
z/OS

UNIX System Services

Command Reference

SA22-7802-09

���

z/OS

UNIX System Services

Command Reference

SA22-7802-09

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

949.

Ninth Edition, September 2007

This is a major revision of SA22–7802–08.

This edition applies to Version 1 Release 9 of z/OS (5694-A01) and to all subsequent releases and modifications

until otherwise indicated in new editions.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you

may address your comments to the following address:

 International Business Machines Corporation

 MHVRCFS, Mail Station P181

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xi

Tables . xiii

About this document . xv

Who should use this document xv

Finding more information about other products xv

Summary of changes . xix

Chapter 1. Introduction to shell commands and DBCS 1

Reading the command descriptions 1

Using the doublebyte character set (DBCS) 7

Chapter 2. Shell command descriptions 11

alias — Display or create a command alias 11

ar — Create or maintain library archives 14

as — Use the HLASM assembler to produce object files 18

asa — Interpret ASA/FORTRAN carriage control 21

at — Run a command at a specified time 22

autoload — Indicate function name not defined 25

automount — Configure the automount facility 26

awk — Process programs written in the awk language 32

basename — Return the nondirectory components of a pathname 48

batch — Run commands when the system is not busy 49

bc — Use the arbitrary-precision arithmetic calculation language 50

bg — Move a job to the background 66

bpxmtext — Display reason code text 66

break — Exit from a loop in a shell script 67

c++ — Compile, link-edit and assemble C and C++ source code and create an

executable file on z/OS . 68

c89 — Compiler invocation using host environment variables 68

c99 — Compile, link-edit and assemble C source code and create an

executable file on z/OS . 105

cal — Display a calendar for a month or year 105

calendar — Display all current appointments 106

cancel — Cancel print queue requests (stub command) 108

captoinfo — Print the terminal entries in the terminfo database 108

cat — Concatenate or display text files 110

cc — Compile, link-edit and assemble C source code and create an executable

file on z/OS . 111

cd — Change the working directory 111

ceebldtx — Transform message source files into assembler source files . . . 114

chaudit — Change audit flags for a file 117

chcp — Set or query ASCII/EBCDIC code pages for the terminal 119

chgrp — Change the group owner of a file or directory 121

chlabel — Set the multilevel security label of files and directories 123

chmod — Change the mode of a file or directory 124

chmount — Change the mount attributes of a file system 127

chown — Change the owner or group of a file or directory 129

chroot — Change the root directory for the execution of a command 130

chtag — Change file tag information 132

cksum — Calculate and write checksums and byte counts 135

© Copyright IBM Corp. 1996, 2007 iii

||

||
||

||

|
||

|
||

||

clear — Clear the screen of all previous output 136

cmp — Compare two files . 137

col — Remove reverse line feeds 138

: (colon) — Do nothing, successfully 140

comm — Show and select or reject lines common to two files 141

command — Run a simple command 142

compress — Lempel-Ziv file compression 143

confighfs — Invoke the vfs_pfsctl function for HFS file systems 145

configstk — Configure the AF_UEINT stack 147

configstrm — Set and query the STREAMS physical file system configuration 149

continue — Skip to the next iteration of a loop in a shell script 150

copytree — Make a copy of a file hierarchy while preserving all file attributes 151

cp — Copy a file . 152

cpio — Copy in/out file archives 165

cron daemon — Run commands at specified dates and times 168

crontab — Schedule regular background jobs 171

csplit — Split text files . 173

ctags — Create tag files for ex, more, and vi 176

cu — Call up another system (stub only) 177

cut — Cut out selected fields from each line of a file 178

cxx — Compile, link-edit and assemble z/OS C and z/OS C++ source code

and create an executable file 180

date — Display the date and time 180

dbx — Use the debugger . 183

dbx subcommands . 188

dd — Convert and copy a file 229

df — Display the amount of free space in the file system 233

diff — Compare two text files and show the differences 235

dircmp — Compare directories 240

dirname — Return the directory components of a pathname 241

. (dot) — Run a shell file in the current environment 242

dspcat — Display all or part of a message catalog 243

dspmsg — Display selected messages from message catalogs 243

du — Summarize usage of file space 244

echo — Write arguments to standard output 245

ed — Use the ed line-oriented text editor 247

edcmtext — Display errnojr reason code text 255

egrep — Search a file for a specified pattern 257

env — Display or set environment variables for a process 257

eval — Construct a command by concatenating arguments 258

ex — Use the ex text editor . 259

exec — Run a command and open, close, or copy the file descriptors 260

exit — Return to the shell’s parent process or to TSO/E 262

expand — Expand tabs to spaces 263

export — Set a variable for export 264

expr — Evaluate arguments as an expression 265

exrecover daemon — Retrieve vi and ex files 267

extattr — Set, reset, and display extended attributes for files 270

false — Return a nonzero exit code 272

fc — Process a command history list 272

fg — Bring a job into the foreground 275

fgrep — Search a file for a specified pattern 276

file — Determine file type . 276

find — Find a file meeting specified criteria 281

fold — Break lines into shorter lines 289

functions — Display or assign attributes to functions 290

iv z/OS V1R9.0 UNIX System Services Command Reference

||

|
||

||
||

||
||

||
||

fuser — List process IDs of processes with open files 290

gencat — Create or modify message catalogs 292

getconf — Get configuration values 295

getfacl — Display owner, group, and access control list (ACL) entries 299

getopts — Parse utility options 301

grep — Search a file for a specified pattern 303

hash — Create a tracked alias 306

head — Display the first part of a file 307

history — Display a command history list 308

iconv — Convert characters from one codeset to another 309

id — Return the user identity 311

inetd daemon — Provide Internet Service Management 313

infocmp — Compare or print the terminal description 315

integer — Mark each variable with an integer value 319

ipcrm — Remove message queues, semaphore sets, or shared memory IDs 319

ipcs — Report status of the interprocess communication facility 320

jobs — Return the status of jobs in the current session 327

join — Join two sorted textual relational databases 328

kill — End a process or job, or send it a signal 330

[(left bracket) — Test for a condition 334

ld — Link object files . 334

let — Evaluate an arithmetic expression 342

lex — Generate a program for lexical tasks 343

line — Copy one line of standard input 346

link — Create a hard link to a file 347

ln — Create a link to a file . 348

locale — Get locale-specific information 351

localedef — Define the locale environment 356

logger — Log messages . 358

logname — Return a user’s login name 360

lp — Send a file to a printer . 360

lpstat — Show status of print queues (stub command) 362

ls — List file and directory names and attributes 362

mail — Read and send mail messages 368

mailx — Send or receive electronic mail 371

make — Maintain program-generated and interdependent files 391

makedepend — Generate source dependency information 413

man — Display sections of the online reference manual 420

mesg — Allow or refuse messages 423

mkcatdefs — Preprocess a message source file 424

mkdir — Make a directory . 425

mkfifo — Make a FIFO special file 427

mknod — Make a FIFO or character special file 428

more — Display files on a page-by-page basis 429

mount — Logically mount a file system 433

mv — Rename or move a file or directory 437

newgrp — Change to a new group 450

nice — Run a command at a different priority 452

nl — Number lines in a file . 453

nm — Display symbol table of object, library, or executable files 455

nohup — Start a process that is immune to hangups 457

obrowse — Browse an z/OS UNIX file 458

od — Dump a file in a specified format 459

oedit — Edit files in a z/OS UNIX file system 463

pack — Compress files by Huffman coding 465

passwd — Change user passwords 467

Contents v

||

||

||

||

||

paste — Merge corresponding or subsequent lines of a file 467

patch — Change a file using diff output 469

pathchk — Check a pathname 472

pax — Interchange portable archives 473

pcat — Unpack and display Huffman packed files 504

pg — Display files interactively 505

pr — Format a file in paginated form and send it to standard output 508

print — Return arguments from the shell 511

printenv — Display the values of environment variables 513

printf — Write formatted output 514

ps — Return the status of a process 516

pwd — Return the working directory name 523

r — Process a command history list 524

read — Read a line from standard input 524

readonly — Mark a variable as read-only 526

renice — Change priorities of a running process 527

return — Return from a shell function or . (dot) script 529

rlogind — Validate rlogin requests 529

rm — Remove a directory entry 531

rmdir — Remove a directory 533

runcat — Pipe output from mkcatdefs to gencat 534

sed — Start the sed noninteractive stream editor 534

set — Set or unset command options and positional parameters 540

setfacl — Set, remove, and change access control lists (ACLs) 544

sh — Invoke a shell . 549

shedit — Interactive command and history editing in the shell 577

shift — Shift positional parameters 583

sleep — Suspend execution of a process for an interval of time 585

skulker — Remove old files from a directory 585

sort — Start the sort-merge utility 588

spell — Detect spelling errors in files 594

split — Split a file into manageable pieces 596

stop — Suspend a process or job 597

strings — Display printable strings in binary files 598

strip — Remove unnecessary information from an executable file 599

stty — Set or display terminal options 600

su — Change the user ID associated with a session 607

sum — Compute checksum and block count for file 611

suspend — Send a SIGSTOP to the current shell 612

sysvar — Display static system symbols 612

tabs — Set tab stops . 613

tail — Display the last part of a file 615

talk — Talk to another user . 616

tar — Manipulate the tar archive files to copy or back up a file 618

tcsh — Invoke a C shell . 626

tcsh built-in command descriptions 673

tee — Duplicate the output stream 692

test — Test for a condition . 693

tic — Put terminal entries in the terminfo database 697

time — Display processor and elapsed times for a command 698

times — Get process and child process times 699

touch — Change the file access and modification times 700

tput — Change characteristics of terminals 703

tr — Translate characters . 704

trap — Intercept abnormal conditions and interrupts 707

true — Return a value of 0 . 709

vi z/OS V1R9.0 UNIX System Services Command Reference

||

||

||

tso — Run a TSO/E command from the shell 709

tsort — Sort files topologically 714

tty — Return the user’s terminal name 714

type — Tell how the shell interprets a name 715

typeset — Assign attributes and values to variables 716

uconvdef — Create binary conversion tables 718

ulimit — Set process limits . 719

umask — Set or return the file mode creation mask 721

unalias — Remove alias definitions 722

uname — Display the name of the current operating system 723

uncompress — Undo Lempel-Ziv compression of a file 724

unexpand — Compress spaces into tabs 725

uniq — Report or filter out repeated lines in a file 726

unlink — Removes a directory entry 728

unmount — Remove a file system from the file hierarchy 729

unpack — Decode Huffman packed files 731

unset — Unset values and attributes of variables and functions 732

uptime — Report how long the system has been running 734

uucc — Compile UUCP configuration files 734

uucico daemon — Process UUCP file transfer requests 735

uucp — Copy files between remote UUCP systems 737

uucpd daemon — Invoke uucico for TCP/IP connections from remote UUCP

systems . 741

uudecode — Decode a transmitted binary file 742

uuencode — Encode a file for safe transmission 743

uulog — Display log information about UUCP events 744

uuname — Display list of remote UUCP systems 746

uupick — Manage files sent by uuto and uucp 747

uustat — Display status of pending UUCP transfers 748

uuto — Copy files to users on remote UUCP systems 751

uux — Request command execution on remote UUCP systems 753

uuxqt daemon — Carry out command requests from remote UUCP systems 756

vi — Use the display-oriented interactive text editor 758

wait — Wait for a child process to end 788

wall — Broadcast a message to logged-in users 789

wc — Count newlines, words, and bytes 789

whence — Tell how the shell interprets a command name 790

who — Display information about current users 791

whoami — Display your effective user name 793

write — Write to another user 793

writedown — Set or display user’s write-down mode 795

xlc — Compiler invocation using a customizable configuration file 796

xlC — C++ compiler invocation using a customizable configuration file 815

xlc++ — C++ compiler invocation using a customizable configuration file . . . 815

xargs — Construct an argument list and run a command 816

yacc — Use the yacc compiler 819

zcat — Uncompress and display data 823

Chapter 3. TSO/E commands 825

BPXBATCH — Run shell commands, shell scripts, or executable files 826

ISHELL — Invoke the ISPF shell 828

MKDIR — Make a directory . 829

MKNOD — Create a character special file 830

MOUNT — Logically mount a file system 832

OBROWSE — Browse a z/OS UNIX file 838

Contents vii

||
||

||
||

||

OCOPY — Copy an MVS data set member or z/OS UNIX file to another

member or file . 839

OEDIT — Edit an z/OS UNIX file system file 844

OGET — Copy z/OS UNIX files into an MVS data set 845

OGETX — Copy z/OS UNIX files from a directory to an MVS PDS or PDSE 848

OHELP — Display online z/OS UNIX System Services publications 852

OMVS — Invoke the z/OS shell 853

OPUT — Copy an MVS data set member into a z/OS UNIX system file . . . 866

OPUTX — Copy members from an MVS PDS or PDSE to an z/OS UNIX

system directory . 868

OSHELL — Invokes BPXBATCH from TSO/E 871

OSTEPLIB — Build a list of files 872

UNMOUNT — Remove a file system from the file hierarchy 873

Appendix A. z/OS UNIX Shell Command Summary 877

General Use . 877

Controlling Your Environment 877

Daemons . 878

Managing Directories . 878

Managing Files . 879

Printing Files . 880

Computing and Managing Logic 880

Controlling Processes . 880

Writing Shell Scripts . 881

Developing or Porting Application Programs 881

Communicating with the System or Other Users 881

Working with Archives . 881

Working with UUCP . 882

Appendix B. tcsh Shell Command Summary 883

General Use . 883

Controlling Your Environment 883

Managing Directories . 884

Computing and Managing Logic 884

Managing Files . 884

Controlling Processes . 884

Appendix C. Regular Expressions (regexp) 885

Summary . 888

Examples . 888

Appendix D. Running shell scripts or executable files under MVS

environments . 891

BPXBATCH . 891

Using OSHELL to run shell commands and scripts from MVS 899

Appendix E. BPXCOPY: Copying a sequential or partitioned data set or

PDSE member into an HFS file 901

BPXCOPY . 901

Appendix F. Localization . 907

Appendix G. Stub Commands 909

Appendix H. File Formats . 911

cpio — Format of cpio archives 911

viii z/OS V1R9.0 UNIX System Services Command Reference

||

magic — Format of the /etc/magic file 912

pax — Format of pax archives and special header summary files 915

queuedefs — Queue description for at, batch, and cron 921

tags — Format of the tags file 922

tar — Format of tar archives 922

utmpx — Format of login accounting files 924

uucp — Format of UUCP working files 925

Appendix I. Setting the Local Time Zone with the TZ Environment

Variable . 931

TZ Environment Variable . 931

Appendix J. Environment Variables 933

Appendix K. Specifying MVS data set names in the shell environment 935

Utilities supporting MVS data set names 935

Appendix L. Automatic Codeset Conversion: Default Status for Specific

Commands . 937

Appendix M. Additional dbx Documentation 939

execution: Controlling Execution 939

files: Accessing Source Files 939

scope: Scope . 939

threads: Thread Display and Control 940

usage: Basic Command Usage 940

variables: ″Set″ Variables . 941

Appendix N. UNIX shell commands changed for UNIX03 943

Appendix O. Accessibility . 947

Using assistive technologies 947

Keyboard navigation of the user interface 947

z/OS information . 947

Notices . 949

Programming Interface Information 950

Standards . 950

Trademarks . 950

Acknowledgments . 951

Index . 953

Contents ix

||

||

x z/OS V1R9.0 UNIX System Services Command Reference

Figures

1. Example of a Special Header Summary File . 915

© Copyright IBM Corp. 1996, 2007 xi

xii z/OS V1R9.0 UNIX System Services Command Reference

Tables

 1. Locales Supplied by z/OS UNIX System Services 4

 2. The Order of Operations for awk . 36

 3. Reference documentation for programs invoked by c89, cc, and c++ commands 69

 4. Possible txtflag / CCSID Combinations . 135

 5. Automatic conversion and file tagging behavior: Copying UNIX files to UNIX files 157

 6. Automatic conversion and file tagging behavior: Copying MVS data sets to UNIX files 157

 7. Automatic conversion and file tagging behavior: Copying UNIX files to MVS data sets 158

 8. cp Format: File to File and File ... (multiple files) to Directory 160

 9. cp Format: File to File . 161

10. cp Format: File... (multiple files) to Directory . 162

11. file command tests . 279

12. Output messages of file utility . 280

13. Fields in the Configuration File (inetd daemon) 314

14. Explanation of the ipcs Command Listing . 321

15. Internal Table Sizes (lex command) . 344

16. Automatic conversion and file tagging behavior: Moving UNIX files to UNIX files 442

17. Automatic conversion and file tagging behavior: Moving MVS data sets to UNIX files 442

18. Automatic conversion and file tagging behavior: Moving UNIX files to MVS data sets 443

19. mv Format: File to File and File ... (multiple files) to Directory 445

20. mv Format: File to File . 446

21. mv Format: File... (multiple files) to Directory . 446

22. exthdr.name string values . 480

23. globexthdr.name string values . 481

24. USTAR Defaults . 483

25. Maximum values for UID and GIDs . 490

26. Charset standards . 491

27. Shell Operators (sh command) . 562

28. Built-in Shell Variables (sh command) . 570

29. Shell Variables for Automatic Conversion (sh command) 573

30. Recommended USTAR format options . 619

31. Standard Input/Output Syntax for tcsh Shell . 646

32. tcsh Built-in Shell Variables . 656

33. tcsh Environment Variables . 669

34. tcsh Shell Variables for Automatic Conversion . 670

35. Compiler option conflict resolution . 812

36. Various Formats of the OMVS CONVERT Command (OMVS command) 855

37. Locales, Their Conversion Tables, and Default Escape Characters (OMVS command) 855

38. Regular Expression Features (regexp) . 888

39. Archive File: ASCII Header . 911

40. Example of a format archive for pax . 917

41. Charset standards . 919

42. Archive File: UNIX-Compatible Format . 923

43. Archive File: USTAR Format . 923

44. Commands that Allow Automatic Conversion by Default 937

45. Commands that Disallow Automatic Conversion by Default 937

46. UNIX Shell Commands and _UNIX03 . 943

© Copyright IBM Corp. 1996, 2007 xiii

||
||

||

xiv z/OS V1R9.0 UNIX System Services Command Reference

About this document

This document presents the information you need to use a z/OS system with the

shell and utilities feature as well as TSO/E (Time Sharing Option Extensions)

commands for using z/OS UNIX System Services (z/OS UNIX). These features

provide an application program interface (API) and a shell interface based on open

systems standards.

z/OS UNIX System Services (z/OS UNIX) gives the z/OS operating system an open

standards interface. It consists of two features:

v Shell and Utilities, which you can use to enter shell commands, write shell

scripts, and work with the file system.

v Debugger, which an application programmer can use to debug a z/OS UNIX

System Services application program written in the C or C++ languages.

This document describes how to use the shell commands, utilities, and TSO/E

commands.

For information about utilities related to the ported applications, see

http://www.ibm.com/servers/eserver/zseries/zos/unix/port_tools.html.

Who should use this document

This document is for application programmers, system programmers, and end users

working on a z/OS system and using the shell.

Finding more information about other products

Where to find more information

Where necessary, this document references information in other documents about

the elements and features of z/OS™. For complete titles and order numbers for all

z/OS documents, see z/OS Information Roadmap.

Direct your request for copies of any IBM publication to your IBM representative or

to the IBM branch office serving your locality.

There is also a toll-free customer support number (1-800-879-2755) available

Monday through Friday from 6:30 a.m. through 5:00 p.m. Mountain Time. You can

use this number to:

v Order or inquire about IBM publications

v Resolve any software manufacturing or delivery concerns

v Activate the program reorder form to provide faster and more convenient ordering

of software updates

Softcopy publications

The UNIX library is available on the z/OS Collection Kit, SK2T-6700. This softcopy

collection contains a set of z/OS and related unlicensed product documents. The

CD-ROM collection includes the IBM® Library Reader™, a program that enables

customers to read the softcopy documents.

© Copyright IBM Corp. 1996, 2007 xv

http://www.ibm.com/servers/eserver/zseries/zos/unix/port_tools.html

You can browse softcopy z/OS publications from the Web. For viewing or printing

using Adobe Acrobat Reader, Portable Document Format (PDF) versions are

available at http://www.ibm.com/servers/eserver/zseries/zos/bkserv/.

IBM Systems Center publications

IBM Systems Centers produce IBM Redbooks publications that can be helpful in

setting up and using UNIX System Services. You can order these publications

through normal channels, or you can view them with a Web browser. See the IBM

Redbooks site at http://www.ibm.com/redbooks.

These documents have not been subjected to any formal review nor have they

been checked for technical accuracy, but they represent current product

understanding (at the time of their publication) and provide valuable information on

a wide range of UNIX topics. You must order them separately. A selected list of

these documents is on the UNIX Web site at http://www.ibm.com/servers/eserver/
zseries/zos/unix/bpxa1pub.html/.

Porting information for UNIX

There is a Porting Guide on the UNIX porting page at http://www.ibm.com/servers/
eserver/zseries/zos/unix/bpxa1por.html.You can read the Porting Guide from the

Web or download it as a PDF file that you can view or print using Adobe Acrobat

Reader. The Porting Guide covers a range of useful topics, including: sizing a port,

setting up a porting environment, ASCII-EBCDIC issues, performance, and much

more.

The porting page also features a variety of porting tips, and lists porting resources

that will help you in your port.

UNIX courses

For a current list of courses that you can take, go to http://www.ibm.com/services/
learning/.

You can also see your IBM representative or call 1-800-IBM-TEACH

(1-800-426-8322).

UNIX home page

The UNIX home page on the World Wide Web contains technical news, customer

stories, and information about tools. You can visit it at http://www.ibm.com/servers/
eserver/zseries/zos/unix/.

Some of the tools available from the Web site are ported tools, and some are

home-grown tools designed for UNIX. The code works in our environment at the

time we make it available, but is not officially supported. Each tool has a README

file that describes the tool and lists any restrictions.

The simplest way to reach these tools is through the UNIX home page. From the

home page, click on Tools and Toys.

The code is also available from ftp://ftp.software.ibm.com/s390/zos/unix/ through

anonymous ftp.

Restrictions

Because the tools are not officially supported, APARs cannot be accepted.

xvi z/OS V1R9.0 UNIX System Services Command Reference

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/redbooks
http://www.ibm.com/servers/eserver/zseries/zos/UNIX/bpxa1pub.html
http://www.ibm.com/servers/eserver/zseries/zos/UNIX/bpxa1pub.html
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html
http://www.ibm.com/services/learning/
http://www.ibm.com/services/learning/
http://www.ibm.com/servers/eserver/zseries/zos/unix/
http://www.ibm.com/servers/eserver/zseries/zos/unix/

UNIX customization wizard

For help with customizing UNIX, check out our Web-based wizard at

http://www.ibm.com/servers/eserver/zseries/zos/wizards/.

This wizard builds two BPXPRMxx parmlib members; one with system processing

parameters and one with file system statements. It also builds a batch job that does

the initial RACF® security setup for UNIX. Whether you are installing UNIX for the

first time or are a current user who wishes to verify settings, you can use this

wizard.

The wizard also allows sysplex users to build a single BPXPRMxx parmlib member

to define all the file systems used by sysplex members participating in a UNIX

shared file system.

Discussion list

Customers and IBM participants also discuss UNIX on the mvs-oe discussion list.

This list is not operated or sponsored by IBM.

To subscribe to the mvs-oe discussion, send a note to:

listserv@vm.marist.edu

Include the following line in the body of the note, substituting your first name and

last name as indicated:

subscribe mvs-oe first_name last_name

After you are subscribed, you will receive further instructions on how to use the

mailing list.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS elements and features, z/VM®, z/VSE™, and Clusters for AIX® and Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS systems to

access IBM message explanations using LookAt from a TSO/E command line

(for example: TSO/E prompt, ISPF, or z/OS UNIX® System Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from the

z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T-4271) and use it from the resulting Windows graphical user interface

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html with a

handheld device that has wireless access and an Internet browser (for example:

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

About this document xvii

http://www.ibm.com/servers/eserver/zseries/zos/wizards/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

v A CD-ROM in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T-4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in the

LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide checks

that take advantage of the IBM Health Checker for z/OS framework. This book

might refer to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

xviii z/OS V1R9.0 UNIX System Services Command Reference

Summary of changes

Summary of changes

for SA22-7802-09

z/OS Version 1 Release 9

 This document contains information previously presented in z/OS UNIX System

Services Command Reference, SA22-7802-08, which supports z/OS Version 1

Release 8.

z/OS Summary of Message and Interface Changes lists new or changed shell and

TSO/E commands for this release. It also lists new or changed environment

variables for this release, if any.

 New information

 The following shell commands have been added:

 ceebldtxt

 edcmtext

 xlC

 xlc++

 The following debugger commands have been added:

 None

 The following TSO/E commands have been added:

 None

 The following appendix has been added:

 z/OS UNIX shell commands changed for UNIX03

 Changed information

 The following shell commands have been changed:

 ar

 automount

 awk

 bc

 c++

 cc

 cp

 cxx

 ed

 file

 find

 mailx

 man

 mknod

 mv

 od

 pax

 sed

 tr

© Copyright IBM Corp. 1996, 2007 xix

uudecode

 uuencode

 The following debugger commands have been changed:

 dbx

 dbxmachine / machine: Machine Level Subcommands from Appendix M

has been merged into the display memory subcommand for dbx: Display

the contents of memory

 expressions: Specifying Expressions from Appendix M has been merged

into the Expression Handling topic of dbx

 The following TSO/E commands have been changed:

- MOUNT

The following appendixes have changed:

 Appendix A. z/OS UNIX Shell Command Summary

 Appendix H. File Formats: magic — Format of the /etc/magic file

 Deleted information

 The permuted index has been deleted from the publication.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of changes

for SA22-7802-08

z/OS Version 1 Release 8

 This document contains information previously presented in z/OS UNIX System

Services Command Reference, SA22-7802-07, which supports z/OS Version 1

Release 7.

z/OS Summary of Message and Interface Changes lists new or changed shell and

TSO/E commands for this release. It also lists new or changed environment

variables for this release, if any.

 New information

 The following shell commands have been added:

 as

 copytree (Rexx sample)

 Changed information

 The following shell commands have been changed:

 automount

 cd

 chroot

 confighfs

 cp

 dbx

 df

 extattr

 limit built-in command for tcsh

 mount

xx z/OS V1R9.0 UNIX System Services Command Reference

mv

 obrowse

 pax

 ps

 sh

 su

 ulimit

 unmount

 writedown

 xlc

 The following TSO/E commands have been changed:

- BPXATCH

- ISHELL

- MOUNT

- OCOPY

The following appendixes have changed:

 Appendix D. Running Shell Scripts or Executable Files under MVS

Environments

 Appendix H. File Formats

This document has been enabled for the following types of advanced searches in

the online z/OS Library Center: commands.

You may notice changes in the style and structure of some content in this

document—for example, headings that use uppercase for the first letter of initial

words only, and procedures that have a different look and format. The changes are

ongoing improvements to the consistency and retrievability of information in our

documents.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of changes

for SA22-7802-07

z/OS Version 1 Release 7

 This document contains information previously presented in z/OS UNIX System

Services Command Reference, SA22-7802-06, which supports z/OS Version 1

Release 6.

z/OS Summary of Message and Interface Changes lists new or changed shell and

TSO/E commands for this release. It also lists new or changed environment

variables for this release, if any.

 New information

 The following commands have been added:

 c99

 ld

 Changed information

 The following commands have been changed:

Summary of changes xxi

c++

 c89

 cc

 mount

 pax

 ps

 multproc subcommand for dbx

 plugin subcommand for dbx

 pluginload subcommand for dbx

 pluginunload subcommand for dbx

 set

 xlc

 The following appendixes have changed:

 Environment Variables

 Deleted information

 The following information has been removed:

 filecache command

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

xxii z/OS V1R9.0 UNIX System Services Command Reference

Chapter 1. Introduction to shell commands and DBCS

This is an introduction to the shell commands and the doublebyte character set

(DBCS).

Reading the command descriptions

Each shell command appears in alphabetic order. The description for each

command is divided into several topics, which are explained in the following

paragraphs. Some of these topics apply only to a few command descriptions. Also,

some command descriptions include special topics that are not explained here.

Format

The Format topic provides a quick summary of the command’s format, or syntax.

The syntax was chosen to conform to general UNIX usage. For example, here is

the format of the ls command:

ls [–AabCcdFfgiLlmnopqRrstuWx1] [pathname ...]

The format takes the form of a command line as you might type it into the system; it

shows what you can type in and the order in which you should do it. The parts

enclosed in square brackets are optional; you can omit them if you choose. Parts

outside the square brackets must be present for the command to be correct.

The format begins with the name of the command itself. Command names always

appear in bold Courier (typewriter) font.

After the command name comes a list of options, if there are any. A typical z/OS

shell command option consists of a dash (–) followed by a single character, usually

an uppercase or lowercase letter. For example, you might have –A or –a.

Note: The case of letters is important; for example, in the format of ls, –a and –A

are different options, with different effects.

If you are going to specify several options for the same command, you can put all

the option characters after the same dash. Or you can put each option after its own

dash. Or you can rearrange the order of options. For example,

ls -A -a ls -Aa ls -a -A ls -aA

are all equivalent.

The format line shows options like in bold Courier (typewriter) font. In the

description of ls, all options are shown in one long string after the single dash. But

another common option form is:

-x value

where –x is a dash followed by a character, and value provides extra information for

using that option. For example, here is the format for the sort command, which

takes unsorted input and sorts it:

sort [–cmu]

[–o outfile]

[–t char]

[–yn]

[–zn]

[–bdfiMnr]

© Copyright IBM Corp. 1996, 2007 1

[-k startpos[,endpos]] ...

[file ...]

sort [–cmu]

[–o outfile]

[–tchar]

[–yn]

[–zn]

[–bdfiMnr]

[+startposition[–endposition]] ...

[file ...]

You can see that there are two possibilities here; you would need to choose which

of the two versions of sort met your requirements. In either possibility, however, we

have the option:

–o outfile

This option tells the sort command where to save its sorted output. The form of the

option is –o, followed by a space, followed by outfile. In a command format,

anything appearing in italic serif font is a placeholder for information that you are

expected to supply. Sometimes after the format, the kind of information expected in

place of the placeholder is explained. In our sort example, outfile stands for the

name of a file where you want sort to store its output. For example, if you wanted

to store the output in the file sorted.dat, you would specify:

sort -o sorted.dat

(followed by the rest of the command).

The format for sort also contains an option of the form:

–tchar

This is similar to the option form we were just discussing, except that there is no

space between the –t and char. char in italics is a placeholder; in this case, it

stands for any single character. If you want to use the –t option for sort, you just

type –t followed immediately by another character, as in:

sort -t:

In this case, we use a colon (:) in the position of the placeholder char.

The end of the sort format is:

[file ...]

This means a list of one or more filenames; the ellipsis (....) stands for repetitions of

whatever immediately precedes it. Since there are square brackets around the

previous list, you can omit the list if you like.

The format of ls ended in:

[pathname ...]

As you might guess, this means that an ls command can end with an optional list of

one or more pathnames. What’s the difference between this and our sort example?

A pathname (specified with pathname) can be the name of either a file or a

directory; a filename (specified with file) is always the name of a file.

2 z/OS V1R9.0 UNIX System Services Command Reference

The order of items on the command line is important. When you type a command

line, you should specify its parts in the order they appear in the command format.

The exceptions to this are options marked with a dash (–); they do not have to be

given in the exact order shown in the format. However, all the – options must

appear in the correct area of the command line. For example, you can specify:

ls -l -t myfiles

ls -t -l myfiles

but you won’t get correct results if you specify:

ls myfiles -l -t ***incorrect***

or:

ls -l myfiles -t ***incorrect***

and so on. If you enter the last example, for instance, ls interprets –t as the

pathname of a file or directory, and the command will try to list the characteristics of

that item.

As a special notation, most z/OS shell commands let you specify two dashes (––)

to separate the options from the nonoption arguments; –– means: “There are no

more options.” Thus, if you really have a directory named –t, you could specify:

ls –– –t

to list the contents of that directory.

Description

The Description topic describes what the command does. For a particularly complex

command, this topic may be divided into a large number of subtopics, each dealing

with a particular aspect of the command.

The Description topic often mentions the standard input (stdin) and the standard

output (stdout). The standard input is usually the workstation keyboard; the

standard output is usually the display screen. The process of redirection can

change this. Redirection is explained in z/OS UNIX System Services User’s Guide.

The shell differentiates between hex, octal, and decimal as follows:

v Any number that starts with 0x is hex.

v Any number that starts with 0 is octal.

v Any number that does not start with 0x or 0 is decimal.

Inside the Description topic, the names of files and directories are presented in

normal bold font. The names of environment variables are also presented in

NORMAL BOLD font, capitalized.

Options

The Options topic describes each of the options used by the command.

Examples

The Examples topic is present in many command descriptions, giving examples of

how the z/OS shell can be used. This topic tries to give a mix of simple examples

that show how the commands work on an elementary level, and more complex

examples that show how the commands can perform complicated tasks.

Chapter 1. Introduction to shell commands and DBCS 3

Trying the examples provided

Before you try to run any of the provided examples, you need to know that the z/OS

shell uses the EBCDIC Latin1/Open System Interconnection Code Page 01047.

Characters entered on a workstation keyboard and passed to the shell by z/OS do

not have the same hexadecimal encoding as the code page the shell uses. You

may need to customize your keyboard so that those characters have the encoding

the shell uses. See z/OS UNIX System Services User’s Guidefor more information

about code page conversion, about using a keyboard with customized characters,

and for a copy of code page 01047.

Environment variables

The Environment Variables topic lists the environment variables that affect the

command, if any, and describes the purposes that those variables serve. For

example, the ls command description lists two environment variables— COLUMNS

and TZ—and informs you that COLUMNS is the terminal width and that TZ contains

information about the local time zone.

Localization

All shell commands are affected by the following special localization variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

The Localization topic describes how the locale-related environment variables affect

the behavior of the command. These environment variables allow you to access

locale information, including alternate character sets; alternate numeric, monetary,

and date and time formats; and foreign language translations of common

messages. Locales make it easier for users around the world to use the shell and

utilities.

z/OS UNIX System Services supports the IBM-supplied locales listed in Table 1.

User-generated locales using code page 1047 are also supported.

 Table 1. Locales Supplied by z/OS UNIX System Services

Country or Region Language Locale Name

Bulgaria Bulgarian Bg_BG.IBM-1025

Czech Republic Czech Cs_CZ.IBM-870

Denmark Danish Da_DK.IBM-277

Denmark Danish Da_DK.IBM-1047

Switzerland German De_CH.IBM-500

Switzerland German De_CH.IBM-1047

Germany German De_DE.IBM-273

Germany German De_DE.IBM-1047

Greece Ellinika El_GR.IBM-875

United Kingdom English En_GB.IBM-285

United Kingdom English En_GB.IBM-1047

Japan English En_JP.IBM-1027

United States English En_US.IBM-037

United States English En_US.IBM-1047

Spain Spanish Es_ES.IBM-284

Spain Spanish Es_ES.IBM-1047

Finland Finnish Fi_FI.IBM-278

Finland Finnish Fi_FI.IBM-1047

Belgium French Fr_BE.IBM-500

4 z/OS V1R9.0 UNIX System Services Command Reference

Table 1. Locales Supplied by z/OS UNIX System Services (continued)

Country or Region Language Locale Name

Belgium French Fr_BE.IBM-1047

Canada French Fr_CA.IBM-037

Canada French Fr_CA.IBM-1047

Switzerland French Fr_CH.IBM-500

Switzerland French Fr_CH.IBM-1047

France French Fr_FR.IBM-297

France French Fr_FR.IBM-1047

Croatia Croatian Hr_HR.IBM-870

Hungary Hungarian Hu_HU.IBM-870

Iceland Icelandic Is_IS.IBM-871

Iceland Icelandic Is_IS.IBM-1047

Italy Italian It_IT.IBM-280

Italy Italian It_IT.IBM-1047

Israel Hebrew Iw_IL.IBM-424

Japan Japanese Ja_JP.IBM-939

Japan Japanese Ja_JP.IBM-1027

Korea Korean Ko_KR.IBM-933

Belgium Dutch Nl_BE.IBM-500

Belgium Dutch Nl_BE.IBM-1047

Netherlands Dutch Nl_NL.IBM-037

Netherlands Dutch Nl_NL.IBM-1047

Norway Norwegian No_NO.IBM-277

Norway Norwegian No_NO.IBM-1047

Poland Polish Pl_PL.IBM-870

Brazil Brazilian Pt_BR.IBM-037

Brazil Brazilian Pt_BR.IBM-1047

Portugal Portugese Pt_PT.IBM-037

Portugal Portugese Pt_PT.IBM-1047

Romania Romanian Ro_RO.IBM-870

Russia Russian Ru_RU.IBM-1025

Serbia Serbian(Latin) Sh_SP.IBM-870

Slovakia Slovak Sk_SK.IBM-870

Slovenia Slovenian Sl_SI.IBM-870

Serbia Serbian(Cyrillic) Sr_SP.IBM-1025

Sweden Swedish Sv_SE.IBM-278

Sweden Swedish Sv_SE.IBM-1047

Turkey Turkish Tr_TR.IBM-1026

People’s Republic of China Simplified Chinese Zh_CN.IBM-935

Taiwan Traditional Chinese Zh_TW.IBM-937

For more information on locales, see Appendix F.

Files

The Files topic lists any supplementary files (files not specified on the command

line) that the command refers to. Such files usually provide information the

command needs; the command accesses these files during its operation. If the files

cannot be found, the command issues a message to this effect.

Files documented in this topic may be temporary files, output files, databases,

configuration files, and so on.

The z/OS C runtime library supports a file naming convention of // (the filename can

begin with exactly two slashes). However, z/OS UNIX System Services does not

Chapter 1. Introduction to shell commands and DBCS 5

support this convention. Do not use this convention (//) unless it is specifically

indicated (as in the description for the c89 command). z/OS UNIX System Services

does support the POSIX file naming convention, where the filename can be

selected from the set of character values excluding the slash and the null character.

Usage notes

The Usage Notes topic gives additional notes for those using the shell. The purpose

of the Usage Notes topic is similar to that of the Caution topic (see “Caution”)—to

provide important information that the reader should not overlook. However, the

Usage Notes topic usually deals with issues that are more benign than what the

Caution topic deals with.

Exit values

The Exit Values topic presents the error messages that the shell may display, along

with a description of what caused the message and a possible action you can take

to avoid getting that message. Occasionally, this topic refers you to another

command description for more information on an error message.

This topic also contains information about the exit status returned by the command.

You can test this status to determine the result of the operation that the command

was asked to perform.

Limits

The Limits topic lists any limits on the operation of the shell. Some limits are implicit

rather than explicit and may be lower than the explicitly stated limit.

Portability

The Portability topic includes two types of information:

v Availability of a version of the command on existing UNIX systems (System V,

BSD)

v Compatibility with industry standards—for example, the POSIX.2 Draft Standard

or the X/Open Portability Guide, Issue 4 (XPG4**).

Caution

The Caution topic contains important advice for users. In z/OS shell documentation,

the Caution topic is often aimed at those who are familiar with UNIX systems. Since

the z/OS shell primarily conforms to the emerging POSIX standards, its behavior

may not precisely match the corresponding UNIX commands. The Caution topic

may point out discrepancies in behavior that may catch experienced POSIX or

UNIX users by surprise.

Related information

The Related Information topic refers to other command descriptions that may

contain information relevant to the command description you have just read. For

example, consider the head command; by default, head displays the first 10 lines

of each file given on the command line. Its Related Information topic refers you to

tail, the command that displays the last 10 lines of a file.

6 z/OS V1R9.0 UNIX System Services Command Reference

Using the doublebyte character set (DBCS)

z/OS UNIX supports the doublebyte character set (DBCS). It also supports a DBCS

locale. The name of the IBM-supplied DBCS locale is Ja_JP. This locale uses the

IBM-939 coded-character set, which is a doublebyte character set.

This topic discusses the following:

v Requirements for using DBCS

v When you must use SBCS characters and not DBCS characters

v When you can use DBCS characters

v Byte sequences that are not permitted in DBCS strings

v Displaying DBCS characters

v Switching locales

v Problems with DBCS filenames containing DBCS characters

Requirements for using DBCS

If you plan to use DBCS interactively, you must work at a terminal that supports

DBCS, such as a PS/55, and follow the procedures for the terminal emulator being

used. It is not necessary, however, to be at a terminal that supports DBCS if you

just want to use files that contain DBCS data.

To use DBCS, you need to do the following:

1. Specify special logmodes to access TSO/E and VTAM® support for DBCS.

Typically, the system programmer has already set these up and provided you

with instructions.

2. Issue the TSO/E PROFILE PLANGUAGE(JPN) command, if required, to receive

TSO/E messages in the Japanese language.

3. On the OMVS command, use the null character conversion table (the default)

for character conversion. You do not need to specify the CONVERT operand on

the OCOPY, OGETX, OPUT, and OPUTX commands.

4. Access the shell using the OMVS command with the DBCS operand (which is

the default setting).

You can also access the shell by using the rlogin program. The default

conversion is from ISO8859-1 to IBM-1047; users can change their conversion

to use different code pages by using the chcp command.

5. Define singlebyte escape characters for typing escape sequences.

6. Enable the shell and utilities for the DBCS locale, including having all shell and

utility messages in Japanese, by entering the these commands:

export LC_ALL=Ja_JP

exec sh

To receive shell and utility messages in Japanese, but not put your terminal in

DBCS mode, enter the this command:

export LC_MESSAGES=Ja_JP

When you must use SBCS and not DBCS characters

You must use the singlebyte character set (SBCS) when specifying the following:

v User names.

v System, device, group, and terminal names.

v User names and passwords.

v Shell command-line options.

v Shell commands and their operands.

