. It involves complex activities such as exper-
imental design, workload generation, data collection, data
analysis, and overall experiment management. To address
some of the practical challenges in large-scale distributed
system experimentation, we developed a framework, called

1http://www.planet-lab.org/
2http://plush.ucsd.edu/
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Weevil,3 for automating various aspects of the experimenta-
tion process. Weevil provides a technique that we refer to as
simulation-based workload generation for creating the appli-
cation workloads that embody client usage scenarios. Weevil
also makes use of model-driven generative techniques to cre-
ate scripts that configure, deploy, and manage an individual
trial. We have used Weevil to conduct large-scale experi-
ments on PlanetLab, demonstrating the power and versatil-
ity of Weevil’s workload-generation and modeling features,
and documenting the cost savings of automation [18].

Although it proved to be useful, the original version of
Weevil had several severe limitations. This paper presents
four significant enhancements to our method for large-scale
distributed experimentation: (1) increasing the expressive-

ness of workloads by allowing for conditional and reactive
behaviors; (2) supporting the repeatability of experiments
through the creation of environment workloads that can con-
trol the operational context; (3) enabling the composabil-

ity of application and environment workloads to obtain a
broader class of experiments; and (4) extending the scope of
experiment management to include automated control over
repeated executions of a trial within an experiment.

We describe a series of experiments that demonstrate the
impact of the enhancements. The experiments, conducted
on a 50-host testbed, examine the performance and robust-
ness of CFS [5], a wide-area, cooperative, replicated storage
service built on top of the Chord distributed hash table [16].

Network of mobile hosts: We examine the retrieval re-
sponse time of CFS when deployed on mobile hosts. To do
this, we develop an environment workload that dynamically
manipulates the link latencies of the testbed’s fixed-wired
network to simulate the physical movement of hosts within
a wireless network.

Reactive, load-based failures: We examine the robustness
of CFS in the presence of a non-random failure model in
which the failures are correlated to the load placed on the
CFS nodes. To do this, we create an environment workload
that injects faults into the Chord network using actions con-
ditionally parameterized by the dynamics of the loads.

Malicious failures: We examine the robustness of CFS in
a worst-case, malicious failure scenario in which the failures
are caused by an adversary able to anticipate the target of
retrieval requests. To do this, we create a parameterized,
fault-injecting environment workload that is composed with
an application workload.

In the next section we briefly review the basic Weevil
framework [18]. We then describe in Section 3 the key ideas
underlying the four new enhancements. These ideas, to-
gether with the demonstration experiments, are the primary
contribution of the paper. We also describe how we extended
Weevil to accommodate the enhancements. In Section 4 we
detail our experiences using the new facilities to conduct
large-scale experiments on the Emulab testbed [19]. Related
and future work are discussed in the final two sections.

2. BACKGROUND:WEEVIL
Weevil is a model-driven trial automation framework de-

signed in a generic and programmable way to be used for
wide-ranging experimental goals. For example, an engineer
might conceive of experiments to reveal interface errors by
exercising the basic functionality of a system, to study a sys-

3http://www.inf.unisi.ch/carzaniga/weevil/

tem’s performance under varying loads, or to tune a system’s
parameters prior to field deployment. Weevil supports the
engineer in carrying out experiments by automating both
the creation of application workloads and the management
of trials on distributed testbeds.
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Figure 1: Weevil Automation Process

Weevil embodies a high-level process consisting of the gen-
eral steps shown in Figure 1. Actions are represented by
rectangles. Input and output data for actions are repre-
sented by ovals. Dark ovals represent input models provided
by the engineer. White ovals represent control scripts and
data files generated by Weevil. The cross-hatched oval rep-
resents data generated by the subject system during a trial.

The engineer is responsible for populating several mod-
els that capture essential information about a planned trial.
There are separate models for the client activity, the sub-
ject system, the testbed, the mapping of the subject sys-
tem’s components to the testbed hosts, and the mapping
of the clients to the testbed hosts. The first model is used
to drive the simulations that generate the application work-
loads, shown as the top cycle in Figure 1, while the other
models are used to generate control scripts for managing the
trial, shown as the bottom cycle in Figure 1.
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Figure 2: Workload Generation [18]

The input to our simulation-based workload generator
is an operational definition of a set of actors representing
clients, as shown in Figure 2. For example, if the subject
of the experiment is a Web caching system, then an actor
would represent a person browsing the Web or a robotic
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Web crawler. Actors are instantiated as processes within a
discrete-event simulation and those processes are then exe-
cuted in simulation to reveal the actor behaviors. The out-
put of the simulation is a simple, time-ordered trace of ac-
tions performed by the actors. The trace is then processed
into one or more workloads.

After the workloads and scripts have been generated,
the engineer begins the trial by executing, on a master
host, a master control script that in turn deploys, executes,
and coordinates several slave control scripts and workloads.
The master script is able to automatically redeploy and re-
execute slave scripts when a testbed host fails during the
trial. Each slave script performs three tasks. First it config-
ures and deploys some portion of the subject system’s com-
ponents. It then initiates execution of those components.
Finally, after the trial has concluded, it sends logged out-
put and other diagnostic data back to the master host, and
performs any necessary cleanup activities.

