
Christian Grothoff

COMP 2355 Introduction to Systems
Programming

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

1

Christian Grothoff

Today

• Symbols

• Libraries

• Attributes

• Common libraries

• Good library design

• More System V functions

2

Christian Grothoff

Libraries

There are two types of libraries:

• static libraries

• shared libraries

We will talk about the differences later!

3

Christian Grothoff

Symbols

• A Symbol is a name for a particular piece of data

• The name is used to refer to the data instead of using

its address in memory – which may not be known

• Symbol resolution is the process of mapping from names

to data (addresses)

4

Christian Grothoff

Symbol Resolution: Linker

• The linker attempts to resolve symbols within a given

set of object files including static libraries

• The linker will leave symbols refering to shared libraries

symbolic

• The linker can store information about which libraries

should be searched by the loader to resolve unresolved

symbols

5

Christian Grothoff

Symbol Resolution: Loader

• The loader resolves the remaining symbols and initiates

execution

• Symbols that remain unresolved may cause runtime

errors

• Usually, the compiler notices, but libraries could change

after the main binary was compiled!

⇒ Library versioning is used to specify compatibility

6

Christian Grothoff

Questions

?

7

Christian Grothoff

Questions

Why do we have static and shared libraries?

What are the advantages and disadvantages of the two

types of libraries?

8

Christian Grothoff

Naming Conflicts

• The same name could be used by multiple symbols!

• This is usually a bug, resulting in linker errors

• Some symbols are defined as weak, specifically allowing

them to be re-defined

⇒ Do not do this at home (wait until graduate school)

9

Christian Grothoff

Avoiding Naming Conflicts

• Use a common unique prefix for all symbols exported by

a library

• Do not use names of functions in GNU libc

• Use the static keyword on functions and non-local

variables to ensure that they do not get exported

• Check that your library only exports (non-debug)

symbols that you want to have exported!

10

Christian Grothoff

Inspecting Binaries

• nm

• ldd

• file

11

Christian Grothoff

Debugging Symbols

• Debugging symbols are used for gdb to determine

the names of (non-exported) function names and local

variables

• You can use the strip command to remove (debugging)

symbols from a binary

• strip can also be used to remove other (exported)

symbols, potentially rendering a library useless

• Read the man-page for details

12

Christian Grothoff

Questions

?

13

Christian Grothoff

GCC attributes

• Non-standard extensions of the C language

• Some are supported by other C compilers

• Few people use other C compilers

• We will discuss some of the most important ones

14

Christian Grothoff

GCC attributes: alias

The “alias” attribute creates a second name for a symbol:

void the_real_fun () { /* Do something. */; }
void fun ()

__attribute__ ((weak, alias ("the_real_fun")));

15

Christian Grothoff

GCC attributes: constructor

The “constructor” attribute ensures that the function

(which must not take any arguments) is run before main
or immediately after the library is loaded. The function

must not be static.

void init ()
__attribute__((constructor)) { /* ... */ };

16

Christian Grothoff

GCC attributes: destructor

The “destructor” attribute ensures that the function

(which must not take any arguments) is run after main or

immediately before the library is unloaded. The function

must not be static.

void fini ()
__attribute__((destructor)) { /* ... */ };

17

Christian Grothoff

GCC attributes: deprecated

The “deprecated” attribute ensures that using the symbol

will generate a compiler warning:

void old_function ()
__attribute__((deprecated));

18

Christian Grothoff

GCC attributes: nonnull

The “nonnull” attribute ensures that passing “NULL” for

certain arguments will generate a compiler warning:

void * fun (int * p1, void * p2)
__attribute__((nonnull (1, 2)));

19

Christian Grothoff

GCC attributes: noreturn

The “noreturn” attribute tells the compiler that the

function will never return, allowing it to generate better

code:

void spin ()
__attribute__((noreturn))

{
while (1);

}

20

Christian Grothoff

Common libraries

• libm: mathematical functions

• libz: compression

• libsqlite3: database

• libgmp: unbounded precision arithmetic

• libgcrypt: cryptography

• libcurl: file downloads (http, ftp, etc.)

Find thousands of libraries on http://freshmeat.net/.

21

Christian Grothoff

Homework

Compile and run the following C code (which uses libm)

using GCC:

#include <math.h>
int main(int argc, char ** argv) {
double d = asin(0.14);
return (int) d;

}

22

Christian Grothoff

Good library design

• First, learn what is already out there!

• Often it is easier to use or improve an existing library
than to roll your own

• Have at least two different clients for the library

• Export as few symbols as possible; do not export
variables

⇒ Adding new symbols is backwards-compatible, deleting
symbols is not!

23

Christian Grothoff

Back to GNU libc

“First, learn what is already out there!”

⇒ Knowing GNU libc inside-out is fundamental.

24

Christian Grothoff

Fundamental Character API

• int toupper(int c)

• int tolower(int c)

• int isspace(int c)

• int isupper(int c)

• int isdigit(int c)

• int isXXXXX(int c)

25

Christian Grothoff

getopt

• function for parsing command line arguments

• a few variants exist (getopt long, argp parse)

• we will just cover the basics

26

Christian Grothoff

getopt

int main (int argc, char **argv) {
int index, c;
while (-1 != (c = getopt (argc, argv, "ab:c:")))

switch (c) {
// on next slide
}

}
for (index = optind; index < argc; index++)

printf ("Non-option argument %s\n", argv[index]);
// application code
return 0;

}

27

Christian Grothoff

getopt – switch body

int aflag = 0; int bnum = 0; char * cvalue = NULL;

case ’a’: aflag = 1; break;
case ’b’:

if (1 != sscanf(optarg, "%d", &bnum)) {
fprintf (stderr,

"Option -%c requires an argument.\n", ’b’);
abort(); }

break;
case ’c’: cvalue = optarg; break;
default: fprintf (stderr, "Unknown option -%c.\n", c);

abort ();

28

Christian Grothoff

mmap

void * mmap(void *start,
size_t length,
int prot,
int flags,
int fd,
off_t offset)}

int munmap(void *start, size_t length);

29

Christian Grothoff

Example: display file content

#define FILENAME "/etc/services"
struct stat buf;
stat(FILENAME, &buf);
int fd = open(FILENAME, O_RDONLY);
const char * data = mmap(NULL, stat.st_size, PROT_READ,

MAP_SHARED, fd, 0);
printf("File ‘%s’ contains:\n%.*s",

FILENAME,
stat.st_size, data);

munmap(data, stat.st_size);
close(fd);

30

Christian Grothoff

Questions

?

31

Christian Grothoff

Question

Why should you consider using mmap instead of read and

write?

32

Christian Grothoff

Question

When would it be better to use read and write instead

of mmap?

33

Christian Grothoff

Question

Can you mmap standard-input (stdin, 0)?

34

Christian Grothoff

Question

What about standard-output (stdout, 1)?

35