Chapter 1. Introduction to shell commands and DBCS 7

v Environment variables (DBCS characters are not exportable).

v Delimiters such as space, slash (/), braces { }, tab, parentheses, dot (.), and any

other shell special characters.

v Encoding for newline or null cannot be embedded in a DBCS character’s code.

There are other rules that define valid DBCS data:

– The DBCS blank is 0x4040.

– The first byte of the code defining the DBCS character must be in the range

0x41 to 0xFE.

– The second byte must be in the range 0x41 to 0xFE.

All others are invalid. This effectively covers the newline and null escape

sequences, since they cannot be part of a valid DBCS character.

For more information on invalid DBCS characters, see Byte sequences that are

not permitted in DBCS strings.

v Although filenames with DBCS characters are tolerated, you should not create

filenames with DBCS characters. Doing so makes the file nonportable across

locales, and problems may occur if filenames are subsequently used in a

singlebyte locale. Instead, use the POSIX portable filename character set and

singlebyte filenames.

IBM will not support any customer problems with DBCS filenames.

For more information on DBCS filenames, see Problems with filenames

containing DBCS characters.

When you can use DBCS characters

When in the DBCS locale, you can use DBCS to specify the following:

v sh command-line arguments, although arguments expressed as numeric values

must use SBCS characters.

v Text in data files. Files containing DBCS text are processed correctly by the shell

and the utilities (such as ed and grep) if the DBCS locale is active. These files

can be either DBCS text or mixed text (combinations of SBCS and DBCS). Both

types of file can exist in the file system along with files that contain only

singlebyte text.

Byte sequences that are not permitted in DBCS strings

If you create invalid DBCS text, you may see an “illegal byte sequence” message

when processing that text. The shell or command issues this error message, and

the command stops processing in most cases.

Valid DBCS strings must start with “shift out” (SO [0x0E]) and end with “shift in” (SI

[0x0F]). The first byte of the code defining the DBCS character must be in the

range 0x41 to 0xFE. The second byte must be in the range 0x41 to 0xFE. The

exception is that DBCS blank is 0x4040. All others codes are invalid.

Normal terminal operations do not produce invalid DBCS strings. To prevent invalid

DBCS characters and strings:

v Do not use commands that operate on the data as byte strings instead of

character strings. For example, head is a utility that could truncate a DBCS string

or character in an inappropriate place, thus creating an invalid DBCS string.

Using pipes between utilities can also result in invalid DBCS strings unless you

pay attention to how each command handles the data.

v Do not edit text in nontext mode such as having the TSO/E editor with in HEX

ON mode.

8 z/OS V1R9.0 UNIX System Services Command Reference

If the shell command is operating on a character string and not on a byte string,

and the shell is in a locale that supports DBCS, and if the utility encounters an

invalid DBCS string, such as the ones described in this topic—you get an “illegal

byte sequence” message and the utility may fail.

Note: newline (\n [0x15]) causes the shift state of any subsequent character

sequence to start in the initial state (shifted into the SBCS mode). This may

apply when a command is processing a DBCS string and encounters

newline before a “shift in.”

For information on rules for creating DBCS data, refer to DBCS Design

Guide—System/370 Software , GG18-9095.

Displaying DBCS characters

In a doublebyte environment, column positions are always based on the width of

narrow characters. Normally, characters are “thin”; they take up only one column

position when displayed. In contrast, some DBCS characters are “thick”; they take

up two column positions when displayed.

The number of actual characters that are displayed by the command in the column

area depends on the thickness of the characters. This applies to such commands

as ls, fold, and pr, which display DBCS characters in column positions.

Switching locales

By default, the shell starts in the POSIX locale and cannot handle DBCS text until

the locale is changed, typically with the shell command export LC_ALL=Ja_JP. This

export command affects the current shell environment with the following exception:

if you change the locale to DBCS, the shell’s LC_CTYPE locale category remains in

the locale until is replaced via the exec command (exec /bin/sh).

Even if you change the locale to DBCS by using export LC_ALL=Ja_JP, the shell’s

LC_CTYPE variable remains in the previous locale (initially POSIX) until the shell is

exec’d again with exec sh.

Always follow the export LC_ALL=your locale with exec sh to be sure the shell and

utilities are running in the desired locale. This is true even if you place the export

LC_ALL=your_locale in your login profile.

Problems with filenames containing DBCS characters

The file system treats all filenames as if they contained SBCS characters. However,

when you use the shell in the DBCS locale, filename and pathname comparison is

performed in wide mode. That is, all the characters in the name are converted to

wide characters before comparison. By doing this, the shift codes are removed from

the comparison and, therefore, a match can be found with the filenames.

For example, if you have such DBCS filenames as:

db/so dbfile1 si

db/so dbfile2 si

where so and si are the shift codes that shift out to DBCS and back to SBCS, then

when in the DBCS locale (Ja_JP),

ls db/so file si *

lists both files.

Chapter 1. Introduction to shell commands and DBCS 9

When in the POSIX locale, DBCS strings are treated as byte strings. Comparison is

performed byte by byte. For example:

ls db/so file si *

shows the comparison string ending with an “e si”. The files in the directory would

have to end with an “e si” in order to find a match. Neither of the filenames in the

example would be found.

10 z/OS V1R9.0 UNIX System Services Command Reference

Chapter 2. Shell command descriptions

Following are the descriptions of all the commands for the z/OS shell. The

descriptions are listed in alphabetic order. For instructions on how to read the

command descriptions, see “Reading the command descriptions” on page 1.

The z/OS shell is based on the KornShell that originated on a UNIX system. As

implemented for z/OS UNIX System Services, this shell conforms to POSIX

standard 1003.2-1992.

Restriction: z/OS UNIX shell commands can only read a large format sequential

data set that has no more than 65,535 tracks of data on any single volume.

This information assumes that your z/OS system includes the Resource Access

Control Facility (RACF). Instead of RACF, your system could have an equivalent

security product.

alias — Display or create a command alias

Format

 alias [–tx] [name[=value] ...]

 alias –r

tcsh shell: alias [name [wordlist]]

Description

When the first word of a shell command line is not a shell keyword, alias causes

the shell to check for the word in the list of currently defined aliases. If it finds a

match, the shell replaces the alias with its associated string value. The result is a

new command line that might begin with a shell function name, a built-in command,

an external command, or another alias.

When the shell performs alias substitution, it checks to see if value ends with a

blank. If so, the shell also checks the next word of the command line for aliases.

The shell then checks the new command line for aliases and expands them,

following these same rules. This process continues until there are no aliases left on

the command line, or recursion occurs in the expansion of aliases.

Calling alias without parameters displays all the currently defined aliases and their

associated values. Values appear with appropriate quoting so that they are suitable

for reinput to the shell.

Calling alias with parameters of the form name=value creates an alias for each

name with the given string value.

If you are defining an alias where value contains a backslash character, you must

precede it with another backslash. The shell interprets the backslash as the escape

character when it performs the expansion. If you use double quotes to enclose

value, you must precede each of the two backslashes with an additional backslash,

because the shell escapes characters—that is, the shell does not interpret the

character as it normally does—both when assigning the alias and again when

expanding it.

© Copyright IBM Corp. 1996, 2007 11

To avoid using four backslashes to represent a single backslash, use single quotes

rather than double quotes to enclose value, because the shell does not escape

characters enclosed in single quotes during assignment. As a result, the shell

escapes characters in single quotes only when expanding the alias.

Calling alias with name without any value assignment displays the function name

(name) and its associated string value (value) with appropriate quoting.

DBCS Recommendation: We recommend that you use singlebyte characters when

specifying an alias name, because the POSIX standard states that alias names

must contain only characters in the POSIX portable character set.

alias in the tcsh shell

Without arguments, alias in the tcsh shell prints all aliases. With name, alias prints

the alias for name. With name and wordlist, alias assigns wordlist as the alias of

name. wordlist is command and filename substituted. name may not be alias or

unalias.

See also unalias in the tcsh shell.

Options

–r Removes all tracked aliases.

–t Makes each name on the command line a tracked alias. Each tracked alias

resolves to its full pathname; the shell thus avoids searching the PATH

directories whenever you run the command. The shell assigns the full

pathname of a tracked alias to the alias the first time you invoke it; the shell

reassigns a pathname the first time you use the alias after changing the

PATH variable.

 When you enter the command:

set –h

each subsequent command you use in the shell automatically becomes a

tracked alias. Running alias with the –t option, but without any specified

names, displays all currently defined tracked aliases with appropriate

quoting.

–x Marks each alias name on the command line for export. If you specify –x

without any names on the command line, alias displays all exported

aliases. Only exported aliases are passed to a shell that runs a shell script.

 Several aliases are built into the shell. Some of them are:

alias autoload="typeset –fu"

alias functions="typeset –f"

alias hash="alias –t"

alias history="fc –l"

alias integer="typeset –i"

alias nohup="nohup "

alias r="fc –s"

alias stop="kill –STOP"

alias suspend="stop \$\$"

You can change or remove any of these aliases, and the changes will remain in

effect for the current shell and any shell scripts or child shells invoked implicitly from

the command. These aliases are reset to their default built-in values each time a

new shell is invoked from the command line.

alias

12 z/OS V1R9.0 UNIX System Services Command Reference

Example

The command:

alias ls="ls –C"

defines ls as an alias. From this point onward, when you issue an ls command, it

produces multicolumn output by default.

alias in the tcsh shell examples

To alias the !! history command, use \!-1 instead of \!\!. For example:

alias mf ’more \!-1$’

creates an alias for looking at the file named by the final argument of the previously

entered command. Example output would be the following:

alias mf ’more \!-1$’

echo "We love tcsh." > file1

mf

We love tcsh.

"file1" (EOF)

where mf pulls the last argument of the previous command (file1), and then

displays that file using the more command.

Localization

alias uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F, “Localization” for more information.

Usage notes

1. alias is a built-in shell command.

2. Because exported aliases are only available in the current shell environment

and to the child processes of this environment, they are not available to any

new shell environments that are started (via the exec sh command, for

example). To make an alias available to all shell environments, define it as a

nonexported alias in the ENV file, which is executed whenever a new shell is

run.

Exit values

0 Successful completion

1 Failure because an alias could not be set

2 Failure because of an incorrect command-line option

 If you define alias to determine the values of a set of names, the exit value is the

number of those names that are not currently defined as aliases.

alias

Chapter 2. Shell command descriptions 13

Portability

POSIX.2 User Portability Extension, UNIX KornShell.

The –t and –x options are extensions to the POSIX standard.

Related information

fc, hash, nohup, set, sh,typeset, unalias, tcsh

ar — Create or maintain library archives

Format

 ar –d[–Ilv] archive member...

 ar –m[–abIilsv] [posname] archive member ...

 ar –p[–Ilsv] archive member...

 ar –q[–clsv] [–F format] archive member ...

 ar –r[abcIilsuv] [–F format] [posname] archive member ...

 ar –t[Ilsv] archive[member...]

 ar –u[–abcIiklsv] [–F format] [posname] archive member ...

 ar –x[–CIlsTv] archive [member...] ...

Description

ar maintains archive libraries. The archive library is a collection of files, usually

object files. Using ar, you can create a new library, add members to an existing

library, delete members from a library, extract members from a library, and print a

table of contents for a library.

A library member is an arbitrary file. Normally, these files are object files or side

files, suitable for use by a linkage editor.

If any members of a library are object files, ar creates and maintains an external

symbol index for link-editing.

Member names in an archive are only the final component of any pathname. When

creating a new library member (member) as given on the command line, ar uses

the full pathname given. When storing the member name in the library, or

comparing a member name, ar uses only the final component.

Options

The format shows the main functions of ar, which are defined as follows:

–d Deletes each named member from the archive and regenerates the symbol

table.

–m Moves the named archive member in the archive. The new position is

specified by –a, –b, i, or posname. If a location is not specified, the

member is moved to the end of the archive.

–p Displays each member specified to the standard output (stdout). If you did

not specify any members, ar displays all members.

–q Quickly appends the specified file to the archive. With this option, ar does

not check to see if file is already a member of the archive.

–r Replaces or adds file to archive. If archive does not exist, ar creates it and

prints a message. When ar replaces an existing member, the archive order

alias

14 z/OS V1R9.0 UNIX System Services Command Reference

|

|
|

is not changed. If file is not replacing a member, it is added to the end of

the archive unless –a, –b, or –i is used. This option regenerates the symbol

table.

–t Displays a table of contents that lists members, or every member if member

is not specified. ar prints a message for each member it doesn’t find. By

default, ar prints the member name for all selected members. With the

verbose (–v) option, ar prints more information for all selected members.

–x Extracts each specified member from the archive and copies it to a file. If

member is specified as a full pathname, it is copied to that pathname. If no

member is specified, all members are extracted. The archive remains

unchanged.

The following options change the behavior of the main functions:

–a Places file in the archive after the member specified by posname. If no

member is named, file is added to the end of the archive.

–b Places file in the archive before the member specified by posname. If no

member is named, file is placed at the beginning of the archive.

–C Prevents ar from overwriting existing files with extracted files. This option is

used only with extraction (–x).

–c Suppresses the message normally printed when ar creates a new archive

file. You can use this only in conjunction with the –r and –q options.

–F format

Specifies the archive format to be used by a new archive. You can use this

option only when creating a new archive with the –r and –q options.

–I Ignores the case of letters when searching the archive for specified member

names. Normally, the case is significant.

–i Inserts file into the archive before the member specified by posname. If

posname isn’t specified, ar inserts file at the beginning of the archive. This

option is the same as –b.

–l This option is ignored. It requests that temporary files generated by ar be

put in the directory rather than in the default temporary file directory. It is

provided for backward compatibility with other versions of ar

–s Regenerates the external symbol table regardless of whether the command

modifies the archive.

–T When used with –x, allows extraction of members with names longer than

the file system supports. Normally this is an error, and ar does not extract

the file. Most file systems truncate the filename to the appropriate length.

–u Replaces the archive member only if the member file’s modification time is

more recent than the archive member time. –u implies –r, so it isn’t

necessary to specify –r also.

–v Gives verbose output. With –d, –q, –r, and –x, this option prints the

command letter and the member name affected before performing each

operation. With –t, ar prints more information about archive members using

a format similar to ls –l. With –p, ar writes the name of the member to

stdout, before displaying the contents of the file.

ar

Chapter 2. Shell command descriptions 15

Operands

archive

Specifies the pathname of the archive file.

member

Specifies the pathname of the file that is to be acted upon (placed, deleted,

searched for, and so on) in the archive library.

Examples

1. To add a member fioacc.o to the archive file /u/turner/bin/cliserpgm.a, specify:

ar –rc /u/turner/bin/cliserpgm.a fioacc.o

2. To display the members of the archive file /u/turner/bin/cliserpgm.a, specify:

ar –tv /u/turner/bin/cliserpgm.a

3. To delete the member repgen.o from the archive file /u/turner/bin/cliserpgm.a

and regenerate the external symbol table for the archive, specify:

ar –ds /u/turner/bin/cliserpgm.a repgen.o

Environment variables

ar uses the following environment variable:

TMPDIR

The pathname of the directory being used for temporary files. If it is not set,

z/OS UNIX uses /tmp.

Localization

ar uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_TIME

v NLSPATH

See Appendix F, “Localization” for more information.

Files

ar creates temporary files in the archive file’s directory and in the directory named

by the TMPDIR environment variable. These files are intermediate versions of the

archive file being created or updated. Consequently, they require approximately the

same file size as the archive file being manipulated.

Usage note

ar may be used to store multiple versions of the same object file within one archive

library. This is useful if you are providing an archive library which may be used to

resolve references from code compiled with various compiler options. These options

cause differences in the object files which must be matched with the archive library

member attributes. Attributes for ar are: AMODE, XPLINK, and IPA.

ar will store the attribute information for every entry in the symbol table. The linkage

editor will use the attribute information to resolve external references with the

appropriate archive library member. Because archive library member names are

only the final component of the pathname, these member names must be unique

for the different object file versions.

ar

16 z/OS V1R9.0 UNIX System Services Command Reference

Side files (normally those created when link-editing a DLL) can be made members

of an archive file. When the linkage editor processes such an archive file, it will

normally read in all such side-files so that archives can be used for resolving

symbol references in DLLs. For more information about resolving external

references, see z/OS MVS Program Management: User’s Guide and Reference.

You will want to establish a naming convention for the object files, and change your

build procedures to generate the correct names. For example, if your archive

contains 3 versions of myfuncs.o, you could generate names

 myfuncs.o AMODE(31), non-XPLINK

 myfuncsX.o AMODE(31), XPLINK

 myfuncs64.o AMODE(64) (AMODE(64) always forces XPLINK)

Your make file might generate commands such as these:

 c89 -c myfuncs.c

 c89 -Wc,xplink -o myfuncsX.o -c myfuncs.c

 c89 -Wc,LP64 -o myfuncs64.o -c myfuncs.c

 ar -ruv libmyfuncs.a myfuncs.o myfuncsX.o myfuncs64.o

To display the attributes of the symbols within an object file or an archive library of

object files, use nm — Display symbol table of object, library, or executable files.

Exit values

0 Successful completion

1 Failure due to any of the following:

v Inability to create the extracted file

v An error writing to the extracted file

v The requested module not found on appending

v An error opening the module on appending

v An incorrect module on appending

v Inability to access the module on appending

v A module not found on table or extraction

2 Incorrect command-line arguments or options

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

For backward compatibility, you can omit the dash (–) preceding the options if the

options appear only as the first argument after the command name.

The following options are XPG extensions to the POSIX standard: –a, –b, –C, –i,

–l, –m, –q, –s, and –T.

The –F and the –I options are extensions to the POSIX and XPG standards.

Related information

c89, make, nm

ar

Chapter 2. Shell command descriptions 17

|
|
|
|
|

as — Use the HLASM assembler to produce object files

Format

as

 [--option[, option] ...] ...

 [-a[egimrsx][=file]] ...

 [-g]

 [--[no]gadata[=file]]

 [-moption]

 [-I PDS]

 [-o objectfile]

 [-v]

 [--[no]gdwarf3[=file]]

 [--[no]help]

 [--[no]verbose]

 file

Description

The as command processes assembler source files and invokes the HLASM

assembler to produce object files.

Options

-- Accepts all options that are accepted by HLASM. Multiple options can be

specified by separating them with a comma. This style of option

specification is designed to provide smooth migration for users accustomed

to specifying options in JCL. For example:

--"FLAG(ALIGN),RENT"

-a[egimrsx][=file]

Instructs the assembler to produce a listing.

-ae Instructs the assembler to produce the External Symbol Dictionary

topic of the assembler listing. This is equivalent to specifying:

--ESD.

-ag Instructs the assembler to produce the General Purpose Register

Cross Reference topic of the assembler listing. This is equivalent to

specifying: --RXREF.

-ai Instructs the assembler to copy all product information to the list

data set. This is equivalent to specifying: --INFO.

-am Instructs the assembler to produce the Macro and Copy Code

Source Summary topic of the assembler listing. This is equivalent to

specifying: --MXREF.

-ar Instructs the assembler to produce the Relocation Dictionary (RLD)

topic of the assembler listing. This is equivalent to specifying:

--RLD.

-as Instructs the assembler to produce the Ordinary Symbol and Literal

Cross Reference topic of the assembler listing. It also instructs the

assembler to produce the un-referenced symbols defined in the

CSECTs topic of the assembler listing. This is equivalent to

specifying: --XREF(SHORT,UNREFS).

as

18 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|
|
|
|
|
|
|
|
|
|
|

-ax Instructs the assembler to produce the DSECT Cross Reference

topic of the assembler listing. This is equivalent to specifying:

--DXREF.

=file Specifies the file name of the listing output. If you do not specify a

file name, the output goes to stdout.

You may combine these options; for example, use -ams for an assembly

listing with expanded macro and symbol output. The =file option, if used,

must be specified last.

-g Instructs the assembler to collect debug information. By default, the debug

information is produced in DWARF Version 3 format (or --gdwarf3).

--[no]gadata[=file]

Instructs the assembler to collect associated data and write it to the

associated data file. You can optionally specify the name of the output

debug file. The specified name cannot be a PDS or z/OS UNIX file system

directory name. If you do not specify a file name, the default name is

created as follows:

v If you are compiling a data set, the as command uses the source file

name to form the name of the output data set. The high-level qualifier is

replaced with the user ID under which the as command is running, and

.ADATA is appended as the low-level qualifier. For example, if TS12345 is

compiling TSMYID.MYSOURCE(src) with this option, the produced debug file

name will be TS12345.MYSOURCE.ADATA(src).

v If you are compiling a z/OS UNIX file, the as command stores the debug

information in a file that has the name of the source file with an .ad

extension. For example, if you are compiling src.a with this option, the

compiler will create a debug file named src.ad.

-moption

HLASM keyword options are specified using the following syntax:

-m<option>[=<parm>[=<value>][:<parm>[=<value>]]...]

where <option> is an option name, <parm> is a suboption name, and

<value> is the suboption value.

 Keyword options with no parameters represent switches that may be either

on or off. The keyword by itself turns the switch on, and the keyword

preceded by the letters NO turns the switch off. For example, -mLIST tells

the HLASM assembler to produce a listing and -mNOLIST tells the HLASM

assembler not to produce a listing. If an option that represents a switch is

set more than once, the HLASM assembler uses the last setting.

 Keyword option and parameter names may appear in mixed case letters in

the invocation command.

-I PDS Instructs HLASM to look for assembler macro invocation in the specified

location. The PDS data set specified must be fully qualified. The specified

locations are then prepended to a default set of macro libraries. The as

command assumes a default set of macro libraries that is compatible with

the defaults for the C/C++ compilers. The default data sets used are: -I

CEE.SCEEMAC, -I SYS1.MACLIB, and -I SYS1.MODGEN. The default

data sets can be changed via the environment variable _AS_MACLIB, for

example:

export _AS_MACLIB="FIRST.PDS:SECOND.PDS"

as

Chapter 2. Shell command descriptions 19

||
|

-o objectfile

Specifies the name of the object file. If the name specified is a PDS or

z/OS UNIX System Services directory name, a default file name is created

in the PDS or z/OS UNIX directory specified as follows:

v If the source file is a sequential data set, the second last part of the data

set name will be used. If the data set name only contains one part after

the high-level qualifier, then the last part will be used.

v If the source file is a PDS member, the member name will be used.

v If the source file is a z/OS UNIX file, the suffix will be removed if

applicable.

v If the object file is going into a PDS, the first eight characters of the

name will be used. If there is a dot, anything after the first dot will be

removed.

v If the object file is going into a z/OS UNIX directory, .o will be appended

to the name.

For example:

Source file: //’abc.hello.source’

Ouput file in PDS: HELLO

Output file in UNIX directory: hello.o

Source file: //’ABC.HELLO’

Ouput file in PDS: HELLO

Output file in UNIX directory: HELLO.o

Source file: //SOURCE(hello)

Ouput file in PDS: HELLO

Output file in UNIX directory: hello.o

Source file: /abc/hello.s

Ouput file in PDS: HELLO

Output file in UNIX directory: hello.o

Source file: /abc/hellothere.s

Ouput file in PDS: HELLOTHE

Output file in UNIX directory: hellothere.o

-v Writes the version of the as command to stderr.

--[no]gdwarf3[=file]

Instructs the assembler to generate debug information conforming to the

DWARF Version 3 format. Debugging tools (for example, dbx) can take

advantage of this debug information. You can optionally specify the name of

the output debug file. The file name of the output debug file must be a PDS

member, a sequential data set or z/OS UNIX System Services file; it cannot

be a PDS directory or z/OS UNIX System Services file system directory

name. If you do not specify a file name, the default name is created as

follows:

v If you are compiling a data set, the as command uses the source file

name to form the name of the output data set. The high-level qualifier is

replaced with the userid under which the as command is running, and

.DBG is appended as the low-level qualifier. For example, if TS12345 is

compiling TSMYID.MYSOURCE(src) with the -g option, the produced

debug file name will be TS12345.MYSOURCE.DBG(src).

v If you are compiling a z/OS UNIX System Services file, the as command

stores the debug information in a file that has the name of the source file

with a .dbg extension. For example, if you are compiling src.a with the

-g option, the produced debug file name will be src.dbg.

as

20 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

--[no]help

Help menu. Displays the syntax of the as command.

--[no]verbose

Specifies verbose mode, which writes additional information messages to

stdout.

file may be:

v An MVS data set (for example, //somename)

v An absolute z/OS UNIX file (for example, /somename)

v A relative z/OS UNIX file (for example, ./somename or somename)

The output of the as command is an object file. If you do not specify a file name via

the -o option, the default name is created as follows:

v If you are compiling a data set, the as command uses the source file name to

form the name of the output data set. The high-level qualifier is replaced with the

user ID under which the as command is running, and .OBJ is appended as the

low-level qualifier. For example, if TS12345 is compiling TSMYID.MYSOURCE(src),

the compiler will create an object file named TS12345.MYSOURCE.OBJ(src).

v If you are compiling a z/OS UNIX file, the as command names the object file with

the name of the source file with an .o extension. For example, if you are

compiling src.a, the object file name will be src.o.

Notes:

1. The as command does not accept standard input as a file.

2. The as command invokes the HLASM assembler to produce the object file. The

HLASM assembler is invoked with the default options ASA and TERM. The ASA

option instructs HLASM to use American National Standard printer control

characters in records written to the listing file, thus making the listing file more

readable in the UNIX System Services environment. The TERM option instructs

HLASM to write error messages to stderr. These defaults can be changed by

using the -m option or -- option.

3. HLASM messages and as error messages are directed to stderr. Verbose

option output is directed to stdout.

4. When invoking as from the shell, any option arguments or operands specified

that contain characters with special meaning to the shell must be escaped. For

example, source files specified as PDS member names contain parentheses; if

they are specified as fully qualified names, they contain single quotes. To

escape these special characters, either enclose the option argument or operand

in double quotes, or precede each character with a backslash.

asa — Interpret ASA/FORTRAN carriage control

Format

asa [file ...]

Description

Historically, printouts created by programs use the first character of each line to

control the spacing between that line and the previous one. For example, if the first

character is a space, the rest of that line immediately follows the previous line; if it

is a 1, that line should begin on a new page, and so on.

as

Chapter 2. Shell command descriptions 21

asa reads input in this format and writes it out in a normal text format, using

newlines, formfeeds, and carriage returns to achieve the same effects as the

carriage control characters.

If you specify files on the command line, asa reads input from these files;

otherwise, it reads the standard input (stdin). asa writes output to the standard

output (stdout).

It does not copy newline characters in the input to the output. Instead, it uses the

first character of each line to determine how to print the rest of the line. asa

interprets the first character as follows:

Space Outputs the rest of the line without change.

0 Outputs a newline character before printing line.

1 Outputs a formfeed (start a new page) sequence before printing line.

+ Outputs a carriage return sequence so that line is output over the previous

line. If + starts the first line, it’s treated as a space.

Localization

asa uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F, “Localization” for more information.

Exit values

0 Successful completion

1 Failure due to any of the following:

v Write error on stdout

v Inability to open the input file

2 Unknown command-line option

Portability

POSIX.2, X/Open Portability Guide, UNIX System V.

at — Run a command at a specified time

Format

 at [–m] [–f file] [–q queue] –t time

 at [–m] [–f file] [–q queue] timespec

 at –r [–q queue] at_job ...

 at –l [–q queue] [at_job ...]

Description

at lets you set up a series of commands to be run later. It reads the commands

from the standard input (stdin) or from a file specified with the –f option. When the

commands run, they have the same environment variables, working directory, file

asa

22 z/OS V1R9.0 UNIX System Services Command Reference

creation mask, and so on that are set up when you run the at command; however,

at does not usually preserve open file descriptors, traps, or priority inherited from

the working environment.

Usually, you redirect the standard output (stdout) from these commands to files so

you can read the files after the system runs the commands. at mails the standard

output (stdout) and standard error output (stderr) to you if you do not redirect

them.

The at command displays an at-job identifier when you submit commands, along

with the time that the system is to run the commands.

at, batch, and crontab submit jobs to cron; the data in these jobs may contain

doublebyte characters. When the jobs are run, the data in the jobs are interpreted

in the locale that cron is using. Since it is strongly recommended that cron be

started in the POSIX locale, doublebyte characters in the job may not be interpreted

correctly. You can get around this by calling setlocale() in the job itself.

Options

–f file Reads commands from file rather than from standard input (stdin).

–l Reports on standard output (stdout) all jobs you have scheduled and when

the system is to run them if you do not specify at_job. If you specify

at_jobs, this option reports information on only those jobs.

–m Sends you mail after your job has finished running. If you did not redirect

the stdout and stderr, at also mails these to you. If stdout or stderr is

non-null, at mails this output to you even if you do not specify –m.

–q queue

Specifies the queue your at job is to be recorded in or removed from.

queue can be any singlebyte character except a space, a tab, a null

character, or a number sign (#). By default, at stores all its jobs in a queue

called a, and batch stores all its jobs in a queue called b. If used with this

option, –l reports information only on at jobs in queue.

–r at_job

Removes previously scheduled at jobs. The at_job arguments must be the

identifiers assigned to the jobs when you set them up with at.

–t time

Specifies the time for the system to run the job. You specify time in the

same format as the time argument for touch.

 When you do not use the –t option, you can use a timespec argument to specify

the time. A timespec argument consists of three parts: a time, a date, and an

increment (in that order). You must always specify the time, but you can omit the

date, the increment, or both. Following are possible time formats:

Format Meaning

hhmm hh hours, mm minutes, 24-hour clock

hh:mm hh hours, mm minutes, 24-hour clock

h:mm h hours, mm minutes, 24-hour clock

h:m h hours, m minutes, 24-hour clock

hh:mm zone zone is time zone

at

Chapter 2. Shell command descriptions 23

hh:mmam Morning, 12-hour clock

hh:mmam zone Morning, 12-hour clock in given time zone

hh:mmpm Afternoon, 12-hour clock

hh:mmpm zone Afternoon, 12-hour clock in given time zone

noon Noon

midnight Midnight

next Current time, next day that meets date and increment

now Current time today

All minute specifications are optional. For example, to specify an at job to run at

1:00 p.m., you can enter

at 1pm

Currently, the z/OS shell only supports the time zones GMT, CUT, UTC, and ZULU,

all of which stand for Coordinated Universal Time (often called Greenwich Mean

Time). If you do not specify a zone, at interprets times with respect to the TZ

variable.

Appendix I, “Setting the Local Time Zone with the TZ Environment Variable”

explains how to set the local time zone with the TZ environment variable.

Possible date formats are shown in the following list:

Format Meaning

month day month is the full name, or the three-letter abbreviation (as in

January or Jan)

month day, year

day and year given as appropriate numbers

weekday weekday is the full name or the three-letter abbreviation (as in

Monday or Mon)

today Current day

tomorrow Next day

The increment is added to the time and date you specify with the preceding parts of

timespec. It has the format + n units where n is a number and units is one of the

following:

minute minutes hour hours

day days week weeks

month months year years

Here are some sample time specifications:

0655

1855

18:55

6:55pm

6:55 pm Jan 10

now + 3 hours

noon tomorrow

midnight Friday

at

24 z/OS V1R9.0 UNIX System Services Command Reference

Environment variables

at uses the following environment variables:

SHELL

Contains the name of the shell used to invoke the at job.

TZ Specifies the default time zone for all times given on the command line. If

you include a time zone as part of time or timespec, it overrides the value

of TZ.

 Appendix I, “Setting the Local Time Zone with the TZ Environment Variable”

explains how to set the local time zone with the TZ environment variable.

Usage note

at jobs that contain a line consisting of just the string "!!!ATEOF!!!" fail with

unexpected results.

Localization

at uses the following localization variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_TIME

v NLSPATH

The keywords midnight, noon, today, and tomorrow are valid only in the POSIX

locale. See Appendix F, “Localization” for more information.

Exit values

0 Successful completion

>0 Returned if the command fails for any reason

 If an error occurs, at does not schedule, remove, or list the job.

Portability

POSIX.2 User Portability Extension, UNIX systems.

Related information

batch, bg, cron, crontab, touch, tcsh

Appendix I, “Setting the Local Time Zone with the TZ Environment Variable” also

explains how to set the local time zone with the TZ environment variable.

autoload — Indicate function name not defined

Format

autoload name ...

Description

autoload is an alias for typeset –fu. Like typeset –fu, autoload indicates that the

functions named in the command line are not yet defined.

at

Chapter 2. Shell command descriptions 25

See typeset — Assign attributes and values to variables and Command Execution

for more information.

Related information

typeset, functions, sh

automount — Configure the automount facility

Format

automount [–e] [–a|q] [–s] [Master filename]

Description

automount is used to configure the automount facility. This facility can

automatically mount file systems at the time they are accessed, and also unmount

them later. You can use a single automount policy to manage both HFS and zFS

file systems. (For information on setting up the automount facility, refer to z/OS

UNIX System Services Planning.)

The automount file system is mounted as AUTOMOVE(YES). However, if the parent

file system has the automove unmount attribute, then the automount file system will

have that attribute instead of AUTOMOUNT(YES).

When run with no arguments, automount reads the /etc/auto.master file to

determine all directories that are to be configured for automounting and the

filenames that contain their configuration specifications.

Guideline: zFS is the preferred file system and continued use of HFS is

discouraged. New file systems should be created as zFS file systems.

If you run automount with the [master filename] argument, that filename is used

instead of /etc/auto.master.

automount should be run from the /etc/rc script with no arguments. This processes

the installation’s default automount configuration file.

If the automount policy is loaded, you will get a return code of 0. A nonzero return

code indicates that the policy was not loaded.

automount requires superuser authority.

Restriction: The automount function requires the zFS file system to be a

compatibility mode file system. zFS file systems in multi-file system aggregates will

not work with automount.

Options

–a Indicates that the policy being loaded is to be appended to the existing

policy rather than replace the existing policy. For example:

/usr/sbin/automount -a

–a is mutually exclusive with –q.

–e Displays recent error information from automount attempting to create a

autoload

26 z/OS V1R9.0 UNIX System Services Command Reference

|

|
|

new zFS or HFS file system. Typically, one allocation error value and

reason code is displayed for the last allocation error, if there was one. If a

zFS file system could not be created, you will see message text or error

and reason codes (or both) for each automount-managed directory where

the zFS file system was to be created.

–q Displays the current automount policy. –q is mutually exclusive with –a.

–s Checks the syntax of the configuration file. No automount is performed.

Examples

1. The following example shows how automatic unmount can be avoided for a

directory:

name wjs

duration nolimit

Keywords that are not specified on a specific entry are inherited from the

generic entry, if present. If the generic entry is not present, or if keys are not

specified, the defaults are used. If the filesystem key cannot be resolved, the

entry is considered invalid.

2. The following is an example of a /etc/auto.master file that is used to specify /u

as automount-managed and the specifications for that directory in /etc/u.map:

/u /etc/u.map

Files

automount uses these files:

/etc/auto.master

Specifies a list of directories to be configured, along with their MapName

files.

 Each line in this file contains two pathnames separated by at least one

space: the directory name to be managed and the pathname of the

MapName file. Both of these pathnames should be absolute.

 The pathname of the managed directory is used as a file system name

prefixed with *AMD. This restricts the length of the pathname of a managed

directory to 40 characters. If pathnames need to be longer, you can use

symbolic links to resolve all or part of the pathname.

 Blank lines and lines beginning with the characters /* are considered

comments and are ignored. Line comments are not tolerated

MapName

The MapName file contains the mapping between a subdirectory of a

directory managed by automount and the mount parameters.

 The file is organized as a set of specifications. Each specification contains

one or more lines. Each line is of the form keyword argument. Each

specification must begin with the keyword name.

 Blank lines and lines beginning with the characters /* are considered

comments and are ignored. Line comments are not tolerated

 A generic entry can be specified as the first specification by using the name

of *. The generic specification provides defaults for subsequent specific

specifications. When the automounter tries to resolve a lookup request, it

attempts to find a specific entry. If a specific entry does not exist for the

name being looked up, it attempts to use the generic entry.

 The following is an example of a generic entry:

automount

Chapter 2. Shell command descriptions 27

name *

type HFS

filesystem OMVS.HFS.USER.<uc_name>

mode rdwr

duration 30

delay 10

parm SYNC(60)

tag text,819

Four special symbols are supported to provide name substitution:

 <asis_name> used to represent the name exactly, as is.

 <uc_name> used to represent the name in uppercase characters.

 <sysname> or &SYSNAME. used to substitute the system name.

Best practice: IBM suggests that you consider using &SYSNAME..

<sysname> is only temporarily supported for compatibility.

You can use these when specifying a file system name or file system

parameter that has a specific form with the name inserted as a qualifier.

 Following is a list of supported keywords. You can enter keywords using

mixed case letters. Some arguments require mixed case.

 Rule: allocany, allocuser, and lowercase are valid on any specification,

but are meaningful only on the generic entry.

 allocany allocation-spec

Specifies the allocation parameters when using automount to

allocate HFS or zFS file systems, keeping in mind that zFS is the

preferred file system. allocany will cause an allocation if the data

set does not exist for any name looked up in the

automount-managed directory.

allocation–spec

A string that specifies allocation keywords. The following

keywords can be specified in the string:

space(primary–alloc[,secondary alloc])

cyl | tracks | block(block size)

vol(volser[,volser]...)

maxvol(num–volumes)

unit(unit–name)

storclas(storage–class)

mgmtclas(management–class)

dataclas(data–class)

 The next four keywords are added as appropriate:

dsn(filesystem)

dsntype(hfs)

dir(1)

new

allocuser allocation–spec

Specifies the allocation parameters when using automount to

allocate HFS or zFS file systems, keeping in mind that zFS is the

preferred file system. allocuser will cause an allocation to occur

only if the name looked up matches the user ID of the current user.

automount

28 z/OS V1R9.0 UNIX System Services Command Reference

allocation–spec

A string that specifies allocation keywords. The following

keywords can be specified in the string:

space(primary–alloc[,secondary alloc])

cyl | tracks | block(block size)

vol(volser[,volser]...)

maxvol(num–volumes)

unit(unit–name)

storclas(storage–class)

mgmtclas(management–class)

dataclas(data–class)

The next four keywords are automatically added:

dsn(filesystem)

dsntype(hfs)

dir(1)

new

delay The minimum amount of time in minutes to leave the file system

mounted after the duration has expired and the file system is no

longer in use. The default is 10.

 Rule: In a shared file system environment, specify a delay time of

at least 10.

duration

The minimum amount of time in minutes to leave the file system

mounted. The default is nolimit.

filesystem

The name of the file system to mount. This argument is

case-sensitive. For the HFS file system, this argument must be

specified in uppercase.

 Restriction: File system name template us symbol symbolics

cannot be more than 44 characters long. Symbolics used for the

automount (<sysname>, <asis_name>, <us_name>) are resolved

within automount as part of checking the length of the file system

name template.

lowercase [Yes|No]

Indicates the case for names that can match the * specification.

This keyword is valid on any specification, but is only meaningful on

the generic entry.

Yes Only names composed of lowercase characters can match

the * specification (numbers and special characters may

also be used). When this is specified, uppercase characters

are not allowed.

No Any names can match the * specification. This is the

default.

mode The mount mode for the file system (rdwr or read). The default is

rdwr.

name The name of the directory to be mounted. This key is required and

automount

Chapter 2. Shell command descriptions 29

|
|
|

|
|

must be the first key specified for the entry. If the first entry

specifies name *, it is treated as the generic entry for the

automount-managed directory.

parm The file system-specific parameter. This argument is case-sensitive.

For example, the following parameters can be specified for an HFS

file system:

parm SYNC(t),NOWRITEPROTECT

security [Yes|No]

Specifies security checking which should be done for files in the file

system. You can specify these values:

Yes Normal security checking will be done. This is the default.

No Specifies that security checks will not be enforced for files

in this file system. Any user may access or change any file

or directory in any way.

 Security auditing will still be performed if the installation is

auditing successes.

 The SETUID, SETGID, APF, and Program Control mode

bits may be turned on in files from this file system, but will

not be honored while it is mounted with NOSECURITY.

When a file system is mounted with the NOSECURITY

option enabled, any new files or directories that are created

will be assigned an owner of UID 0, no matter what UID

issued the request.

 Rule: The installation should normally take the default

(Yes).

 For more information on mounting with no security and on

the MOUNT statement in BPXPRMxx, see z/OS UNIX

System Services Planning. Security keywords on the TSO

MOUNT command are also discussed in mount — Logically

mount a file system.

setuid [Yes|No]

Specifies whether the setuid/setgid mode bits are to be respected

for executables run from this file system. You can specify these

values:

Yes The setuid/setgid modes are respected. This is the default.

No The setuid/setgid modes are ignored.

tag (text|notext,ccsid)

Specifies whether file tags for untagged files in the mounted file

system are implicitly set. Either text or notext, and CCSID (coded

character set identifier) must be specified when tag is specified:

text Specifies that each untagged file is implicitly marked as

containing pure text data that can be converted.

notext Specifies that none of the untagged files in the file system

are automatically converted during file reading and writing.

ccsid Identifies the coded character set identifier to be implicitly

set for the untagged file. ccsid is specified as a decimal

value from 0 to 65535. However, when text is specified, the

value must be between 0 and 65535. Other than this, the

automount

30 z/OS V1R9.0 UNIX System Services Command Reference

value is not checked as being valid and the corresponding

code page is not checked as being installed.