During the trial, the subject system is stimulated by the
execution of service calls at the times and locations dictated
by the application workload. This is implemented by actor

programs, which are themselves deployed and executed by
generated control scripts.

3. KEY IDEAS
In this section we present our four new enhancements to

distributed system experimentation methods, and describe
how they have been incorporated into the Weevil framework.

3.1 Increased Expressiveness
A workload is intended to provide controlled, repeatable

stimuli to the subject of an experiment. A given workload
therefore represents a particular usage scenario. In the most
general case, the scenario involves distributed actors issuing
calls to distributed components of the subject system.

The actors we modeled in our initial approach to experi-
mentation exhibited a restricted class of behaviors. Specif-
ically, they could make service calls on the subject system
and communicate with other actors, but they could not re-
act to the dynamic behavior of the subject system, ignor-
ing, for example, any values returned from a service call.
This is because the behavior of the subject system is pre-
cisely what the experiment is intended to characterize, and
therefore is not known in advance and cannot be realistically
modeled within the simulation that generates the workload.
Although restricted in this way, we could still model interest-
ing behaviors that lead to significant experimental results.
An example is the emergent behavior of the Code Red worm
propagation, which would be difficult to model faithfully us-
ing only analytical means [17].

The benefit of this restricted class of behaviors is that it
results in a stateless workload, in the sense that the execu-
tion of a given workload action does not depend, other than
through an intrinsic time ordering, on the execution of some
prior workload action. This provides flexibility in the way
the workload is deployed. In particular, it can be divided
into “subworkloads”, one for each of the actors involved in
the trial. Moreover, the actor programs can be implemented
quite simply, amounting to straightforward interpreters that
sequentially read and execute workload actions in turn.

Although we can model many useful actor behaviors un-
der this restriction, it is clear that we are also disallowing
many important experiments. For example, we are unable

to model how an actor should react to the different values
returned by a service call, including the failure of the service
call. We must be careful, however, because relaxing all re-
strictions would require the engineer to write computation-
ally complete actor programs. At that point there would be
no practical need for a separate workload-generation phase,
simulation based or otherwise, since such programs would
be equivalent to the workload generator itself.

Fortunately, we were able to find a way to allow actors to
be reactive, and still strike a good balance between expres-
siveness and simplicity. In particular, we maintain work-
loads in the general form of a sequence of actions, but allow
those actions to be parameterized and/or conditionally ex-
ecuted. The parameters and conditions derive their values
from the dynamic state of the subject system and environ-
ment through a restricted form of communication.

In Weevil, the workload associated with a particular actor
consists of that actor’s portion of the global workload plus
the actor program that gives the workload an interpretation.
The engineer has the freedom to make the actions abstract
and the interpretation concrete, or vice versa. Consider,
for example, a publish/subscribe communication network as
a subject system. The workload may contain generic ac-
tions for using virtually any typical publish/subscribe sys-
tem, while the actor program provides an interpretation of
those actions in terms of a particular publish/subscribe API.
This would allow the same workload actions to be used to
drive comparable experiments on different publish/subscribe
subjects, simply by replacing the actor program. Conversely,
the actions may contain concrete calls for a particular API,
in which case the actor program can simply provide a generic
dispatch function. The reusability trade off is clear. But in
any case, the primary function of an actor program is to
read actions and issue calls during the execution of the trial.

To this basic structure of an actor program we have added
a component (typically in a separate thread) that can receive
communications and set the values of variables. The purpose
of this component is to inform the actor program of events,
such as conditions in the environment and/or messages from
the subject system, that might influence the workload. The
communication component interacts with the interpretation
component of the actor program by setting the value of
shared variables. These variables can only be used to pa-
rameterize an action and/or to populate a conditional that
determines whether the action is issued. Correspondingly,
we have extended the workload output library so that the
engineer can write actor simulation processes that produce
the appropriate parameterized and conditional actions.

Figure 3a shows a sketch of an actor simulation process
representing a user of the Chord system. The actor’s behav-
ior will be conditioned on the value of the variable comp-

state, which is used to indicate whether a Chord access
point is available or not. Figure 3b shows a portion of
the workload produced by the simulation. Each line results
from a call to workload_output in the actor simulation pro-
cess, and includes information about the relative time of the
event, the identity of the actor, the service call to be made
(a Chord “GET” in all cases shown), a condition, and the
variable to which the condition should be applied. Figure 3c
shows an actor program, written as a shell script, intended
to give an interpretation to the workload actions. In this
example, there is only one kind of action, a Chord “GET”.
A Weevil library function iterates through the workload file,
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class SimpleChordUser : public weevil::WeevilTProcess {

// properties initialized according to configuration models
unsigned int num_files;

unsigned int num_gets;
Time avg_delay;

public:
// actor behavior
virtual void main();
...

};

void SimpleChordUser::main() {

char action[MAX_ACTION_LEN];
for (int i = 0; i < num_gets; i++) {

// schedule the next action, behaving as a Poisson process
Time current_delay = exponential_rand(avg_delay);
self_signal_event(NULL, current_delay);

// wait for the next (timeout) event
wait_for_event();

// output a workload action
unsigned int fid = pick_random_file(1, num_files);

sprintf(action, "GET(f%d)", fid);
workload_output(action,"compstate -ne 0","compstate");
}

}

(a)

event(251,U77,GET(f784),compstate -ne 0,compstate)
event(297,U78,GET(f1827),compstate -ne 0,compstate)

event(321,U80,GET(f719),compstate -ne 0,compstate)
event(410,U81,GET(f1105),compstate -ne 0,compstate)
event(494,U82,GET(f1159),compstate -ne 0,compstate)

...