 For more information on file tagging, see z/OS UNIX

System Services Planning. Additional information about the

TAG parameter can be found in mount — Logically mount a

file system.

type The type of the file system (such as HFS, zFS, and NFS). The

default is HFS.

Usage notes

v When a new file system of the type HFS is created and allocated to a new user,

the owner UID and GID are based on that user. The setting of the permission

bits is 700.

v When a new file system of the type zFS is created and allocated to a new user,

the owner UID and GID are based on that user. The setting of the permission

bits is 750.

v The syntax of the automount master file is extended to optionally include the

name of the filter utility. Each line contains:

– The path name of the directory that is to be managed.

– The path name of the map file.

– An optional path name of the conversion utility.

If a conversion utility is specified, automount will run that utility and provide the

specified map file as the standard input for the utility. It will process the utility’s

standard output as the automount map file and list it on its standard output.

Errors detected by automount will be flagged the same as before, but line

numbers will refer to the line as output from the conversion utility rather than the

original map file that the utility processes.

v Although automount ensures that loading a new policy is an atomic operation, it

does not serialize multiple simultaneous instances of running the automount

utility. This remains the case when using the -a option. This should not be used

in an automated script such as /etc/rc that can be run at the same time from

multiple systems. This may result in changes to the automount policy not being

done with no indication of this. When automount is run this way without the -a

option and the same policy is loaded from all systems, it is irrelevant that the

policy load from one or more systems is overlaid.

v automount recognizes the type specification in the automount map files of HFS

and zFS as potentially interchangeable file system types. At the time automount

applies the specification for the mount, it will determine if the file system is the

name of either an zFS or HFS file system and alters the type as appropriate. If

the data set does not exist and if allocany or allocuser is not specified, a new

file system is allocated as the file system type as specified in type. Allocation is

only done if allocuser or allocany is specified. If it is preferred to have new file

systems allocated as zFS file systems, the automount policy should be changed

to specify type zFS.

This allows automount managed file systems to be changed from HFS to zFS

without changing the file system name and without changing the automount

policy. If the file system name must be changed, it will be necessary to add a

specific entry in the automount policy for this file system or manage it on

another managed directory.

automount

Chapter 2. Shell command descriptions 31

|
|
|

|
|
|

v When allocation-spec keyword TRACKS or BLOCK is specified in either the

allocany or allocuser option for zFS type file systems, the specified SPACE()

units will be converted to approximate CYL equivalent units before allocating the

zFS file system.

The following formulas will be used to do the conversion into CYL units:

1 TRACKS Unit = 1/15 CYL Unit

1 BLOCK Unit = 1/180 CYL Unit

Tip: The conversion used does not consider the device type.

Related information

chmount, mount, unmount

awk — Process programs written in the awk language

Format

awk [–F ere] [–v var=value ...] [program] [var=value ...] [file ...]

awk [–F ere] [–f prog] [–v var=value ...] [var=value ...] [file ...]

Description

awk is a file-processing language that is well suited to data manipulation and

retrieval of information from text files. If you are unfamiliar with the language, you

may find it helpful to read the awk information in z/OS UNIX System Services

User’s Guide first.

An awk program consists of any number of user-defined functions and rules of the

form:

pattern {action}

There are two ways to specify the awk program:

v Directly on the command line. In this case, program is a single command-line

argument, usually enclosed in single quotes (') to prevent the shell from

attempting to expand it.

v By using the –f prog option.

You can specify program directly on the command line only if you do not use any –f

prog arguments.

For a summary of the UNIX03 changes to this command, see Appendix N, “UNIX

shell commands changed for UNIX03.”

Options

awk recognizes the following options:

–F ere Is an extended regular expression to use as the field separator.

–f prog

Runs the awk program contained in the file prog. When more than one –f

option appears on the command line, the resulting program is a

concatenation of all programs you specify.

–v var=value

Assigns value to var before running the program.

automount

32 z/OS V1R9.0 UNIX System Services Command Reference

|

|
|

Files that you specify on the command line with the file argument provide the input

data for awk to manipulate. If you specify no files or you specify a dash (–) as a

file, awk reads data from standard input (stdin).

You can initialize variables on the command line using:

var=value

You can intersperse such initializations with the names of input files on the

command line. awk processes initializations and input files in the order they appear

on the command line. For example, the command:

awk -f progfile a=1 f1 f2 a=2 f3

sets a to 1 before reading input from f1 and sets a to 2 before reading input from f3.

Variable initializations that appear before the first file on the command line are

performed immediately after the BEGIN action. Initializations appearing after the

last file are performed immediately before the END action. For more information on

BEGIN and END, see Patterns.

The –v option lets you assign a value to a variable before the awk program begins

execution (that is, before the BEGIN action). For example, in:

awk -v v1=10 -f prog datafile

awk assigns the variable v1 its value before the BEGIN action of the program (but

after default assignments made to such built-in variables as FS and OFMT; these

built-in variables have special meaning to awk, as described later).

awk divides input into records. By default, newline characters separate records;

however, you can specify a different record separator if you want.

One at a time, and in order, awk compares each input record with the pattern of

every rule in the program. When a pattern matches, awk performs the action part of

the rule on that input record. Patterns and actions often refer to separate fields

within a record. By default, white space (usually blanks, newlines, or horizontal tab

characters) separates fields; however, you can specify a different field separator

string using the –F ere option).

You can omit the pattern or action part of an awk rule (but not both). If you omit

pattern, awk performs the action on every input record (that is, every record

matches). If you omit action, awk's default action is equivalent to: {print}.

awk considers everything after a # in a program line to be a comment. For

example:

This is a comment

To continue program lines on the next line, add a backslash (\) to the end of the

line. Statement lines ending with a comma (,), double or-bars (||), or double

ampersands (&&) continue automatically on the next line.

Variables and expressions

There are three types of variables in awk: identifiers, fields, and array elements.

An identifier is a sequence of letters, digits, and underscores beginning with a letter

or an underscore. These characters must be from the POSIX portable character

set. (Data can come from other character sets.)

awk

Chapter 2. Shell command descriptions 33

|
|
|

For a description of fields, see Input.

Arrays are associative collections of values called the elements of the array.

Constructs of the form:

identifier[subscript]

where subscript has the form expr or expr,expr,..., refer to array elements. Each

such expr can have any string value. For multiple expr subscripts, awk

concatenates the string values of all expr arguments with a separate character

SUBSEP between each. The initial value of SUBSEP is set to \042 (code page

01047 field separator).

We sometimes refer to fields and identifiers as scalar variables to distinguish them

from arrays.

You do not declare awk variables, and you do not need to initialize them. The value

of an uninitialized variable is the empty string in a string context and the number 0

in a numeric context.

Expressions consist of constants, variables, functions, regular expressions, and

subscript-in-array conditions combined with operators. (Subscript-in-array conditions

are described in Subscript in array) Each variable and expression has a string value

and a corresponding numeric value; awk uses the value appropriate to the context.

When converting a numeric value to its corresponding string value, awk performs

the equivalent of a call to the sprintf() function where the one and only expr

argument is the numeric value and the fmt argument is either %d (if the numeric

value is an integer) or the value of the variable CONVFMT (if the numeric value is

not an integer). The default value of CONVFMT is %.6g. If you use a string in a

numeric context, and awk cannot interpret the contents of the string as a number, it

treats the value of the string as zero.

Numeric constants are sequences of decimal digits.

String constants are quoted, as in "a literal string". Literal strings can contain

the following escape sequences:

Escape Character Sequence

\a Audible bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ooo Octal value ooo

\xdd Hexadecimal value dd

\/ Slash

\" Quote

\c Any other character c

awk

34 z/OS V1R9.0 UNIX System Services Command Reference

awk supports full regular expressions. (See Appendix C, “Regular Expressions

(regexp)” for more information.) When awk reads a program, it compiles characters

enclosed in slash characters (/) as regular expressions. In addition, when literal

strings and variables appear on the right side of a ~ or!~ operator, or as certain

arguments to built-in matching and substitution functions, awk interprets them as

dynamic regular expressions.

Note: When you use literal strings as regular expressions, you need extra

backslashes to escape regular expression metacharacters, because the

backslash is also the literal string escape character. For example, the regular

expression:

/e\.g\./

should be written as:

"e\\.g\\."

Subscript in array

awk defines the subscript-in-array condition as:

index in array

where index looks like expr or (expr,...,expr). This condition evaluates to 1 if the

string value of index is a subscript of array, and to 0 otherwise. This is a way to

determine if an array element exists. When the element does not exist, the

subscript-in-array condition does not create it.

Symbol table

You can access the symbol table through the built-in array SYMTAB.

SYMTAB[expr] is equivalent to the variable named by the evaluation of expr.

For example, SYMTAB["var"] is a synonym for the variable var.

Environment

An awk program can determine its initial environment by examining the ENVIRON

array. If the environment consists of entries of the form name=value, then

ENVIRON[name] has string value "value". For example, the following program is

equivalent to the default output of env:

BEGIN {

 for (i in ENVIRON)

 printf("%s=%s\n", i, ENVIRON[i])

 exit

 }

Operators

awk follows the usual precedence order of arithmetic operations, unless overridden

with parentheses; a table giving the order of operations appears later in this topic.

The unary operators are +, −, ++, and − −, where you can use the ++ and − −

operators as either postfix or prefix operators, as in C. The binary arithmetic

operators are +, −, *, /, %, and ^.

The conditional operator

expr ? expr1 : expr2

evaluates to expr1 if the value of expr is nonzero, and to expr2 otherwise.

awk

Chapter 2. Shell command descriptions 35

|
|
|
|
|
|

|
|
|
|

|

|

|

|

If two expressions are not separated by an operator, awk concatenates their string

values.

The tilde operator ~ yields 1 (true) if the regular expression on the right side

matches the string on the left side. The operator !~ yields 1 when the right side has

no match on the left. To illustrate:

$2 ~ /[0-9]/

selects any line where the second field contains at least one digit. awk interprets

any string or variable on the right side of ~ or !~ as a dynamic regular expression.

The relational operators are <, <=, >, >=, ==, and !=. When both operands in a

comparison are numeric, or if one is numeric and the other is not initialized, awk

compares their values numerically; otherwise, it compares them as strings. An

operator is considered to be numeric if it consists of any of the following:

v An integer or floating-point number

v A field, FILENAME, ARGV array element, or ENVIRON array element that looks

like a number

v A variable created by a command-line assignment that looks like a number

v Input from a getline() function that looks like a number

v An array element created by the split() function that looks like a number

v A variable assignment from another number variable that looks like a number

The Boolean operators are || (or), && (and), and ! (not). awk uses short-circuit

evaluation when evaluating expressions. With an && expression, if the first operator

is false, the entire expression is false and it is not necessary to evaluate the second

operator. With an || expression, a similar situation exists if the first operator is true.

You can assign values to a variable with:

var = expr

If op is a binary arithmetic operator, var op= expr is equivalent to var = var op expr,

except that var is evaluated only once.

See Table 2 for the precedence rules of the operators.

 Table 2. The Order of Operations for awk

Operators Order of operations

(A) Grouping

$i V[a] Field, array element

V++ V-- ++V --V Increment, decrement

A^B Exponentiation

+A -A !A Unary plus, unary minus, logical NOT

A*B A/B A%B Multiplication, division, remainder

A+B A-B Addition, subtraction

A B String concatenation

A<B A>B A<=B A>=B A!=B A==B Comparisons

A~B A!~B Regular expression matching

A in V Array membership

A && B Logical AND

awk

36 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|
|

|

|
|

|

|

|

|

||

Table 2. The Order of Operations for awk (continued)

Operators Order of operations

A || B Logical OR

A ? B : C Conditional expression

V=B V+=B V-=B V*=B V/=B V%=B V^=B Assignment

Notes:

1. A, B, C are any expression.

2. i is any expression yielding an integer.

3. V is any variable.

Command-line arguments

awk sets the built-in variable ARGC to the number of command-line arguments.

The built-in array ARGV has elements subscripted with digits from zero to ARGC−1,

giving command-line arguments in the order they appeared on the command line.

The ARGC count and the ARGV vector do not include command-line options

(beginning with -) or the program file (following –f). They do include the name of

the command itself, initialization statements of the form var=value, and the names

of input data files.

awk actually creates ARGC and ARGV before doing anything else. It then “walks

through” ARGV, processing the arguments. If an element of ARGV is an empty

string, awk skips it. If it contains an equals sign (=), awk interprets it as a variable

assignment. If it is a minus sign (−), awk immediately reads input from stdin until it

encounters the end of the file. Otherwise, awk treats the argument as a filename

and reads input from that file until it reaches the end of the file.

Note: awk runs the program by “walking through” ARGV in this way; thus, if the

program changes ARGV, awk can read different files and make different

assignments.

Input

awk divides input into records. A record separator character separates each record

from the next. The value of the built-in variable RS gives the current record

separator character; by default, it begins as the newline (\n). If you assign a

different character to RS, awk uses that as the record separator character from that

point on.

awk divides records into fields. A field separator string, given by the value of the

built-in variable FS, separates each field from the next. You can set a specific

separator string by assigning a value to FS, or by specifying the –F ere option on

the command line. You can assign a regular expression to FS. For example:

FS = "[,:$]"

says that commas, colons, or dollar signs can separate fields. As a special case,

assigning FS a string containing only a blank character sets the field separator to

white space. In this case, awk considers any sequence of contiguous space or tab

characters a single field separator. This is the default for FS. However, if you assign

FS a string containing any other character, that character designates the start of a

new field. For example, if we set FS=\t (the tab character),

texta \t textb \t \t \t textc

awk

Chapter 2. Shell command descriptions 37

contains five fields, two of which contain only blanks. With the default setting, this

record only contains three fields, since awk considers the sequence of multiple

blanks and tabs a single separator.

The following list of built-in variables provides various pieces of information about

input:

NF Number of fields in the current record

NR Number of records read so far

FILENAME Name of file containing current record

FNR Number of records read from current file

Field specifiers have the form $n, where n runs from 1 through NF. Such a field

specifier refers to the nth field of the current input record. $0 (zero) refers to the

entire current input record.

The getline function can read a value for a variable or $0 from the current input,

from a file, or from a pipe. The result of getline is an integer indicating whether the

read operation was successful. A value of 1 indicates success; 0 indicates that the

end of the file was encountered; and −1 indicates that an error occurred. Possible

forms for getline are:

getline

Reads next input record into $0 and splits the record into fields. NF, NR,

and FNR are set appropriately.

getline var

Reads the next input record into the variable var. awk does not split the

record into fields (which means that the current $n values do not change),

but sets NR and FNR appropriately.

getline <expr

Interprets the string value of expr to be a filename. awk reads the next

record from that file into $0, splits it into fields, and sets NF appropriately. If

the file is not open, awk opens it. The file remains open until you close it

with a close function.

getline var <expr

Interprets the string value of expr to be a filename, and reads the next

record from that file into the variable var, but does not split it into fields.

expr | getline

Interprets the string value of expr as a command line to be run. awk pipes

output from this command into getline, and reads it into $0, splits it into

fields, and sets NF appropriately. See System function for additional details.

expr | getline var

Runs the string value of expr as a command and pipes the output of the

command into getline. The result is similar to getline var <expr.

You can have only a limited number of files and pipes open at one time. You can

close files and pipes during execution using the close(expr) function. The expr

argument must be one that came before | or after < in getline, or after > or >> in

print or printf.

If the function successfully closes the pipe, it returns zero. By closing files and

pipes that you no longer need, you can use any number of files and pipes in the

course of running an awk program.

awk

38 z/OS V1R9.0 UNIX System Services Command Reference

Built-in arithmetic functions

atan2(expr1, expr2)

Returns the arctangent of expr1/expr2 in the range of −π through π.

exp(expr), log(expr), sqrt(expr)

Returns the exponential, natural logarithm, and square root of the numeric

value of expr. If you omit (expr), these functions use $0 instead.

int(expr)

Returns the integer part of the numeric value of expr. If you omit (expr), the

function returns the integer part of $0.

rand() Returns a random floating-point number in the range 0 through 1.

sin(expr), cos(expr)

Returns the sine and cosine of the numeric value of expr (interpreted as an

angle in radians).

srand(expr)

Sets the seed of the rand function to the integer value of expr. If you omit

(expr), awk uses the time of day as a default seed.

Built-in string functions

len = length (expr)

Returns the number of characters in the string value of expr. If you omit

(expr), the function uses $0 instead. The parentheses around expr are

optional.

n = split(string, array, regexp)

Splits the string into fields. regexp is a regular expression giving the field

separator string for the purposes of this operation. This function assigns the

separate fields, in order, to the elements of array; subscripts for array begin

at 1. awk discards all other elements of array. split returns the number of

fields into which it divided string (which is also the maximum subscript for

array).

 regexp divides the record in the same way that the FS field separator string

does. If you omit regexp in the call to split, it uses the current value of FS.

str = substr(string, offset, len)

Returns the substring of string that begins in position offset and is at most

len characters long. The first character of the string has an offset of 1. If

you omit len, or if len specifies more characters than are left in the string,

substr returns the rest of string.

pos = index(string, str)

Returns the position of the first occurrence of str in string. The count is in

characters. If index does not find str in string, it returns 0.

pos = match(string, regexp)

Searches string for the first substring matching the regular expression

regexp, and returns an integer giving the position of this substring counting

from 1. If it finds no such substring, match returns zero. This function also

sets the built-in variable RSTART to pos and the built-in variable RLENGTH

to the length of the matched string. If it does not find a match, match sets

RESTART to 0, and RLENGTH to −1. You can enclose regexp in slashes or

specify it as a string.

n = sub(regexp, repl, string)

Searches string for the first substring matching the regular expression

regexp, and replaces the substring with the string repl. awk replaces any

awk

Chapter 2. Shell command descriptions 39

|
|
|
|

ampersand (&) in repl with the substring of string which matches regexp. An

ampersand preceded with a backslash ('\') is interpreted as the literal

ampersand character. An occurrence of two consecutive backslashes is

interpreted as just a single literal backslash character. Any other occurrence

of a backslash (for example, preceding any other character) is treated as a

literal backslash character. If repl is a string literal, the handling of the

ampersand character occurs after any lexical processing, including any

lexical backslash escape sequence. If you omit string, sub uses the current

record instead. sub returns the number of substrings replaced (which is 1 if

it found a match, and 0 otherwise).

n = gsub(regexp, repl, string)

Works the same way as sub, except that gsub replaces all matching

substrings (global substitution). The return value is the number of

substitutions performed.

str = sprintf(fmt, expr, expr...)

Formats the expression list expr, expr, ... using specifications from the string

fmt, and then returns the formatted string. The fmt string consists of

conversion specifications that convert and add the next expr to the string,

and ordinary characters that sprintf simply adds to the string. These

conversion specifications are similar to those used by the ANSI (see

SC09-4812 IBM Open Class Library Reference, Vol.1).

 Conversion specifications have the form

 %[-][0][x][.y]c

where

- Left-justifies the field; default is right justification.

0 (Leading zero) prints numbers with leading zero.

x Is the minimum field width.

y Is the precision.

c Is the conversion character.

In a string, the precision is the maximum number of characters to be printed from

the string; in a number, the precision is the number of digits to be printed to the

right of the decimal point in a floating-point value. If x or y is * (asterisk), the

minimum field width or precision is the value of the next expr in the call to sprintf.

The conversion character c is one of following:

d Decimal integer

i Decimal integer

o Unsigned octal integer

x,X Unsigned hexadecimal integer

u Unsigned decimal integer

f,F Floating point

e,E Floating point (scientific notation)

g,G The shorter of e and f (suppresses nonsignificant zeros)

c Single character of an integer value; first character of string

s String

The lowercase x specifies alphabetic hex digits in lowercase, whereas the

uppercase X specifies alphabetic hex digits in uppercase. The other

uppercase-lowercase pairs work similarly.

awk

40 z/OS V1R9.0 UNIX System Services Command Reference

n = ord(expr)

Returns the integer value of first character in the string value of expr. This

is useful in conjunction with %c in sprintf.

str = tolower(expr)

Converts all letters in the string value of expr into lowercase, and returns

the result. If you omit expr, tolower uses $0 instead. This function uses the

value of the locale or the LC_CTYPE environment variable.

str = toupper(expr)

Converts all letters in the string value of expr into uppercase, and returns

the result. If you omit expr, toupper uses $0 instead. This function uses the

value of the locale or the LC_CTYPE environment variable.

System function

status = system(expr)

Runs the string value of expr as a command. For example, system(″tail ″

$1) calls the tail command, using the string value of $1 as the file that tail

examines. The standard command interpreter runs the command, as

discussed in the Portability, and the exit status returned depends on that

command interpreter.

User-defined functions

You can define your own functions using the form:

function name(parameter-list) {

 statements

}

A function definition can appear in the place of a pattern {action} rule. The

parameter-list argument contains any number of normal (scalar) and array variables

separated by commas. When you call a function, awk passes scalar arguments by

value, and array arguments by reference. The names specified in parameter-list are

local to the function; all other names used in the function are global. You can define

local variables by adding them to the end of the parameter list as long as no call to

the function uses these extra parameters.

A function returns to its caller either when it runs the final statement in the function,

or when it reaches an explicit return statement. The return value, if any, is specified

in the return statement (see Actions).

Patterns

A pattern is a regular expression, a special pattern, a pattern range, or any

arithmetic expression.

BEGIN is a special pattern used to label actions that awk performs before reading

any input records. END is a special pattern used to label actions that awk performs

after reading all input records.

You can give a pattern range as:

pattern1,pattern2

This matches all lines from one that matches pattern1 to one that matches pattern2,

inclusive.

If you omit a pattern, or if the numeric value of the pattern is nonzero (true), awk

runs the resulting action for the line.

awk

Chapter 2. Shell command descriptions 41

Actions

An action is a series of statements ended by semicolons, newlines, or closing

braces. A condition is any expression; awk considers a nonzero value true, and a

zero value false. A statement is one of the following or any series of statements

enclosed in braces:

expression statement, e.g. assignment

expression

if statement

if (condition)

 statement

[else

 statement]

while loop

while (condition)

 statement

do-while loop

do

 statement

while (condition)

for loop

for (expression1; condition; expression2)

 statement

The for statement is equivalent to:

expression1

while (condition) {

 statement

 expression2

}

The for statement can also have the form:

for (i in array)

 statement

awk runs the statement (specified with the statement argument) once for each

element in array; on each repetition, the variable i contains the name of a subscript

of array, running through all the subscripts in an arbitrary order. If array is

multidimensional (has multiple subscripts), i is expressed as a single string with the

SUBSEP character separating the subscripts.

v The statement break exits a for or a while loop immediately. continue stops the

current iteration of a for or while loop and begins the next iteration (if there is

one).

v next ends any processing for the current input record and immediately starts

processing the next input record. Processing for the next record begins with the

first appropriate rule. If a next statement appears or is invoked in a BEGIN or

END action, awk will cause all further BEGIN or END action processing to be

abandoned.

v exit[(expr)] immediately goes to the END action if it exists; if there is no END

action, or if awk is already running the END action, the awk program ends. awk

sets the exit status of the program to the numeric value of expr. If you omit

(expr), the exit status is 0. return [expr] returns from the execution of a function.

If you specify an expr, the function returns the value of the expression as its result;

otherwise, the function result is undefined. delete array[i] deletes element i from the

given array. print expr, expr, ... is described in Output. printf fmt, expr, expr, ... is

also described in Output.

awk

42 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|

|
|
|
|
|

|
|
|
|

Output

The print statement prints its arguments with only simple formatting. If it has no

arguments, it prints the entire current input record. awk adds the output record

separator ORS to the end of the output that each print statement produces; when

commas separate arguments in the print statement, the output field separator OFS

separates the corresponding output values. ORS and OFS are built-in variables,

whose values you can change by assigning them strings. The default output record

separator is a newline, and the default output field separator is a space.

The variable OFMT gives the format of floating-point numbers output by print. By

default, the value is %.6g; you can change this by assigning OFMT a different string

value. OFMT applies only to floating-point numbers (ones with fractional parts).

The printf statement formats its arguments using the fmt argument. Formatting is

the same as for the built-in function sprintf. Unlike print, printf does not add output

separators automatically. This gives the program more precise control of the output.

The print and printf statements write to stdout. You can redirect output to a file or

pipe.

If you add >expr to a print or printf statement, awk treats the string value of expr

as a filename, and writes output to that file. Similarly, if you add >>expr, awk sends

output to the current contents of the file. The distinction between > and >> is

important only for the first print to the file expr. Subsequent outputs to an already

open file append to what is there already.

You cannot use such ambiguous statements as:

print a > b c

Use parentheses to resolve the ambiguity.

If you add |expr to a print or printf statement, awk treats the string value of expr

as an executable command and runs it with the output from the statement piped as

input into the command.

As mentioned earlier, you can have only a limited number of files and pipes open at

any time. To avoid going over the limit, use the close function to close files and

pipes when you no longer need them.

print and printf are also available as functions with the same calling sequence, but

no redirection.

Examples

 1. The following example:

awk ’{print NR ":" $0}’ input1

outputs the contents of the file input1 with line numbers prepended to each

line.

 2. The following is an example using var=value on the command line:

awk ’{print NR SEP $0}’ SEP=":" input1

awk can also read the program script from a file as in the command line:

awk –f addline.awk input1

which produces the same output when the file addline.awk contains:

awk

Chapter 2. Shell command descriptions 43

{print NR ":" $0}

 3. The following program appends all input lines starting with January to the file

jan (which may or may not exist already), and all lines starting with February

or March to the file febmar:

/^January/ {print >> "jan"}

/^February|^March/ {print >> "febmar"}

 4. This program prints the total and average for the last column of each input

line:

 {s += $NF}

END {print "sum is", s, "average is", s/NR}

 5. The next program interchanges the first and second fields of input lines:

{

 tmp = $1

 $1 = $2

 $2 = tmp

 print

}

 6. The following inserts line numbers so that output lines are left-aligned:

{printf "%–6d: %s\n", NR, $0}

 7. The following prints input records in reverse order (assuming sufficient

memory):

{

 a[NR] = $0 # index using record number

}

END {

 for (i = NR; i>0; --i)

 print a[i]

}

 8. The following program determines the number of lines starting with the same

first field:

{

 ++a[$1] # array indexed using the first field

}

END { # note output will be in undefined order

 for (i in a)

 print a[i], "lines start with", i

}

You can use the following program to determine the number of lines in each

input file:

{

 ++a[FILENAME]

}

END {

 for (file in a)

 if (a[file] == 1)

 print file, "has 1 line"

 else

 print file, "has", a[file], "lines"

}

 9. The following program illustrates how you can use a two-dimensional array in

awk. Assume the first field of each input record contains a product number, the

second field contains a month number, and the third field contains a quantity

(bought, sold, or whatever). The program generates a table of products versus

month.

BEGIN {NUMPROD = 5}

{

 array[$1,$2] += $3

}

awk

44 z/OS V1R9.0 UNIX System Services Command Reference

END {

 print "\t Jan\t Feb\tMarch\tApril\t May\t" \

 "June\tJuly\t Aug\tSept\t Oct\t Nov\t Dec"

 for (prod = 1; prod <= NUMPROD; prod++) {

 printf "%-7s", "prod#" prod

 for (month = 1; month <= 12; month++){

 printf "\t%5d", array[prod,month]

 }

 printf "\n"

 }

}

10. As the following program reads in each line of input, it reports whether the line

matches a predetermined value:

function randint() {

 return (int((rand()+1)*10))

}

BEGIN {

 prize[randint(),randint()] = "$100";

 prize[randint(),randint()] = "$10";

 prize[1,1] = "the booby prize"

 }

{

 if (($1,$2) in prize)

 printf "You have won %s!\n", prize[$1,$2]

}

11. The following example prints lines, the first and last fields of which are the

same, reversing the order of the fields:

$1==$NF {

 for (i = NF; i > 0; --i)

 printf "%s", $i (i>1 ? OFS : ORS)

}

12. The following program prints the input files from the command line. The infiles

function first empties the passed array, and then fills the array. The extra

parameter i of infiles is a local variable.

function infiles(f,i) {

 for (i in f)

 delete f[i]

 for (i = 1; i < ARGC; i++)

 if (index(ARGV[i],"=") == 0)

 f[i] = ARGV[i]

}

BEGIN {

 infiles(a)

 for (i in a)

 print a[i]

 exit

 }

13. Here is the standard recursive factorial function:

function fact(num) {

 if (num <= 1)

 return 1

 else

 return num * fact(num - 1)

}

{ print $0 " factorial is " fact($0) }

14. The following program illustrates the use of getline with a pipe. Here, getline

sets the current record from the output of the wc command. The program

prints the number of words in each input file.

function words(file, string) {

 string = "wc " fn

 string | getline

awk

Chapter 2. Shell command descriptions 45

close(string)

 return ($2)

}

BEGIN {

 for (i=1; i<ARGC; i++) {

 fn = ARGV[i]

 printf "There are %d words in %s.",

 words(fn), fn

 }

}

Environment variables

awk uses the following environment variable:

PATH Contains a list of directories that awk searches when looking for commands

run by system(expr), or input and output pipes.

Any other environment variable can be accessed by the awk program itself.

Localization

awk uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_NUMERIC

v LC_SYNTAX

v NLSPATH

See Appendix F, “Localization” for more information.

Exit values

0 Successful completion

v If the awk program contains no actions and no patterns, but is otherwise

a valid awk program, standard input and any file operands are not read

and awk exits with an exit status of zero.

1 Any of the following errors:

v Parser internal stack overflow

v Syntax error

v Function redefined

v Internal execution tree error

v Insufficient memory for string storage

v Unbalanced parenthesis or brace

v Missing script file

v Missing field separator

v Missing variable assignment

v Unknown option

v Incorrect character in input

v Newline in regular expression

v Newline in string

v EOF in regular expression

v EOF in string

v Cannot open script file

v Inadmissible use of reserved keyword

v Attempt to redefine built-in function

awk

46 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|

v Cannot open input file

v Error on print

v Error on printf

v Getline in END action was not redirected

v Too many open I/O streams

v Error on I/O stream

v Insufficient arguments to printf or sprintf()

v Array cannot be used as a scalar

v Variable cannot be used as a function

v Too many fields

v Record too long

v Division (/ or %) by zero

v Syntax error

v Cannot assign to a function

v Value required in assignment

v Return outside of a function

v Can delete only array element or array

v Scalar cannot be used as array

v SYMTAB must have exactly one index

v Impossible function call

v Function call nesting level exceeded

v Wrong number of arguments to function

v Regular expression error

v Second parameter to “split” must be an array

v sprintf string longer than allowed number of characters

v No open filename

v Function requires an array

v Is not a function

v Failed to match

v Incorrect collation element

v Trailing \ in pattern

v Newline found before end of pattern

v More than 9 \(\) pairs

v Number in [0–9] incorrect

v [] imbalance or syntax error

v () or \(\) imbalance

v { } or \{ \} imbalance

v Incorrect endpoint in range

v Out of memory

v Incorrect repetition

v Incorrect character class type

v Internal error

v Unknown regex error

When an awk program ends because of a call to exit(), the exit status is the value

passed to exit().

Limits

Most constructions in this implementation of awk are dynamic, limited only by

memory restrictions of the system.

The maximum record size is guaranteed to be at least LINE_MAX as returned by

getconf. The maximum field size is guaranteed to be LINE_MAX, also.

awk

Chapter 2. Shell command descriptions 47

The parser stack depth is limited to 150 levels. Attempting to process extremely

complicated programs may result in an overflow of this stack, causing an error.

Input must be text files.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The ord function is an extension to traditional implementations of awk. The

toupper and tolower functions and the ENVIRON array are in POSIX and the

UNIX System V Release 4 version of awk. This version is a superset of New awk,

as described in The AWK Programming Language by Aho, Weinberger, and

Kernighan.

The standard command interpreter that the system function uses and that awk uses

to run pipelines for getline, print, and printf is system-dependent. On z/OS UNIX,

this interpreter is always /bin/sh.

Related information

ed, egrep, sed, vi

For more information about regexp, see Appendix C, “Regular Expressions

(regexp).”

basename — Return the nondirectory components of a pathname

Format

basename name [suffix]

Description

basename strips off the leading part of a pathname, leaving only the final

component of the name, which is assumed to be the filename. To accomplish this,

basename first checks to see if name consists of nothing but slash (/) characters.

If so, basename replaces name with a single slash and the process is complete. If

not, basename removes trailing slashes. If slashes still remain, basename strips off

all leading characters up to and including the final slash. Finally, if you specify suffix

and the remaining portion of name contains a suffix that matches suffix, basename

removes that suffix.

Examples

The command:

basename src/dos/printf.c

produces:

printf.c

Localization

basename uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

awk

48 z/OS V1R9.0 UNIX System Services Command Reference

v NLSPATH

See Appendix F, “Localization” for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Unknown command-line option

v Incorrect number of arguments

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

dirname

batch — Run commands when the system is not busy

Format

batch

Description

batch lets you run commands in batch mode. It reads the commands from the

standard input (stdin). The system records the commands and runs them at a time

when the system load is relatively low (that is, when the system is not busy).

The batch command is equivalent to

at –q b –m now

For more details, see at.

at, batch, and crontab submit jobs to cron; the data in those jobs may contain

doublebyte characters. When the jobs are run, the data in the jobs are interpreted

in the locale that cron is using. Since it is strongly recommended that cron be

started in the POSIX locale, doublebyte characters in the job may not be interpreted

correctly. You may be able to get around this by calling setlocale() in the job itself.

Environment Variables

batch uses the following environment variable:

SHELL

Contains the name of the shell command interpreter used to invoke the

batch job.

Localization

batch uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

basename

Chapter 2. Shell command descriptions 49

See Appendix F, “Localization” for more information.

Exit Values

0 Successful completion

>0 Returned if the command fails for any reason

 If an error occurs, batch does not schedule the job.

Portability

POSIX.2 User Portability Extension.

Related Information

at, bg, crontab

bc — Use the arbitrary-precision arithmetic calculation language

Format

bc [–i] [–l] [file]

Description

bc is a programming language that can perform arithmetic calculations to arbitrary

precision. You can use it interactively, by entering instructions from the terminal. It

can also run programs taken from files.

The file arguments you specify on the command line should be text files containing

bc instructions. bc runs the instructions from those files, in the order that they

appear on the command line, and then runs instructions from the standard input

(stdin). bc ends when it runs a quit instruction or reaches the end of the file on

stdin.

bc is a simple but complete programming language with a syntax reminiscent of the

C programming language. This version of bc is a superset of the standard language

available on most systems. It has a number of additional features intended to make

the language more flexible and useful. Features unique to this implementation are

noted.

Input consists of a series of instructions that assign values to variables or make

calculations. It is also possible to define subprograms called functions, which

perform a sequence of instructions to calculate a single value.

bc displays the result of any line that calculates a value, but does not assign it to a

variable. For example, the instruction:

2+2

displays:

4

By default, bc displays the result of any evaluated instruction followed by a newline.

bc also saves the last value displayed in a special variable . (dot), so that you can

use it in subsequent calculations.

For a summary of the UNIX03 changes to this command, see Appendix N, “UNIX

shell commands changed for UNIX03.”

batch

50 z/OS V1R9.0 UNIX System Services Command Reference

|

|
|

Options

bc supports the following options.

–i Puts bc into interactive mode with a displayed prompt. In this mode, bc

displays a prompt, which is “:”—waiting for input. In addition, it handles

errors somewhat differently. Normally, when bc encounters an error while

processing a file, the interpreter displays the error message and exits. In

interactive mode, the interpreter displays the message and returns to the

prompt mode to allow debugging.

–l Loads a library of standard mathematical functions before processing any

other input. This library also sets the scale to 20. For a description of the

functions in the –l library, see Built-in Functions.

Numbers

Numbers consist of an optional minus (−) sign or an optional plus (+) sign followed

by a sequence of zero or more digits, followed by an optional decimal point (.),

followed by a sequence of zero or more digits. Valid digits are 0 through 9, and the

hexadecimal digits A through F. The uppercase letters represent the values from 10

through 15. There must be at least one digit, either before or after the decimal point.

If not, bc interprets the decimal point as the special variable ..

A number can be arbitrarily long and can contain spaces. Here are some valid

numbers with an input base of 10:

0 0. .0 -3.14159 +09. -12 1 000 000

Here are some valid numbers with an input base of 16 (ibase=16):

0 FF FF.3 -10.444 A1

See Bases for more information.

A final point is that you cannot break up numbers with commas; you can write

1000000 or 1 000 000, but 1,000,000 results in an error message.

Identifiers

Identifiers can include sequences containing any number of letters, digits, or the

underscore (_) character but must start with a lowercase letter. Spaces are not

allowed in identifiers.

In the POSIX locale, valid identifiers can include sequences containing any number

of letters, digits, or the underscore (_) character but must start with a lowercase

letter, as defined by the current locale.

For other locales, the character map for that locale determines which characters are

valid in an identifier. If you want identifiers to be portable between locales, use

characters from the POSIX character set. The use of identifiers longer than one

character is an extension of this implementation. Identifiers are used as names for

variables, functions, or arrays:

v A variable holds a single numeric value. You can declare variables that are local

to a function using the auto statement. (See Functions). All other variables are

global and you can use them inside any function or outside all functions. You do

not need to declare global variables. bc creates variables as it requires them,

with an initial value of zero. (Remember that there is also the special variable .

[dot], which contains the result of the last calculation.)

bc

Chapter 2. Shell command descriptions 51

v A function is a sequence of instructions that calculates a single value. A list of

zero or more values enclosed in parentheses always follow a function name, as

in my_func(3.14159). See Functions.

v An array is a list of values. Values in the list are called elements of the array.

These elements are numbered, beginning at zero. We call such a number a

subscript, or index, of the array. Subscripts always appear in square brackets

after the array. For example, a[0] refers to element zero in the array a. The first

element of the array always has the subscript 0. If a subscript value is a

floating-point number, the fractional part is discarded to make the subscript into

an integer. For example, the following expressions all refer to the same element:

a[3] a[3.2] a[3.999]

The maximum number of elements in a bc array is in the range from 0 to

{BC_DIM_MAX}−1 inclusive. Unlike with many languages, you don’t need to

declare the size of an array. Elements are created dynamically as required, with

an initial value of zero.

Since parentheses always follow function names and square brackets always follow

array names, bc can distinguish between all three types of names—variable names,

function names, and array names. Therefore, you can have variables, functions,

and arrays with the same name. For example, foo may be a variable whereas foo()

is a function and foo[] is an array.

Built-in Variables

bc has a number of built-in variables that are used to control various aspects of the

interpreter. These are described in the following topics.

Scale

The scale value is the number of digits to be retained after the decimal point in

arithmetic operations. For example, if the scale is 3, each calculation retains at least

three digits after the decimal point. This means that:

5 / 3

has the value:

1.666

If –l is specified, the scale is set to 20; otherwise, the default scale is zero.

The variable scale holds the current scale value. To change scales, assign a new

value to scale, as in:

scale = 5

Since scale is just a regular bc variable, it can be used in the full range of bc

expressions.

The number of decimal places in the result of a calculation is affected not only by

the scale, but also by the number of decimal places in the operands of the

calculation. discusses this. Arithmetic Operations discusses this.

There is also a function scale, which can determine the scale of any expression.

For example, scale(1.1234) returns the result 4, which is the scale of the number

1.1234. The result of the scale function is always an integer (that is, it has the

scale of 0).

bc

52 z/OS V1R9.0 UNIX System Services Command Reference

The maximum value for scale is given by the configuration variable

{BC_SCALE_MAX} and the minimum value is 0.

Bases

bc lets you specify numbers in different bases—for example, octal (base 8) or

hexadecimal (base 16). You can input numbers in one base and output them in a

different base, simplifying the job of converting from one base to another. bc does

this using the built-in variables ibase and obase.

ibase is the base for input numbers. It has an initial value of 10 (normal decimal

numbers). To use a different base for inputting numbers, assign an integer to ibase,

as in:

ibase = 8

This means that all future input numbers are to be in base 8 (octal). The largest

valid input base is 16, and the smallest valid input base is 2. There is no

mechanism provided to represent digits larger than 15, so bases larger than 16 are

essentially useless. When the base is greater than 10, use the uppercase letters as

digits. For example, base 16 uses the digits 0 through 9, and A through F. The digits

are allowed in any number, regardless of the setting of ibase but are largely

meaningless if the base is smaller than the digit. The one case where this is useful

is in resetting the input base to 10. The constant A always has the value 10 no

matter what ibase is set to, so to reset the input base to 10, type:

ibase = A

obase is the base in which numbers are output. It has an initial value of 10 (normal

decimal numbers). To change output bases, assign an appropriate integer to obase.

If the output base is 16 or less, bc displays numbers with normal digits and

hexadecimal digits (if needed). The output base can also be greater than 16, in

which case each digit is printed as a decimal value and digits are separated by a

single space. For example, if obase is 1000, the decimal number 123 456 789 is

printed as:

123 456 789

Here, the digits are decimal values from 0 through 999. As a result, all output values

are broken up into one or more chunks with three digits per chunk. Using output

bases that are large powers of 10, you can arrange your output in columns; for

example, many users find that 100 000 makes a good output base, because

numbers are grouped into chunks of five digits each.

Long numbers are output with a maximum of 70 characters per line. If a number is

longer than this, bc puts a backslash (\) at the end of the line indicating that the

number is continued on the next line. The backslash (\) and newline characters are

counted as part of the 70 character length.

Internal calculations are performed in decimal, regardless of the input and output

bases. Therefore the number of places after the decimal point are dictated by the

scale when numbers are expressed in decimal form.

The maximum value for obase is given by the configuration variable

{BC_BASE_MAX}.

bc

Chapter 2. Shell command descriptions 53

|
|
|
|

Arithmetic Operations

bc provides a large number of arithmetic operations. Following standard arithmetic

conventions, some operations are calculated before others. For example,

multiplications take place before additions unless you use parentheses to group

operations. Operations that take place first are said to have a higher precedence

than operations that take place later.

Operations also have an associativity. The associativity dictates the order of

evaluation when you have a sequence of operations with equal precedence. Some

operations are evaluated left to right, whereas others are evaluated right to left. The

following list shows the operators of bc from highest precedence to lowest.

bc Operator Associativity

() Left to right

Unary ++ −− Not applicable

Unary − ! Not applicable

^ Right to left

* / % Left to right

+ − Left to right

= ^= *= /= %= +=

Right to left

== <= >= != < >

None

&& Left to right

|| Left to right

bc’s order of precedence is not the same as C’s. In C, the assignment operators

have the lowest precedence.

The following list describes what each operation does. In the descriptions, A and B

can be numbers, variables, array elements, or other expressions. V must be either a

variable or an array element.

(A) Indicates that this expression—A—should be evaluated before any other

operations are performed on it.

-A Is the negation of the expression.

!A Is the logical complement of the expression. If A evaluates to zero, !A

evaluates to 1. If A is not zero, !A evaluates to zero. This operator is unique

to this version of bc.

++V Adds 1 to the value of V. The result of the expression is the new value of V.

− −V Subtracts 1 from the value of V. The result of the expression is the new

value of V.

V++ Adds 1 to the value of V, but the result of the expression is the old value of

V.

V− − Subtracts 1 from the value of V, but the result of the expression is the old

value of V.

A ^ B Calculates A to the power B. B must be an integer. The scale of the result of

A^B is:

bc

54 z/OS V1R9.0 UNIX System Services Command Reference

min(scale(A) * abs(B), max(scale, scale(A)))

where min calculates the minimum of a set of numbers and max calculates

the maximum.

A * B Calculates A multiplied by B. The scale of the result is:

min(scale(A) + scale(B), max(scale, scale(A), scale(B)))

A / B Calculates A divided by B. The scale of the result is the value of scale.

A % B Calculates the remainder from the division of A by B. This is calculated in

two steps. First, bc calculates A/B to the current scale. It then obtains the

remainder through the formula:

A - (A / B) * B

calculated to the scale:

max(scale + scale(B), scale(A))

A + B Adds A plus B. The scale of the result is the maximum of the two scales of

the operands.

A−B Calculates A minus B. The scale of the result is the maximum of the two

scales of the operands.

The next group of operators are all assignment operators. They assign values to

objects. An assignment operation has a value: the value that is being assigned.

Therefore, you can write such operations as a=1+(b=2). In this operation, the value

of the assignment in parentheses is 2 because that is the value assigned to b.

Therefore, the value 3 is assigned to a. The possible assignment operators are:

V = B Assigns the value of B to V.

V ^= B Is equivalent to V=V^B.

V *= B Is equivalent to V=V*B.

V /= B Is equivalent to V=V/B.

V %= B Is equivalent to V=V%B.

V += B Is equivalent to V=V+B.

V −= B Is equivalent to V=V-B.

The following expressions are called relations, and their values can be either true

(1) or false (0). This version of bc lets you use the relational operators in any

expression, not just in the conditional parts of if, while, or for statements. These

operators work exactly like their equivalents in the C language. The result of a

relation is 0 if the relation is false and 1 if the relation is true.

A == B Is true if and only if A equals B.

A <= B Is true if and only if A is less than or equal to B.

A >= B Is true if and only if A is greater than or equal to B.

A != B Is true if and only if A is not equal to B.

A < B Is true if and only if A is less than B.

A > B Is true if and only if A is greater than B.

A && B Is true if and only if A is true (nonzero) and B is true. If A is not true,

the expression B is never evaluated.

bc

Chapter 2. Shell command descriptions 55

A || B Is true if A is true or B is true. If A is true, the expression B is never

evaluated.

Comments and White Space

A comment has the form:

/* Any string */

Comments can extend over more than one line of text. When bc sees /* at the

start of a The only effect a comment has is to indicate the end of a token. As an

extension, this version of bc also provides an additional comment convention using

the # character. All text from the # to the end of the line is treated as a single blank,

as in:

2+2 # this is a comment

bc is free format. You can freely insert blanks or horizontal tab characters to

improve the readability of the code. Instructions are assumed to end at the end of

the line. If you have an instruction that is so long you need to continue it on a new

line, put a backslash (\) as the very last character of the first line and continue on

the second, as in:

a = 2\

 + 3

The \ indicates that the instruction continues on the next line, so this is equivalent

to:

a = 2 + 3

Instructions

A bc instruction can be an expression that performs a calculation, an assignment, a

function definition, or a statement. If an instruction is not an assignment, bc

displays the result of the instruction when it has completed the calculation. For

example, if you enter:

3.14 * 23

bc displays the result of the calculation. However, with:

a = 3.14 * 23

bc does not display anything, because the expression is an assignment. If you do

want to display the value of an assignment expression, simply place the expression

in parentheses.

The following list shows the instruction forms recognized by bc:

expression

Calculates the value of the expression.

“string”

Is a string constant. When bc sees a statement of this form, it displays the

contents of the string. For example:

"Hello world!"

tells bc to display Hello world! A newline character is not output after the

string. This makes it possible to do things like:

foo = 15

"The value of foo is "; foo

bc

56 z/OS V1R9.0 UNIX System Services Command Reference

With these instructions, bc displays

The value of foo is 15

statement ; statement ...

Is a sequence of statements on the same line. In bc, a semicolon (;) and a

newline are equivalent. They both indicate the end of a statement. bc runs

these statements in order from left to right.

{statement}

Is a brace-bracketed statement. Brace brackets are used to group

sequences of statements together, as in:

{

 statement

 statement

 ...

}

Brace brackets can group a series of statements that are split over several

lines. Braces are usually used with control statements like if and while.

break Can be used only inside a while or for loop. break ends the loop.

for (initexp ; relation ; endexp) statement

Is equivalent to:

initexp

while (relation) {

 statement

 endexp

}

where initexp and endexp are expressions and relation is a relation. For

example:

a = 0

for (i = 1; i <= 10; ++i) a += i

is equivalent to the while example given earlier.

Note: All three items inside the parentheses must be specified. Unlike C,

bc does not let you omit any of these expressions.

if (relation)statement

Tests whether the given relation is true. If so, bc runs the statement;

otherwise, bc skips over the statement and goes to the next instruction. For

example:

if ((a%2) == 0) "a is even"

displays a is even if a has an even value.

if (relation) statement1 elsestatement2

Is similar to the simple if statement. It runs statement1 if relation is true and

otherwise runs statement2. It may be used as follows:

if ((a%2) == 0) "a is even" else "a is odd"

Note: There is no statement separator between “a is even” and the else

keyword. This differs from the C language.

Here is another example:

bc

Chapter 2. Shell command descriptions 57

if (a<10) {

 "a "

 "is "; "less than 10 "

 a

} else {

 "a is"

 " greater than 10 "

 a

}

Note: The braces must be on the same line as the if and the else keywords. This

is because a new line or a semicolon right after (relation) indicates that the

body of the statement is null. One common source of errors in bc programs

is typing the statement body portion of an if statement on a separate line. If

–i is used, the interpreter displays a warning when if statements with null

bodies are encountered.

while (relation)statement

Repeatedly runs the given statement while relation is true. For example:

i = 1

a = 0

while (i <= 10) {

 a += i

 ++i

}

adds the integers from 1 through 10 and stores the result in a.

 If relation is not true when bc encounters the while loop, bc does not run

statement at all.

print expression , expression ...

Displays the results of the argument expressions. Normally, bc displays the

value of each expression or string it encounters. This makes it difficult to

format your output in programs. For this reason, the z/OS shell version of

bc has a print statement to give you more control over how things are

displayed. print lets you display several numbers on the same line with

strings. This statement displays all its arguments on a single line. A single

space is displayed between adjacent numbers (but not between numbers

and strings). A print statement with no arguments displays a newline. If the

last argument is null, subsequent output continues on the same line. Here

are some examples of how to use print:

/* basic print statement */

print "The square of ", 2, "is ", 2*2

The square of 2 is 4

/* inserts a space between adjacent numbers */

print 1,2,3

1 2 3

/* note - no spaces */

print 1,"",2,"",3

123

/* just print a blank line */

print

/* two statements with output on same line */

print 1,2,3, ; print 4, 5, 6

1 2 3 4 5 6

quit Ends bc. In other implementations of bc, the interpreter exits as soon as it

reads this token. This version of bc treats quit as a real statement, so you

can use it in loops, functions, and so on.

bc

58 z/OS V1R9.0 UNIX System Services Command Reference

sh ... Lets you send a line to the system command interpreter for execution, as

in:

sh more <foo

This command passes everything from the first nonblank character until the

end of the line to the command interpreter for execution.

void expression

Throws away, or “voids,” the result of the evaluation of expression instead

of displaying it. This instruction is useful when using ++ and -- operators, or

when you want to use a function but don’t want to use the return value for

anything. For example:

void foo++

increments foo but does not display the result. The void statement is

unique to this version of bc.

Several other types of statements are relevant only in function definitions. These

are described in the next topic.

Functions

A function is a subprogram to calculate a result based on argument values. For

example, the following function converts a temperature given in Fahrenheit into the

equivalent temperature in Celsius:

define f_to_c(f) {

 return ((f-32) * 5 / 9)

}

This defines a function named f_to_c() that takes a single argument called f. The

body of the function is enclosed in brace brackets. The opening brace must be on

the same line as the define keyword. The function body consists of a sequence of

statements to calculate the result of the function. An expression of the form:

return (expression)

returns the value of expression as the result of the function. The parentheses

around the expression are optional.

To activate the subprogram you use a function call. This has the form:

name(expression,expression,...)

where name is the name of the function, and the expressions are argument values

for the function. You can use function call anywhere you might use any other

expression. The value of the function call is the value that the function returns. For

example, with the function f_to_c(), described earlier, f_to_c(41) has the value 5

(since 41 Fahrenheit is equivalent to 5 Celsius).

The general form of a function definition is:

define name(parameter,parameter,...) {

 auto local, local, ...

 statement

 statement

 ...

}

bc

Chapter 2. Shell command descriptions 59

Each parameter on the first line can be a variable name or an array name. Array

names are indicated by putting square brackets after them. For example, if cmpvec

is a function that compares two vectors, the function definition might start with:

define cmpvec(a[],b[]) {

Parameters do not conflict with arrays or variables of the same name. For example,

you can have a parameter named a inside a function, and a variable named a

outside, and the two are considered entirely separate entities. Assigning a value to

the variable does not change the parameter and vice versa. All parameters are

passed by value. This means that a copy is made of the argument value and is

assigned to the formal parameter. This also applies to arrays. If you pass an array

to a function, a copy is made of the whole array, so any changes made to the array

parameter do not affect the original array.

A function may not need any arguments. In this case, the define line does not have

any parameters inside the parentheses, as in:

define f() {

The auto statement declares a sequence of local variables. When a variable or

array name appears in an auto statement, the current values of those items are

saved and the items are initialized to zero. For the duration of the function, the

items have their new values. When the function ends, the old values of the items

are restored.

However, bc uses dynamic scoping rules, unlike C which uses lexical scoping rules.

See Usage notes for more details.

For example:

define addarr(a[],l) {

 auto i, s

 for (i=0; i < l; ++i) s += a[i]

 return (s)

}

is a function that adds the elements in an array. The argument l stands for the

number of elements in the array. The function uses two local names: a variable

named i and a variable named s. These variables are “local” to the function addarr

and are unrelated to objects of the same name outside the function (or in other

functions). Objects that are named in an auto statement are called autos. Autos are

initialized to 0 each time the function is called. Thus, the sum s is set to zero each

time this function is called. You can also have local arrays, which are specified by

placing square brackets after the array name in the auto statement.

define func_with_local_array() {

 auto local_array[];

 for(i=0; i<100; i++) local_array[i] = i*2

}

This example defines a local array called local_array. Local arrays start out with no

elements in them.

If a function refers to an object that is not a parameter and not declared auto, the

object is assumed to be external. External objects may be referred to by other

functions or by statements that are outside of functions. For example:

bc

60 z/OS V1R9.0 UNIX System Services Command Reference

define sum_c(a[],b[],l) {

 auto i

 for (i=0; i < l; ++i) c[i] = a[i] + b[i]

}

refers to an external array named c, which is the element-by-element sum of two

other arrays. If c did not exist prior to calling sum_c, it is created dynamically. After

the program has called sum_c, statements in the program or in functions can refer

to array c.

Functions usually require a return statement. This has the form:

return (expression)

The argument expression is evaluated and used as the result of the function. The

expression must have a single numeric value; it cannot be an array.

A return statement ends a function, even if there are more statements left in the

function. For example:

define abs(i) {

 if (i < 0) return (-i)

 return (i)

}

is a function that returns the absolute value of its argument. If i is less than zero,

the function takes the first return; otherwise, it takes the second.

A function can also end by running the last statement in the function. If so, the

result of the function is zero. The function sum_c is an example of a function that

does not have a return statement. The function does not need a return statement,

because its work is to calculate the external array c, not to calculate a single value.

Finally, if you want to return from a function, but not return a value you can use

return() or simply return. If there are no parameters to the return statement, a

default value of zero is returned.

Built-in Functions

bc has a number of built-in functions that perform various operations. These

functions are similar to user-defined functions. You do not have to define them

yourself, however; they are already set up for you. These functions are:

length(expression)

Calculates the total number of decimal digits in expression. This includes

digits both before and after the decimal point. The result of length() is an

integer. For example, length(123.456) returns 6.

scale(expression)

Returns the scale of expression. For example, scale(123.456) returns 3.

The result of scale() is always an integer. Subtracting the scale of a

number from the length of a number lets you determine the number of digits

before the decimal point.

sqrt(expression)

Calculates the square root of the value of expression. The result is

truncated in the least significant decimal place (not rounded). The scale of

the result is the scale of expression, or the value of scale(), whichever is

larger.

You can use the following functions if –l is specified on the command line. If it is

not, the function names are not recognized. There are two names for each function:

bc

Chapter 2. Shell command descriptions 61

a full name, and a single character name for compatibility with POSIX.2. The full

names are the same as the equivalent functions in the standard C math library.

arctan(expression) or a(expression)

Calculates the arctangent of expression, returning an angle in radians. This

function can also be called as atan(expression).

bessel(integer,expression) or j(integer,expression)

Calculates the Bessel function of expression, with order integer. This

function can also be called as jn(integer,expression).

cos(expression) or c(expression)

Calculates the cosine of expression, where expression is an angle in

radians.

exp(expression) or e(expression)

Calculates the exponential of expression (that is, the value e to the power

of expression).

ln(expression) or l(expression)

Calculates the natural logarithm of expression. This function can also be

called as log(expression).

sin(expression) or s(expression)

Calculates the sine of expression, where expression is an angle in radians.

The scale value of the result returned by these functions will be the value of the

scale variable at the time the function is invoked. The value of the scale variable

after these functions have completed their execution will be the same value it had

upon invocation.

Examples

1. Here is a simple function to calculate the sales tax on a purchase. The amount

of the purchase is given by purchase, and the amount of the sales tax (in per

cent) is given by tax.

define sales_tax(purchase,tax) {

 auto old_scale

 scale = 2

 tax = purchase*(tax/100)

 scale = old_scale

 return (tax)

}

For example:

sales_tax(23.99,6)

calculates 6% tax on a purchase of $23.99. The function temporarily sets the

scale value to 2 so that the monetary figures have two figures after the decimal

point. Remember that bc truncates calculations instead of rounding, so some

accuracy may be lost. It is better to use one more digit than needed and

perform the rounding at the end. The round2 function, shown later in this topic,

rounds a number to two decimal places.

2. Division resets the scale of a number to the value of scale. You can use this to

extract the integer portion of a number, as follows:

define integer_part(x) {

 # a local to save the value of scale

 auto old_scale

 # save the old scale, and set scale to 0

 old_scale = scale; scale=0

 # divide by 1 to truncate the number

 x /= 1

bc

62 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|
|

restore the old scale

 scale=old_scale

 return (x)

}

3. Here is a function you can define to return the fractional part of a number:

define fractional_part(x) {return (x - integer_part(x))}

4. The following function lets you set the scale of number to a given number of

decimal places:

define set_scale(x, s)

 { auto os

 os = scale

 scale = s

 x /= 1

 scale = os

 return (x) }

You can now use set_scale() in a function that rounds a number to two decimal

places:

define round2(num) {

 auto temp;

 if(scale(num) < 2) return (set_scale(num, 2))

 temp = (num - set_scale(num, 2)) * 1000

 if(temp > 5) num += 0.01

 return (set_scale(num,2))

}

This is a very useful function if you want to work with monetary values. For

example, you can now rewrite sales_tax() to use round2():

define sales_tax(purchase,tax) {

 auto old_scale

 scale = 2

 tax = round2(purchase*(tax/100))

 scale = old_scale

 return (tax)

}

5. Here is a function that recursively calculates the factorial of its argument:

define fact (x) {

 if(x < 1) return 1

 return (x*fact(x-1))

}

You can also write the factorial function iteratively:

define fact (x) {

 auto result

 result = 1

 while(x>1) result *= x--

 return (result)

}

With either version, fact(6) returns 720.

6. Here is another recursive function, that calculates the nth element of the

Fibonacci sequence:

define fib(n) {

 if(n < 3) {

 return (1)

 } else {

 return (fib(n-1)+fib(n-2))

 }

}

bc

Chapter 2. Shell command descriptions 63

Usage notes

1. Unlike the C language, which uses lexical scoping rules, bc uses dynamic

scoping, which is most easily explained with an example:

a=10

define f1() {

 auto a;

 a = 13;

 return (f2())

}

define f2() {

 return (a)

}

f1()

13

f2()

10

If f1() is called, bc prints the number 13, instead of the number 10. This is

because f1() hides away the old (global) value of a and then sets it to 13. When

f2() refers to a, it sees the variable dynamically created by f1() and so prints 13.

When f1() returns, it restores the old value of a. When f2() is called directly,

instead of through f1(), it sees the global value for a and prints 10. The

corresponding C code prints 10 in both cases.

2. Numbers are stored as strings in the program and converted into numbers each

time they are used. This is important because the value of a “constant” number

may change depending on the setting of the ibase variable. For example,

suppose the following instructions are given to bc:

define ten() {

 return (10)

}

ten()

10

ibase=16

ten()

16

In this example, when the base is set to 10, ten() returns the decimal value 10.

However, when the input base is changed to 16, the function returns the

decimal value 16. This can be a source of confusing errors in bc programs.

3. The library of functions loaded using the –l option is stored in the file

/usr/lib/lib.b under your root directory. This is a simple text file that you can

examine and change to add new functions as desired.

4. In a noninteractive invocation, bc will exit on any invalid input and the rest of

the input will be skipped.

Files

bc uses the following file:

/usr/lib/lib.b

File containing the library of functions loaded with –l

Localization

bc uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

bc

64 z/OS V1R9.0 UNIX System Services Command Reference

|
|

v NLSPATH

See Appendix F, “Localization” for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following errors:

v Break statement found outside loop

v Parser stack overflow

v Syntax error

v End of file in comment

v End of file in string

v Numerical constant is too long

v String is too long

v Empty evaluation stack

v Cannot pass scalar to array

v Cannot pass array to scalar

v Incorrect array index

v Built-in variable cannot be used as a parameter or auto variable

v name is not a function

v Incorrect value for built-in variable

v Shell command failed to run

v Division by 0

v Incorrect value for exponentiation operator

v Attempt to take square root of negative number

v Out of memory

2 Unknown command-line option

Limits

The parser stack depth is limited to 150 levels. Attempting to process extremely

complicated programs may result in an overflow of this stack, causing an error.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The following are extensions to the POSIX standard:

v The –i option

v The &&and || operators

v The if ... else ... statement

v Identifiers of more than one character or containing characters outside the

POSIX character set

v The print statement

v The sh statement

v The optional parentheses in the return statement

In a doublebyte environment, remember that only numbers and operators from the

POSIX character set can be used. Identifiers can use characters from the current

locale; if you want scripts to be portable, use only characters from the POSIX

character set.

bc

Chapter 2. Shell command descriptions 65

bg — Move a job to the background

Format

bg [job...]

tcsh shell: bg [%job ...]

Description

bg runs one or more jobs in the background. The job IDs given on the command

line identify these jobs, which should all be ones that are currently stopped. If you

do not specify any job IDs, bg uses the most recently stopped job.

bg works only if job control is enabled; see the –m option of set for more

information. Job control is enabled by default in the z/OS shell.

bg in the tcsh shell

In the tcsh shell, bg puts the specified jobs (or, without arguments, the current job)

into the background, continuing each if it is stopped. job may be a number, a string,

’’, %, + or - .

In the tcsh shell, %job & is a synonym of the bg command.

Localization

bg uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F, “Localization” for more information.

Usage Note

bg is a built-in shell command.

Exit Values

0 Successful completion

>0 Failure because a job argument is incorrect or there is no current job

 If an error occurs, bg exits and does not place the job in the background.

Portability

POSIX.2 User Portability Extension, UNIX systems.

Related Information

at, batch, fg, jobs, set, tcsh

bpxmtext — Display reason code text

Format

bpxmtext reason_code

bg

66 z/OS V1R9.0 UNIX System Services Command Reference

Description

bpxmtext displays the description and action text for a reason code returned from

the kernel and errnojr values returned from the C/C++ run-time library. bpxmtext

supports reason codes from z/OS UNIX System Services, TCP/IP, and zFS. This

command is intended as an aid for problem determination. Reason codes such as

those returned by HFS or NFS are not supported by this command.

reason_code is specified as 8 hexadecimal characters. Leading zeros may be

omitted.

Usage notes

If no text is available for the reason code, a blank line is displayed.

An argument that is not 1–8 hex digits will result in a usage message. This

message will not be translated.

Examples

The command:

bpxmtext 058800B0

produces data displayed in the following format:

BPXFSUMT 08/18/98

JRUserNotPrivileged: The requester of the service is not privileged

Action: The service requested required a privileged user. Check the

documentation for the service to understand what privilege is required.

Exit values

0 Successful completion

2 Failure due to an argument that is not 1–8 hex digits

break — Exit from a loop in a shell script

Format

break [number]

tcsh shell: break

Description

break exits from a for, select, while, or until loop in a shell script. If number is

given, break exits from the given number of enclosing loops. The default value of

number is 1.

break in the tcsh shell

In the tcsh shell, break causes execution to resume after the end of the nearest

enclosing foreach or while. The remaining commands on the current line are

executed. Multi-level breaks are thus possible by writing them all on one line.

Localization

break uses the following localization environment variables:

v LANG

bpxmtext

Chapter 2. Shell command descriptions 67

|
|
|
|
|

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F, “Localization” for more information.

Usage Note

break is a special built-in shell command.

Exit Value

break always exits with an exit status of 0.

Portability

POSIX.2, X/Open Portability Guide.

Related Information

continue, sh, tcsh

c++ — Compile, link-edit and assemble C and C++ source code and

create an executable file on z/OS

See c89/xlc or man xlc.

Note: When working in the shell, to view man page information about c++, type:

man c89 or man xlc.

c89 — Compiler invocation using host environment variables

Format

c89 | cc | c++ | cxx [–+CcEFfgOpqrsVv0123]

 [-D name[=value]]... [-U name]...

 [-e function] [-u function]...

 [-W phase,option[,option]...]...

 [-o outfile]

 [-I directory]... [-L directory]...

 [file.C]... [file.i]... [file.c]... [file.s]...

 [file.o]... [file.x]... [file.p]... [file.I]... [file.a]... [-l libname]...

Notes:

1. The I option signifies an uppercase i, not a lowercase L.

2. The c99 command is only supported by the xlc utility. See “xlc — Compiler

invocation using a customizable configuration file” on page 796 for more

information.

Description

c89 and cc compile, assemble, and link-edit C programs; cxx/c++ does the same

for C++ programs.

v c89 should be used when compiling C programs that are written according to

Standard C.

break

68 z/OS V1R9.0 UNIX System Services Command Reference

|

|

|

|
|

v cc should be used when compiling C programs that are written according to

Common Usage C.

v cxx/c++ must be used when compiling C++ programs. Prior to z/OS V1R2, the

C++ compiler supported the Draft Proposal International Standard for Information

Systems — Programming Language C++ (X3J16). As of z/OS V1R7, the C++

compiler supports the Programming languages - C++ (ISO/IEC 14882:2003(E))

standard, as well as the Programming languages - C++ (ISO/IEC 14882:1998)

standard. c++ can compile both C++ and C programs, and can also be invoked

by the name cxx (all references to c++ throughout this document apply to both

names).

c89, cc, and c++ call other programs for each step of the compilation, assemble

and link-editing phases. The list below contains the following: the step name, the

name of the document that describes the program you use for that step and the

document that describes any messages issued by that program, and prefixes to

those messages:

 Table 3. Reference documentation for programs invoked by c89, cc, and c++ commands

Step Name Document

Describing

Options and

How to Call

Program

Document

Containing

Messages Issued

by Program

Prefix of

Messages Issued

by Program

ASSEMBLE HLASM

Programmer’s

Guide

HLASM

Programmer’s

Guide

ASMA

COMPILE, IPACOMP,

TEMPINC, IPATEMP,

IPALINK

z/OS C/C++

User’s Guide for

releases prior to

z/OS V1R7 and

z/OS XL C/C++

User’s Guide for

z/OS V1R7 and

later releases

z/OS C/C++

Messages for z/OS

V1R5 and z/OS

V1R6 releases and

z/OS XL C/C++

Messages for z/OS

V1R7 and later

releases

CCN for z/OS

V1R2 and later

releases

PRELINK z/OS Language

Environment

Programming

Guide and z/OS

XL C/C++ User’s

Guide

z/OS Language

Environment

Debugging Guide

EDC

LINKEDIT (Program

Management Binder)

z/OS MVS

Program

Management:

User’s Guide and

Reference

z/OS MVS System

Messages, Vol 8

(IEF-IGD)

IEW

Execution of any Language Environment program (including c89 and the z/OS XL

C/C++ compiler) can result in run-time messages. These messages are described

in z/OS Language Environment Run-Time Messages and have an EDC prefix. In

some cases, c89 issues messages with Language Environment messages

appended to them. Messages issued by c89 have an FSUM3 prefix.

In order for c89, cc, and c++ to perform C and C++ compiles, the z/OS C/C++

Optional Feature must be installed on the system. The z/OS C/C++ Optional

Feature provides a C compiler, a C++ compiler, C++ Class Libraries, and some

c89, cc, and c++

Chapter 2. Shell command descriptions 69

utilities. See z/OS Introduction and Release Guide for further details. Also see

prefix_CLIB_PREFIX and prefix_PLIB_PREFIX in “Environment variables” on page

84 for information about the names of the z/OS XL C/C++ Optional Feature data

sets that must be made available to c89/cc/c++.

Note: The term prefix is defined in “Environment variables” on page 84.

First, c89, cc, and c++ perform the compilation phase (including preprocessing) by

compiling all source file operands (file.C, file.i, and file.c, as appropriate). For c++, if

automatic template generation is being used (which is the default), then z/OS XL

C++ source files may be created or updated in the tempinc subdirectory of the

working directory during the compilation phase (the tempinc subdirectory will be

created if it does not already exist). Then, c89, cc, and c++ perform the assemble

phase by assembling all operands of the file.s form. The result of each compile step

and each assemble step is a file.o file. If all compilations and assemblies are

successful, or if only file.o and/or file.a files are specified, c89, cc, and c++ proceed

to the link-editing phase. For c++, the link-editing phase begins with an automatic

template generation step when applicable. For IPA (Interprocedural Analysis)

optimization an additional IPA Link step comes next. The link-edit step is last. See

the environment variable prefix_STEPS under “Environment variables” on page 84

for more information about the link-editing phase steps.

In the link-editing phase, c89, cc, and c++ combine all file.o files from the

compilation phase along with any file.o files that were specified on the command

line. For c++, this is preceded by compiling all z/OS XL C++ source files in the

tempinc subdirectory of the working directory (possibly creating and updating

additional z/OS XL C++ source files during the automatic template generation step).

After compiling all the z/OS XL C++ source files, the resulting object files are

combined along with the file.o files from the compilation phase and the command

line. Any file.a files, file.x files and -l libname operands that were specified are also

used.

The usual output of the link-editing phase is an executable file. For c89, cc, and

c++ to produce an executable file, you must specify at least one operand which is

of other than -l libname form. If -r is used, the output file is not executable.

For more information about automatic template generation, see z/OS XL C/C++

User’s Guide and the information on ″Using TEMPINC or NOTEMPINC″ in z/OS XL

C/C++ Programming Guide. Note that the c++ command only supports using the

tempinc subdirectory of the working directory for automatic template generation.

IPA is further described under the -W option on page 78.

Options

–+ Specifies that all source files are to be recognized as C++ source files. All

file.s, file.o, and file.a files will continue to be recognized as assembler

source, object, and archive files respectively. However, any C file.c or file.i

files will be processed as corresponding C++ file.C or file.i files, and any

other file suffix which would otherwise be unrecognized will be processed

as a file.C file.

 This option effectively overrides the environment variable

prefix_EXTRA_ARGS. This option is only supported by the c++ command.

-C Specifies that C and C++ source comments should be retained by the

c89, cc, and c++

70 z/OS V1R9.0 UNIX System Services Command Reference

preprocessor. By default, all comments are removed by the preprocessor.

This option is ignored except when used with the -E option.

-c Specifies that only compilations and assemblies be done. Link-edit is not

done.

-D name[=value]

Defines a C or C++ macro for use in compilation. If only name is provided,

a value of 1 is used for the macro it specifies. For information about macros

that c89/cc/c++ automatically define, see Usage Note 5 on page 98. Also

see Usage Note 13 on page 100.

Note: The xlc utility has slightly different semantics for processing -D

options.

-E Specifies that output of the compiler preprocessor phase be copied to

stdout. Object files are not created, and no link-editing is performed.

-e function

Specifies the name of the function to be used as the entry point of the

program. This can be useful when creating a fetchable program, or a non–C

or non–C++ main, such as a COBOL program. Non–C++ linkage symbols

of up to 1024 characters in length may be specified. You can specify an

S-name by preceding the function name with double slash (//). (For more

information about S-names, see Usage Note 23 on page 103.)

 Specify a null S-name (″-e //″) so that no function name is identified by

c89/cc/c++ as the entry point of the program. In that case, the Program

Management Binder (link editor) default rules will determine the entry point

of the program. For more information about the Program Management

Binder and the ENTRY control statement, see z/OS MVS Program

Management: User’s Guide and Reference.

 The function //ceestart is the default. When the default function entry point

is used, a binder ORDER control statement is generated by c89/cc/c++ to

cause the CEESTART code topic to be ordered to the beginning of the

program. Specify the name with a trailing blank to disable this behavior, as

in "//ceestart ". For more information about the Program Management

Binder and the ORDER control statement, see z/OS MVS Program

Management: User’s Guide and Reference.

 This option may be required when building products which are intended to

be installed using the IBM SMP/E product. When installing ++MOD

elements with SMP/E, binder control statements should be provided in the

JCLIN created to install the product instead of being embedded in the

elements themselves.

-F Ignored by cc. Provided for compatibility with historical implementations of

cc. Flagged as an error by c89 and c++.

-f Ignored by cc. Provided for compatibility with historical implementations of

cc. Flagged as an error by c89 and c++.

 Historical implementations of C/C++ used this option to enable floating-point

support. Floating-point is automatically included in z/OS XL C/C++.

However, in z/OS XL C/C++, two types of floating-point support are

available:

HEXADECIMAL

Base 16 IBM System z9™ hexadecimal format. The IBM System z9

c89, cc, and c++

Chapter 2. Shell command descriptions 71

hexadecimal format is referred to as the hexadecimal floating-point

format, and is unique to IBM System z9 hardware. This is the

default.

IEEE754

Base 2 IEEE-754 binary format. The IEEE-754 binary format is

referred to as binary floating-point format. The IEEE-754 binary

format is the more common floating point format used on other

platforms.

If you are porting an application from another platform, transmitting

floating-point numbers between other platforms or workstations, or your

application requires the larger exponent range provided by IEEE-754 binary

format, then you should consider using IEEE floating-point. The z/OS XL

C/C++ User’s Guide contains more information on the FLOAT compiler

option.

 Example: The following is an example of compiling with IEEE-754 binary

floating point format:

c89 -o outfile -Wc,’float(ieee)’ file.c

-g Specifies that a side file that contains symbolic information is emitted and

the executable is to be loaded into read/write storage, which is required for

source-level debugging with dbx, and other debuggers.

 For 32-bit compiles, if the _DEBUG_FORMAT=ISD environment variable is

exported, then -g specifies that the output file (executable) is to contain

symbolic information and is to be loaded into read/write storage, which is

required for source-level debugging with dbx, and other debuggers.

 When specified for the compilation phase, the compiler produces symbolic

information for source-level debugging.

 When specified for the link-editing phase, the executable file is marked as

being serially reusable and will always be loaded into read/write storage.

 dbx requires that all the executables comprising the process be loaded into

read/write storage so that it can set break points in these executables.

When dbx is attached to a running process, this cannot be guaranteed

because the process was already running and some executables were

already loaded. There are two techniques that will guarantee that all the

executables comprising the process are loaded into read-write storage:

1. Specify the -g option for the link-editing phase of each executable. After

this is done, the executable is always loaded into read/write storage.

Because the executable is marked as being serially reusable, this

technique works except in cases where the executable must be marked

as being reentrant. For example:

v If the executable is to be used by multiple processes in the same

user space.

v If the executable is a DLL that is used on more than one thread in a

multithreaded program.

In these cases, use the following technique instead:

2. Do not specify the -g option during the link-editing phase so that the

executable will be marked as being reentrant. Before invoking the

program, export the environment variable _BPX_PTRACE_ATTACH with

a value of YES. After you do this, then executables will be loaded into

read/write storage regardless of their reusability attribute.

c89, cc, and c++

72 z/OS V1R9.0 UNIX System Services Command Reference

If you compile an MVS data set source using the -g option, you can use

dbx to perform source-level debugging for the executable file. You must first

issue the dbx use subcommand to specify a path of double slash (//),

causing dbx to recognize that the symbolic name of the primary source file

is an MVS data set. For information on the dbx command and its use

subcommand, see “use subcommand for dbx: Set the list of directories to

be searched” on page 227.

 For more information on using dbx, see z/OS UNIX System Services

Programming Tools.

 The z/OS UNIX System Services web page also has more information

about dbx. Go to http://www.ibm.com/servers/eserver/zseries/zos/unix/.

 For more information on the _BPX_PTRACE_ATTACH environment

variable, see z/OS UNIX System Services Programming: Assembler

Callable Services Reference.

 The GONUMBER option is automatically turned on by the -g option, but

can also be turned on independently. There is no execution path overhead

incurred for turning on this option, only some additional space for the saved

line number tables.

 For 31-bit compiles and In Storage Debug (ISD) information, the

GONUMBER option generates tables that correspond to the input source

file line numbers. These tables make it possible for Debug Tools and for

error trace back information in CEE dumps to display the source line

numbers. Having source line numbers in CEE dumps improves

serviceability costs of applications in production. The z/OS XL C/C++ User’s

Guide contains more information on the GONUMBER compiler option.

 Example: The following is an example of compiling with the GONUMBER

compiler option:

c89 -o outfile -Wc,’GONUM’ file.c

Note: -g forces the NOOPTIMIZE compiler option regardless of its position

in the command line.

-I directory

Note: The I option signifies an uppercase i, not a lowercase L.
-I specifies the directories to be used during compilation in searching for

include files (also called header files).

Absolute pathnames specified on #include directives are searched exactly

as specified. The directories specified using the -I option or from the usual

places are not searched.

 If absolute pathnames are not specified on #include directives, then the

search order is as follows:

1. Include files enclosed in double quotes (") are first searched for in the

directory of the file containing the #include directive. Include files

enclosed in angle-brackets (< >) skip this initial search.

2. The include files are then searched for in all directories specified by the

-I option, in the order specified.

3. Finally, the include files are searched for in the usual places. (See

Usage Note 4 on page 98 for a description of the usual places.)

c89, cc, and c++

Chapter 2. Shell command descriptions 73

http://www.ibm.com/servers/eserver/zseries/zos/unix/

You can specify an MVS data set name as an include file search directory.

Also, MVS data set names can explicitly be specified on #include

directives. You can indicate both by specifying a leading double slash (//).

 Example: To include the include file DEF that is a member of the MVS PDS

ABC.HDRS, code your C or C++ source as follows:

#include <//'abc.hdrs(def)'>

MVS data set include files are handled according to z/OS XL C/C++

compiler conversion rules (see Usage Note 4 on page 98). When specifying

an #include directive with a leading double slash (in a format other than

#include<//'dsname'> and #include<//dd:ddname>), the specified name

is paired only with MVS data set names specified on the -I option. That is,

when you explicitly specify an MVS data set name, any z/OS UNIX file

system directory names specified on the -I option are ignored.

-L directory

Specifies the directories to be used to search for archive libraries specified

by the -l operand. The directories are searched in the order specified,

followed by the usual places. You cannot specify an MVS data set as an

archive library directory.

 For information on specifying C370LIB libraries, see the description of the -l

libname operand. Also see Usage Note 7 on page 99 for a description of

the usual places.

-0, -O (-1), -2, -3

Specifies the level of compiler optimization (including inlining) to be used.

The level -1 (number one) is equivalent to -O (capital letter O). The level -3

gives the highest level of optimization. The default is -0 (level zero), no

optimization and no inlining, when not using IPA (Interprocedural Analysis).

 When optimization is specified, the default is ANSIALIAS. The ANSIALIAS

default specifies whether type-based aliasing is to be used during

optimization. That is, the optimizer assumes that pointers can only be used

to access objects of the same type. Type-based aliasing improves

optimization. Applications that use pointers that point to objects of a

different type will need to specify NOANSIALIAS when the optimization

compiler option is specified. If your application works when compiled with

no optimization and fails when compiled with optimization, then try

compiling your application with both optimization and NOANSIALIAS

compiler options. The z/OS XL C/C++ User’s Guide contains more

information on ANSIALIAS.

Notes:

1. Options can also be specified as -O1 (using capital letter O), -O2, and

-O3. For further information, see Usage Note 12 on page 100.

2. These options cannot be overridden by specifying optimization options

using the -Wc syntax. This behavior differs from the behavior of the xlc

utility, which allows the use of -q and -Wc syntax to override the flag

optimization options.

Example: The following is an example of a compile with the highest level of

optimization and no type-based aliasing:

c89 -o outfile -O3 -Wc,NOANSIALIAS file.c

When optimization is specified, you may want to obtain a report on the

amount of inlining performed and increase or decrease the level of inlining.

c89, cc, and c++

74 z/OS V1R9.0 UNIX System Services Command Reference

More inlining will improve application performance and increase application

memory usage. The z/OS XL C/C++ User’s Guide contains more

information on the INLINE compiler option.

 Example: The following is an example of a compile with optimization with

no report generated, a threshold of 500 abstract code units, and a limit of

2500 abstract code units:

c89 -o outfile -O2 -Wc,’inline(auto,noreport,500,2500)’ file.c

When using IPA, the default is -O (level 1) optimization and inlining. IPA

optimization is independent from and can be specified in addition to this

optimization level. IPA is further described under the -W option on page 78.

 If compiling with PDF, the same optimization level must be used in the

PDF1 and PDF2 steps.

 If you compile your program to take advantage of dbx source-level

debugging and specify –g (see the -g option on page 72), you will always

get -0 (level zero) optimization regardless of which of these compiler

optimization levels you specify.

 In addition to using optimization techniques, you may want to control

writable strings by using the #pragma strings(readonly) directive or the

ROSTRING compiler option. As of z/OS Version 1 Release 2, ROSTRING

is the default.

 For more information on this topic, see reentrancy in z/OS XL C/C++ in

z/OS XL C/C++ Programming Guide or the description of the ROSTRING

option in the z/OS XL C/C++ User’s Guide.

-o outfile

Specifies the name of the c89/cc/c++ output file.

 If the -o option is specified in addition to the –c option, and only one source

file is specified, then this option specifies the name of the output file

associated with the one source file. See file.o under “Operands” on page 81

for information on the default name of the output file.

 Otherwise the -o option specifies the name of the executable file produced

during the link-editing phase. The default output file is a.out.

-p Ignored by cc. Provided for compatibility with historical implementations of

cc. Flagged as an error by c89 and c++.

-q Ignored by cc. Provided for compatibility with historical implementations of

cc. Flagged as an error by c89 and c++.

-r Specifies that c89/cc/c++ is to save relocation information about the object

files which are processed. When the output file (as specified on –o) is

created, it is not made an executable file. Instead, this output file can later

be used as input to c89/cc/c++. This can be used as an alternative to an

archive library.