(b)

#!/bin/sh

#first load Weevil’s actor program library
. theActorPath/WVL_Experiment_Name"_"WVL_Actor_ID"_lib.sh"

#Weevil defines the configuration variables $comppath and $softwarepath
#as well as the workload variables $action and $parameters
if [ $action == "GET" ]

then
#assign value to shared variable $compstate

WVL_AssignVar
#evaluate the workload condition
if WVL_CheckCondition

then
#issue calls to Chord through its client program filestore

$softwarepath/filestore $comppath/sock -f $parameters &
fi

fi

(c)

Figure 3: An Actor Process (a), a Sequence of Workload Actions (b), and an Actor Program (c)

calling the actor program. The actor program uses Weevil
library functions WVL_AssignVar, to set the variable comp-

state, and WVL_CheckCondition, to evaluate the condition
compstate -ne 0. The two functions are implemented as
M4 macros that dynamically determine which condition to
apply to what variable. The overall effect is to cause the ac-
tor program to issue a Chord “GET” service call only when
it has access to the service.

In terms of computational power, we have added parame-
ters and conditionals, but not loops. We have also managed
to preserve the stateless nature of workloads; the presence
of shared variables only has a local effect on workload ac-
tions. Thus, we have preserved much of the simplicity of
the original form of the workload at the same time as we
have increased its expressiveness. In Section 3.3 we discuss
how we leverage this simplicity to limit the complexity of
workload composition.

3.2 Repeatability
The ability to repeat an experiment is key to the exper-

imental method. The initial version of Weevil supported a
certain degree of repeatability through its automation fea-
tures. It did so essentially by recording application work-
load and configuration settings in its models, thereby re-
ducing the chance of misconfiguration and procedural errors
in individual experiment runs. However, complete repeata-
bility requires full control over every relevant aspect of an
experiment. For example, an experiment conducted using
the PlanetLab testbed would be repeatable only if the re-
sults do not depend on the latency (and other non-functional
properties) of the networks and hosts used in the experi-
ment. Obviously, such a basic environmental condition is
far from stable in the network—the Internet—underlying
PlanetLab [15]. In fact, this natural variability is often a
desirable condition, as its realism adds validity to the re-
sults. Nonetheless, wherever the operational context is not
controllable, experiments are rendered non-repeatable.

In truth, complete repeatability in distributed system ex-
perimentation is infeasible. But it can be closely approached
if the testbed allows control over the dynamics of the oper-
ational context. One example is Emulab [19], which is a
large, local-area cluster that offers a generic, multi-host exe-
cution environment with a configurable and controllable net-
work layer.4 Emulab provides several primitive but useful
environmental controls, including facilities for traffic genera-
tion and shaping, for constructing and modifying a network
topology, and for remotely rebooting network hosts. When
an engineer wishes to run an experiment using a particular
simulated operational context, they configure the routers to
act as a network having a given topology, drop rate, conges-
tion, and delay, determine the times at which hosts fail and
recover, load the system’s components onto the hosts, and
then start execution of the components. On the other hand,
Emulab suffers from the same shortcoming as PlanetLab: it
does not provide the automation features needed to make
large-scale experimentation tractable and cost effective.

Thus, to support repeatability, we need to find a means
to model, configure, and dynamically alter the operational
context, given a testbed that provides an appropriate set
of environmental controls. Our approach is based on an
extremely simple, yet surprisingly powerful, idea: treat the

testbed environment as just another subject system. In other
words, a controllable testbed is itself a distributed system
that can be configured and managed through model-driven
generative techniques. Further, and perhaps more impor-
tantly, its behavior can be shaped by workloads similar in
form to those applied to the subject system. These en-

vironment workloads embody the dynamics of operational
contexts, and their creation can be automated through our
simulation-based workload generation technique.

In Weevil we view the environmental controls as elements
of an API for controlling the testbed. Against this envi-
ronment API, the basic Weevil models are populated in the

4http://www.emulab.net/

494



event(242,I52,FAIL(successor),,successor)

event(253,I52,JOIN(successor),,successor)
event(439,I49,FAIL(successor),,successor)

event(657,I49,JOIN(successor),,successor)
...

Figure 4: Portion of an Environment Workload

same way that we make use of the application API. For
example, to generate a workload that mimics a given oper-
ational context, environment actor simulation processes are
written in terms of calls on the environment API.

Although less than ideal, we found that Emulab provides
the greatest control of the testbeds available to us. Emu-
lab does this through four highly parameterized programs:
node_reboot, to reboot one or more hosts; link_config, to
enable or disable a network link; tevc, to modify link band-
width, delay, and drop probability, as well as to determine
traffic rates on a link; and delay_config, a second means
to modify basic link properties. Notice that node_reboot

and link_config are the admittedly crude means to achieve
the effect of causing host failures and changing the network
topology, respectively. To supplement these capabilities, we
found that we needed to develop some specialized control
programs of general utility. For example, we needed to be
able to kill a process running on a host. We expect that as
distributed testbeds become a more mature technology they
will provide such things as primitives.