 IPA Usage Note:

 When using -r and link-editing IPA compiled object files, you must link-edit

with IPA (see the description of IPA under the -W option). However, the -r

option is typically not useful when creating an IPA optimized program. This

is because link-editing with IPA requires that all of the program information

is available to the link editor (that is, all of the object files). It is not

c89, cc, and c++

Chapter 2. Shell command descriptions 75

acceptable to have unresolved symbols, especially the program entry point

symbol (which is usually main). The -r option is normally used when you

wish to combine object files incrementally. You would specify some object

files during the initial link-edit that uses -r. Later, you would specify the

output of the initial link-edit, along with the remaining object files in a final

link-edit that is done without using -r. In such situations where you wish to

combine IPA compiled object files, there is an alternative which does not

involve the link editor. That alternative is to concatenate the object files into

one larger file. This larger file can later be used in a final link-edit, when the

remainder of the object files are also made available. (This concatenation

can easily be done using the cp or cat utilities.)

-s Specifies that the compilation phase is to produce a file.o file that does not

include symbolic information, and that the link-editing phase produce an

executable that is marked reentrant. This is the default behavior for

c89/cc/c++.

-U name

Undefines a C or C++ macro specified with name. This option affects only

macros defined by the -D option, including those automatically specified by

c89/cc/c++. For information about macros that c89/cc/c++ automatically

define, see Usage Note 5 on page 98. Also see Usage Note 13 on page

100.

Note: The xlc utility uses different semantics for handling the -U option.

See “xlc — Compiler invocation using a customizable configuration

file” on page 796 for more information.

-u function

Specifies the name of the function to be added to the list of symbols which

are not yet defined. This can be useful if the only input to c89/cc/c++ is

archive libraries. Non–C++ linkage symbols of up to 255 characters in

length may be specified. You can specify an S-name by preceding the

function name with double slash (//). (For more information about

S-names, see Usage Note 23 on page 103.) The function //ceemain is the

default for non-IPA Link-editing, and the function main is the default for IPA

Link-editing. However, if this -u option is used, or the DLL link editor option

is used, then the default function is not added to the list.

-V This verbose option produces and directs output to stdout as compiler,

assembler, IPA linker, prelinker, and link editor listings. If the -O, -2, or -3

options are specified and cause c89/cc/c++ to use the compiler INLINE

option, then the inline report is also produced with the compiler listing. Error

output continues to be directed to stderr. Because this option causes

c89/cc/c++ to change the options passed to the steps producing these

listings so that they produce more information, it may also result in

additional messages being directed to stderr. In the case of the compile

step, it may also result in the return code of the compiler changing from 0

to 4.

Note: This option has a different meaning when using the xlc utility. See

“xlc — Compiler invocation using a customizable configuration file”

on page 796 for more information.

-v This verbose option causes pseudo-JCL to be written to stdout before the

compiler, assembler, IPA linker, prelinker, and link editor programs are run.

 Example: It also causes phaseid information to be emitted in stderr:

FSUM0000I Utility(c89) Level(UQ99999)

c89, cc, and c++

76 z/OS V1R9.0 UNIX System Services Command Reference

It provides information about exactly which compiler, prelinker, and link

editor options are being passed, and also which data sets are being used. If

you want to obtain this information without actually invoking the underlying

programs, specify the -v option more than once on the c89/cc/c++

command string. For more information about the programs which are

executed, see Usage Note 14 on page 101.

-W phase, option[,option]...

Specifies options to be passed to the steps associated with the compile,

assemble, or link-editing phases of c89/cc/c++. The valid phase codes are:

0 Specifies the compile phase (used for both non-IPA and IPA

compilation).

a Specifies the assemble phase.

c Same as phase code 0.

I Enables IPA (Interprocedural Analysis) optimization.

 Unlike other phase codes, the IPA phase code I does not require

that any additional options be specified, but it does allow them. In

order to pass IPA suboptions, specify those suboptions using the

IPA phase code.

 Example: To specify that an IPA Compile should save source line

number information, without writing a listing file, specify:

c89 -c -W I,list file.c

Example: To specify that an IPA Link-edit should write the map file

to stdout, specify:

c89 -W I,map file.o

l Specifies the link-editing phase.

v To pass options to the prelinker, the first link-editing phase option

must be p or P. All the following options are then prelink options.

Example: To write the prelink map to stdout, specify:

c89 –W l,p,map file.c

Note: The prelinker is no longer used in the link-editing phase in

most circumstances. If it is not used, any options passed

are accepted but ignored. See the environment variable

prefix_STEPS under “Environment variables” on page 84

for more information about the link-editing phase prelink

step.

v To pass options to the IPA linker, the first link-editing phase

option must be i or I. All the following options are then IPA Link

options.

Example: To specify the size of the SPILL area to be used

during an IPA Link-edit, you could specify:

c89 –W l,I,"spill(256)" file.o

v To link-edit a DLL (Dynamic Link Library) and produce a side

deck, the link-editing phase option DLL must be specified.

Example: To accomplish this task, you could specify:

c89 –o outdll –W l,dll file.o

Most z/OS XL C/C++ extensions can be enabled by using this option.

Those which do not directly pass options through to the underlying steps, or

involve files which are extensions to the compile and link-edit model, are

described here:

c89, cc, and c++

Chapter 2. Shell command descriptions 77

DLL (Dynamic Link Library)

A DLL is a part of a program that is not statically bound to the

program. Instead, linkage to symbols (variables and functions) is

completed dynamically at execution time. DLLs can improve

storage utilization, because the program can be broken into smaller

parts, and some parts may not always need to be loaded. DLLs can

improve maintainability, because the individual parts can be

managed and serviced separately.

 In order to create a DLL, some symbols must be identified as being

exported for use by other parts of the program. This can be done

with the z/OS XL C/C++ #pragma export compiler directive, or by

using the z/OS XL C/C++ EXPORTALL compiler option. If during

the link-editing phase some of the parts have exported symbols, the

executable which is created is a DLL. In addition to the DLL, a

definition side-deck is created, containing link-editing phase

IMPORT control statements which name those symbols which were

exported by the DLL. In order for the definition side-deck to be

created, the DLL link editor option must be specified. This definition

side-deck is subsequently used during the link-editing phase of a

program which is to use the DLL. See the file.x operand under

Operands on page 83 for information on where the definition

side-deck is written. In order for the program to refer to symbols

exported by the DLL, it must be compiled with the DLL compiler

option.

 Example: To compile and link a program into a DLL, you could

specify:

c89 -o outdll -W c,exportall -W l,dll file.c

To subsequently use file.x definition side-decks, specify them along

with any other file.o object files specified for c89/cc/c++ link-editing

phase.

 Example: To accomplish this task, you could specify:

c89 –o myappl –W c,dll myappl.c outdll.x

In order to run an application which is link-edited with a definition

side-deck, the DLL must be made available (the definition side-deck

created along with the DLL is not needed at execution time). When

the DLL resides in the z/OS UNIX file system, it must be in either

the working directory or in a directory named on the LIBPATH

environment variable. Otherwise it must be a member of a data set

in the search order used for MVS programs.

Note: For non-DLL C++ compiles, a dummy definition side file will

be allocated to prevent the binder from issuing a warning

message. If you do want the binder to issue a warning

message when an exported symbol is encountered, specify

the DLL=NO option for the link-editing phase; for example:

 c++ -o outfile -W l,dll=no file.C

IPA (interprocedural analysis)

IPA optimization is independent from and can be used in addition to

the c89/cc/c++ optimization level options (such as –O). IPA

optimization can also improve the execution time of your

application. IPA is a mechanism for performing optimizations across

c89, cc, and c++

78 z/OS V1R9.0 UNIX System Services Command Reference

function boundaries, even across compilation units. It also performs

optimizations not otherwise available with the z/OS XL C/C++

compiler.

 When phase code I (capital letter I) is specified for the compilation

phase, then IPA compilation steps are performed. When phase

code I is specified for the link-editing phase, or when the first

link-editing phase (code l) option is i or I, then an additional IPA

Link step is performed prior to the prelink and link-edit steps.

 With conventional compilation and link-editing, the object code

generation takes place during the compilation phase. With IPA

compilation and link-editing, the object code generation takes place

during the link-editing phase. Therefore, you might need to request

listing information about the program (such as with the -V option)

during the link-editing phase.

 Unlike the other phase codes, phase code I does not require that

any additional options be specified. If they are, they should be

specified for both the compilation and link-editing phases.

 No additional preparation needs to be done in order to use IPA.

 Example: To create the executable myIPApgm using c89 with some

existing source program mypgm.c, you could specify:

c89 –W I –o myIPApgm mypgm.c

When IPA is used with c++, and automatic template generation is

being used, phase code I will control whether the automatic

template generation compiles are done using IPA. If you do not

specify phase code I, then regular compiles will be done. Specifying

I as the first option of the link-editing phase option (that is, -W l,I),

will cause the IPA linker to be used, but will not cause the IPA

compiler to be used for automatic template generation unless phase

code I (that is, -W I) is also specified.

 The IPA Profile-Directed Feedback (PDF) option tunes

optimizations, where results from sample program execution are

used to improve optimization near conditional branches and in

frequently executed code topics. The profiling information is placed

in the file specified by the PDFNAME(filename) suboption. If

PDFNAME(filename) is not specified, the default name of the file

containing profile information is PDF.

LP64 The LP64 option instructs the compiler to generate AMODE 64

code utilizing the z/Architecture 64-bit instructions.

 To compile 64-bit code, specify the z/OS XL C/C++ LP64 compiler

option.

 Example: The following example shows how to compile and bind

using the LP64 option:

c89 -o -W c,LP64 -Wl,LP64 file.c

XPLINK (Extra Performance Linkage)

z/OS XPLINK provides improved performance for many C/C++

programs. The XPLINK compiler option instructs the z/OS XL

C/C++ compiler to generate high performance linkage for

subroutine calls. It does so primarily by making subroutine calls as

fast and efficient as possible, by reducing linkage overhead, and by

c89, cc, and c++

Chapter 2. Shell command descriptions 79

passing function call parameters in registers. Furthermore, it

reduces the data size by eliminating unused information from

function control blocks.

 An XPLINK-compiled program is implicitly a DLL-compiled program

(the C/C++ DLL compiler option need not be specified along with

the XPLINK option). XPLINK improves performance when crossing

function boundaries, even across compilation units, since XPLINK

uses a more efficient linkage mechanism.

 For more information about the z/OS C/C++ XPLINK compiler

option, refer to z/OS XL C/C++ User’s Guide. For more information

about Extra Performance Linkage, refer to z/OS Language

Environment Programming Guide.

 To use XPLINK, you must both compile and link-edit the program

for XPLINK. All C and C++ source files must be compiled XPLINK,

as you cannot statically link together XPLINK and non-XPLINK C

and C++ object files (with the exception of non-XPLINK ″OS″

linkage). You can however mix XPLINK and non-XPLINK

executables across DLL and fetch() boundaries.

 To compile a program as XPLINK, specify the z/OS XL C/C++

XPLINK compiler option. If there are any exported symbols in the

executable and you want to produce a definition side-deck, specify

the DLL link editor option. When XPLINK is specified in the

link-editing step, different link-edit libraries will be used.

 Example: Here is an example of compiling and link-editing an

XPLINK application in one command:

c89 -o outxpl -W c,XPLINK -W l,XPLINK,dll file.c

In order to execute an XPLINK program, the SCEERUN2 as well as

the SCEERUN data set must be in the MVS program search order

(see the prefix_PLIB_PREFIX environment variable).

 You cannot use -W to override the compiler options that correspond to

c89/cc/c++ options, with the following exceptions:

v Listing options (corresponding to -V)

v Inlining options (corresponding to -O, -2, and -3)

v Symbolic options (corresponding to -s and -g); symbolic options can be

overridden only when neither -s nor -g is specified.

Notes:

1. Most compiler, prelinker, and IPA linker options have a positive and

negative form. The negative form is the positive with a prepended NO

(as in XREF and NOXREF).

2. The compiler #pragma options directives as well as any other #pragma

directives which are overridden by compiler options, will have no effect

in source code compiled by c89/cc/c++.

3. Link editor options must be specified in the name=value format. Both

the option name and value must be spelled out in full. If you do not

specify a value, a default value of YES is used, except for the following

options, which if specified without a value, have the default values

shown here:

ALIASES ALIASES=ALL

c89, cc, and c++

80 z/OS V1R9.0 UNIX System Services Command Reference

DYNAM DYNAM=DLL

LET LET=8

LIST LIST=NOIMPORT

Notes:

a. The binder default is COMPAT=MIN. For downward compatibility

(when - Wc,’target(release)’ is used), COMPAT should also be

used (for example, -Wl,compat=min, or the specific program object

format level supported by the target deployment system, if it is

known). For more information, see the Downward Compatibility topic

of z/OS XL C/C++ User’s Guide.

b. As of z/OS V1R8, the default for the COMPAT option is no longer

emitted by the c89 utility. In prior releases, the default was

COMPAT=CURRENT.

c. References throughout this document to the link editor are generic

references. c89/cc/c++ specifically uses the Program Management

binder for this function.

4. The z/OS XL C/C++ compiler is described in z/OS XL C/C++ User’s

Guide. Related information about the z/OS XL C/C++ run-time library,

including information about DLL and IPA support, is described in z/OS

XL C/C++ Programming Guide. Related information about the C and

C++ languages, including information about compiler directives, is

described in z/OS XL C/C++ Language Reference.

5. Since some compiler options are only used by z/OS XL C and some

compiler options are only used by z/OS XL C++, you may get warning

messages and a compiler return code of 4, if you use this option and

compile both C and C++ source programs in the same c++ command

invocation.

6. The prelinker is described in z/OS XL C/C++ User’s Guide.

7. The z/OS XL C/C++ User’s Guide also describes z/OS XL C/C++

compiler options.Any messages produced by it (CCN messages) are

documented in z/OS XL C/C++ Messages.

8. You may see run-time messages (CEE or EDC) in executing your

applications. These messages are described in z/OS Language

Environment Debugging Guide.

9. The link editor (the Program Management binder) is described in z/OS

MVS Program Management: User’s Guide and Reference. The Program

Management binder messages are described in z/OS MVS System

Messages, Vol 8 (IEF-IGD).

Operands

c89/cc/c++ generally recognize their file operand types by file suffixes. The suffixes

shown here represent the default values used by c89/cc/c++. See “Environment

variables” on page 84 for information on changing the suffixes to be used.

Unlike c89 and c++, which report an error if given an operand with an unrecognized

suffix, cc determines that it is either an object file or a library based on the file itself.

This behavior is in accordance with the environment variable prefix_EXTRA_ARGS.

file.a Specifies the name of an archive file, as produced by the ar command, to

be used during the link-editing phase. You can specify an MVS data set

name, by preceding the file name with double slash (//), in which case the

last qualifier of the data set name must be LIB. The data set specified must

c89, cc, and c++

Chapter 2. Shell command descriptions 81

be a C370LIB object library or a load library. See the description of the -l

libname operand for more information about using data sets as libraries.

file.C Specifies the name of a C++ source file to be compiled. You can specify an

MVS data set name by preceding the file name with double slash (//), in

which case the last qualifier of the data set name must be CXX. This

operand is only supported by the c++ command.

file.c Specifies the name of a C source file to be compiled. You can specify an

MVS data set name by preceding the file name with double slash (//), in

which case the last qualifier of the data set name must be C. (The

conventions formerly used by c89 for specifying data set names are still

supported. See the environment variables prefix_OSUFFIX_HOSTRULE

and prefix_OSUFFIX_HOSTQUAL for more information.)

file.I Specifies the name of a IPA linker output file produced during the

c89/cc/c++ link-editing phase, when the -W option is specified with phase

code I. IPA is further described under the -W option on page 78. By default

the IPA linker output file is written to a temporary file. To have the IPA linker

output file written to a permanent file, see the environment variable

prefix_TMPS under Environment variables.

 When an IPA linker output file is produced by c89/cc/c++, the default name

is based upon the output file name. See the -o option under Options on

page 75, for information on the name of the output file.

 If the output file is named a.out, then the IPA linker output file is named a.I,

and is always in the working directory. If the output file is named //a.load,

then the IPA linker output file is named //a.IPA. If the output file specified

already has a suffix, that suffix is replaced. Otherwise the suffix is

appended. This file may also be specified on the command line, in which

case it is used as a file to be link-edited.

file.i Specifies the name of a preprocessed C or C++ source file to be compiled.

You can specify an MVS data set name, by preceding the file name with

double slash (//), in which case the last qualifier of the data set name must

be CEX.

 When using the c++ command, this source file is recognized as a C++

source file, otherwise it is recognized as a C source file. c++ can be made

to distinguish between the two. For more information see the environment

variables prefix_IXXSUFFIX and prefix_IXXSUFFIX_HOST.

file.o Specifies the name of a C, C++, or assembler object file, produced by

c89/cc/c++, to be link-edited.

 When an object file is produced by c89/cc/c++, the default name is based

upon the source file. If the source file is named file.c, then the object file is

named file.o, and is always in the working directory. If the source file were a

data set named //file.C, then the object file is named //file.OBJ.

 If the data set specified as an object file has undefined (U) record format,

then it is assumed to be a load module. Load modules are not processed

by the prelinker.

 You can specify an MVS data set name to be link-edited, by preceding the

file name with double slash (//), in which case the last qualifier of the data

set name must be OBJ.

 Example: If a partitioned data set is specified, more than one member

name may be specified by separating each with a comma (,):

c89 //file.OBJ(mem1,mem2,mem3)

c89, cc, and c++

82 z/OS V1R9.0 UNIX System Services Command Reference

file.p Specifies the name of a prelinker composite object file produced during the

c89/cc/c++ link-editing phase. By default, the composite object file is written

to a temporary file. To have the composite object file written to a permanent

file, see the environment variable prefix_TMPS under Environment

variables.

 When a composite object file is produced by c89/cc/c++, the default name

is based upon the output file name. See the -o option under Options on

page 75, for information on the name of the output file.

 If the output file is named a.out, then the composite object file is named

a.p, and is always in the working directory. If the output file is named

//a.load, then the composite object file is named //a.CPOBJ. If the output file

specified already has a suffix, that suffix is replaced. Otherwise the suffix is

appended. This file may also be specified on the command line, in which

case it is used as a file to be link-edited.

file.s Specifies the name of an assembler source file to be assembled. You can

specify an MVS data set name, by preceding the file name with double

slash (//), in which case the last qualifier of the data set name must be

ASM.

file.x Specifies the name of a definition side-deck produced during the

c89/cc/c++ link-editing phase when creating a DLL (Dynamic Link Library),

and used during the link-editing phase of an application using the DLL.

DLLs are further described under the -W option.

 When a definition side-deck is produced by c89/cc/c++, the default name is

based upon the output file name. See the -o option under Options on page

75, for information on the name of the output file.

 If the output file is named a.dll, then the definition side-deck is named a.x,

and is always in the working directory. If the output file is named //a.DLL,

then the definition side-deck is named //a.EXP. If the output file specified

already has a suffix, that suffix is replaced. Otherwise the suffix is

appended.

 You can specify an MVS data set name to be link-edited, by preceding the

file name with double slash (//), in which case the last qualifier of the data

set name must be EXP.

 Example: If a partitioned data set is specified, more than one member

name may be specified by separating each with a comma (,):

c89 //file.EXP(mem1,mem2,mem3)

–l libname

Specifies the name of an archive library. c89/cc/c++ searches for the file

liblibname.a in the directories specified on the -L option and then in the

usual places. The first occurrence of the archive library is used. For a

description of the usual places, see Usage Note 7 on page 99.

 You can also specify an MVS data set; you must specify the full data set

name, because there are no rules for searching library directories.

 The data set specified must be a C370LIB object library or a load library. If

a data set specified as a library has undefined (U) record format, then it is

assumed to be a load library. For more information about how load libraries

are searched, see Usage Note 7 on page 99.

c89, cc, and c++

Chapter 2. Shell command descriptions 83

Environment variables

You can use environment variables to specify necessary system and operational

information to c89/cc/c++. When a particular environment variable is not set,

c89/cc/c++ uses the default shown. For information about the JCL parameters used

in these environment variables, see z/OS MVS JCL User’s Guide.

Each environment variable has a prefix (shown in italics) that should be replaced by

one of the following, depending on the command name used:

v _CC

v _CXX

v _C89

This means that to specify cc environment variables, the name shown must be

prefixed with _CC (for example, _CC_ACCEPTABLE_RC). To specify c89

environment variables, the name shown must be prefixed with _C89 (for example,

_C89_ACCEPTABLE_RC). To specify c++/cxx environment variables, the name

shown must be prefixed with _CXX (for example, _CXX_ACCEPTABLE_RC).

Notes:

1. For most environment variables, you can use all three prefixes (_CC, _CXX,

_C89). In the list of environment variables that follows, you should assume that

all three prefixes can be used unless otherwise indicated.

2. c89/cc/c++ can accept parameters only in the syntax indicated here. A null

value indicates that c89/cc/c++ should omit the corresponding parameters

during dynamic allocation. Numbers in parentheses following the environment

variable name correspond to usage notes, which begin on Page 97, and

indicate specific usage information for the environment variable.

prefix_ACCEPTABLE_RC

The maximum allowed return code (result) of any step (compile, assemble,

IPA Link, prelink, or link-edit). If the result is between zero and this value

(inclusive), then it is treated internally by c89/cc/c++ exactly as if it were a

zero result, except that message FSUM3065 is also issued. The default

value is 4.

 When used under c89/cc/c++, the prelinker by default returns at least a 4

when there are duplicate symbols or unresolved writable static symbols (but

not for other unresolved references). The link editor returns at least a 4

when there are duplicate symbols, and at least an 8 when there are

unresolved references and automatic library call was used.

prefix_ASUFFIX (15)

The suffix by which c89/cc/c++ recognizes an archive file. This environment

variable does not affect the treatment of archive libraries specified as -l

operands, which are always prefixed with lib and suffixed with .a. The

default value is a.

prefix_ASUFFIX_HOST (15)

The suffix by which c89/cc/c++ recognizes a library data set. This

environment variable does not affect the treatment of data set libraries

specified as -l operands, which are always used exactly as specified. The

default value is LIB.

prefix_CCMODE

Controls how c89/cc/c++ does parsing. The default behavior of c89/cc/c++

is to expect all options to precede all operands. Setting this variable allows

compatibility with historical implementations (other cc commands). When

set to 1, c89/cc/c++ operates as follows:

c89, cc, and c++

84 z/OS V1R9.0 UNIX System Services Command Reference

v Options and operands can be interspersed.

v The double dash (––) is ignored.

Setting this variable to 0 results in the default behavior. The default value is

0.

prefix_CLASSLIB_PREFIX (17)

The prefix for the following named data sets used during the compilation

phase and execution of your C++ application.

 To be used, the following data sets must be cataloged:

v The data sets ${prefix_CLASSLIB_PREFIX}.SCLBH.+ contain the z/OS

XL C++ Class Library include (header) files.

v The data set ${prefix_CLASSLIB_PREFIX}.SCLBSID contains the z/OS

XL C++ Class Library definition side-decks.

The following data sets are also used:

 The data sets ${prefix_CLASSLIB_PREFIX}.SCLBDLL and

${prefix_CLASSLIB_PREFIX}.SCLBDLL2 contain the z/OS XL C++ Class

Library DLLs and messages.

 The preceding data sets contain MVS programs that are invoked during the

execution of a C++ application built by c++. To be executed correctly, these

data sets must be made part of the MVS search order. Regardless of the

setting of this or any other c++ environment variable, c++ does not affect

the MVS search order. These data sets are listed here for information only,

to assist in identifying the correct data sets to be added to the MVS

program search order.

 The default value is the value of the environment variable:

_CXX_CLIB_PREFIXThe prefix_CLASSLIB_PREFIX environment variable

applies only to c++ and cxx command names. _CXX is the only valid

prefix.

prefix_CLASSVERSION

The version of the C++ Class Library to be invoked by c++. The setting of

this variable allows c++ to control which C++ Class Library named data

sets are used during the c++ processing phases. It also sets default values

for other environment variables.

 The format of this variable is the same as the result of the Language

Environment C/C++ run-time library function _librel(). See z/OS XL

C/C++ Run-Time Library Reference for a description of the _librel()

function. The default value is the same as the value for the _CVERSION

environment variable. If _CVERSION is not set, then the default value will

be the result of the C/C++ Run-Time library _librel() function.

 The prefix_CLASSVERSION environment variable applies only to the c++

and cxx command names. _CXX is the only valid prefix.

prefix_CLIB_PREFIX (17)

The prefix for the following named data set used during the compilation

phase.

 The data set ${prefix_CLIB_PREFIX}.SCCNCMP contains the compiler

programs called by c89/cc/c++.

 The preceding data set contains MVS programs that are invoked during the

execution of c89/cc/c++ and during the execution of a C/C++ application

built by c89/cc/c++. To be executed correctly, the data set must be made

part of the MVS search order. Regardless of the setting of this or any other

c89, cc, and c++

Chapter 2. Shell command descriptions 85

c89/cc/c++ environment variable, c89/cc/c++ does not affect the MVS

search order. The data set is listed here for information only, to assist in

identifying the correct data set to be added to the MVS program search

order.

 The following data set is also used:

 The data set ${prefix_CLIB_PREFIX}.SCCNOBJ contains object files

required to instrument the code for profile-driven feedback optimization.

 The default value is CBC.

prefix_CMEMORY

A suggestion as to the use of compiler C/C++ Runtime Library memory

files. When set to 0, c89/cc/c++ will prefer to use the compiler

NOMEMORY option. When set to 1, c89/cc/c++ will prefer to use the

compiler MEMORY option. When set to 1, and if the compiler MEMORY

option can be used, c89/cc/c++ need not allocate data sets for the

corresponding work files. In this case it is the responsibility of the user to

not override the compiler options (using the -W option) with the

NOMEMORY option or any other compiler option which implies the

NOMEMORY option.

 The default value is 1.

prefix_CMSGS (14)

The Language Environment national language name used by the compiler

program. A null value will cause the default Language Environment

NATLANG run-time name to be used, and a non-null value must be a valid

Language Environment NATLANG run-time option name (Language

Environment run-time options are described in z/OS Language Environment

Programming Guide . The default value is "" (null).

prefix_CNAME (14)

The name of the compiler program called by c89/cc/c++. It must be a

member of a data set in the search order used for MVS programs. The

default value is CCNDRVR. If c89/cc/c++ is being used with

prefix_CVERSION set to a release prior to z/OS V1R2, the default value

will be CBCDRVR.

prefix_CSUFFIX (15)

The suffix by which c89/cc/c++ recognizes a C source file. The default

value is c.

prefix_CSUFFIX_HOST (15)

The suffix by which c89/cc/c++ recognizes a C source data set. The default

value is C.

prefix_CSYSLIB (4, 16)

The system library data set concatenation to be used to resolve #include

directives during compilation.

 Normally #include directives are resolved using all the information specified

including the directory name. When c89/cc/c++ can determine that the

directory information can be used, such as when the include (header) files

provided by Language Environment are installed in the default location (in

accordance with prefix_INCDIRS), then the default concatenation is

"" (null).

 When c89/cc/c++ cannot determine that the directory information can be

used, then the default concatenation is:

c89, cc, and c++

86 z/OS V1R9.0 UNIX System Services Command Reference

"${prefix_PLIB_PREFIX}.SCEEH.H"

"${prefix_PLIB_PREFIX}.SCEEH.SYS.H"

"${prefix_PLIB_PREFIX}.SCEEH.ARPA.H"

"${prefix_PLIB_PREFIX}.SCEEH.NET.H"

"${prefix_PLIB_PREFIX}.SCEEH.NETINET.H"

When this variable is a null value, then no allocation is done for compiler

system library data sets. In this case, the use of //DD:SYSLIB on the -I

option and the #include directive will be unsuccessful. Unless there is a

dependency on the use of //DD:SYSLIB, it is recommended that for

improved performance this variable be allowed to default to a null value.

prefix_CVERSION

The version of the z/OS XL C/C++ compiler to be invoked by c89/cc/c++.

The setting of this variable allows c89/cc/c++ to control which z/OS XL

C/C++ compiler program is invoked. It also sets default values for other

environment variables.

 The format of this variable is the same as the result of the Language

Environment C/C++ run-time library function _librel(). See z/OS XL

C/C++ Run-Time Library Reference for a description of the _librel()

function. The default value is the result of the C/C++ Run-Time library

_librel() function.

prefix_CXXSUFFIX (15)

The suffix by which c++ recognizes a C++ source file. The default value is

C. This environment variable is only supported by the c++ and cxx

command names. _CXX is the only valid prefix.

prefix_CXXSUFFIX_HOST (15)

The suffix by which c++ recognizes a C++ source data set. The default

value is CXX. This environment variable is only supported by the c++ and

cxx command names. _CXX is the only valid prefix.

prefix_DAMPLEVEL

The minimum severity level of dynamic allocation messages returned by

dynamic allocation message processing. Messages with severity greater

than or equal to this number are written to stderr. However, if the number

is out of the range shown here (that is, less than 0 or greater than 8), then

c89/cc/c++ dynamic allocation message processing is disabled. The default

value is 4. Following are the values:

0 Informational

1–4 Warning

5–8 Severe

prefix_DAMPNAME (14)

The name of the dynamic allocation message processing program called by

c89/cc/c++. It must be a member of a data set in the search order used for

MVS programs. The default dynamic allocation message processing

program is described in z/OS MVS Programming: Authorized Assembler

Services Guide. The default value is IEFDB476.

prefix_DCBF2008 (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes

of record format fixed unblocked and minimum block size of 2008. The

block size must be in multiples of 8, and the maximum depends on the

phase in which it is used but can be at least 5100. The default value is

(RECFM=F,LRECL=4088,BLKSIZE=4088).

prefix_DCBU (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes

c89, cc, and c++

Chapter 2. Shell command descriptions 87

of record format undefined and data set organization partitioned. This DCB

is used by c89/cc/c++ for the output file when it is to be written to a data

set. The default value is

(RECFM=U,LRECL=0,BLKSIZE=6144,DSORG=PO).

prefix_DCB121M (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes

of record format fixed blocked and logical record length 121, for data sets

whose records may contain machine control characters. The default value is

(RECFM=FBM,LRECL=121,BLKSIZE=3630).

prefix_DCB133M (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes

of record format fixed blocked and logical record length 133, for data sets

whose records may contain machine control characters. The default value is

(RECFM=FBM,LRECL=133,BLKSIZE=3990).

prefix_DCB137 (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes

of record format variable blocked and logical record length 137. The default

value is (RECFM=VB,LRECL=137,BLKSIZE=882).

prefix_DCB137A (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes

of record format variable blocked and logical record length 137, for data

sets whose records may contain ISO/ANSI control characters. The default

value is (RECFM=VB,LRECL=137,BLKSIZE=882).

prefix_DCB3200 (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes

of record format fixed blocked and logical record length 3200. The default

value is (RECFM=FB,LRECL=3200,BLKSIZE=12800).

prefix_DCB80 (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes

of record format fixed blocked and logical record length 80. This value is

also used when c89/cc/c++ allocates a new data set for an object file. The

default value is (RECFM=FB,LRECL=80,BLKSIZE=3200).

prefix_DEBUG_FORMAT (21)

This variable is used to determine to which debug format (DWARF or ISD)

the -g flag is translated. If _DEBUG_FORMAT is set to DWARF, then -g is

translated to DEBUG(FORMAT(DWARF)). If _DEBUG_FORMAT is set to

ISD, then -g is translated to TEST. The default value is DWARF.

Note: This environment variable only applies to 31-bit compiles.

prefix_ELINES

This variable controls whether the output of the -E option will include #line

directives. #line directives provide information about the source file names

and line numbers from which the preprocessed source came. The

preprocessor only inserts #line directives where it is necessary. When set

to 1, the output of the c89/cc/c++ -E option will include #line directives

where necessary. When set to 0, the output will not include any #line

directives. The default value is 0.

prefix_EXTRA_ARGS

The setting of this variable controls whether c89/cc/c++ treats a file

operand with an unrecognized suffix as an error, or attempts to process it.

When the c++ command -+ option is specified, all suffixes which otherwise

c89, cc, and c++

88 z/OS V1R9.0 UNIX System Services Command Reference

would be unrecognized are instead recognized as C++ source, effectively

disabling this environment variable. See page 70 for information about the

-+ option.

 When set to 0, c89/cc/c++ treats such a file as an error and the command

will be unsuccessful, because the suffix will not be recognized.

 When set to 1, c89/cc/c++ treats such a file as either an object file or a

library, depending on the file itself. If it is neither an object file nor a library

then the command will be unsuccessful, because the link-editing phase will

be unable to process it. The default value for c89 and c++ is 0. The default

value for cc is 1.

prefix_IL6SYSIX (7, 16)

The system definition side-deck list that is used to resolve symbols during

the IPA Link step of the link-editing phase when using LP64 (see the

description of LP64 in “Options” on page 70). The default value is whatever

prefix_L6SYSIX is set to or defaults to.

prefix_IL6SYSLIB (7, 16)

The system library data set list that is used to resolve symbols during the

IPA Link step of the link-editing phase when using LP64 (see the

description of LP64 in “Options” on page 70). The default value is whatever

prefix_L6SYSLIB is set to or defaults to.

prefix_ILCTL (14)

The name of the control file used by the IPA linker program. By default the

control file is not used, so the -W option must be specified to enable its

use, as in:

c89 -WI,control ...

The default value is ipa.ctl.

prefix_ILMSGS (14)

The name of the message data set member, or the Language Environment

national language name, used by the IPA linker program. The default value

is whatever prefix_CMSGS is. So if prefix_CMSGS is set or defaults to

"" (null), the default value is "" (null).

prefix_ILNAME (14)

The name of the IPA linker program called by c89/cc. It must be a member

of a data set in the search order used for MVS programs. The default value

is whatever prefix_CNAME is. So if prefix_CNAME is set or defaults to

CCNDRVR the default value is CCNDRVR.

prefix_ILSUFFIX (15)

The suffix c89/cc uses when creating an IPA linker output file. The default

value is I.

prefix_ILSUFFIX_HOST (15)

The suffix c89/cc uses when creating an IPA linker output data set. The

default value is IPA.

prefix_ILSYSLIB (7, 16)

The system library data set list to be used to resolve symbols during the

IPA Link step of the link-editing phase of non-XPLINK programs. The default

value is whatever prefix_PSYSLIB is set or defaults to, followed by

whatever prefix_LSYSLIB is set or defaults to.

prefix_ILSYSIX (7, 16)

The system definition side-deck list to be used to resolve symbols during

c89, cc, and c++

Chapter 2. Shell command descriptions 89

the IPA Link step of the link-editing phase in non-XPLINK programs. The

default value is whatever prefix_PSYSIX is set or defaults to.

prefix_ILXSYSLIB (7, 16)

The system library data set list to be used to resolve symbols during the

IPA Link step of the link-editing phase when using XPLINK (see XPLINK

(Extra Performance Linkage) in “Options” on page 70). The default value is

whatever prefix_LXSYSLIB is set or defaults to.

prefix_ILXSYSIX (7, 16)

The system definition side-deck list to be used to resolve symbols during

the IPA Link step of the link-editing phase when using XPLINK (see XPLINK

(Extra Performance Linkage) in “Options” on page 70). The default value is

whatever prefix_LXSYSIX is set or defaults to.

prefix_INCDIRS (22)

The directories used by c89/cc/c++ as a default place to search for include

files during compilation (before searching prefix_INCLIBS and

prefix_CSYSLIB). If c++ is not being used the default value is /usr/include.

If c++ is being used the default value is /usr/include /usr/lpp/cbclib/include.

prefix_INCLIBS (22)

The directories used by c89/cc/c++ as a default place to search for include

files during compilation (after searching prefix_INCDIRS and before

searching prefix_CSYSLIB). The default value depends on whether or not

c++ is being used. If c++ is not being used the default value is

//'${prefix_PLIB_PREFIX}.SCEEH.+'

 If c++ is being used, the default value is

//’${prefix_PLIB_PREFIX}.SCEEH.+’ //’${prefix_CLIB_PREFIX}.SCLBH.+’

prefix_ISUFFIX (15)

The suffix by which c89/cc/c++ recognizes a preprocessed C source file.

The default value is i.

prefix_ISUFFIX_HOST (15)

The suffix by which c89/cc/c++ recognizes a preprocessed (expanded) C

source data set. The default value is CEX.

prefix_IXXSUFFIX (15)

The suffix by which c++ recognizes a preprocessed C++ source file. The

default value is i. This environment variable is only supported by the c++

and cxx command names. _CXX is the only valid prefix.

prefix_IXXSUFFIX_HOST (15)

The suffix by which c++ recognizes a preprocessed (expanded) C++ source

data set. The default value is CEX. This environment variable is only

supported by the c++ and cxx command names. _CXX is the valid prefix.

prefix_L6SYSIX (7, 16)

The system definition side-deck list that resolves symbols during the

link-editing phase when using LP64 (see the description of LP64 in “Options”

on page 70). A definition side-deck contains link-editing phase IMPORT

control statements, which name symbols that are exported by a DLL. The

default value depends on whether or not c++ is used. If c++ is not used,

the default value is: ${prefix_PLIB_PREFIX}.SCEELLIB(CELQS003). If c++

is used, the default value is the list concatenation:

"${prefix_PLIB_PREFIX}.SCEELIB(CELQS003,CELQSCPP,C64)"

"${prefix_CLASSLIB_PREFIX}.SCLBSID(IOSX64)"

c89, cc, and c++

90 z/OS V1R9.0 UNIX System Services Command Reference

prefix_L6SYSLIB (7, 16)

The system library data set concatenation that is used to resolve symbols

during the link-editing step when using LP64 (see the description of LP64 in

“Options” on page 70). The default value is the concatenation:

"${prefix_PLIB_PREFIX}.SCEEBND2"

"${prefix_SLIB_PREFIX}.CSSLIB"

prefix_LIBDIRS (22)

The directories used by c89/cc/c++ as the default place to search for

archive libraries which are specified using the -l operand. The default value

is /lib /usr/lib.

prefix_LSYSLIB (7, 16)

The system library data set concatenation to be used to resolve symbols

during the IPA Link step and the link-edit step of the non-XPLINK

link-editing phase. The prefix_PSYSLIB libraries always precede the

prefix_LSYSLIB libraries when resolving symbols in the link-editing phase.

The default value is the concatenation:

"${prefix_PLIB_PREFIX}.SCEELKEX"

"${prefix_PLIB_PREFIX}.SCEELKED"

"${prefix_SLIB_PREFIX}.CSSLIB"

prefix_LXSYSLIB (7, 16)

The system library data set concatenation to be used to resolve symbols

during the IPA Link step and the link-editing phase when using XPLINK

(see XPLINK (Extra Performance Linkage) in “Options” on page 70). The

default value is the concatenation:

"${prefix_PLIB_PREFIX}.SCEEBND2"

"${prefix_SLIB_PREFIX}.CSSLIB"

prefix_LXSYSIX (7, 16)

The system definition side-deck list to be used to resolve symbols during

the link-editing phase when using XPLINK (see XPLINK (Extra Performance

Linkage) in “Options” on page 70). A definition side-deck contains

link-editing phase IMPORT control statements naming symbols which are

exported by a DLL. The default value depends on whether or not c++ is

being used. For 32-bit objects, if c++ is not being used, the default value is

the list ${prefix_PLIB_PREFIX}.SCEELIB(CELHS003,CELHS001). For

32-bit objects, if c++ is being used with prefix_PVERSION and

prefix_CLASSVERSION defaulted to the current z/OS release, the default

value is the list concatenation:

"${prefix_PLIB_PREFIX}.SCEELIB(CELHS003,CELHS001,CELHSCPP,C128)"

"${prefix_CLASSLIB_PREFIX}.SCLBSID(IOSTREAM,COMPLEX)"

For 32-bit objects, if c++ is being used with prefix_PVERSION and

prefix_CLASSVERSION set to a release prior to z/OS V1R2 for a 32-bit

program, the default value is the list concatenation:

"${prefix_PLIB_PREFIX}.SCEELIB(CELHS003,CELHS001,CELHSCPP)"

"${prefix_CLASSLIB_PREFIX}.SCLBSID(ASCCOLL,COMPLEX,IOSTREAM)"

Note: For 64–bit objects, see prefix_L6SYSIX.

prefix_MEMORY

A suggestion as to the use of XL C/C++ run-time library memory files by

c89/cc/c++. When set to 0, c89/cc/c++ uses temporary data sets for all

work files. When set to 1, c89/cc/c++ uses memory files for all work files

that it can. The default value is 1.

c89, cc, and c++

Chapter 2. Shell command descriptions 91

prefix_NEW_DATACLAS (18)

The DATACLAS parameter used by c89/cc/c++ for any new data sets it

creates. The default value is "" (null).

prefix_NEW_DSNTYPE (18, 20)

The DSNTYPE parameter used by c89/cc/c++ for any new data sets it

creates. The default value is "" (null).

prefix_NEW_MGMTCLAS (18)

The MGMTCLAS parameter used by c89/cc/c++ for any new data sets it

creates. The default value is "" (null).

prefix_NEW_SPACE (18, 19)

The SPACE parameters used by c89/cc/c++for any new data sets it

creates. A value for the number of directory blocks should always be

specified. When allocating a sequential data set, c89/cc/c++ automatically

ignores the specification. The default value is (,(10,10,10)).

prefix_NEW_STORCLAS (18)

The STORCLAS parameter used by c89/cc/c++ for any new data sets it

creates. The default value is "" (null).

prefix_NEW_UNIT (18)

The UNIT parameter used by c89/cc/c++ for any new data sets it creates.

The default value is "" (null).

prefix_NOCMDOPTS (27)

Controls how the compiler processes the default options set by c89. Setting

this variable to 1, reverts the compiler to the behavior that was available

prior to z/OS V1R5, when the compiler was unable to distinguish between

the c89 defaults and the user-specified options. Setting this variable to 0,

results in the default behavior where the compiler is now able to recognize

c89 defaults. The default value is 0.

prefix_OPERANDS (22)

These operands are parsed as if they were specified after all other

operands on the c89/cc/c++ command line. The default value is "" (null).

prefix_OPTIONS (22)

These options are parsed as if they were specified before all other options

on the c89/cc/c++ command line. The default value is "" (null).

prefix_OSUFFIX (15)

The suffix by which c89/cc/c++ recognizes an object file. The default value

is o.

prefix_OSUFFIX_HOST (15)

The suffix by which c89/cc/c++ recognizes an object data set. The default

value is OBJ.

prefix_OSUFFIX_HOSTQUAL

The data set name of an object data set is determined by the setting of this

option. If it is set to 0, then the suffix prefix_OSUFFIX_HOST is appended

to the source data set name to produce the object data set name. If it is set

to 1, then the suffix prefix_OSUFFIX_HOST replaces the last qualifier of the

source data set name to produce the object data set name (unless there is

only a single qualifier, in which case the suffix is appended). The default

value is 1.

c89, cc, and c++

92 z/OS V1R9.0 UNIX System Services Command Reference

Note: Earlier versions of c89 always appended the suffix, which was

inconsistent with the treatment of files in the hierarchical file system.

It is recommended that any existing data sets be converted to use

the new convention.

prefix_OSUFFIX_HOSTRULE

The way in which suffixes are used for host data sets is determined by the

setting of this option. If it is set to 0, then data set types are determined by

the rule described in the note which follows. If it is set to 1, then the data

set types are determined by last qualifier of the data set (just as a suffix is

used to determine the type of hierarchical file system file). Each host file

type has an environment variable by which the default suffix can be

modified. The default value is 1.

Notes:

1. Earlier versions of c89 scanned the data set name to determine if it was

an object data set. It searched for the string OBJ in the data set name,

exclusive of the first qualifier and the member name. If it was found, the

data set was determined to be an object data set, and otherwise it was

determined to be a C source data set. It is recommended that any

existing data sets be converted to use the new convention. Also,

because the earlier convention only provided for recognition of C source

files, assembler source cannot be processed if it is used.

2. The c++ command does not support this environment variable, as the

earlier convention would not provide for recognition of both C++ and C

source files. Therefore regardless of its setting, c++ always behaves as

if it is set to 1.

prefix_PLIB_PREFIX (17)

The prefix for the following named data sets used during the compilation,

assemble, and link-editing phases, and during the execution of your

application.

 To be used, the following data sets must be cataloged:

v The data sets ${prefix_PLIB_PREFIX}.SCEEH.+ contain the include

(header) files for use with the run-time library functions (where + can be

any of H, SYS.H, ARPA.H, NET.H, and NETINET.H).

v The data set ${prefix_PLIB_PREFIX}.SCEEMAC contains COPY and

MACRO files to be used during assembly.

v The data sets ${prefix_PLIB_PREFIX}.SCEEOBJ and

${prefix_PLIB_PREFIX}.SCEECPP contain run-time library bindings

which exploit constructed reentrancy, used during the link-editing phase

of non-XPLINK programs.

v The data set ${prefix_PLIB_PREFIX}.SCEELKEX contains C run-time

library bindings which exploit L-names used during the link-editing phase

of non-XPLINK programs. For more information about L-names, see

usage note 23 on page 103.

v The data set ${prefix_PLIB_PREFIX}.SCEELKED contains all other

Language Environment run-time library bindings, used during the

link-editing phase of non-XPLINK programs.

v The data set ${prefix_PLIB_PREFIX}.SCEEBND2 contains all static

Language Environment run-time library bindings, used during the

link-editing phase of XPLINK programs.

v The data set ${prefix_PLIB_PREFIX}.SCEELIB contains the definition

side-decks for the run-time library bindings, used during the link-editing

phase of XPLINK programs.

c89, cc, and c++

Chapter 2. Shell command descriptions 93

The following data sets are also used:

v The data sets ${prefix_PLIB_PREFIX}.SCEERUN and

${prefix_PLIB_PREFIX}.SCEERUN2 contains the run-time library

programs.

These data sets contain MVS programs that are invoked during the

execution of c89/cc/c++ and during the execution of a C/C++ application

built by c89/cc/c++. To be executed correctly, these data sets must be

made part of the MVS search order. Regardless of the setting of this or any

other c89/cc/c++ environment variable, c89/cc/c++ does not affect the

MVS program search order. These data sets are listed here for information

only, to assist in identifying the correct data sets to be added to the MVS

program search order. The default value is CEE.

prefix_PMEMORY

A suggestion as to the use of prelinker C/C++ Runtime Library memory

files. When set to 0, c89/cc/c++ uses the prelinker NOMEMORY option.

When set to 1, c89/cc/c++ uses the prelinker MEMORY option. The default

value is 1.

prefix_PMSGS (14)

The name of the message data set used by the prelinker program. It must

be a member of the cataloged data set

${prefix_PLIB_PREFIX}.SCEEMSGP. The default value is EDCPMSGE.

prefix_PNAME (14)

The name of the prelinker program called by c89/cc/c++. It must be a

member of a data set in the search order used for MVS programs. The

prelinker program is shipped as a member of the

${prefix_PLIB_PREFIX}.SCEERUN data set. The default value is

EDCPRLK.

prefix_PSUFFIX (15)

The suffix c89/cc/c++ uses when creating a prelinker (composite object)

output file. The default value is p.

prefix_PSUFFIX_HOST (15)

The suffix c89/cc/c++ uses when creating a prelinker (composite object)

output data set. The default value is CPOBJ.

prefix_PSYSIX (16)

The system definition side-deck list to be used to resolve symbols during

the non-XPLINK link-editing phase. A definition side-deck contains

link-editing phase IMPORT control statements naming symbols which are

exported by a DLL. The default value when c++ is not being used is null. If

c++ is being used with prefix_PVERSION and prefix_CLASSVERSION set

or defaulted to the current z/OS release, the default value is the list

concatenation:

"${prefix_PLIB_PREFIX}.SCEELIB(C128)"

"${prefix_CLASSLIB_PREFIX}.SCLBSID(IOSTREAM,COMPLEX)"

If c++ is being used with prefix_PVERSION and prefix_CLASSVERSION

set to a release prior to z/OS V1R2, the default value is the list

${prefix_CLASSLIB_PREFIX}.SCLBSID(ASCCOLL,COMPLEX,IOSTREAM)

prefix_PSYSLIB (16)

The system library data set list to be used to resolve symbols during the

non-XPLINK link-editing phase. The prefix_PSYSLIB libraries always

precede the prefix_LSYSLIB libraries when resolving symbols in the

c89, cc, and c++

94 z/OS V1R9.0 UNIX System Services Command Reference

link-editing phase. The default value depends on whether or not c++ is

being used. If c++ is not being used, the default value is the list containing

the single entry:

"${prefix_PLIB_PREFIX}.SCEEOBJ"

If c++ is being used, the default value is the list:

"${prefix_PLIB_PREFIX}.SCEEOBJ"

"${prefix_PLIB_PREFIX}.SCEECPP"

prefix_PVERSION (26)

The version of the Language Environment to be used with c89/cc/c++. The

setting of this variable allows c89/cc/c++ to control which Language

Environment named data sets are used during the c89/cc/c++ processing

phases. These named data sets include those required for use of the

C/C++ run-time library as well as the ISO C++ Library. It also sets default

values for other environment variables.

 The format of this variable is the same as the result of the Language

Environment C/C++ run-time library function _librel(). See z/OS XL

C/C++ Run-Time Library Reference for a description of the _librel()

function. The default value is the result of the C/C++ Run-Time library

_librel() function.

prefix_SLIB_PREFIX (17)

The prefix for the named data sets used by the link editor (CSSLIB) and the

assembler system library data sets (MACLIB and MODGEN). The data set

${prefix_SLIB_PREFIX}.CSSLIB contains the z/OS UNIX assembler callable

services bindings. The data sets ${prefix_SLIB_PREFIX}.MACLIB and

${prefix_SLIB_PREFIX}.MODGEN contain COPY and MACRO files to be

used during assembly. These data sets must be cataloged to be used. The

default value is SYS1.

prefix_SNAME (14)

The name of the assembler program called by c89/cc/c++. It must be a

member of a data set in the search order used for MVS programs. The

default value is ASMA90.

prefix_SSUFFIX (15)

The suffix by which c89/cc/c++ recognizes an assembler source file. The

default value is s.

prefix_SSUFFIX_HOST (15)

The suffix by which c89/cc/c++ recognizes an assembler source data set.

The default value is ASM.

prefix_SSYSLIB (16)

The system library data set concatenation to be used to find COPY and

MACRO files during assembly. The default concatenation is:

"${prefix_PLIB_PREFIX}.SCEEMAC"

"${prefix_SLIB_PREFIX}.MACLIB"

"${prefix_SLIB_PREFIX}.MODGEN"

prefix_STEPS

The steps that are executed for the link-editing phase can be controlled with

this variable. For example, the prelinker step can be enabled, so that the

inputs normally destined for the link editor instead go into the prelinker, and

then the output of the prelinker becomes the input to the link editor.

 This variable allows the prelinker to be used in order to produce output

which is compatible with previous releases of c89/cc/c++. The prelinker is

c89, cc, and c++

Chapter 2. Shell command descriptions 95

normally used by c89/cc/c++ when the output file is a data set which is not

a PDSE (partitioned data set extended).

Note: The prelinker and XPLINK are incompatible. When using the link

editor XPLINK option, the prelinker cannot be used. Thus, specifying

the prelinker on this variable will have no effect.

 The format of this variable is a set of binary switches which either enable

(when turned on) or disable (when turned off) the corresponding step.

Turning a switch on will not cause a step to be enabled if it was not already

determined by c89/cc/c++ that any other conditions necessary for its use

are satisfied. For example, the IPA Link step will not be executed unless the

-W option is specified to enable the IPA linker. Enabling the IPA linker is

described under the -W option on page 78.

 Considering this variable to be a set of 32 switches, numbered left-to-right

from 0 to 31, the steps corresponding to each of the switches are as

follows:

0-27 Reserved

28 TEMPINC/IPATEMP

29 IPALINK

30 PRELINK

31 LINKEDIT

 Example: To override the default behavior of c89/cc/c++ and cause the

prelinker step to be run (this is also the default when the output file is a

data set which is not a PDSE), set this variable to: 0xffffffff or the

equivalent, -1. The default value when the output file is a z/OS UNIX file or

a PDSE data set is 0xfffffffd or the equivalent, -3.

Note: The IPATEMP step is the IPA equivalent of the TEMPINC (automatic

template generation) step, just as the IPACOMP step is the IPA

equivalent of the COMPILE step. See the description of IPA under

the -W option for more information.

prefix_SUSRLIB (16)

The user library data set concatenation to be used to find COPY and

MACRO files during assembly (before searching prefix_SSYSLIB). The

default value is "" (null).

prefix_TMPS

The use of temporary files by c89/cc/c++ can be controlled with this

variable.

 The format of this variable is a set of binary switches which either cause a

temporary file to be used (when turned on) or a permanent file to be used

(when turned off) in the corresponding step.

 The correspondence of these switches to steps is the same as for the

variable prefix_STEPS. Only the prelinker and IPA linker output can be

captured using this variable.

 Example: To capture the prelinker output, set this variable to: 0xfffffffD or

the equivalent, -3. The default value is 0xffffffff or the equivalent, -1.

prefix_WORK_DATACLAS (18)

The DATACLAS parameter used by c89/cc/c++ for unnamed temporary

(work) data sets. The default value is "" (null).

c89, cc, and c++

96 z/OS V1R9.0 UNIX System Services Command Reference

prefix_WORK_DSNTYPE (18, 20)

The DSNTYPE parameter used by c89/cc/c++ for unnamed temporary

(work) data sets. The default value is "" (null).

prefix_WORK_MGMTCLAS (18)

The MGMTCLAS parameter used by c89/cc/c++ for unnamed temporary

(work) data sets. The default value is "" (null).

prefix_WORK_SPACE (18, 19)

The SPACE parameters used by c89/cc/c++ for unnamed temporary (work)

data sets. The default value is (32000,(30,30)).

prefix_WORK_STORCLAS (18)

The STORCLAS parameter used by c89/cc/c++ for unnamed temporary

(work) data sets. The default value is "" (null).

prefix_WORK_UNIT (18)

The UNIT parameter used by c89/cc/c++ for unnamed temporary (work)

data sets. The default value is SYSDA.

prefix_XSUFFIX (15)

The suffix by which c89/cc/c++ recognizes a definition side-deck file of

exported symbols. The default value is x.

prefix_XSUFFIX_HOST (15)

The suffix by which c89/cc/c++ recognizes a definition side-deck data set of

exported symbols. The default value is EXP.

Files

libc.a z/OS XL C/C++ run-time library function library (see Usage Note 7 on page

99).

libm.a C/C++ Runtime Library math function library (see Usage Note 7 on page

99)

libl.a lex function library

liby.a yacc function library

/dev/fd0, /dev/fd1, ...

Character special files required by c89/cc/c++. For installation information,

see z/OS UNIX System Services Planning.

/usr/include

The usual place to search for include files (see Usage Note 4 on page 98).

/lib The usual place to search for run-time library bindings (see Usage Note 7

on page 99).

/usr/lib

The usual place to search for run-time library bindings (see Usage Note 7

on page 99).

Usage notes

 1. To be able to specify an operand that begins with a dash (–), before specifying

any other operands that do not, you must use the double dash (––)

end-of-options delimiter. This also applies to the specification of the –l

operand. (See the description of environment variable prefix_CCMODE for an

alternate style of argument parsing.)

 2. When invoking c89/cc/c++ from the shell, any option-arguments or operands

specified that contain characters with special meaning to the shell must be

c89, cc, and c++

Chapter 2. Shell command descriptions 97

escaped. For example, some -W option-arguments contain parentheses.

Source files specified as PDS member names contain parentheses; if they are

specified as fully qualified names, they contain single quotes.

To escape these special characters, either enclose the option-argument or

operand in double quotes, or precede each character with a backslash.

 3. Some c89/cc/c++ behavior applies only to hierarchical files (and not to data

sets).

v If the compile or assemble is not successful, the corresponding object file

(file.o) is always removed.

v If the DLL option is passed to the link-editing phase, and afterwards the

file.x file exists but has a size of zero, then that file is removed.

 4. MVS data sets may be used as the usual place to resolve C and C++

#include directives during compilation.

Such data sets are installed with Language Environment. When it is allocated,

searching for these include files can be specified on the -I option as

//DD:SYSLIB. (See the description of environment variable prefix_CSYSLIB for

information.

When include files are MVS PDS members, z/OS XL C/C++ uses conversion

rules to transform the include (header) file name on a #include preprocessor

directive into a member name. If the "//'dataset_prefix.+'" syntax is not used for

the MVS data set which is being searched for the include file, then this

transformation strips any directory name on the #include directive, and then

takes the first 8 or fewer characters up to the first dot (.).

If the "//'dataset_prefix.+'" syntax is used for the MVS data set which is being

searched for the include file, then this transformation uses any directory name

on the #include directive, and the characters following the first dot (.), and

substitutes the "+" of the data set being searched with these qualifiers.

In both cases the data set name and member name are converted to

uppercase and underscores (_) are changed to at signs (@).

If the include (header) files provided by Language Environment are installed

into the hierarchical file system in the default location (in accordance with the

prefix_INCDIRS environment variable), then the compiler will use those files to

resolve #include directives during compilation. c89/cc/c++ by default searches

the directory /usr/include as the usual place, just before searching the data

sets just described. See the description of environment variables

prefix_CSYSLIB, prefix_INCDIRS, and prefix_INCLIBS for information on

customizing the default directories to search.

 5. Feature test macros control which symbols are made visible in a source file

(typically a header file). c89/cc/c++ automatically defines the following feature

test macros along with the errno macro, according to whether or not cc was

invoked.

v Other than cc

 –D "errno=(*__errno())"

 –D _OPEN_DEFAULT=1

v cc

 –D "errno=(*__errno())"

 –D _OPEN_DEFAULT=0

 –D _NO_PROTO=1

c89/cc/c++ add these macro definitions only after processing the command

string. Therefore, you can override these macros by specifying -D or -U

options for them on the command string.

c89, cc, and c++

98 z/OS V1R9.0 UNIX System Services Command Reference

6. The default LANGLVL and related compiler options are set according to

whether cc, c89, or c++ (cxx) was invoked. These options affect various

aspects of the compilation, such as z/OS XL C/C++ predefined macros, which

are used like feature test macros to control which symbols are made visible in

a source file (typically a header file), but are normally not defined or undefined

except by this compiler option. They can also affect the language rules used

by the compiler. For more information about the compiler options listed here,

see z/OS XL C/C++ User’s Guide . For more information about z/OS XL C/C++

predefined macros, see z/OS XL C/C++ Language Reference. The options are

shown here in a syntax that the user can specify on the c89/cc/c++ command

line to override them:

v c89 (also c++ (cxx) when using a C++ compiler older than z/OS v1r2)

 -W "c,langlvl(ansi),noupconv"
v c++ (cxx)

 -W "c,langlvl(extended,nolibext,nolonglong)
v cc

 -W "c,langlvl(commonc),upconv"

 7. By default the usual place for the -L option search is the /lib directory

followed by the /usr/lib directory. See the description of environment variable

prefix_LIBDIRS for information on customizing the default directories to search.

The archive libraries libc.a and libm.a exist as files in the usual place for

consistency with other implementations. However, the run-time library bindings

are not contained in them. Instead, MVS data sets installed with the Language

Environment run-time library are used as the usual place to resolve run-time

library bindings. In the final step of the link-editing phase, any MVS load

libraries specified on the -l operand are searched in the order specified,

followed by searching these data sets. See the prefix_PLIB_PREFIX

description, as well as descriptions of the environment variables featured in the

following list.

 prefix_ILSYSLIB

 prefix_ILSYSIX

 prefix_LSYSLIB

 prefix_PSYSIX

 prefix_PSYSLIB

This list of environment variables affects the link-editing phase of c89, but only

for non-XPLINK link-editing. See XPLINK (Extra Performance Linkage) in

“Options” on page 70.

The following list of environment variables affects the link-editing phase of c89,

but only for ILP32 XPLINK link-editing. See XPLINK (Extra Performance

Linkage) in “Options” on page 70.

 prefix_ILXSYSLIB

 prefix_ILXSYSIX

 prefix_LXSYSLIB

 prefix_LXSYSIX

The following list of environment variables affects the link-editing phase of c89,

but only for LP64 link-editing. See the description of LP64 in “Options” on page

70.

 prefix_IL6SYSLIB

 prefix_IL6SYSIX

 prefix_L6SYSLIB

 prefix_L6SYSIX

 8. Because archive library files are searched when their names are encountered,

the placement of -l operands and file.a operands is significant. You may have

c89, cc, and c++

Chapter 2. Shell command descriptions 99

to specify a library multiple times on the command string, if subsequent

specification of file.o files requires that additional symbols be resolved from

that library.

 9. When the prelinker is used during the link-editing phase, you cannot use as

input to c89/cc/c++ an executable file produced as output from a previous use

of c89/cc/c++. The output of c89/cc/c++ when the -r option is specified (which

is not an executable file) may be used as input.

10. All MVS data sets used by c89/cc/c++ must be cataloged (including the

system data sets installed with the z/OS XL C/C++ compiler and the Language

Environment run-time library).

11. c89/cc/c++ operation depends on the correct setting of their installation and

configuration environment variables (see “Environment variables” on page 84).

Also, they require that certain character special files are in the /dev directory.

For additional installation and configuration information, see z/OS UNIX

System Services Planning.

12. Normally, options and operands are processed in the order read (from left to

right). Where there are conflicts, the last specification is used (such as with -g

and -s). However, some c89/cc/c++ options will override others, regardless of

the order in which they are specified. The option priorities, in order of highest

to lowest, are as follows:

-v specified twice

The pseudo-JCL is printed only, but the effect of all the other options

and operands as specified is reflected in the pseudo-JCL.

-E Overrides -0, -O, -1, -2, -3, -V, -c, -g and -s (also ignores any file.s

files).

-g Overrides -0, -O, -1, -2, -3, and -s.

-s Overrides -g (the last one specified is honored).

-0 (zero), -O (capital letter O), -1, -2, -3, -V, -c

All are honored if not overridden. -0, -O, -1, -2, -3 override each other

(the last one specified is honored).

Note: The preferred way for specifying optimization options, is -O

(capital letter O) followed by a number; for example, -O2.

13. For options that have option-arguments, the meaning of multiple specifications

of the options is as follows:

-D All specifications are used. If the same name is specified on more than

one -D option, only the first definition is used.

-e The entry function used will be the one specified on the last -e option.

-I All specifications are used. If the same directory is specified on more

than one -I option, the directory is searched only the first time.

-L All specifications are used. If the same directory is specified on more

than one -L option, the directory is searched only the first time.

-o The output file used will be the one specified on the last -o option.

-U All specifications are used. The name is not defined, regardless of the

position of this option relative to any -D option specifying the same

name.

-u All specifications are used. If a definition cannot be found for any of

the functions specified, the link-editing phase will be unsuccessful.

c89, cc, and c++

100 z/OS V1R9.0 UNIX System Services Command Reference

-W All specifications are used. All options specified for a phase are

passed to it, as if they were concatenated together in the order

specified.

14. The following environment variables can be at most eight characters in length.

For those whose values specify the names of MVS programs to be executed,

you can dynamically alter the search order used to find those programs by

using the STEPLIB environment variable.

c89/cc/c++ environment variables do not affect the MVS program search

order. Also, for c89/cc/c++ to work correctly, the setting of the STEPLIB

environment variable should reflect the Language Environment library in use at

the time that c89/cc/c++ is invoked.

For more information on the STEPLIB environment variable, see z/OS UNIX

System Services Planning. It is also described under the sh command. Note

that the STEPLIB allocation in the pseudo-JCL produced by the -v verbose

option is shown as a comment, and has no effect on the MVS program search

order. Its appearance in the pseudo-JCL is strictly informational.

 prefix_CMSGS

 prefix_CNAME

 prefix_DAMPNAME

 prefix_ILCTL

 prefix_ILNAME

 prefix_ILMSGS

 prefix_PMSGS

 prefix_PNAME

 prefix_SNAME

15. The following environment variables can be at most 15 characters in length.

You should not specify any dots (.) when setting these environment variables

since they would then never match their corresponding operands:

 prefix_ASUFFIX

 prefix_ASUFFIX_HOST

 prefix_CSUFFIX

 prefix_CSUFFIX_HOST

 prefix_CXXSUFFIX

 prefix_CXXSUFFIX_HOST

 prefix_ISUFFIX

 prefix_ISUFFIX_HOST

 prefix_ILSUFFIX

 prefix_ILSUFFIX_HOST

 prefix_IXXSUFFIX

 prefix_IXXSUFFIX_HOST

 prefix_OSUFFIX

 prefix_OSUFFIX_HOST

 prefix_PSUFFIX

 prefix_PSUFFIX_HOST

 prefix_SSUFFIX

 prefix_SSUFFIX_HOST

 prefix_XSUFFIX

 prefix_XSUFFIX_HOST

16. The following environment variables are parsed as colon-delimited data set

names, and represent a data set concatenation or a data set list. The

maximum length of each specification is 1024 characters:

 prefix_CSYSLIB

 prefix_IL6SYSIX

 prefix_IL6SYSLIB

 prefix_ILSYSIX

c89, cc, and c++

Chapter 2. Shell command descriptions 101

prefix_ILSYSLIB

 prefix_ILXSYSIX

 prefix_ILXSYSLIB

 prefix_L6SYSIX

 prefix_L6SYSLIB

 prefix_LSYSLIB

 prefix_LXSYSIX

 prefix_LXSYSLIB

 prefix_PSYSIX

 prefix_PSYSLIB

 prefix_SSYSLIB

 prefix_SUSRLIB

17. The following environment variables can be at most 44 characters in length:

 prefix_CLASSLIB_PREFIX

 prefix_CLIB_PREFIX

 prefix_PLIB_PREFIX

 prefix_SLIB_PREFIX

18. The following environment variables can be at most 63 characters in length:

 prefix_NEW_DATACLAS

 prefix_NEW_DSNTYPE

 prefix_NEW_MGMTCLAS

 prefix_NEW_SPACE

 prefix_NEW_STORCLAS

 prefix_NEW_UNIT

 prefix_WORK_DATACLAS

 prefix_WORK_DSNTYPE

 prefix_WORK_MGMTCLAS

 prefix_WORK_SPACE

 prefix_WORK_STORCLAS

 prefix_WORK_UNIT

19. The following environment variables are for specification of the SPACE

parameter, and support only the syntax as shown with their default values

(including all commas and parentheses). Also as shown with their default

values, individual subparameters can be omitted, in which case the system

defaults are used.

 prefix_NEW_SPACE

 prefix_WORK_SPACE

20. The following environment variables are for specification of the DSNTYPE

parameter, and support only the subparameters LIBRARY or PDS (or null for

no DSNTYPE):

 prefix_NEW_DSNTYPE

 prefix_WORK_DSNTYPE

21. The following environment variables can be at most 127 characters in length:

 prefix_DCBF2008

 prefix_DCBU

 prefix_DCB121M

 prefix_DCB133M

 prefix_DCB137

 prefix_DCB137A

 prefix_DCB3200

 prefix_DCB80

 prefix_DEBUG_FORMAT

These environment variables are for specification of DCB information, and

support only the following DCB subparameters, with the noted restrictions:

c89, cc, and c++

102 z/OS V1R9.0 UNIX System Services Command Reference

RECFM

Incorrect values are ignored.

LRECL

None

BLKSIZE

None

DSORG

Incorrect values are treated as if no value had been specified.

22. The following environment variables are parsed as blank-delimited words, and

therefore no embedded blanks or other white-space is allowed in the value

specified. The maximum length of each word is 1024 characters:

 prefix_INCDIRS

 prefix_INCLIBS

 prefix_LIBDIRS

 prefix_OPTIONS

 prefix_OPERANDS

23. An S-name is a short external symbol name, such as produced by the z/OS

XL C/C++ compiler when compiling z/OS XL C programs with the

NOLONGNAME option. An L-name is a long external symbol name, such as

produced by the z/OS XL C/C++ compiler when compiling z/OS C programs

with the LONGNAME option.

24. The z/OS XL C/C++ run-time library supports a file naming convention of //

(the filename can begin with exactly two slashes). c89/cc/c++ indicate that the

file naming convention of // can be used.

However, the Shell and Utilities feature does not support this convention. Do

not use this convention (//) unless it is specifically indicated (as here in

c89/cc/c++). The z/OS Shell and Utilities feature does support the POSIX file

naming convention where the filename can be selected from the set of

character values excluding the slash and the null character.

25. When coding in C and C++, c89, cc, and c++, by default, produce reentrant

executables. For more information on reentrancy, see z/OS XL C/C++

Programming Guide. When coding in assembler language, the code must not

violate reentrancy. If it does, the resulting executable may not be reentrant.

26. The prefix_CVERSION, prefix_PVERSION and prefix_CLASSVERSION

environment variables are set to a hex string in the format 0xPVVRRMMM

where P is product, VV is version, RR is release and MMM is modification

level. For example, the prefix_CVERSION and prefix_CLASSVERSION for the

z/OS V1R2 compiler is 0x41020000.

27. c89 passes some options to the compiler to ensure that expected behavior is

achieved; for example, POSIX behavior. These options are passed onto the

compiler as defaults that the user can overwrite. When default options passed

by c89 are in conflict with options and/or pragmas that the user specified, the

compiler issues warning and/or severe error messages. Since the user did not

specify options that c89 passed as defaults, these messages may confuse the

user. Prior to the z/OS V1R5 release, the compiler was unable to differentiate

between the options that c89 passed as defaults and the user-specified

options so it was unable to correctly resolve conflicting pragma/option

combinations. In some cases, the compiler would overwrite pragmas with the

options that c89 passed as defaults thus limiting a user’s ability to use

pragmas. As of z/OS V1R5, the compiler is now able to recognize c89 defaults

and avoid confusion from messages for options, which were not explicitly

specified by the user, and overriding pragmas, when the user did not explicitly

request it. It is believed that most users will benefit from this feature so it is the

default behavior. To enable the old behavior, environment variable

c89, cc, and c++

Chapter 2. Shell command descriptions 103

prefix_NOCMDOPTS must have a non-zero value. Example: The following

sequence will preserve the old behavior:

export _C89_NOCMDOPTS=1

c89 -o hello hello.c

28. The following example shows the concatenation of data sets in environment

variables. It shows how to use an environment variable to setup the SYSLIB

DD when using the c89 command name:

export _C89_LSYSLIB="CEE.SCEELKEX:CEE.SCEELKED:CBC.SCCNOBJ:SYS1.CSSLIB"

This environment variable will produce the following SYSLIB concatenation:

//SYSLIB DD DSN=CEE.SCEELKEX,DISP=SHR

// DD DSN=CEE.SCEELKED,DISP=SHR

// DD DSN=CBC.SCCNOBJ,DISP=SHR

// DD DSN=SYS1.CSSLIB,DISP=SHR

Localization

c89/cc/c++ use the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

Exit values

0 Successful completion.

1 Failure due to incorrect specification of the arguments.

2 Failure processing archive libraries:

v Archive library was not in any of the library directories specified.

v Archive library was incorrectly specified, or was not specified, following

the -l operand.

3 Step of compilation, assemble, or link-editing phase was unsuccessful.

4 Dynamic allocation error, when preparing to call the compiler, assembler,

IPA linker, prelinker, or link editor, for one of the following reasons:

v The file or data set name specified is incorrect.

v The file or data set name cannot be opened.

5 Dynamic allocation error, when preparing to call the compiler, assembler,

prelinker, IPA linker, or link editor, due to an error being detected in the

allocation information.

6 Error copying the file between a temporary data set and a hierarchical file

system file (applies to the -2 option, when processing assembler source

files, and -r option processing).

7 Error creating a temporary control input data set for the link-editing phase.

8 Error creating a temporary system input data set for the compile or

link-editing phase.

Portability

For c89, X/Open Portability Guide, POSIX.2 C-Language Development Utilities

Option.

For cc, POSIX.2 C-Language Development Utilities Option, UNIX systems.

c89, cc, and c++

104 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|

|

|

|
|
|
|

The following are extensions to the POSIX standard:

v The -v, -V, -0, -1, -2 and -3 options

v DLL support

v IPA optimization support

v The behavior of the -o option in combination with the -c option and a single

source file.

Note: -Ox (where x is 0, 1, 2, or 3) is equivalent to -x because -x overrides -O.

This happens to match the standard compliant syntax of optimization level x

(-Ox), but Ox is not treated as a single entity. It may appear redundant to

use -Ox but it is recommended because it improves portability. In order to

avoid creating non-portable legacy, the xlc utility does not support -x

extension syntax. For example, the following are equivalent but the first

syntax is recommended:

c89 -O2 hello.c

c89 -2 hello.c

Features have been added to z/OS releases, which have made it easier to port

applications from other platforms to z/OS and improve performance. For

compatibility reasons, these portability and performance enhancements could not be

made the default. If you are porting an application from another platform to z/OS,

you may want to start by specifying the following options:

c89 -o HelloWorld -2 -Wc,NOANSIALIAS -Wc,XPLINK\

-Wl,XPLINK -Wc,’FLOAT(IEEE)’ -Wc,’GONUM’ HelloWorld.c

Note: The example string is one line (had to be splite). A space exists between

-Wc,XPLINK and -Wl,XPLINK.

Related information

ar, dbx, file, lex, makedepend, nm, strings, strip, yacc

c99 — Compile, link-edit and assemble C source code and create an

executable file on z/OS

See xlc.

Note: When working in the shell, to view man page information about c99, type:

man xlc.

cal — Display a calendar for a month or year

Format

cal [month] [year]

Description

cal displays a calendar on standard output (stdout).

v With no arguments, cal displays a calendar for the current month of the current

year.

v If one argument is given and it is numeric, cal interprets it as a year (for

example, 1991); if a single argument is not numeric, cal interprets it as the name

of a month, possibly abbreviated (for example, apr).

c89, cc, and c++

Chapter 2. Shell command descriptions 105

v If two arguments are given, cal assumes that the first argument is the month

(either a number from 1 to 12 or a month name) and the second is the year.

Localization

cal uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F, “Localization” for more information.

Usage Note

Year numbers less than 100 refer to the early Christian era, not the current century.

This command prints the Gregorian calendar, handling September 1752 correctly.

Many cultures observe other calendars.

Exit Values

0 Successful completion.

1 Failure due to any of the following:

v An incorrect command-line argument

v An incorrect date

v A year outside the range 1 to 9999 A.D.

Portability

X/Open Portability Guide, UNIX systems.

calendar — Display all current appointments

Format

calendar [–]

Note: The calendar utility is fully supported for compatibility with older UNIX

systems. However, because it is no longer supported by POSIX.2 IEEE

standard 1003.2-1992, this utility should be avoided for applications intended

to be portable to other UNIX-branded systems.

Description

If you do not specify any options, calendar displays all current appointments on

standard output (stdout). It searches the file calendar in the current directory,

looking for lines that match either today’s date or tomorrow’s date. On Friday,

Saturday, or Sunday, tomorrow extends through to Monday. Each appointment must

fit on a single line, with the date formatted as one of:

January 27

1/27

jan 27

Note: The name of the month can be abbreviated to three letters. Also, the case is

not significant and the month can be given numerically.

cal

106 z/OS V1R9.0 UNIX System Services Command Reference

Options

– Searches the RACF data base to find user IDs. calendar uses the mailx

command (or, alternatively, the command named in the MAILER

environment variable) to send mail to the corresponding user for any

appointments that are found to be current. Because calendar cannot

determine each user’s locale, it runs in the POSIX locale when this option is

used; otherwise it runs in the user’s locale, processing data in single-byte

mode.

Examples

If today is Friday April 7th and the following calendar file is found in the current

directory:

tue mar 7 1:00 pm dentist

Sat April 8 Trip to the zoo

mon april 10 3:30 pm job interview

4/11 vacation starts

calendar prints the following:

Sat April 8 Trip to the zoo

mon april 10 3:30 pm job interview

Environment Variable

calendar uses the following environment variable:

MAILER

Contains the name of the command that calendar uses to send mail. If this

variable is not set, calendar uses /bin/mail as the default mail command.

Files

calendar uses the following file:

calendar

File used in the current directory, or user’s home directory.

Localization

calendar uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F, “Localization” for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v An incorrect command-line argument

v An inability to open the calendar file

Portability

X/Open Portability Guide, UNIX systems

The MAILER environment variable is an extension to traditional implementations of

calendar.

calendar

Chapter 2. Shell command descriptions 107

Related Information

mailx

cancel — Cancel print queue requests (stub command)

Format

 cancel [print_ID ...] printer ...

 cancel print_ID ... [printer ...]

Note: The cancel utility is fully supported for compatibility with older UNIX

systems. However, because it is no longer supported by POSIX.2 IEEE

standard 1003.2-1992, this utility should be avoided for applications intended

to be portable to other UNIX-branded systems.

Description

cancel cancels print queue requests. print_ID specifies the particular job (or jobs) to

be canceled; the print_ID number is reported by lp when the job is submitted, or by

lpstat.

cancel is recognized, but its functions are not supported.

If you are using the z/OS Print Server feature, your system automatically uses that

version of the cancel command. For more information about the print server

commands, see z/OS Infoprint Server User’s Guide.

captoinfo — Print the terminal entries in the terminfo database

Format

captoinfo [–1vV] [–w width] [file ...]

Description

captoinfo prints all of the terminal entries in the terminfo database to standard

output (stdout) in terminfo format. You can either look at the output or send it to a

file that can be processed by tic.

The Curses application uses the terminfo database, which contains a list of terminal

descriptions. This enables you to manipulate a terminal’s display regardless of the

terminal type. To create the terminfo database, use tic. For information on defining

the terminfo database, see z/OS UNIX System Services Planning.

For more information about curses, see z/OS C Curses.

Options

1 Single-column output

V Print the program version

v Print debugging information (verbose) to standard error (stderr)

w Specifies the width of the output

filename

Specifies the termcap entries to be processed

calendar

108 z/OS V1R9.0 UNIX System Services Command Reference

Examples

1. This example shows how to print all the terminal entries in the file

/etc/termcap.src in terminfo format. The entry for a vt52 is shown. Issue:

captoinfo /etc/termcap.src

You get the following display:

captoinfo: obsolete 2 character name ’dv’ removed.

 synonyms are: ’vt52|dec vt52’

vt52|dec vt52,

 xon,

 cols#80, lines#24,

 bel=^¬, clear=-E-310-E-321, cub1=^½, cud1=^-,

 cuf1=-E-303,

 cup=-E-350%-227-361%’-s’%+%-203%-227-362%’-s’%+%-203,

 cuu1=-E-301, ed=-E-321, el=-E-322, ind=^-,

 kbs=^½, kcub1=-E-304, kcud1=-E-302, kcuf1=-E-303,

 kcuu1=-E-301, ri=-E-311,

END OF TERMCAP

2. To print all the terminal entries in the file /etc/termcap.src in terminfo format

with each entry on a separate line, issue:

captoinfo –1 /etc/termcap.src

You get the following display:

captoinfo: obsolete 2 character name ’dv’ removed.

 synonyms are: ’vt52|dec vt52’

vt52|dec vt52,

 xon,

 cols#80,

 lines#24,

 clear=-E-310-E-321,

 cub1=^½,

 cud1=^-,

 cuf1=-E-303,

 cup=-E-350%-227-361%’-s’%+%-203%-227-362%’-s’%+%-203,

 cuu1=-E-301,

 ed=-E-321,

 el=-E-322,

 ind=^-,

 kbs=^½,

 kcub1=-E-304,

 kcud1=-E-302,

 kcuf1=-E-303,

 kcuu1=-E-301,

 ri=-E-311,

END OF TERMCAP

3. This example shows how to write all the terminal entries in the file

/etc/termcap.src to the file /test/terminfo.ti. The resulting file can be processed

by tic. Notice that the error messages are written to stderr.

captoinfo /etc/termcap.src 1> /test/terminfo.ti

You get the following:

captoinfo: obsolete 2 character name ’dv’ removed.

 synonyms are: ’vt52|dec vt52’

captoinfo

Chapter 2. Shell command descriptions 109

Related Information

infocmp, tic

cat — Concatenate or display text files

Format

cat [–su] [–v [et]] [file ...]

Description

cat displays and concatenates files. It copies each file argument to the standard

output (stdout). If you specify no files or specify a dash (–) as a filename, cat

reads the standard input (stdin).

Note: You can use cat in conjunction with the scrolling facility of the OMVS TSO/E

command to browse data files.

Options

–e Displays a $ character at the end of each line. This option works only if you

also specify –v.

–s Does not produce an error message if cat cannot find or read a specified

file.

–t Displays tabs as ^I. This option works only if you also specify –v.

–u Does not buffer output.

–v Displays all characters including those that are unprintable characters. With

a doublebyte character set, an unprintable wide character is converted back

to its doublebyte representation. Each byte is then checked as if it were a

singlebyte character. If the character is unprintable, one of the following

three representations is used:

v M–X is used for character X if the significant bit is set.

v ^X is used for the control character X (for example, ^A for CTRL-A).

v \xxx represents a character with the octal value xxx.

The \xxx form is used if neither of the other representations can be used.

Localization

cat uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F, “Localization” for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v An incorrect command-line argument

v Inability to open the input file

captoinfo

110 z/OS V1R9.0 UNIX System Services Command Reference

v End of the file detected on stdout

v The input file is the same as the output file

2 An incorrect command-line argument

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –e, –s, –t, and –v options are extensions of the POSIX standard.

Related Information

cp, more, mv

cc — Compile, link-edit and assemble C source code and create an

executable file on z/OS

See c89/xlc or man xlc.

Notes:

1. The cc utility is fully supported for compatibility with older UNIX systems.

However, it is recommended that the c89 utility be used instead because it may

provide greater functionality and is considered the standard for portable UNIX

applications as defined by POSIX.2 IEEE standard 1003.2-1992.

2. When working in the shell, to view man page information about cc, type: man

c89 or man xlc.

cd — Change the working directory

Format

 cd [directory]

 cd old new

 cd –

tcsh shell: cd [-p] [-l] [-n|-v] [name]

Description

The command cd directory changes the working directory of the current shell

execution environment (see sh) to directory. If you specify directory as an absolute

pathname, beginning with /, this is the target directory. cd assumes the target

directory to be the name just as you specified it. If you specify directory as a

relative pathname, cd assumes it to be relative to the current working directory.

If the variable CDPATH is defined in the shell, the built-in cd command searches for

a relative pathname in each of the directories defined in CDPATH. If cd finds the

directory outside the working directory, it displays the new working directory.

Use colons to separate directories in CDPATH. In CDPATH, a null string represents

the working directory. For example, if the value of CDPATH begins with a separator

character, cd searches the working directory first; if it ends with a separator

character, cd searches the working directory last.

cat

Chapter 2. Shell command descriptions 111

|

|

|

|

|
|
|
|

|
|

|

In the shell, the command cd - is a special case that changes the current working

directory to the previous working directory by exchanging the values of the variables

PWD and OLDPWD.

Note: Repeating this command toggles the current working directory between the

current and the previous working directory.

Calling cd without arguments sets the working directory to the value of the HOME

environment variable, if the variable exists. If there is no HOME variable, cd does

not change the working directory.

The form cd old new is an extension to the POSIX standard and optionally to the

Korn shell. The shell keeps the name of the working directory in the variable PWD.