Figure 4 shows a portion of an environment workload
intended for use within a Chord network. This workload
injects failures at the specified times and locations. The
workload also causes failed nodes to recover and rejoin the
Chord network after some time. Notice that the workload
is parameterized by the successor variable (but a null con-
dition). The value of this variable represents a link in the
Chord network, and is assigned dynamically during the ex-
periment. Intuitively, the intent of this workload is to choose
which nodes to fail on the basis of the routing algorithm of
the Chord network. This scenario is described in greater
detail in Section 4.

3.3 Composability
Conceptually, application workloads and environment

workloads are independent entities, each representing differ-
ent phenomena: client usage scenarios on the one hand, and
ambient network events on the other. Of course, what an
experiment is intended to measure is in part the effect that
each has on the other. Concretely, we would also like to have
independent application and environment workloads so as to
increase their inherent reusability: application workloads on
completely different infrastructures (e.g., fixed wired versus
mobile wireless) and environment workloads for an infras-
tructure that can support a variety of different applications.

One way to design an experiment is therefore to create a
set of application workloads, a set of environment workloads,
and then perform trials that draw from their cross product.
But there are also situations where it is important to more
finely coordinate the two kinds of workloads.

Having established a common abstraction and structure
for application and environment workloads for the purposes
of repeatability, we recognize an opportunity to also develop
a method for “weaving” or opportunely aligning application
and environment workload actions in some non-trivial ways.

env event(242,I77,FAIL(successor),,successor)

event(251,U77,GET(f784),compstate -ne 0,compstate)
env event(253,I77,JOIN(successor),,successor)

event(297,U78,GET(f1827),compstate -ne 0,compstate)
event(321,U80,GET(f719),compstate -ne 0,compstate)

event(410,U81,GET(f1105),compstate -ne 0,compstate)
env event(439,I82,FAIL(successor),,successor)

event(494,U82,GET(f1159),compstate -ne 0,compstate)

...
env event(657,I82,JOIN(successor),,successor)

...

Figure 5: Result of a Weaving

Such a composition mechanism would allow us to expand yet
further the interesting behaviors that can be easily modeled
and automated. For example, together with parameterized
and conditional actions, the ability to combine the two kinds
of workloads allows us to experiment with various types
of malicious attacks and other non-random environmental
events and failure models.

Clearly, coordinating the interplay of the subject system
and the environment is an arbitrarily complex problem, de-
pending on the nature of the individual behaviors repre-
sented by the workloads and on the nature of the desired
coordinated behavior. As a first step toward providing such
a capability we therefore take a minimalist approach. We
assume that a significant and interesting class of coordinated
behaviors can be expressed by a simple weaving process in
which parameters in one workload can be matched with the
parameters in another workload by means of simple textual
substitutions and unification. In addition, we take advan-
tage of the sequential, stateless nature of the workloads to
give a straightforward semantics to the coordinated behav-
ior: it is a simple merge of the actions from each workload.

Figure 5 shows the result of one possible weaving of the ap-
plication workload of Figure 3b with the environment work-
load of Figure 4. Notice that the weaving is such that faults
are injected into the successors of nodes to which a “GET”
request (from a client application) will soon be routed, re-
sulting in a coordinated behavior mimicking a malicious at-
tacker attempting to cause maximal denial of service.

Because the coordinated behavior is experiment specific,
we ask the engineer to define the composition. For example,
an engineer evaluating the reliability of a system might want
to experiment with a worst-case, perhaps malicious scenario
in which host failures are related in space and/or time to the
clients that access the system. The engineer would write a
program to compose the two sequences of actions from the
two workloads, coordinating host failures with client service
calls by relating values in one workload with parameters in
the other. In practice writing such a program is similar to
the interpretation component of an actor program, so there
is a good opportunity for code reuse. The resulting sequence
of interleaved actions are processed, as before, into work-
loads associated and deployed with individual application
and environment actor programs.

A detailed example of weaving logic is discussed in Sec-
tion 4.2 and illustrated by Figure 8 appearing in that section.

3.4 Extended Scope
As discussed in Section 3.2, a high degree of repeatabil-

ity can be achieved through the modeling and control of
environmental conditions. This is intended to eliminate un-
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wanted sources of randomness. Yet, it is quite natural for
experiments on distributed systems to include other stochas-
tic processes (user behavior is one typical case) that might
affect the outcome of a trial. To be able to characterize the
behavior of the system within a desired confidence interval in
such cases, it is necessary to obtain independent measure-
ments and, therefore, necessary to execute multiple trials.
The challenge here is to provide a useful means to automate
this basic experimentation process, thereby extending the
scope of support from the trial level to the experiment level.

A trivial approach would be to allow the engineer to sim-
ply ask for some specific number of trial executions to be run
as a batch. But given the potentially high cost of deploying
and executing large-scale trials, the engineer will want to
execute exactly the right number of trials, no more and no
less. Of course, this is something that can only be deter-
mined dynamically, as the trial results come in.

A better approach, therefore, allows the engineer to sched-
ule repeated trials under a stopping condition that performs
incremental analysis of the results. Using dynamic stop-
ping conditions based on so-called “significance analysis” is
a common practice in the simulation community. Several
such statistical conditions have been formulated, and their
implementations are readily available. They can be natu-
rally incorporated into the context of live experimentation.