The cd command scans the current value of PWD and replaces the first occurrence

of the string old with the string new. The shell displays the resulting value of PWD,

and it becomes the new working directory.

If either directory is a symbolic link to another directory, the behavior depends on

the setting of the shell’s –o logical option. See the set command for more

information.

cd in the tcsh shell

If a directory name is given, cd changes the tcsh shell’s working directory to name.

If not, it changes the directory to home. If name is ’-’ it is interpreted as the previous

working directory. If name is not a subdirectory of the current directory (and does

not begin with /, ./ or ../), each component of the tcsh variable cdpath is checked to

see if it has a subdirectory name. Finally, if all else fails but name is a tcsh shell

variable whose value begins with /, then this is tried to see if it is a directory (see

also the implicitcd tcsh shell variable).

Options for the cd tcsh built-in command are:

-l Output is expanded explicitly to home or the pathname of the home

directory for the user.

-n Entries are wrapped before they reach the edge of the screen.

-p Prints the final directory stack.

-v Entries are printed one per line, preceded by their stack positions.

 If more than one of -n or -v is given, -v takes precedence. -p is accepted

but does nothing.

Environment Variables

cd uses the following environment variables:

CDPATH

Contains a list of directories for cd to search in when directory is a relative

pathname.

HOME Contains the name of your home directory. This is used when you do not

specify directory on the command line.

OLDPWD

Contains the pathname of the previous working directory. This is used by

cd –.

PWD Contains the pathname of the current working directory. This is set by cd

after changing to that directory.

cd

112 z/OS V1R9.0 UNIX System Services Command Reference

Localization

cd uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F, “Localization” for more information.

Usage Note

cd is a built-in shell command.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v No HOME directory

v No previous directory

v A search for directory failed

v An old-to-new substitution failed

2 An incorrect command-line option

Messages

Possible error messages include:

dir bad directory

cd could not locate the target directory. This does not change the working

directory.

Restricted

You are using the restricted version of the shell (for example, by specifying

the –r option for sh). The restricted shell does not allow the cd command.

No HOME directory

You have not assigned a value to the HOME environment variable. Thus,

when you run cd in order to return to your home directory, cd cannot

determine what your home directory is.

No previous directory

You tried the command cd – to return to your previous directory; but there

is no record of your previous directory.

Pattern old not found in dir

You tried a command of the form cd old new. However, the name of the

working directory dir does not contain any string matching the regular

expression old.

Portability

POSIX.2, X/Open Portability Guide.

All UNIX systems feature the first form of the command.

The cd old new form of the command is an extension of the POSIX standard.

cd

Chapter 2. Shell command descriptions 113

Related Information

dirs, popd, pushd, set, sh, tcsh

ceebldtx — Transform message source files into assembler source

files

Format

ceebldtx

[-C csect_name][-I secondary_file_name]

[-P] [-S] [-c class] [-d APOST | ’ | QUOTE | ″]

[-l BAL | C | COBOL | FORTRAN | PLI] [-s id]

in_file out_file

Restriction: The ceebldtx utility only works with z/OS UNIX files; MVS data sets

are not applicable.

Description

The ceebldtx utility creates several files from the message source file. It creates an

assembler source file, which can be assembled into an object (text) file and

link-edited into a module in an MVS load library. When the name of the module is

placed in a message module table, the Language Environment message services

can dynamically access the messages. See Creating a Message Module Table in

the Language Environment Programming Guide for more information about creating

a message module table.

The ceebldtx utility optionally creates secondary input files (COPY or INCLUDE),

which contain declarations for the condition tokens associated with each message

in the message source file. When a program uses the secondary input file, the

condition tokens can then be used to reference the messages from the message

table. The :msgname. tag indicates the symbolic name of the condition token.

See the topic on Using and Handling Messages in z/OS Language Environment

Programming Guide for a description of creating message source files and other

corresponding information.

Operands

in_file The name of the file containing the message source.

out_file

The name of the resulting assembler source file containing the messages,

inserts, and others items, suitable for input into the High Level Assembler.

An extension of ″.s″ is assumed if none is present.

Options

-C csect_name

This option is used to explicitly specify the CSECT name. An uppercase

version of the CSECT name will be used. By default, the CSECT name is

the output file base name.

-I secondary_file_name

The -I (uppercase i) option provides the name of the secondary input file

generated for the language specified with the -l (lowercase L) option. If no

cd

114 z/OS V1R9.0 UNIX System Services Command Reference

|

|

|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

||

|
|
|
|

|

|
|
|
|

|
|
|

suffix is present in the secondary_file_name specified, the extension will be

″.h″ for C, ″.fortran″ for FORTRAN, and ″.copy″ for all others.

-P This option is used to save previous prologs, if files being generated

already exist in the directory and contain prologs. By default, previous

prologs are not reused.

-S This option is used to indicate sequence numbers should be generated in

the files produced. By default, no sequence numbers are generated.

-c class

This option is used to specify the default value for :msgclass. in cases

where the tag is not coded.

-d APOST | ’ | QUOTE | ″

This option is used to specify which COBOL delimiter to use and is used in

combination with the -l (lowercase L) COBOL option. By default, APOST is

used as the delimiter.

 Tip: Quotation marks should be escaped in order to prevent them from

being treated as shell metacharacters, for example:

ceebldtx -l COBOL -I secondary_file_name -d \’ in_file out_file

ceebldtx -l COBOL -I secondary_file_name -d \" in_file out_file

ceebldtx -l COBOL -I secondary_file_name -d QUOTE in_file out_file

-l BAL | C | COBOL | FORTRAN | PLI

The -l (lowercase L) option is used to specify the language to be used in

generating a secondary input file and is used in combination with the I

secondary_file_name option. The file will contain declarations for the

condition tokens associated with each message in the message source file.

The language is accepted in lowercase and uppercase. C370 is also

supported.

-s id This option is used to specify the default value for :msgsubid. in cases

where the tag is not coded.

Examples

ceebldtx -l PLI -I exmplcop example exmplasm

Where the in_file is example, the out_file is exmplasm.s, and the PL/I

secondary_file_name is exmplcop.copy.

After the out_file is generated, the High Level Assembler can be used to assemble

the out_file into an object file

as exmplasm.s

and the binder can be used to link-edit it into an MVS load library:

ld -o "//mylib(exmplasm)" -e// -u//exmplasm exmplasm.o

Rule: A CSECT name greater than 8 characters requires the use of the High Level

Assemble GOFF option for assembling the primary output file.

Exit values

-1 Rexx terminated execution due to lack of storage. (See IRX0005I in the

z/OS TSO/E Messages.)

 Attempt one of the following options:

1. Increase the virtual storage space available on the system.

ceebldtx

Chapter 2. Shell command descriptions 115

|
|

||
|
|

||
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

||
|

|

|

|
|

|
|

|

|

|

|
|

|

||
|

|

|

2. Split up the script in_file, into two or more files, and adjust the Message

Module Table for the corresponding split.

0 Successful completion.

5 Error reading file ssssssss.

6 Error erasing file ssssssss.

7 Error writing file ssssssss.

8 Bad filename ssssssss: forward slash not allowed at the end of a filename.

9 Option x requires an argument.

10 Invalid option = x. Valid options are: CIPScdls.

11 Bad data set name ssssssss.

20 CSECT name ssssssss is greater than 63 characters.

21 CSECT name ssssssss does not begin with a letter, $, #, @ or underscore

(_).

28 ssssssss SCRIPT not found on any accessed disk.

40 Error on line nnn in message nnnn. Insert number greater than mmmm.

44 Error on line nnn. Duplicate :FACID. tags found with the given script file.

48 No :FACID. tag found within the given script file.

52 Error on line nnn. Message number nnnn found out of range mmmm to

mmmm.

56 Number of hex digits not divisible by 2 on line nnn in message nnnn.

60 Invalid hexadecimal digits on line nnn in message nnnn.

64 Number of DBCS bytes not divisible by 2 on line nnn in message nnnn.

68 PLAS out_file name must be longer than the message facility ID pppp.

72 Message facility ID pppp on line nnn was longer than 4 characters.

76 Message class on line nnn was not a valid message class type: IWESCFA.

80 Tag not recognized on line nnn.

84 The first tag was not a :FACID. tag on line nnn.

88 Unexpected tag found on line nnn.

92 Duplicate tags ttt found on line nnn.

96 No :MSGNO. tags found within the given SCRIPT file.

98 No :MSGCLASS. (or :MSGCL.) tag found for message nnnn.

100 Insert number was not provided or was less than 1 on line nnn.

104 Message subid was out of the range mmmm to mmmm on line nnn.

108 Existing secondary file, ssssssss, found, but not on A-disk.

112 Current ADDRESS environment not CMS, TSO/E, or z/OS UNIX.

nnn Undefined error number nnn issued. Contact your service representative.

ceebldtx

116 z/OS V1R9.0 UNIX System Services Command Reference

|
|

||

||

||

||

||

||

||

||

||

||
|

||

||

||

||

||
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

chaudit — Change audit flags for a file

Format

chaudit [–Fdai] attr pathname ...

Description

chaudit changes the audit attributes of the specified files or directories. Audit

attributes determine whether or not accesses to a file are audited by the system

authorization facility (SAF) interface.

Note: chaudit can be used only by the file owner or a superuser for

non-auditor-requested audit attributes. It takes a user with auditor authority to

change the auditor-requested audit attributes.

Options

–F If you specify a directory as a pathname on the command, chaudit

changes the audit characteristics of all files in that directory. Subdirectory

audit characteristics are not changed.

–d If you specify a directory as a pathname on the command, chaudit

changes the audit characteristics of all the subdirectories in that directory.

File audit characteristics are not changed.

–a Auditor-requested audit attributes are to be changed for the files or

directories specified. If –a is not specified, user-requested audit attributes

are changed.

–i Does not issue error messages concerning file access authority, even if

chaudit encounters such errors.

 The symbolic form of the attr argument has the form:

[operation]

op auditcondition[op auditcondition ...]

The operation value is any combination of the following:

r Sets the file to audit read attempts.

w Sets the file to audit write attempts.

x Sets the file to audit execute attempts.

The default is rwx.

The op part of a symbolic mode is an operator telling whether chaudit should turn

file auditing on or off. The possible values are:

+ Turns on specified audit conditions.

- Turns off specified audit conditions.

= Turns on the specified audit conditions and turns off all others.

The auditcondition part of a symbolic mode is any combination of the following:

s Audit on successful access if the audit attribute is on.

f Audit on failed access if the audit attribute is on.

You can specify multiple symbolic attr values if you separate them with commas.

chaudit

Chapter 2. Shell command descriptions 117

Examples

1. The command:

chaudit –s file

changes the file file so that successful file accesses are not audited.

2. The command:

chaudit rwx=sf file1

changes the file file1 so that all successful and unsuccessful file accesses are

audited.

3. The command:

chaudit r=f file2

changes the file file2 so that unsuccessful file read accesses are audited.

4. The command:

chaudit r-f,w+s file3

changes the file file3 to not audit unsuccessful file read accesses and to audit

successful write accesses.

Localization

chaudit uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F, “Localization” for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to access a specified file

v Inability to change the audit attributes for a specified file

v Inability to not read the directory containing item to change

v Irrecoverable error when using the –F or –d option
2 Failure due to any of the following:

v Missing or incorrect attr argument

v Too few arguments

Messages

Possible error messages include:

fatal error during -F or -d option

You specified the –F or –d option, but some file or directory in the directory

structure was inaccessible. This may happen because of permissions or

because you have removed a removable unit.

read directory name

You do not have read permissions on the specified directory.

Portability

None. This is a security extension that comes with z/OS UNIX services.

chaudit

118 z/OS V1R9.0 UNIX System Services Command Reference

Related Information

chmod, chown, ls

chcp — Set or query ASCII/EBCDIC code pages for the terminal

Format

 chcp [–r | –q]

 chcp [–s] [–a ASCII_cp] [–e EBCDIC_cp]

Description

chcp sets, resets, or queries the current ASCII/EBCDIC code conversion in effect

for the controlling terminal. Use it when the terminal requires ASCII data and the

shell application uses EBCDIC. Do not use chcp if you are logged on through the

TSO/E OMVS command. The _BPX_TERMPATH environment variable enables

shell scripts to tell if the user logged on from TSO, rather from rlogin or telnet.

Options

–a ASCII_cp

The name of the ASCII code page used by the terminal. EBCDIC data from

the shell application is converted to this ASCII code page before it is sent

out to the terminal. Data from the terminal is converted from this ASCII

code page to EBCDIC before the application receives it.

 The name of the ASCII code page is case-sensitive.

 For a list of code pages supported by the shell, see z/OS XL C/C++

Programming Guide.

–e EBCDIC_cp

The name of the EBCDIC code page used for this session. EBCDIC data

from the shell application is converted from this EBCDIC code page to

ASCII before it is sent out to the terminal. ASCII data from the terminal is

converted to this EBCDIC code page before the application receives it.

 The name of the EBCDIC code page is case-sensitive.

 For a list of code pages supported by the z/OS shell, see z/OS XL C/C++

Programming Guide.

–q Queries the current ASCII and EBCDIC code pages for this terminal. The

results are written to stdout. You cannot use any other options if you use

the –q option.

–r Resets the ASCII/EBCDIC conversion for the terminal to the default code

pages. The default ASCII code page is ISO8859-1, and the default EBCDIC

code page is IBM-1047.

 You cannot use –r with any other options.

–s Specifies that the ASCII/EBCDIC conversion for the terminal is to use the

code pages specified by the –a and –e options. You cannot use –s with any

other options other than –a or –e. Either –a or e (or both) must also be

specified if –s is used.

The chcp query output is written to stdout. For example, if you enter

chcp –q

chaudit

Chapter 2. Shell command descriptions 119

You get the following output:

Current ASCII code page = ISO8859-1

Current EBCDIC code page = IBM-1047

Examples

1. To set the ASCII and EBCDIC code pages to IBM-eucJP and IBM-939, enter:

chcp –a IBM-eucJP –e IBM-939

2. To change just the EBCDIC code page to IBM-277, enter:

chcp –seIBM-277

3. To change just the ASCII code page to IBM-850, enter:

chcp –a IBM-850

4. To reset ASCII/EBCDIC code page conversion to the default code pages for this

terminal, enter:

chcp –r

5. To query the current ASCII and EBCDIC code pages for this terminal, enter:

chcp –q

Usage notes

1. Do not use chcp when you are logged on from the TSO/E OMVS command

because the OMVS command does not do any ASCII/EBCDIC code page

conversion.

Shell scripts can test _BPX_TERMPATH environment variable and bypass chcp

when the user is logged on through OMVS. (The _BPX_TERMPATH

environment variable enables shell scripts to tell if the user logged on from

TSO/E rather than from rlogin or telnet.)

Before starting the session, the TSO/E OMVS command sets

_BPX_TERMPATH to “OMVS”.

Sample shell script code:

Issue chcp only if not using TSO/E OMVS command

if

test "$_BPX_TERMPATH" != "OMVS"

then

chcp –a IBM-850 –e IBM-1047

fi

2. After running chcp –s to change the EBCDIC code page for the session, you

may also need to alter or set the following environment variables to match the

new code page:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

3. The code page names supplied with the –a and –e options are passed to

iconv_open() without any uppercase or lowercase conversion. Code page

converters that convert between the specified ASCII and EBCDIC code pages

must be available for iconv().

4. If ASCII/EBCDIC conversion is not active for this terminal, both the ASCII and

EBCDIC code pages must be specified on the chcp –s command. At other

chcp

120 z/OS V1R9.0 UNIX System Services Command Reference

times, omit –a when just the EBCDIC code page needs to be changed. Omit –e

when just the ASCII code page needs to be changed.

5. All code pages with names not known to chcp are considered to be singlebyte

(SBCS) user-defined code pages. User-defined multibyte code pages are not

supported.

6. chcp cannot check user-defined code page names to make sure that –a really

specifies an ASCII code page and –e specifies an EBCDIC code page. In this

case, specifying the wrong code pages may cause terminal input and output to

be completely unreadable. It may also be impossible to enter any more shell

commands.

7. chcp operates on the controlling terminal.

8. chcp should not be run as a background job.

9. The –d option specifies that special debugging information be printed. Specify

this option only when requested by IBM.

Localization

chcp uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Incorrect command-line arguments or options

2 Any of the following errors:

v There is no controlling terminal.

v The controlling terminal does not support ASCII/EBCDIC code page

conversion (the TSO/E OMVS command, for example).

v iconv_() fails when passed the code page names specified on the

command line.

v chcp cannot build SBCS conversion tables using iconv() when required.

v An I/O error occurred on the controlling terminal.

v Either the –a or –e was omitted and the chcp –s command was run

while the terminal code page conversion is in binary mode.

Portability

None. chcp is not described in any standard.

Related Information

lm, rlogin

chgrp — Change the group owner of a file or directory

Format

chgrp [–fhR] group pathname ...

chcp

Chapter 2. Shell command descriptions 121

Description

chgrp sets the group ID to group for the files and directories named by the

pathname arguments. group can be a group name from a group database, or it can

be a numeric group ID (GID).

Rule: chgrp can be used only by the file owner or a superuser. The file owner must

have the new group as his or her group or one of the supplementary groups.

chgrp also turns off the set-user-ID bit and set-group -ID bit of the named files and

directories.

Options

–f Does not issue an error message if chgrp cannot change the group ID. In

this case, chgrp always returns a status of 0.

–h Does not attempt to follow the symbolic link (or external link), but instead

makes changes to the symbolic link (or external link) itself.

–R If a pathname on the command line is the name of a directory, chgrp

changes the group ID of all files and subdirectories in that directory. If

chgrp cannot change some file or subdirectory in the directory, it continues

to try to change the other files and subdirectories in the directory, but exits

with a nonzero status.

Localization

chgrp uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 You specified –f, or chgrp successfully changed the group ownership of all

the specified files and directories.

1 Failure due to any of the following:

v Inability to access a specified file

v Inability to change the group of a specified file

v An irrecoverable error was encountered when you specified the –R

option

2 Failure due to any of the following:

v The command line contained an unknown option or too few arguments

v chgrp did not recognize the specified group

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –f and –h options are an extension of the POSIX standard.

chgrp

122 z/OS V1R9.0 UNIX System Services Command Reference

Related Information

chmod, chown

chlabel — Set the multilevel security label of files and directories

Format

chlabel [–cqR] [–h|–L] seclabel pathname ...

Description

chlabel sets the multilevel security label of the files and directories specified by

pathname. Setting the seclabel is only allowed if the user has RACF SPECIAL

authority, and no seclabel currently exists on the resource. Once a seclabel is set, it

cannot be changed.

seclabel is a 1-8 character multilevel security label that corresponds to a RACF

security level with a set of zero or more security categories. See z/OS Planning for

Multilevel Security and the Common Criteria for restrictions on seclabel.

If chlabel could not set the seclabel for a file or object, it continues to try to change

the other files but exits with a nonzero status.

When –R is specified, chlabel will not cross device boundaries from the directory

specified by pathname. unless the –c option is used.

Options

–c cross device boundaries.

–h Does not follow the symbolic link (or external link), but instead makes

changes to the symbolic link (or external link) itself. Cannot be used with

–L.

–L Follow symbolic links. Cannot be used with –h.

–q Quiet mode. chlabel will suppress all warning messages. The condition that

caused the warning will not affect the exit value.

–R chlabel sets the seclabel on all the file objects and subdirectories under the

directory specified by pathname.

Usage notes

1. See z/OS Planning for Multilevel Security and the Common Criteria for more

information about multilevel security, and seclabels.

2. chlabel will not set the seclabel for a symbolic link, or for the file to which it

points, unless either the –h or –L option is specfied. If neither option is specfied,

chlabel prints a warning, continues to the next file and exits with a non-zero

status.

3. chlabel is typically run to set up seclabels on file systems before multilevel

security is activated.

4. Only the zFS file system supports the setting of seclabels.

5. The SECLABEL CLASS must be active before the chlabel command will set a

security label. If the SECLABEL CLASS is inactive, security labels will not be

set.

chgrp

Chapter 2. Shell command descriptions 123

Exit Values

0 Successful completion

1 Failure due to any of the following:

v User does not have RACF SPECIAL authority

v User specified a seclabel with more than 8 characters

v File system does not support setting seclabel

v RACF SECLABEL class is not active

2 Command syntax error

3 One or more warnings occurred, due to any of the following:

v Pathname already has seclabel assigned

v A symbolic link was encountered, but neither –h nor –L was specified

v Device boundary not crossed

Examples

1. To set the seclabel TOPSEC for file ″secret_file″:

chlabel TOPSEC secret_file

2. To set the seclabel SYSLOW for a symbolic link ″mylink″:

chlabel -h SYSLOW mylink

3. To set the seclabel SYSLOW for the file to which the symbolic link ″mylink″

points:

chlabel -L SYSLOW mylink

4. To recursively set the seclabel SYSHIGH for all files, symbolic links, and

subdirectories under the directory ″Team″:

chlabel -Rh SYSHIGH Team

chmod — Change the mode of a file or directory

Format

chmod [–fhR] mode pathname

Description

chmod changes the access permissions, or modes, of the specified file or directory.

(Modes determine who can read, write, or search a directory or file.) Users with

read access to SUPERUSER.FILESYS.CHANGEPERMS (a UNIXPRIV class

profile), can use the chmod command to change the permission bits of any file.

Rule: chmod can be used only by the file owner or a superuser.

Options

–f Does not issue error messages concerning file access permissions, even if

chmod encounters such errors.

–h Suppresses a mode change for the file or directory pointed to by the

encountered symbolic link (or external link). Symbolic link (or external link)

permissions cannot be changed on a z/OS system.

chlabel

124 z/OS V1R9.0 UNIX System Services Command Reference

–R Recursively change file mode bits. For each pathname operand that names

a directory, chmod will change the file mode bits of the directory and all

files in the file hierarchy below it.

 chmod never changes the permissions of symbolic links (or external links),

because, on a z/OS system, the permissions on symbolic links (and external links)

are never used. When -h is not specified, and symbolic links (or external links) are

specified or encountered during the file hierarchy traversal, the links are followed,

and the resolved directory (and files and subdirectories) are changed.

You can specify the mode value on the command line in either symbolic form or as

an octal value.

The symbolic form of the mode argument has the form:

[who] op permission[op permission ...]

The who value is any combination of the following:

u Sets owner (user or individual) permissions.

g Sets group permissions.

o Sets other permissions.

a Sets all permissions; this is the default. If a who value is not specified, the

default is a, modified by umask.

The op part of a symbolic mode is an operator that tells chmod to turn the

permissions on or off. The possible values are:

+ Turns on a permission.

− Turns off a permission.

= Turns on the specified permissions and turns off all others.

The permission part of a symbolic mode is any combination of the following:

r Read permission. If this is off, you cannot read the file.

x Execute permission. If this is off, you cannot run the file.

X Execute or search permission for a directory; or execute permission for a

file only when the current mode has at least one of the execute bits set.

w Write permission. If this is off, you cannot write to the file.

s If in owner permissions section, the set-user-ID bit is on; if in group

permissions section, the set-group-ID bit is on.

Note: A superuser or the file owner can use a chmod command or chmod()

function to change two options for an executable file. The options

are set in two file mode bits:

v Set-user-ID (S_ISUID) with the setuid option

v Set-group-ID (S_ISGID) with the setgid option

If one or both of these bits are on, the effective UID, effective GID,

or both, plus the saved UID, saved GID, or both, for the process

running the program are changed to the owning UID, GID, or both,

for the file. This change temporarily gives the process running the

program access to data the file owner or group can access.

In a new file, both bits are set off. Also, if the owning UID or GID of a

file is changed or if the file is written in, the bits are turned off. In

shell scripts, these bits are ignored.

chmod

Chapter 2. Shell command descriptions 125

If the RACF profile named FILE.GROUPOWNER.SETGID exists in

the UNIXPRIV class, then the set-group-ID bit for a directory

determines how the group owner is initialized for new objects

created within the directory:

v If the set-gid bit is on, then the owning GID is set to that of the

directory.

v If the set-gid bit is off, then the owning GID is set to the effective

GID of the process.

t This represents the sticky bit. For a file, the sticky bit causes a search for

the program in the user’s STEPLIB, the link pack area, or link list

concatenation. For a directory, the sticky bit allows files in a directory or

subdirectories to be deleted or renamed only by the owner of the file, by the

owner of the directory, or by a superuser.

You can specify multiple symbolic names if you separate them with commas.

Absolute modes are octal numbers specifying the complete list of attributes for the

files; you specify attributes by ORing together these bits.

4000 Set-user-ID bit

2000 Set-group-ID bit

1000 Sticky bit

0400 User read

0200 User write

0100 User execute (or list directory)

0040 Group read

0020 Group write

0010 Group execute

0004 Other read

0002 Other write

0001 Other execute

Examples

1. To remove write permission from orgcht:

chmod –w orgcht

2. To turn on read, write, and execute permissions, and turn off the set-user-ID bit,

set-group-ID bit, and sticky bit attributes. This is equivalent to chmod 0777

aprsal:

chmod a=rwx aprsal

3. To set all permission bits on (anyone can read/write/execute):

chmod 777 scratch

4. To set user (owner) executable permission bit on:

chmod u+x file

5. To set group read / write permission bits:

chmod g+rw file

6. To set other write permission off on 2 files:

chmod o-w file1 file2

7. To set group read/write/execute permissions on the directory /public/teamdir

and all its files and subdirectories:

chmod -R g+rwx /public/teamdir

8. To set group read/execute on, group write off on /u/ateam/pgm:

chmod g=rx /u/ateam/pgm

chmod

126 z/OS V1R9.0 UNIX System Services Command Reference

Localization

chmod uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to access a specified file

v Inability to change the modes on a specified file

v Inability to read the directory containing the item to change

v An irrecoverable error was encountered when using the –R option

2 Failure due to any of the following:

v Missing or incorrect mode argument

v Too few arguments

Messages

Possible error messages include:

function not implemented

This error may occur if the directory is under automount control.

irrecoverable error during –R option

The –R option was specified, but some file or directory in the directory

structure was inaccessible. This may happen because of permissions.

read directory name

Read permissions are not on the specified directory.

Portability

POSIX.2, X/Open Portability Guide.

The –f and –h options and the t permission are extensions of the POSIX standard.

Related Information

ls, setfacl, umask

chmount — Change the mount attributes of a file system

Format

chmount [–DRrw] [-dsysname] [–d destsys] [–a

yes|no|unmount|include,sysname1,...,sysnameN|exclude,sysname1,...,sysnameN]

pathname...

Description

The chmount shell command, located in /usr/sbin, changes the mount attributes of

a specified file system.

chmod

Chapter 2. Shell command descriptions 127

Rule: A chmount user must have UID(0) or at least have READ access to the

SUPERUSER.FILESYS.MOUNT resource found in the UNIXPRIV class.

Options

–a

yes|no|unmount|include,sysname1,...,sysnameN|exclude,sysname1,...,sysnameN

The -a option specifies the AUTOMOVE attribute of the file system in a

sysplex environment where systems are exploiting the shared file system

capability.

 –a yes allows the system to automatically move logical ownership for a

specified file system as needed. This is the default.

 –a no prevents ownership movement in some situations.

 –a umount unmounts the file system in some situations.

 –a include,sysname1,...,sysnameN specifies a list of systems, in priority

order, to which the file system's ownership can be moved. include can

be abbreviated to i.

 –a exclude,sysname1,...,sysnameN specifies a list of systems, in

priority order, to which the file system's ownership cannot be moved.

exclude can be abbreviated to e.

See z/OS UNIX System Services Planning for details about the behavior of

the AUTOMOVE options.

–D Reassigns logical ownership of a file system to any available file system

participating in shared file system.

–d destsys

To designate a specific reassignment, use –d destsys, where destsys

becomes the logical owner of a file system in a shared file system

environment.

–R Changes the attributes of a specified file system and all file systems

mounted below it in the file system hierarchy.

–r Switches the specified file system to read-only mode.

–w Switches the specified file system to read-write mode.

pathname... specifies the pathnames to use for locating the file systems that need

attributes changed.

Example

To move ownership of the file system that contains /u/wjs to SY1:

chmount -d SY1 /u/wjs

Usage Note

The pathname for chmount/unmount is a node so symlinks can not be followed

unless a trailing slash is added to the symbolic link name. For example, if /etc has

been converted into a symbolic link, /etc -> $SYSNAME/etc, issuing chmount -w

/etc (without the trailing slash) will result in trying to chmount -w /etc ->

$SYSNAME/etc. This may result in RACF errors depending on the security access

for the symlinked file. However, adding the trailing slash, by specifying chmount -w

/etc/ the symlink will be followed and RACF will determine the access from the

symlinked file.

chmount

128 z/OS V1R9.0 UNIX System Services Command Reference

Exit Values

0 Successful completion

Related Information

mount, unmount

chown — Change the owner or group of a file or directory

Format

chown [–fhR] owner[:group] pathname ...

Description

chown sets the user ID (UID) to owner for the files and directories named by

pathname arguments. owner can be a user name from the user data base, or it can

be a numeric user ID. (If a numeric owner exists as a user name in the user data

base, the user ID number associated with that user name is used.) If there is no

change to the UID, then specify – – –1.

If you include a group name (that is, if you specify owner followed immediately by a

colon (:) and then group with no intervening spaces, such as owner:group) chown

also sets the group ID (GID) to group for the files and directories named. group can

be a group name from the security facility group data base, or it can be a numeric

group ID. If a numeric group exists as a group name in the group data base, the

group ID number associated with that group is used. If there is no change to the

GID, then specify –1 (or do not specify the :group).

Note: Only a superuser can change the UID. To change the GID, you must either

be a superuser, or the effective user ID of the process must be equal to the

user ID of the file owner, and the owner argument is also equal to the user

ID of the file owner or –1, and the group argument is the calling process’s

effective group ID or one of its supplementary group IDs.

chown also turns off the set-user-ID bit and set-group -ID bit of the named files and

directories.

Options

–f Does not issue an error message if chown cannot change the owner. In

this case, chown always returns a status of zero. Other errors may cause a

nonzero return status.

–h Does not attempt to follow the symbolic link (or external link), but instead

makes the changes on the symbolic link (or external link) itself.

–R If pathname on the command line is the name of a directory, chown

changes all the files and subdirectories in that directory to belong to the

specified owner (and group, if :group is specified).

 If a symbolic link is specified or encountered during the traversal of a file

hierarchy, chown changes the directory referenced by the symbolic link and

all files in the file hierarchy below it.

 If chown cannot change some file or subdirectory in the directory, it

continues to try to change the other files and subdirectories in the directory,

but exits with a nonzero status.

chmount

Chapter 2. Shell command descriptions 129

Localization

chown uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 You specified –f, or chown successfully changed the ownership of all the

specified files and directories.

1 Failure due to any of the following:

v Inability to access a specified file.

v Inability to change the owner of a specified file.

v Inability to read the directory containing the directory entry of the file.

v An irrecoverable error was encountered when using the –R option.

2 Failure due to any of the following:

v The command line contained an incorrect option.

v The command line had too few arguments.

v An owner was specified with a user ID that the system did not recognize.

Message

function not implemented

This error may occur if the directory is under automount control.

Portability

POSIX.2, UNIX systems.

The –f and –h options are an extension of the POSIX standard.

Related Information

chgrp, chmod

chroot — Change the root directory for the execution of a command

Format

chroot directory command

Description

If you have appropriate privileges, the chroot command changes the root directory

to the directory specified by the directory parameter of a specific command. The

new root directory will also contain its children.

Rule: In order to use chroot, you must either be a superuser (UID=0), or have

READ permission to the BPX.SUPERUSER resource profile in the FACILITY class.

chown

130 z/OS V1R9.0 UNIX System Services Command Reference

The directory path name is always relative to the current root. If a nested chroot

command is in effect, the directory path name is still relative to the current (new)

root of the running process.

In order for your process to operate properly after the chroot is issued, you need to

have in your new root all the files that your program depends on. For example, if

your new root is /tmp and you issue an ls, you will get a not found error. To use ls

with /tmp as your new root, you will need a /tmp/bin with ls in it before you issue

the chroot command.

In addition, utilities that depend on locale-sensitive files (/usr/lib/nis/*) may be

unsuccessful if these files are not in the new root file system.

After chroot is issued, your current working directory is the new root (directory),

chroot does not change environment variables.

directory

Specifies the new root directory

command

Specifies a command to run with the chroot command

Examples

1. To run the ls command with the /tmp directory as the root file system, enter:

mkdir /tmp/bin

cp /bin/ls /tmp/bin

chroot /tmp ls

2. To run a child shell with another file system as the root file system (assuming

that /tmp is the mount point of a file system), enter:

mkdir /tmp/bin

cp /bin/sh /tmp/bin

chroot /tmp sh or chroot /tmp /bin/sh

This makes the directory name / (slash) refer to the /tmp for the duration of the

/bin/sh command. It also makes the original root file system inaccessible. The

file system on the /tmp file must contain the standard directories of a root file

system.

Running the /bin/sh command creates a child shell that runs as a separate

process from your original shell. Press the END OF FILE (Crtl-D) key sequence

or type exit to end the child shell and go back to where you were in the original

shell. This restores the environment of the original shell, including the meanings

of the . (current directory) and the / (root directory).

3. To create a file relative to the original root, not the new one, enter:

chroot Directory Command > file

For example, chroot /tmp ls > /bin/file will create the file in /bin/file.

Note: Redirection is handled by the current shell before chroot is executed.

4. To create a file relative to the new root, enter:

chroot Directory ’Command > file’

For example, chroot /tmp ’ls > /bin/file’ will create the file in /tmp/bin/file.

5. Examples of how the current root changes:

chroot

Chapter 2. Shell command descriptions 131

Given the standard directories of the file system plus:

echo $PATH

/bin

ls /tmp/bin

bin file2 sh

ls /tmp/bin/bin

file1 sh

whence file2

whence file1

chroot /tmp ’whence file1’

chroot /tmp ’type file2’

/bin/file2

chroot /tmp/bin ’type file1’

/bin/file1

Exit Values

0 The command completed successfully

1 Failure due to any of the following:

v chroot seteuid failed

v User not authorized to issue chroot

2 Failure due to any of the following:

v Cannot chdir to directory specified

v chroot cannot change root

v Unable to execute the shell

v Incorrect command syntax

Note: If the SHELL environment variable is set, chroot uses its value to invoke the

shell.

chtag — Change file tag information

Format

 chtag –b | –r [–hqRv] pathname...

 chtag –c codeset [–hqRv] pathname...

 chtag –m | –t [–c codeset] [–hqRv]pathname...

 chtag –p [–hqRv]pathname...

Note: To use chtag, you must have write permission to the file or be a superuser.

Description

chtag allows you to set, modify, remove, or display information in a file tag. A file

tag is composed of a text flag (txtflag) and a codeset:

codeset

The codeset represents the coded character set in which text data is

encoded. The codeset can be used for uniformly encoded text files or files

that contain mixed text/binary data.

txtflag The txtflag indicates whether or not a file contains uniformly encoded or

non-uniformly encoded text data.

chroot

132 z/OS V1R9.0 UNIX System Services Command Reference

txtflag = ON indicates the file has uniformly encoded text data

txtflag = OFF indicates the file has non-uniformly encoded text data

Only files with txtflag = ON and a valid codeset are candidates for automatic

conversion. If txtflag = OFF and a codeset is associated with it, automatic

conversion will not take effect. However, user applications can take advantage of

the associated codeset information and perform code set conversion by themselves.

For information about enabling automatic conversion, see the ″Using Enhanced

ASCII Functionality″ topic of z/OS UNIX System Services Planning.

Options

–b Indicates that the file contains only binary (non-uniformly encoded) data.

Automatic conversion is disabled with this option.

 –b is mutually exclusive with the –c, –m, –t, or –r options.

–c codeset

Allows the user to modify the codeset associated with the file. codeset can

be a character code set name known to the system, or the numeric coded

character set identifier (CCSID) (if a numeric codeset name exists, the

CCSID associated with that name will be used). –c is mutually exclusive

with the –r and –b options.

–h Does not change file tag information if the file is a symbolic link (or an

external link).

–m Indicates that the file contains mixed text and binary data. The data is not

uniformly encoded, but to identify the encoding of portions of the file that

are text, this option allows the specifications of a codeset with the –c

option. This option sets txtflag = OFF. When used without –c, the existing

character codeset associated with the file is retained.

 Automatic conversion is disabled with this option. However, user

applications can independently convert any text data residing in the file by

knowing the codeset associated with it. –m is mutually exclusive with the

–b, –t and –r options.

–p Prints file tag information associated with a file. If no codeset name is

associated with the CCSID in the file tag, the numeric CCSID will be

presented instead.

 Sample output looks like:

t IBM-1047 T=on file1

- untagged T=on file2

b binary T=off file3

m ISO-8859-1 T=off file4

- untagged T=off file5

b binary T=on file6

Where:

t = text

b = binary

m = mixed

– = untagged

chtag

Chapter 2. Shell command descriptions 133

Note: Codesets which are aliases of each other exist which may cause the

test to fail, since the file inquiry operator may return an alias of the

codeset you are testing.

–q Suppresses warning messages.

–r Removes any tagging information associated with the file and sets the

status of the file to ″untagged″. This option disables automatic conversion

for the files. –r is mutually exclusive with the –b, –c, –m, and –t options.

–R Recursively changes the file tag information. For each pathname operand

that names a directory, chtag changes the file tag information on all of the

files in the file hierarchy below it. When –h is not specified, and symbolic

links (or external links) are specified or encountered during the file hierarchy

traversal, the links are followed, and the resolved file (or files in the

directory) are changed.

–t Indicates that the specified file contains pure (uniformly encoded) text data.

Used alone, this option sets txtflag = ON and retains the existing character

codeset associated with the file. To set or change the codeset, use the –c

option. Files that are tagged with this option and contain a valid codeset are

candidates for automatic conversion. –t is mutually exclusive with the –b,

–m, and –r options.

–v Gives verbose output. Displays what state the file tag is currently in, and

what state the user is trying to change it to. This option is only useful for the

–t, –b, –m, –r and –c options. Output will be displayed in the following

format:
 txtflag Char Set Char Set ---> txtflag Char Set Char Set Filename

 Name Type Name Type

If the character set name is unknown, the CCSID will be used. Sample output will

look like the following:

chtag -mvc IBM-1047 file3.c

t ISO-8859 A ---> m IBM-1047 E file3.c

Where:

A = ASCII

E = EBCDIC

? = unknown

Examples

1. To specify a text file with IBM-1047 codeset, issue:

chtag -tc IBM-1047 filename

2. To specify a binary file, issue:

chtag -b filename

3. To specify a file of mixed binary and text data, with a new codeset of

ISO8859-1, issue:

chtag -mc ISO8859-1 filename

4. To remove the tag from a file issue:

chtag -r filename

Usage notes

Table 4 on page 135 illustrates how the different combinations of txtflag and

Character Code Set / CCSID affect a file’s candidacy for automatic conversion.

chtag

134 z/OS V1R9.0 UNIX System Services Command Reference

txtflag indicates whether this field is turned ON, OFF, binary or untagged.

Character Code Set / CCSID indicates whether the stored codeset is valid, invalid,

or does not exist. Candidate for Automatic Conversion indicates whether this file

is a candidate for automatic conversion.

 Table 4. Possible txtflag / CCSID Combinations

txtflag Character Code Set / CCSID Candidate for Automatic

Conversion

t (on) Defined Yes (text file)

t (on) Defined No

b (off) –– No

m (off) Defined No (mixed data)

–– (off) –– No

Exit Values

0 Successful completion

1 chtag failed to change the tag of a specified file for the following reasons:

v Calling process does not have appropriate privileges to change file

attributes

v Invalid txtflag / Character Code Set combination was issued

2 Incorrect command line syntax

Related Information

iconv, ls

cksum — Calculate and write checksums and byte counts

Format

cksum [–ciprtT] [file ...]

Description

cksum calculates and displays a checksum for each input file. (A checksum is an

error-checking technique used by many programs as a quick way to compare files

that have been moved from one location to another to ensure that no data has

been lost.) It also displays the number of 8-bit bytes in each file.

If you do not specify any files on the command line, or if you specify – as the

filename, cksum reads the standard input (stdin).

The output has the form:

checksum bytecount filename

Options

cksum can calculate checksums in a variety of ways. The default is compatible with

the POSIX.2 standard. You can specify other algorithms with the following options.

The POSIX standard does not recognize these algorithms; they are provided for

compatibility with the UNIX sum command.

–c Uses a standard 16-bit cyclic redundancy check (CRC-16).

chtag

Chapter 2. Shell command descriptions 135

–i Uses the CCITT standard cyclic redundancy check (CRC-CCITT). Data

communication network protocols often use a cyclic redundancy check to

ensure proper transmission. This algorithm is more likely to produce a

different sum for inputs—the only difference is byte order.

–p Uses the POSIX.2 checksum algorithm. This is the default.

–r Enables the use of an alternate checksum algorithm that has the advantage

of being sensitive to byte order.

–t Produces a line containing the total number of bytes of data read as well as

the checksum of the concatenation of the input files.

File Tag Specific Options

–T Enable autoconversion of tagged files.

Localization

cksum uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to open input file

v An error reading the input file

2 Unknown command-line option

Portability

POSIX.2, X/Open Portability Guide.

All the listed options are extensions of the POSIX standard.

Related Information

cmp, diff, ls, sum, wc

clear — Clear the screen of all previous output

Format

clear

Description

The clear command clears the screen of all output and places the cursor at the top

of the screen.

cksum

136 z/OS V1R9.0 UNIX System Services Command Reference

Localization

clear uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Environment Variables

clear uses the following environment variables:

TERM Contains the current terminal type.