Weevil automates the scheduling, deployment, and exe-
cution of a minimal set of trials based on engineer-specified
stopping conditions. It offers a library of the most common
statistical conditions, but also allows the engineer to plug in
new ones. Weevil supports two schemes for deploying and
executing repeated trials: sequential and concurrent.

The sequential scheme is the only option when the testbed
for a trial is fully determined in the trial configuration, which
means that the same trial can only be mapped to the same
set of testbed elements (i.e., hosts and network links). In this
case, Weevil must iterate sequentially through a series of tri-
als, at each step waiting for the completion of the current
trial and for the release of the testbed resources. Upon com-
pletion of the post-processing phase of each trial, the chosen
stopping condition is evaluated. If the metrics of interest
collected up to that point are significant within the desired
level of confidence, Weevil stops the experiment. Otherwise,
it goes on to schedule the next trial. The disadvantage of this
scheme is that it may not exploit all the available testbed
resources. However, this scheme also has some advantages.
In particular, since the experiment configuration is the same
for all the trials, there is no need to regenerate the control
scripts, nor redeploy some or all of the scripts and system
components between trials. This may significantly reduce
the overall time to conduct an experiment.

If the configuration of a trial does not require a specific
assignment of testbed elements, the trials can be dynami-
cally mapped onto different elements. In this case, if enough
qualified elements are available, Weevil can schedule multi-
ple trials concurrently. Such a scheme can make better use
of the available testbed resources. However, since each trial
may be mapped onto a different set of elements, different
control scripts may have to be generated and deployed for
each trial. Furthermore, because of the concurrent execution
of multiple trials, the experiment may execute more trials
than what is strictly necessary. This is because the stopping
condition may be satisfied at the end of a given trial while
other, concurrent trials are still in progress.

In practice, for both schemes, the engineer needs to spec-
ify a maximum and minimum number of trials, along with
a data-analysis procedure (possibly void) that implements
the stopping condition. The engineer then specifies the ex-
periment configuration as usual. The configuration may be
specified with an explicit testbed mapping, as in the pre-
vious version of Weevil [18]. In this case, Weevil sched-
ules multiple trials sequentially. With Weevil’s new testbed
model, the engineer can also specify the testbed mapping
using symbolic resources, in which case Weevil is able to
schedule multiple trials for concurrent execution.

4. EXPERIENCE
We validated our enhancements through a series of exper-

iments carried out on the Emulab testbed. The experiments
examined the performance and fault tolerance of CFS [5],
a wide-area, cooperative, replicated storage service built on
top of the Chord distributed hash table [16]. What differ-
entiates the experiments is the operational context of the
network and hosts. We defined five such contexts, each one
characterized by a specific pattern of environmental phe-
nomena. The first exhibits variable link latency so as to em-
ulate a network of mobile hosts. The others exhibit failures
of four different kinds: simultaneous, uniformly random, re-
active, and malicious.

Due to space limitations, we are unable to present the
first two failure experiments, simultaneous and uniformly
random. The first of the two is important because it re-
produces in the large the results of a small-scale experiment
described by the designers of CFS [5]. The second is impor-
tant because it extends through experimentation the results
of an early simulation exercise conducted by the developers
on the Chord network [16]. The interested reader can find
details of those two experiments presented elsewhere [17].

The mobility experiment, and the reactive and malicious
failure experiments, demonstrate the benefits of increased
expressiveness. The mobility experiment also demonstrates
the utility of automated multi-trial stopping conditions un-
der both the sequential and concurrent schemes. The ma-
licious failure experiment demonstrates the composability
of application and environment workloads. All the experi-
ments demonstrate the way in which our methods support
repeatability through control of the operational context.

4.1 Mobility
In this first series of experiments we evaluated CFS in an

emulated network of mobile hosts. The environment is con-
figured to appear as though it were a cellular network using
GPRS [1], where the movement of hosts conforms to the
“random waypoint” mobility model within a single cell [8].
The experiments use a 16-node CFS network with 320 files
already resident. Each CFS node has an application actor
constantly issuing 50 retrieval requests for uniformly ran-
dom file keys every 16 seconds. The experimental goal was
to evaluate the performance of CFS in transient cellular net-
works that involve fast host movements, and to compare that
to stable networks with slower movements.

In each experiment, link latencies were dynamically mod-
ified to simulate the host movements. These modifications
were driven by an environment workload that was gener-
ated with the help of a mobility trip generation tool [12].
The tool generates trips (the initial location and movements
of each mobile host) based on the user-provided constraints
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of the moving space, speed, and pause time. Using the trace
of the generated trips, we calculated the transient distance
between each mobile host and the base station (set to be the
center of the rectangular moving space) every five seconds.
The latency between each host and the base station, i.e., the
latency of the corresponding Emulab LAN link, was then
adjusted accordingly using a logarithmic drop of connection
speed as a function of the distance. In order to apply the
environment workload, we associated an environment actor
program with each link. All the actor programs were then
deployed and executed on the main Emulab controller host
users.emulab.net, which is where all network properties can
be controlled in Emulab. In this case, an environment actor
program consists of a simple iteration that, for each work-
load line, invokes delay_config with the appropriate pa-
rameters to modify the latency of its associated link. Using
this basic configuration, we ran multiple experiments, each
with a different environment workload capturing a different
trip and mobility pattern.

Each experiment consisted of three to ten repeated tri-
als, depending on the consistency of their execution results.
We used 32 Emulab hosts, and for each trial the 16 CFS
nodes were mapped onto 16 of the 32 hosts. As a result of
each trial, we measured the range of retrieval response times,
recording their 5th, 50th, and 95th percentile. We set the
dynamic stopping condition to a 0.1 standard deviation of
each of these values, with a minimum of two trials. Since
Emulab is a controlled environment, the trial execution re-
sults turned out to be very consistent, requiring only three
trials when we used the sequential trial-scheduling scheme
and four trials when we used the concurrent trial-scheduling
scheme. Due to these small number of trials, we observed an
advantage of the concurrent scheduling over the sequential
scheduling of only approximately 10% in total start-to-finish
experiment setup and run time, which includes script gener-
ation, deployment, and execution. We hypothesize that the
difference would be much more significant in the presence of
more trials and/or larger testbeds. To further validate Wee-
vil’s trial management, we manually introduced variability
in the link latencies. In this case, more trials were automat-
ically scheduled to finally meet the stopping condition.

Figure 6 shows the 5th, 50th, and 95th percentile of the
retrieval response times measured in the experiments. The
data points for each type of mobile network were observed
in five experiments involving 800 block lookups under differ-
ent environment workloads. The figure shows a surprising
result: transient networks exhibit slightly better response
times than stable networks. This result contradicts our ini-
tial intuition that more and faster movements would affect
the CFS network by increasing the response times.

This intuition prompted us to study the scenario further.
Examining the environment workloads, we realized that this
surprising result is consistent with the overall distributions
of transient locations, which are closer to the base station
in transient network scenarios. In fact, we found that this
is a general property of random waypoint mobility when the
base station is in the center of a closed moving space. This
property becomes intuitive if one considers the distribution
of the points of a random segment in the closed movement
domain. Such segments, which are the basis of the random
waypoint model, tend to pass closer to the center rather than
the periphery of the domain. Therefore, the more segments
are added to a trip, the longer the time the host spends closer
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Figure 6: Retrieval Response Time of the CFS Net-
work under Transient Networks and Stable Net-
works

to the (central) base station. (An analytical description of
this property is beyond the scope of this paper.)

To verify this analysis, we regenerated a set of environ-
ment workloads by relocating the base station on the border
of the rectangular space, with all the other configuration pa-
rameters unchanged. The results of these experiments are
shown in Figure 6 with dashed lines. When the base sta-
tion is located along the border, CFS exhibits comparable
response times for the two types of mobility scenarios, which
is consistent with our analysis. Also, in all experiments, we
observed no errors. We conclude that the performance of
CFS does not degrade in a mobile environment where hosts
move within a certain range, and in fact, depending on the
location of the base station, frequent movements can even
have a positive effect on response time.

Although some of our conclusions may be valuable to the
designers of CFS, the point of these experiments is not to
evaluate CFS or to verify what is probably a well-known
property of the random waypoint model. Rather, the exper-
iments show that: (1) by constructing environment work-
loads, we can easily support repeatable experimentation over
a wide range of environmental conditions, including ones
that might be very different from the basic nature of the
testbed; (2) the experiment-level management helped us
control the error bar brought by unwanted interruptions;
and (3) the automation provided by Weevil facilitates the
exploration of different, but related, scenarios.

It is interesting to note that the developers of Emulab have
made available a robotic version of their testbed to support
experiments in truly mobile environments [9]. This robotic
version currently employs a small number of remotely con-
trolled vehicles. Clearly such an approach, while innovative,
does not scale in the way our approach can, nor can it ac-
count for movements not directly supported by the vehicles,
such as high speeds and/or three-dimensional vectors.

4.2 Robustness
Robustness to failures is one of the fundamental prop-

erties that any designer of a distributed system hopes to
achieve. But it is also a property that is notoriously difficult
to establish because of the difficulty in controlling the oper-
ational environment. The next series of experiments shows
the utility of Weevil in conducting the most common kind
of fault-injection experiments, ones in which failures are as-
sumed to be fail stop.
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Reactive Fault Injection. Hardware and software faults
are frequently caused by incorrect operation or unantici-
pated heavy load on the system. This series of experiments
represents a scenario in which system components with a
heavier load have a higher probability to fail. Our experi-
mental goal is to verify that the failure of the heavier-loaded
CFS nodes has a worse effect on system performance than
the failure of randomly selected CFS nodes.

We conducted the experiments using a 100-node CFS net-
work deployed over a 50-host Emulab testbed, with 2000 files
already resident. Each CFS node has an application actor
constantly issuing 50 retrieval requests for uniformly ran-
dom file keys. Since we could not determine which CFS node
should fail before trial execution, we associated an environ-
ment actor with every CFS node. Each actor’s portion of
the environment workload is a list of conditional “JOIN”and
“FAIL” actions issued at constant intervals. Whether they
would be issued or not depends on the two variables rpcrate
and liveornot of the associated CFS node. A scheduled
“FAIL” action is effective when the node’s remote procedure
call (RPC) communication rate rpcrate is higher than a
specified threshold. A “JOIN” action is executed if the node
is in the down status, with liveornot equal to 0. In the
environment workload, a conditional “FAIL” action appears
every 10 seconds and a “JOIN” action every 120 seconds.
For example, the following snippet for actor A0 (represented
during workload generation as the simulation process U0) is
extracted from the generated environment workload when
we assign the threshold value 30:

event(10,U0,FAIL(),rpcrate -gt 30,rpcrate)
event(20,U0,FAIL(),rpcrate -gt 30,rpcrate)

...
event(120,U0,JOIN(),liveornot -eq 0,liveornot)

...

The actor program implements the translation from the con-
ditional actions to the real requests.

We conducted a set of experiments with RPC rate thresh-
old values of 13, 14, 15, and 16. The different threshold
values cause different node failure rates over time. For each
threshold value, we performed five trials. Each trial runs for
5000 seconds. We separated the log file of each trial into five
segments, each of which is 1000 seconds long. For each seg-
ment, we calculated the median of the retrieval failure rate
caused by the network inconsistency versus the node fail-
ure rate over time, and we plotted the results in Figure 7,
comparing them with those of the uniformly random-failure
experiments [17]. As conjectured, the reactive fault injec-
tion scenario exhibits higher retrieval failure rates than the
random-failure scenario.

This series of experiments is important because it demon-
strates an environment model that is dependent on the dy-
namic state of the subject system. This kind of behavior
could only be modeled using Weevil’s enhanced workload
language. Such an expressiveness is implemented through
a workload containing conditional workload lines, through
the actor programs with the ability to translate the work-
load lines, and the ability to probe the dynamic execution
states during the trial run.

Malicious Fault Injection. Through this series of experi-
ments, we demonstrate the composability of workloads. We
define scenarios in which failures are maliciously injected
into CFS nodes that play crucial roles within an application
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workload. To explain this model in detail, we must briefly
review the internal lookup mechanism used by CFS.

In the CFS implementation, each CFS node maintains a
“finger table” to speed up the lookup of a key. All the CFS
nodes make up a logical ring used for the Chord routing
algorithm. Each CFS node has its logical successor in the
ring stored as the first entry in its finger table. Upon re-
ceiving a retrieval request, a CFS node always tries to first
contact its successor. If the successor is unreachable, it tries
to contact the next entry in its finger table. In this scenario,
the environment actors are designed to exploit this behavior.
Instead of randomly choosing which and when nodes should
fail, each environment actor always chooses to shut down the
successor of the node that will receive the next incoming re-
trieval request. In other words, the failures are intended to
represent a worst-case scenario or perhaps a denial-of-service
strategy of a malicious attacker. We refer to the application
requests that are subjected to this attack as “attacked re-
quests”. Based on the CFS routing algorithm, we predict
that attacked requests should have longer response times,
but should not fail.

We reused the subject CFS network, the Emulab testbed
configuration, and the application workload used in the re-
active fault injection experiments. We also reused the envi-
ronment workload from the uniformly random fault injection
experiments. The application and the environment work-
loads are originally independent. In this malicious scenario,
we adjusted the environment workload to always bring down
the successor to the node to which a retrieval request is go-
ing to be routed. Figure 8 exemplifies the inputs of the two
types of workloads and the adjusted environment workload.

The original environment workload schedules the “FAIL”
actions for the associated system components at times
242 and 439. Through the workload weaving, we wish
to adjust the workload to attack (“FAIL”) the successor
to which a future request, issued 5 seconds later, will
be routed. The 5-second delay is a necessary parame-
ter of the fault-injection mechanism, as a CFS node needs
several (less than 5) seconds to shut down. Thus, the
“FAIL” action at time 242 should attack the retrieval re-
quest event(247,U48,GET(f1900)) in the application work-
load. According to the trial configuration (Figure 8c), the
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event(242,U42,GET(f1799))
...

event(247,U48,GET(f1900))
...
event(444,U12,GET(f1561))

(a) application workload

event(242,I0,FAIL())
event(439,I1,FAIL())
...

(b) environment workload

‘U’i <-> ‘N’i

‘I’i <-> ‘N’i
i=0..99

(c) trial configuration

event(242,I48,FAIL(succ),,succ)

event(439,I12,FAIL(succ),,succ)
...

(d) resulting environment workload

Figure 8: Workload Weaving. The workload in (d)
is derived from (a) and (b) woven according to (c).

client U48 sends all requests to the system component N48.
So the environment workload action at 242 is adjusted to
be sent from the actor I48, who is also mapped to N48, to
attack the successor to N48. The workload line becomes
event(242,I48,FAIL(succ),,succ), where succ is the pa-
rameter to be assigned during trial execution.

The adjusted environment workload is applied through
100 environment actors, each of which is associated with a
CFS node. Each environment actor is in charge of shutting
down its associated CFS node in response to an appropriate
signal by another environment actor. Specifically, the en-
vironment actor associated with the application actor that
sends out the attacked retrieval request sends a shutdown
signal to its successor. An actor can find the identity of its
successor using the Chord client program getsucc. Thus,
the determination of whether or not an environment actor
should bring down or start up a CFS node is dependent on
the trial-execution-time response to the getsucc program
and the inter-actor communication message.
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As expected, we observed no failure for the requests be-
cause of the loss of successors. Some requests failed because
of the inconsistency in the CFS network’s routing tables dur-
ing their fixing process. We divided all the retrieval requests
into three types: the attacked requests, the next requests
sent by the actors whose last requests were attacked, and
all others. The purpose of dividing them in this way is to
study the effect of the successor loss and to study if the ef-
fect lasts. The results are shown in Figure 9, which gives the
5th, 50th, and 95th percentile of the retrieval response times
for the three types of requests. The retrieval response times
of the attacked requests were longer than the non-attacked
ones because of the unavailability of the successors.

This series of experiments validates the utility of the work-
load composition mechanism in reusing the workloads for
simple experiment scenarios to obtain those for a broader
class of experiment scenarios. The simple format of work-
loads makes their composability tractable and straightfor-
ward, certainly more so than if the workloads were full-blown
programs.

5. RELATED WORK
The basic Emulab management system automatically al-

locates hosts, implements network configurations, and exe-
cutes scheduled actions. A recent addition to Emulab is the
Experimentation Workbench [6]. Its contribution is mainly
in the recording of relevant environment parameters of each
trial to enable replayable execution, which is a feature com-
plementary to Weevil’s ability to control the environment.
It also supports automated sequential execution of multi-
ple related trials. Overall, however, its features are tied to
the specifics of the Emulab environment, and so is not a
general-purpose tool. A further limitation is that it does
not provide any direct support for workload generation. Fi-
nally, it is limited to static behaviors, since all actions in the
management system must be prescheduled during setup.

DART [4] is an automated regression testing framework
built on Emulab. It provides a set of primitives for writing
tests for distributed systems and a run-time mechanism to
execute the tests in a fast and efficient manner. ACME [11]
is a framework for automated robustness evaluation of dis-
tributed services. It is targeted at both emulated network
testbeds, such as Emulab, and real wide-area testbeds, such
as PlanetLab. ACME considers only component failures and
high network usage in failure scenarios. The faults are con-
trolled, monitored, and injected through per-node sensors
and actuators. Reactive scenarios are provided in ACME
through the sensors. However, neither DART nor ACME
consider the behaviors of the clients of a distributed sys-
tem. Moreover, as in the Experimentation Workbench, they
require that all actions be prescheduled.

Plush [2] and PlMan5 are execution management systems
for PlanetLab. Users describe what amounts to a trial in
an XML document in Plush, or as scripts in PlMan. The
descriptions are used to automatically prepare PlanetLab
hosts, deploy the subject system, execute commands, moni-
tor progress, and handle any clean up. However, these tools
provide no support for the other activities of experimenta-
tion, such as workload generation, nor do they provide direct
support for modeling and executing distributed client behav-
ior. Of course, it would be conceivable to retarget Weevil’s
model-based script generation facility to make use of the
Plush or PlMan trial execution mechanisms.

JMeter6 is a performance testing tool designed for the
Apache Web server. Among its features is the ability to
support conditional (reactive) workloads. The workloads are
formed from a set of specialized modules, called controllers,
that embody the logic of a Web client. Weevil implements a
similar capability, but through a mechanism that is deliber-
ately more restricted. These restrictions allow the engineer
to structure the results of the workload generator into a va-
riety of different distributed workloads, something for which
the JMeter logic-controller approach is not appropriate.

5http://www.cs.washington.edu/research/networking/cplane
6http://jakarta.apache.org/jmeter/
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StarBED,7 another emulated network testbed, uses VLAN
configurable switches to enable the configuration of network
properties. Its developers created a tool called SpringOS [10]
to automate its usage. SpringOS is targeted at experiments
with client/server systems, where it can model client behav-
iors that depend on server responses. However, SpringOS
is specific to StarBED and, moreover, does not support dy-
namic environment variations.

The most common environment variation scenarios seem
to be failure scenarios. Since failures may occur due to cor-
related distributed faults, many fault injection techniques
and tools have been developed to help engineers create real-
istic failure scenarios [7]. One such system is Loki [3]. Loki
is deployed to form a framework for maintaining a partial
view of the global state, and for injecting faults based on
that partial view. The partial view is derived using state
machines associated with the communicating Loki nodes.

6. CONCLUSION
The work described in this paper is intended to facili-

tate the evaluation and tuning of network protocols, large
component-based systems, and distributed systems in gen-
eral through repeatable experimentation in realistic environ-
ments. We have presented four significant enhancements to
our original methods that allow an engineer to explore richer
scenarios and to obtain results with greater confidence. Full
control of the environment by means of environment work-
loads is the basis for repeatability. Expressiveness of the
workloads and the weaving of application and environment
workloads are the key ideas to obtain rich scenarios. Auto-
mated multi-trial experiments are essential to obtain statis-
tically valid measurements. We demonstrated the validity
of these ideas through a series of challenging experiments
carried out on a popular state-of-the-art testbed.

In the future we will continue to work to improve the way
experiments are conducted on large-scale software systems.
The natural evolution of this research is to expand our focus
from a single experiment to a whole series of experiments. In
particular, we plan to study how to better characterize sys-
tem behaviors by automating the exploration of the param-
eter space. Our intuition is to view this as an identification
and optimization problem.
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