TERMINFO

Contains the terminal information database, if different than the default.

Exit Values

0 Successfully cleared the screen according to the current terminal’s

characteristics.

1 The terminal definition does not define a ″clear″ capability.

2 Syntax error.

3 The terminal definition specified by TERM is invalid.

4 Invalid terminfo capability.

Related Information

tput

cmp — Compare two files

Format

cmp [–blsxB] file1 file2 [seek1[seek2]]

Description

cmp compares two files. If either filename is –, cmp reads the standard input

(stdin) for that file. By default, cmp begins the comparison with the first byte of

each file. If you specify seek1 and/or seek2, cmp uses it as a byte offset into file1

or file2 (respectively), and comparison begins at that offset instead of at the

beginning of the files. The comparison continues (1 byte at a time) until a difference

is found, at which point the comparison ends and cmp displays the byte and line

number where the difference occurred. cmp numbers bytes and lines beginning

with 1.

Options

–b Compares single blocks at a time. Normally, cmp reads large buffers of

data into memory for comparison.

–l Causes the comparison and display to continue to the end; however, cmp

attempts no resynchronization. cmp displays the byte number (in decimal)

and the differing bytes (in octal) for each difference found.

clear

Chapter 2. Shell command descriptions 137

–s Suppresses output and returns a nonzero status if the files are not identical.

–x Displays the differing bytes shown by the –l option in hex; normally cmp

displays them in octal.

File Tag Specific Options

–B Disable autoconversion of tagged files.

Localization

cmp uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 The files were identical

1 The files were not identical

2 Failure because of an error opening or reading an input file

Messages

Possible error messages include:

EOF on filename

cmp reached the end of the file on the specified file before reaching the

end of the file on the other file.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –b and –x options and the seek pointers are extensions of the POSIX

standard.

Related Information

comm, diff, uniq

col — Remove reverse line feeds

Format

col [–bfpx] [file ...]

Note: The col utility is fully supported for compatibility with older UNIX systems.

However, because it is no longer supported by POSIX.2 IEEE standard

1003.2-1992, this utility should be avoided for applications intended to be

portable to other UNIX-branded systems.

cmp

138 z/OS V1R9.0 UNIX System Services Command Reference

Description

col processes control characters for vertical line feeds and writes the processed

text to the standard output. It is intended to be used as a filter between a program

such as nroff and an output device that cannot handle reverse line feeds.

Where possible, blank characters (spaces) are converted to tabs; tab stops are

assumed to be every eight characters.

col also removes all escape sequences except for those shown in the following list.

ESC is the ASCII escape character, octal code 033.

Character ASCII Control Character

Backspace 010

Carriage-return

015

Newline 012

Vertical Tab 013

SO 016

SI 017

Space 040

Tab 011

Reverse line feed

ESC-7

Reverse half-line feed

ESC-8

Forward half-line feed

ESC-9

The ASCII control characters SO and SI denote the beginning and end of text in an

alternative character set. The set of each input character is remembered. col

generates SO and SI characters as needed to output each character in the correct

character set.

Options

–b Ignores backspace (CRTL-H) characters. If two characters are supposed to

appear in the same space, the first character is ignored and the second is

output.

–f Allows forward half-line motions. Normally these are changed to forward

full-line motions.

–x Prevents conversion of spaces to tab characters.

Localization

col uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

col

Chapter 2. Shell command descriptions 139

See Appendix F for more information.

Usage notes

1. col ignores vertical motions that back up over the first line, so you may get

unexpected results if the first line contains superscripts.

2. Because –f allows escape sequences, it may cause unexpected results on

terminals.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Incorrect command-line option

v Insufficient memory

Portability

UNIX systems.

This implementation does not handle doublebyte characters.

: (colon) — Do nothing, successfully

Format

: [argument ...]

tcsh shell: :

Description

The : (colon) command is used when a command is needed, as in the then

condition of an if command, but nothing is to be done by the command. This

command simply yields an exit status of zero (success). This can be useful, for

example, when you are evaluating shell expressions for their side effects.

: (colon) in the tcsh shell

Performs as indicated for the z/OS version of : (colon).

Example

: ${VAR:="default value"}

sets VAR to a default value if and only if it is not already set.

Usage notes

colon is a special built-in shell command.

Localization

colon uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

col

140 z/OS V1R9.0 UNIX System Services Command Reference

Exit Values

Because this command always succeeds, the only possible exit status is:

0 Successful completion

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

sh, tcsh, true

comm — Show and select or reject lines common to two files

Format

comm [–123] file1 file2

Description

comm locates identical lines within files sorted in the same collating sequence, and

produces three columns; the first contains lines found only in the first file, the

second lines only in the second file, and the third lines that are in both files.

Options

–1 Suppresses lines that appear only in file1

–2 Suppresses lines that appear only in file2

–3 Suppresses lines that appear both in file1 and file2

 The options suppress individual columns. Thus, to list only the lines common to

both files, use:

comm -12

To find lines unique to one file or the other, use:

comm -3

Observe that comm -123 displays nothing.

Localization

comm uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure because of an error opening or reading an input file

2 Failure that generated a usage message, such as naming only one input

file

: (colon)

Chapter 2. Shell command descriptions 141

Incorrect command-line options are reported but do not affect the exit status value.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

cmp, diff, sort, uniq

command — Run a simple command

Format

 command [–p] command-name [argument...]

 command [–V|–v] command-name

Description

command causes the shell to suppress its function lookup and execute the given

command-name and arguments as though they made up a standard command line.

In most cases, if command-name is not the name of a function, the results are the

same as omitting command. If, however, command-name is a special built-in

command, (see sh), some unique properties of special built-in commands do not

apply:

v A syntax error in the command does not cause the shell running the command to

stop.

v Variable assignments specified with the special built-in command do not remain

in effect after the shell has run the command.

Options

–p Searches for command-name using the system default PATH variable.

–v Writes a string indicating the pathname or command that the shell uses to

invoke command-name.

–V Writes a string indicating how the shell interprets command-name. If

command-name is a command, a regular built-in command, or an

implementation-provided function found using the PATH variable, the string

identifies it as such and includes the absolute pathname. If command-name

is an alias, function, special built-in command, or reserved word, the string

identifies it as such and includes its definition if it is an alias. If the

command is a tracked alias, the string identifies it as cached.

Example

Typically, you use command when you have a command that may have the same

name as a function. For example, here’s a definition of a cd function that not only

switches to a new directory but also uses lc to list the contents of that directory:

function cd {

 command cd $1

 lc

}

Inside the function, we use command to get at the real cd. If we didn’t do this, the

cd function would call itself in an infinite recursion.

comm

142 z/OS V1R9.0 UNIX System Services Command Reference

Localization

command uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Usage Note

command is a built-in shell command.

Exit Values

If you specified –v, possible exit status values are:

0 Successful completion

1 command could not find command-name, or an error occurred

2 Failure due to incorrect command-line argument

If you did not specify –v, possible exit status values are:

126 command found command-name, but failed to invoke it.

127 An error occurred in the command or it could not find command-name.

Otherwise, the exit status of command is the exit status of command-name.

Portability

POSIX.2.

Related Information

sh

compress — Lempel-Ziv file compression

Format

compress [–cDdfVv] [–b bits] [file ...]

Description

compress compresses each input file using Lempel-Ziv compression techniques. If

you do not specify any input files, compress reads data from standard input (stdin)

and writes the compressed result to standard output (stdout).

The output files have the same names as the input files but with a .Z suffix. For

example, abc is compressed into abc.Z. If the .Z file already exists and you did not

specify the –f option, compress gives an error and asks whether it should overwrite

the existing file.

compress uses the modified Lempel-Ziv algorithm described in A Technique for

High Performance Data Compression, Terry A. Welch, IEEE Computer, vol. 17, no.

6 (June 1984), pp.8-19. compress first replaces common substrings in the file by

9-bit codes starting at 257. After it reaches code 512, compress begins with 10-bit

codes and continues to use more bits until it reaches the limit set by the –b option.

command

Chapter 2. Shell command descriptions 143

After attaining the bits limit, compress periodically checks the compression ratio. If

it is increasing, compress continues to use the existing code dictionary. However, if

the compression ratio decreases, compress discards the table of substrings and

rebuilds it from scratch. This allows the algorithm to compensate for files, such as

archives, where individual components have different information content profiles.

Options

–b bits

Limits the maximum number of bits of compression to bits. The value bits

can be an integer from 9 to 16. The default is 16.

–c Writes the output to stdout. When you use this option, you can only specify

one file on the command line.

–D Allows an extra degree of compression to be done for files such as sorted

dictionaries where subsequent lines normally have many characters in

common with the preceding line.

–d Decompresses argument files instead of compressing them. This works by

overlaying the compress program with the uncompress program. For this

to work, uncompress must be available somewhere in your search path

(given by the PATH environment variable). Decompressing files this way is

slower than calling uncompress directly.

–f Forces compression even if the resulting file is larger or the output file

already exists. When you do not specify this option, files which are larger

after compression are not compressed. compress does not print an error

message if this happens.

–V Prints the version number of compress.

–v Prints statistics giving the amount of compression achieved. Statistics give

the name of each file compressed and the compression ratio, expressed as

a percentage. If the file resulting from compression is larger than the

original, the compression ratio is negative.

Localization

compress uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to one of the following:

v Missing number of bits after the –b option

v Incorrect number of bits specified

v Failed to execute uncompress

v Unknown option

v Dictionary option—same count of string exceeded

v Output path or file name too long

v Cannot stat file

compress

144 z/OS V1R9.0 UNIX System Services Command Reference

v Argument file not a regular file: unchanged

v Argument file has other links: unchanged

v No space for compression tables

2 One or more files were not compressed because the compressed version

was larger than the original

Limits

This implementation of compress is limited to a maximum of 16-bit compression.

Portability

A binary-compatible version of compress with more options is often found on UNIX

systems.

The –D option is an extension to traditional implementations of compress. The –D,

–d and –V options are extensions of the POSIX standard.

For portability, you should restrict the number of bits in the code (–b option) to a

value between 9 and 14.

Related Information

cpio, pack, pax, tar, uncompress, unpack, zcat

confighfs — Invoke the vfs_pfsctl function for HFS file systems

Format

confighfs [–l] [–v n] [–f n] [–q] [pathname] [–x[n] size pathname]

Note: The l option signifies a lowercase L, not an uppercase i.

Description

confighfs gives interactive shell users the ability to invoke the vfs_pfsctl function.

The vfs_pfsctl function is used to pass control information to the PFS (physical file

system). For more information on vfs_pfsctl, see the z/OS UNIX System Services

File System Interface Reference. Detailed information on its use can be found in

z/OS DFSMS Using Data Sets.

confighfs resides in the following directory: /usr/lpp/dfsms/bin/. This directory is

not part of the default search path definition. Therefore, the directory must be

included in the command specification when invoking the command.

Restriction: You can only use the confighfs command when working with the

DFSMS file system (HFS).

Tip: For the zFS file system, use the zfsadmin command. For more information,

see z/OS Distributed File Service System z File System Administration.

Options

–l Query HFS limits.

Note: l signifies a lowercase L, not an uppercase i.

compress

Chapter 2. Shell command descriptions 145

–v n Set virtual storage max to n (where n is in MB). Requires superuser

authority.

–f n Set fixed storage min to n (where n is in MB). Requires superuser authority.

–q Query your global statistics.

pathname

Query file system statistics for the file system containing each of the path

names specified.

–x size pathname

Extend the specified file system, where size is the amount to be extended

suffixed by the extend unit of M, T, or C (for megabytes, tracks, or

cylinders), and the pathname is a full or simple pathname to a file or

directory in the file system to extend. Requires superuser authority.

–xn size pathname

Extend the specified file system to a new volume using the -x rules.

Requires superuser authority.

The following are internal debug options:

–dn Prints incoming and outgoing pfsctl buffers (where n is 0, 1, or 2).

–t Skips issuing the pfsctl.

Examples

Note: On systems running shared file system, this command should only be issued

on the server system (file system owner) for the file system pointed to by the

pathname. Issuing it on client systems results in fields of zeros. See z/OS

UNIX System Services Planning for more information on UNIX in a Sysplex.

1. To set virtual and fixed buffer limits for the HFS file system:

> confighfs –v 128 –f 32

2. To extend the file system for your current directory 100 cylinders:

> confighfs –x 100c .

3. If you need to get statistics for the root file system and the file system mounted

over /tmp, you would do the following:

> confighfs / /tmp .

Note: The . (period) in examples two and three indicates the current directory.

Usage notes

1. If the HFS file system encounters an Out of Space condition during SYNC

processing producing message IGW022S, then the following can result:

a. If confighfs is used to successfully extend the file system (by specifying

confighfs -x size pathname, for example) and the extent was large enough

to accommodate the pages required to complete the SYNC processing,

confighfs reinvokes the SYNC function to complete its update and then

resets the Out of Space error flag. It will no longer be necessary to unmount

and remount the file system to use it further. Once the error flag is reset, all

file system functions will work properly again.

b. If the extend size is not large enough to provide the amount of space

required to complete the SYNC process, confighfs will issue the following

response:

Inadequate space added to HFS. At least another nn tracks required.

confighfs

146 z/OS V1R9.0 UNIX System Services Command Reference

Note: These results only apply when the IGW022S message indicates an

Error Loc: EXTEND value. If it indicates an Error Loc: ARPN value, it

will go into the Out of Space error state and require an unmount

followed by a mount to reset the error condition and make the

reusable. The updates applied to the HFS since the last successful

SYNC will also be lost.

2. Unlike most z/OS UNIX commands, which reside in /bin, confighfs is found in

the /usr/lpp/dfsms/bin directory. You can symbolically link to the actual location

of confighfs. The symbolic link is found in /usr/sbin:

/usr/sbin/confighfs -> /usr/lpp/dfsms/bin/confighfs

configstk — Configure the AF_UEINT stack

Format

configstk {–s} Configuration_file_name

Description

configstk is used to configure the AF_UEINT stack. This command should initially

be run from the /etc/rc script, which is executed as part of z/OS UNIX System

Services initialization. It should also be run each time the AF_UEINT network

topology changes after z/OS UNIX services have been initialized.

This command requires superuser authority.

Option

–s Does syntax checking only.

Files

configstk uses the following file:

Configuration_file_name

Specifies the configuration for the AF_UEINT stack. As with any

system-wide configuration file, it should have the appropriate permissions

set.

Syntax for Configuration Files

This file has two types of specifications, HOME and GATEWAY. Be careful when

modifying the configuration file to insure that the F_UEINT environment is not

corrupted due to user error.

HOME ip_address BUFFERS(number) blocking

This statement is required but you can only specify it once. The entire

statement must be on a single line.

ip_address

Defines the single virtual IP address to be used by all RS/6K clients

when accessing the z/OS host, independent of how many RS/6K

gateways are connected to a given z/OS image. This

implementation differs from the standard IP model which defines an

IP address per physical adapter.

number

Defines the maximum number of 32K page-fixed buffers (in OMVS

private memory) that are to be used by the protocol stack. The

confighfs

Chapter 2. Shell command descriptions 147

number specified is be distributed equally among the read and write

flows. As new ESCON® fibers are added to the configuration,

additional IO buffers are required. Thruput decreases and overhead

increases if the number specified is too restrictive. You should

initially specify a value of 10 times the number of defined gateways

for low-to-average use and increase it proportionally as the number

of users increase). The maximum number of buffers allocated is the

larger of six times the number of active gateways, or the number

specified. A decrease in the number is not honored until the next

IPL.

blocking

Indicates whether the internal blocking algorithm should be

activated for outgoing packets. The default is BLOCKING.

Specifying NOBLOCKING causes the internal optimization routines,

which attempt to group multiple packets into a single blocked I/O, to

be bypassed (such as single packet per block written on demand).

Specifying BLOCKING minimizes the z/OS overhead and

maximizes the ESCON channel bandwidth, but can delay the

packet delivery slightly.

GATEWAY device_number checksum

At least one of these statements is required and up to 32 can be specified.

The entire statement must be on a single line. This statement maps the

target RS/6K IP addresses to the gateway that will process the request. The

device number to define the gateway must be the first of an even-odd pair

of subchannels (both configured thru a single ESCON fiber) between the

z/OS image and the RS/6K gateway. Multiple target IP addresses can be

mapped to a given gateway. A given target IP address can be mapped to at

most one gateway.

device_number

Specifies the hex address of device to be configured. This number

must be four hex digits and must be an even number.

checksum

Indicates whether a reliable communications path exists between

the communicating applications. Specify CHECKSUM if any portion

of the path between the communicating applications is unreliable

(such as a LAN). Specify NOCHECKSUM if the entire path is

reliable (such as a SP2® fast switch or ESCON).

A list of IP addresses immediately follows this statement, one IP address

per line. At least one IP address must be specified for each gateway

device. Up to 256 IP addresses can be specified in the configuration file.

 Blank lines are permitted and lines beginning with /* are treated as

comments.

Examples

/* configure AF_UEINT sockets

/* name the ip address for this node, default to blocking enabled

home 10.32.166.20 buffers(20)

/* configure device 324

gateway 0324 nochecksum

10.34.166.20

10.34.166.24

10.34.166.26

configstk

148 z/OS V1R9.0 UNIX System Services Command Reference

/* configure device b28

gateway 0b28 checksum

10.36.166.20

10.36.166.22

10.36.166.24

10.36.166.26

configstrm — Set and query the STREAMS physical file system

configuration

Format

configstrm [–bimv] [–h high_mem | ?] [–l loadmod]... [–t trace_opt | ?]... [–u

loadmod]

Note: The l option signifies a lowercase L, not an uppercase i.

Description

configstrm sets and queries the STREAMS physical file system configuration. It

can be used to view statistics and change configuration options for the STREAMS

physical file system without changing your BPXPRMxx member and re-IPLing.

Options

–b Print current buffer pool utilization.

–h high_mem

Set and query the maximum allowed storage utilization and query the

current utilization. high_mem is specified in kilobytes.

–i Print internal diagnostic information.

–l loadmod

Load a new device driver set.

Note: l signifies a lowercase L, not an uppercase i.

–m Print device major information.

–t trace_opt

Set and query trace options. The valid trace options are:

all | none

Enables or disables all trace points.

proc | noproc

Enables or disables procedure entry and exit trace points.

data | nodata

Enables or disables data trace points.

nw | nonw

Enables or disables Netware trace points.

code | nocode

Enables or disables code trace points.

diag | nodiag

Enables or disables diagnostic trace points.

configstk

Chapter 2. Shell command descriptions 149

–u loadmod

Unload a device driver.

–v Avoid output truncation when information is excessive.

Usage notes

1. Must be a superuser to use the configstrm command.

2. configstrm can be used to dynamically configure the physical file system for

Netware.

Example

To display device information for the configured STREAMS device drivers, issue:

configstrm -m

continue — Skip to the next iteration of a loop in a shell script

Format

continue [n]

Description

continue skips to the next iteration of an enclosing for, select, until, or while loop

in a shell script. If a number n is given, execution continues at the loop control of

the nth enclosing loop. The default value of n is 1.

Usage Note

continue is a special built-in shell command.

Localization

continue uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 The value of n given was not an unsigned decimal greater than 0.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

break, sh, tcsh

configstrm

150 z/OS V1R9.0 UNIX System Services Command Reference

copytree — Make a copy of a file hierarchy while preserving all file

attributes

Format

/samples/copytree [–afos] sourcedir [targetdir]

Description

copytree is a REXX sample that enables you to use a number of z/OS UNIX

capabilities. Included is a recursive routine to descend a hierarchical directory. You

can also use it to accomplish the following tasks:

v Retrieve and set attributes for files

v Read and write files

v Read and set access control lists (ACLs)

copytree replicates a source tree under the source directory within a file system to

a target directory, or attempts to verify the integrity of a source tree without copying

it. It:

v Tolerates errors when setting target attributes with messages.

v Tolerates errors in the source tree, skipping those files.

v Copies sparse files as sparse files.

v Handles both symbolic links and external links

v Does not cross mount points

v Preserves file links

copytree is installed in the z/OS UNIX file system. Run it as /samples/copytree.

To run it under TSO, copy /samples/copytree to a PDS where REXX execs can be

run, or in a PDS to run under TSO.

Restriction: copytree cannot handle files greater than 1 GB in TSO.

Guideline: Every attribute that can be set should be copied if you have sufficient

authorization.

Options

Any combination of the option flags can be used, with no spaces between flags.

-a Specifies that the 30,000 node limit warning is not to be issued.

-f Specifies that full file reads are to be done when copytree is run in check

mode.

-o Specifies that file ownership is not to be preserved.

-s Specifies that the effective UID is to be set to 0 before copytree is started.

<sourcedir>

The path name for the source directory where the copy begins. The path

name must be used, not the file system name.

<targetdir>

The path name for the target directory. This directory must exist and must

be empty. The permissions and other attributes of the target directory are

copytree

Chapter 2. Shell command descriptions 151

not modified to be the same as the source directory. If <targetdir> is not

specified, copytree runs in a mode to check the source file tree.

Exit Values

0 Successful completion

>0 An error occurred

 Any other value means that there were errors.

Related information

pax

cp — Copy a file

Format

If the variable _UNIX03=YES is set:

 cp [–cfimMUv] [–p|F format|B|T|X] [-W seqparms=params] [–Z] [–O u |

c=codeset] file1 file2

 cp [–ACcfimMUv] [–p|F format|B|T|X] [–S suffix] [–Z] [–O u | c=codeset] file ...

directory

 cp –R [-H|L|P] [–cfimp] [–Z] [–O u | c=codeset] source... directory

 cp –r [-H|L|P] [–cfimp] [–Z] [–O u | c=codeset] source... directory

If the variable _UNIX03 is unset or not ″YES″:

 cp [–cfimMUv] [–p|F format|B|T|X] [–P params] [-W seqparms=params] [–Z]

[–O u | c=codeset] file1 file2

 cp [–ACcfimMUv] [–p|F format|B|T|X] [–S suffix] [–Z] [–O u | c=codeset] file ...

directory

 cp –R [-H|L] [–cfimp] [–Z] [–O u | c=codeset] source... directory

 cp –r [-H|L] [–cfimp] [–Z] [–O u | c=codeset] source... directory

Description

cp copies files to a target named by the last argument on its command line. If the

target is an existing file, cp overwrites it; if it does not exist, cp creates it. If the

target file already exists and does not have write permission, cp denies access and

continues with the next copy.

If you specify more than two path names, the last path name (that is, the target)

must be a directory. If the target is a directory, cp copies the sources into that

directory with names given by the final component of the source path name.

You can also use cp to copy files to and from MVS data sets. If you specify more

than one file to be copied, the target (last path name on command line) must be

either a directory or a partitioned data set. If the target is an MVS partitioned data

set, the source cannot be a UNIX directory.

cp does not support the copying to or from GDGs. To use those MVS data sets,

user must specify the real data set name.

When copying records, the string ″ \n″ is copied the same way as the string ″\n″:

both are read back as ″\n″, where ″\n″ indicates that z/OS C++ will write a record

containing a single blank to the file (the default behavior of z/OS C/C++). All other

copytree

152 z/OS V1R9.0 UNIX System Services Command Reference

|

blanks in your output are read back as blanks, and any empty (zero-length) records

are ignored on input. However, if the environment variable _EDC_ZERO_RECLEN

is set to Y before calling cp, an empty record is treated as a single newline and is

not ignored. Also, if _EDC_ZERO_RECLEN is set to Y, a single newline is written to

the file as an empty record, and a single blank will be represented by ″ \n″.

You can copy:

v One file to another file in the working directory

v One file to a new file on another directory

v A set of directories and files to another place in your file system

v A UNIX file to an MVS data set

v An MVS data set to a filesystem

v An MVS data set to an MVS data set

Options

–A Specifies that all suffixes (from the first period till the end of the target) be

truncated. –A has precedence over –M and –C options. –S will be turned

off if –A is the last option specified.

–B Specifies that the data to be copied contains binary data. When you specify

–B, cp operates without any consideration for <newline> characters or

special characteristics of DBCS data. (This type of behavior is typical when

copying across a UNIX system.) Because –B is mutually exclusive with –F,

–X, and –T, you will get an error if you specify more than one of these

options.

–C Specifies truncating the filename to 8 characters to meet the restriction in

the MVS data set member.

–c (UNIX to UNIX only)

Prompts you to change the diskette if there is not enough room to complete

a copy operation. This option has no effect on systems without floppy

drives.

Note:

Rule: The parent directories must already exist on the new target diskette.

–F format

Specifies if a file is binary or text and for text files, specifies the end-of-line

delimiter. Also sets the file format to format if the target is a UNIX file. For

text files, when copying from UNIX to MVS, the end-of-line delimiter will be

stripped. When copying from MVS to UNIX, the end-of-line delimiter will be

added (Code page IBM-1047 will be used to check for end-of-line

delimiters.)

 If setting format fails, a warning will be displayed. However, cp will continue

to copy any remaining files specified to be copied.

 –F is mutually exclusive with –B, –X, –p, and –T. If you specify one of

these options with –F, you will get an error. If –F is specified more than

once, the last –F specified will be used.

 For format you can specify:

not not specified

bin binary data

Or the following text data delimiters:

nl newline

cp

Chapter 2. Shell command descriptions 153

cr carriage return

lf line feed

crlf carriage return followed by line feed

lfcr line feed followed by carriage return

crnl carriage return followed by new line

–f Attempts to remove and replace a UNIX destination file that cannot be

opened.

-H Follows symbolic links specified as source operand on the command line.

Symbolic links encountered in the tree traversal are not followed. This

option can only be used with -R or -r option. This is the default behavior

when -R or -r option specified but none of the options -H, -L or -P specified.

–i When copying to a UNIX target, –i asks you if you want to overwrite an

existing file, whether or not the file is read-only.

-L Follows symbolic links specified as source operand on the command line

and those encountered in the tree traverse. This option can only be used

with -R or -r option.

–M Specifies that some characters of the filename are translated when copying

between a UNIX file and an MVS data set member. Characters are

translated as follows:

v _ (underscore) in UNIX is translated to @ in MVS DS members and vice

versa.

v . (period) in UNIX is translated to # in MVS DS members and vice versa.

v – (dash) in UNIX is translated to $ in MVS DS members and vice versa.

–m (UNIX to UNIX only)

Sets the modification and access time of each destination file to that of the

corresponding source file. Normally, cp sets the modification time of the

destination file to the present.

-P If _UNIX03 is YES, does not follow any symbolic links, neither those

specified as source operand on the command line not those encountered in

the tree traverse.

 Restriction: This option can only be used with -R or the -r option.

–P params

If _UNIX03 is unset or not YES, then the -P option will be treated as

specifying parameters needed to create a new sequential data set if one

does not already exist. You can specify the RECFM, LRECL, BLKSIZE, and

SPACE in the format the CRTL fopen() function uses.

 SPACE=(units,(primary,secondary) where the following values are

supported for units:

v Any positive integer indicating BLKSIZE

v CYL (mixed case)

v TRK (mixed case)

For example:

SPACE=(500,(100,500)) units, primary, secondary

SPACE=(500,100) units and primary only

For information on how to specify these parameters, see z/OS XL C/C++

Programming Guide.

Note: CRTL fopen() arguments: LRECL specifies the length, in bytes, for

fixed-length records and the maximum length for variable-length

cp

154 z/OS V1R9.0 UNIX System Services Command Reference

records. BLKSIZE specifies the maximum length, in bytes, of a

physical block of records. RECFM refers to the record format of a

data set and SPACE indicates the space attributes for MVS data

sets.

–p Preserves the modification and access times (as the –m option does); in

addition, it preserves file mode, owner, and group owner, if authorized. It

also preserves extended attributes. It preserves the ACLs of files and

directories, if possible. The ACLs are not preserved if a file system does not

support ACLs, or if you are copying files to MVS

 –p is mutually exclusive with –F. If you specify both, you will get an error

message.

–R (UNIX to UNIX only)

“Clones” the source trees. cp copies all the files and subdirectories

specified by source... into directory, making careful arrangements to

duplicate special files (FIFO, character special). cp only follows symbolic

link specified as source operand on the command line.

–r (UNIX to UNIX only)

“Clones” the source trees, but makes no allowances for special files (FIFO,

character special). Consequently, cp attempts to read from a device rather

than duplicate the special file. This is similar to, but less useful than, the

preferred –R.

–S d=suffix|a=suffix

v d=suffix

Removes the specified suffix from a file.

v a=suffix

Appends the specified suffix to a file.

–S has precedence over –M and –C. It also turns off the –A option (if –S is

the last specified option).

–T Specifies that the data to be copied contains text data. See “Usage notes”

on page 162 for details on how to treat text data. This option looks for

IBM-1047 end-of-line delimiters, and is mutually exclusive with –F, –X, and

–B. That is, you will get an error if you specify more than one of these

options.

Note: –T is ignored when copying across UNIX file systems.

–U Keeps filenames in uppercase when copying from MVS data set members

to UNIX files. The default is to make filenames lowercase.

–v Verbose

-W seqparms=params

Specifies the parameters needed to create a sequential data set if one does

not already exist. You can specify the RECFM, LRECL, BLKSIZE, and

SPACE in the format the CRTL fopen() function uses.

 SPACE=(units,(primary,secondary) where the following values are

supported for units:

v Any positive integer indicating BLKSIZE

v CYL (mixed case)

v TRK (mixed case)

For example:

cp

Chapter 2. Shell command descriptions 155

SPACE=(500,(100,500)) units, primary, secondary

SPACE=(500,100) units and primary only

For information on how to specify these parameters, see z/OS XL C/C++

Programming Guide.

Note: CRTL fopen() arguments: LRECL specifies the length, in bytes, for

fixed-length records and the maximum length for variable-length

records. BLKSIZE specifies the maximum length, in bytes, of a

physical block of records. RECFM refers to the record format of a

data set and SPACE indicates the space attributes for MVS data

sets.

This option is the same as -Pparams with _UNIX03 unset or not YES. If

multiple -P params and -W are specified, the value of the last one appeared

on the command will be used.

–X Specifies that the data to be copied is an executable. Cannot be used in

conjunction with –F, –X, or –B.

-Z Specifies that error messages are not to be displayed when setting ACLs

on the target. The return code will be zero.

Note: If you do not specify either –F|B|T or X, cp will first check the format of the

MVS data set indicated and then try to determine the type of file.

Automatic conversion and file tag specific options

–Z Suppresses failure when default behavior is used to set file tag. For

a description of the default behavior, see “Automatic conversion and

file tagging behavior for cp” on page 157.

–O u | c=codeset

Allow automatic conversion on source and target files.

–O u If the target exists and is not empty nor already

tagged, cp will not change the target’s tag in order

for the target to be a candidate for automatic

conversion.

 For new targets and existing, untagged, empty files,

this option has no effect and cp behaves the same

as the default. For a description of the default

behavior, see “Automatic conversion and file

tagging behavior for cp” on page 157.

 When using cp to copy from a UNIX file to a MVS

data set, if the source is a tagged text file, then it

may be a candidate for automatic conversion.

 When copying executables from or to MVS, the

automatic conversion is disabled for both source

and target.

–O c=codeset For a detailed description of the behavior of this

option on cp, see “Automatic conversion and file

tagging behavior for cp” on page 157.

 To prevent corruption of text files, cp will fail if it

cannot set the tag to text or codeset.

cp

156 z/OS V1R9.0 UNIX System Services Command Reference

Attention: If automatic conversion is not set

properly or if the source is not tagged properly, the

target may end up with a tag codeset that does not

match the file content.

Automatic conversion and file tagging behavior for cp

The following tables describe the behavior of file tagging and automatic conversion

for various source and target scenarios depending on whether the -O option is

specified on the cp command.

 Table 5. Automatic conversion and file tagging behavior: Copying UNIX files to UNIX files

Default (without -O option)

With -O u option

With -O

c=codeset option

If the target file

system supports

setting file

tags...

If the target file

system does not

support setting

file tags (For

example, NFS)...

File tagging Target file is

tagged the same

as the source file.

An existing

target’s tag is

unchanged.

A new target is

created with a tag

according to the

file system’s

attributes

(MOUNT

parameter can

specify TAG).

Target’s tag is

unchanged.

(The source or

target file is a

candidate for

automatic

conversion when

its TXTFLAG is

tagged TEXT.)

Target’s

TXTFLAG is set

to TEXT and its

codeset is set to

codeset.

Automatic

conversion

Disabled for

source and target

files

Allowed for source and target files

 Table 6. Automatic conversion and file tagging behavior: Copying MVS data sets to UNIX

files

Default (without -O option)

With -O u option

With -O

c=codeset option

If the target file

system supports

setting file

tags...

If the target file

system does not

support setting

file tags (For

example, NFS)...

If the SOURCE is text:

File tagging Target is set to

UNTAG

An existing

target’s tag is

unchanged.

A new target is

created with a tag

according to the

file system’s

attributes

(MOUNT

parameter can

specify TAG).

Target’s tag is

unchanged

Target’s

TXTFLAG is set

to TEXT and its

codeset is set to

codeset.

cp

Chapter 2. Shell command descriptions 157

Table 6. Automatic conversion and file tagging behavior: Copying MVS data sets to UNIX

files (continued)

Default (without -O option)

With -O u option

With -O

c=codeset option

If the target file

system supports

setting file

tags...

If the target file

system does not

support setting

file tags (For

example, NFS)...

Automatic

conversion

Disabled for

target file

Allowed for target file

(The target file is a candidate for automatic conversion

when its TXTFLAG is tagged TEXT.)

If the SOURCE is binary or executable:

File tagging Target is set to UNTAG Target’s tag is

unchanged

Target’s

TXTFLAG is set

to BINARY and its

codeset is set to

codeset.

Automatic

conversion

Disabled for target file

 Table 7. Automatic conversion and file tagging behavior: Copying UNIX files to MVS data

sets

Default (without -O

option) With -O u option

With -O c=codeset

option

If the SOURCE is text or binary:

File tagging Not applicable for target data set

Automatic

conversion

Disabled for source file Allowed for source file

(The source file is a

candidate for automatic

conversion when its

TXTFLAG is tagged

TEXT.)

Disabled for source file

If the SOURCE is executable:

File tagging Not applicable for target data set

Automatic

conversion

Disabled for source file

The –p option on cp does not affect file tagging.

Limits and Requirements

General Requirements

1. To specify an MVS data set name, precede the name with double slashes (//).

For example, to specify the fully qualified data set names ’turbo.gammalib’ and

’turbo.gammalib(pgm1)’, you write:

"//’turbo.gammalib’"

"//’turbo.gammalib(pgm1)’"

The same goes for data set names that are not fully qualified:

//turbo

cp

158 z/OS V1R9.0 UNIX System Services Command Reference

2. For PDS (partitioned data set) or PDSE (partitioned data set extended), to avoid

parsing by the shell, the name should be quoted or minimally, the parenthesis

should be escaped. For example, to specify ’turbo(pgm1)’, you can use quotes:

"//turbo(pgm1)"

or escape the parenthesis:

//turbo\(pgm1\)

As indicated, a fully qualified name must be single-quoted (as is done within

TSO). To prevent the single quotes from being interpreted by the shell, they

must be escaped or the name must be placed within regular quotation marks.

See the ’turbo.gammalib’ examples.

3. If you specify a UNIX file as source and the MVS data set (target) does not

exist, a sequential data set will be created. If the partitioned data set exists, the

UNIX file will be copied to the partitioned data set member.

4. If source is an MVS data set and target is a UNIX directory, the UNIX directory

must exist.

5. You cannot have a UNIX directory, partitioned data set, or sequential data set

as source if the target is a partitioned data set.

6. To copy all members from a partitioned data set, you may specify the partitioned

data set as source and a UNIX directory as target.

MVS data set naming limitations

v Data set names may only contain uppercase alphabetic characters (A-Z).

Lowercase characters will be converted to uppercase during any copies to MVS

data sets.

v Data set names can contain numeric characters 0–9 and special characters @,

#, and $.

v Data set names cannot begin with a numeric character.

v A data set member name cannot be more than 8 characters. If a filename is

longer than 8 characters or uses characters that are not allowed in an MVS data

set name, the file is not copied. You may use the –C option to truncate names to

8 characters.

Limitations: UNIX to MVS data set

1. If you specify a sequential MVS data set that is in undefined record format, the

file is copied as binary.

2. If you specify a PDSE that is in undefined record format, the first file

successfully copied determines in what format files will be copied. Note that

PDSE does not allow mixture. So if the first successfully copied file is an

executable, the PDSE will have program objects only and all other files will fail.

On the other hand, if the first file is data, then all files are copied as binary.

3. If you specify a PDS that is in undefined record format, UNIX executables are

saved as PDS load modules. All other files are copied as binary.

4. If you specify an MVS data set that is either in variable length or fixed record

length and you have not set the file format, text files are copied as text, binaries

as binary, and executables as binary. (IBM-1047 end-of-line delimiters are

detected in the data)

5. If you set the file format, the set value is used to determine if data is binary or

text.

Limitations: MVS data set to UNIX

cp

Chapter 2. Shell command descriptions 159

1. If an UNIX file does not exist, one is created using 666 mode value, whether the

data to be copied is binary or text:

666 mode value: owner(rw-) group(rw-) other(rw-)

. If the data to be copied is a shell script or executable residing in a PDS or

PDSE with undefined record format, the UNIX file is created using 777 mode

value:

777 mode value: owner(rwx) group(rwx) other(rwx)

2. If a UNIX file exists and the file format is set, cp copies the file as that format.

Otherwise,

v load modules (PDS) are stored as UNIX executables and program objects

(PDSE) are copied since they are the same as executables;

v data within data sets of undefined record format are copied as binary if the

data is not a program object or load module;

v and data found within data sets of fixed length or variable record length are

copied as text. (IBM-1047 end-of-line delimiters are detected in the data)

Limitations: MVS to MVS

1. Options –A, –C, –f, and –S are ignored.

2. If target and source are in undefined record format (and neither is a sequential

data set), cp will attempt to copy the data as a load module. If that fails, then

cp will copy the data as binary.

3. If target and source are in undefined record format and either is a sequential

data set, cp copies the data as binary.

4. If the source has a fixed or variable record length and the target is in undefined

record format, cp copies the data as binary.

5. If the source is in undefined record format and the target has a fixed or variable

record length, cp copies the data as binary.

6. If both source and target are in fixed or variable record length, cp copies the

data as text.

Limitations: Copying executables into a PDS

1. A PDS may not store load modules that incorporate program management

features.

2. c89, by default, produces objects using the highest level of program

management.

3. If you plan on copying a load module to a PDS, you may use a pre-linker which

produces output compatible with linkage editor. Linkage editor generated output

can always be stored in a PDS.

The following table is a quick reference for determining the correct use of options

with cp.

 Table 8. cp Format: File to File and File ... (multiple files) to Directory

Source/Target Options Allowed Options Ignored Options Failed

UNIX File/UNIX File Ffip ABCMPSTUX

UNIX File/Sequential Data

Set

BFiPT ACfMpSU X

UNIX File/PDS or PDSE

Member

BFiTX ACfMPpSU

cp

160 z/OS V1R9.0 UNIX System Services Command Reference

Table 8. cp Format: File to File and File ... (multiple files) to Directory (continued)

Source/Target Options Allowed Options Ignored Options Failed

Sequential Data Set/UNIX

File

BFfiTU ACMPpS X

Sequential Data

Set/Sequential Data Set

BFiPT ACfMpSU X

Sequential Data Set/PDS

or PDSE Member

BFiT ACfMPpSU X

PDS or PDSE

Member/UNIX File

BFfiTUX ACMPpS

PDS or PDSE

Member/Sequential Data

Set

BFiPT ACfMpSU X

PDS or PDSE

Member/PDS or PDSE

Member

BFiTX ACfMPpSU

UNIX File/UNIX Directory ACFipS BMPTUX

PDSE or PDSE

Member/UNIX Directory

BFfiMSTUX ACMPp

UNIX File/Partitioned Data

Set

ABCFiMSTX fPpU

PDS or PDSE

Member/PartitionedData

Set

BFiTX ACfMPpSU

Partitioned Data Set/UNIX

Directory

ABCFfiMSTUX Pp

The tables that follow indicate the kind of copies allowed using cp.

 Table 9. cp Format: File to File

Source Target Allowed

UNIX File, Sequential Data

Set, or Partitioned Data Set

Member

UNIX File, Sequential Data

Set, or Partitioned Data Set

Member

Yes

UNIX Directory UNIX Directory No (unless cp is used with

–R or –r)

Partitioned Data Set UNIX Directory (dir) NOTE:

results in each member of

data set are moved to dir.

Yes

UNIX Directory Partitioned Data Set No

Partitioned Data Set Partitioned Data Set No

UNIX File or Partitioned Data

Set Member

UNIX Directory (must exist)

or Partitioned Data Set

Yes

Partitioned Data Set Member Partitioned Data Set Yes

cp

Chapter 2. Shell command descriptions 161

Table 10. cp Format: File... (multiple files) to Directory

Source Target Allowed

Any combination of UNIX File

or Partitioned Data Set

Member

UNIX Directory or Partitioned

Data Set

Yes

Any combination of UNIX

Directory or Sequential Data

Set

Partitioned Data Set or UNIX

Directory

No

Partitioned Data Set UNIX Directory Yes

Partitioned Data Set Partitioned Data Set No

Usage notes

UNIX to MVS

 1. To copy from UNIX to a partitioned data set, you must allocate the data set

before doing the cp.

 2. If an MVS data set does not exist, cp will allocate a new sequential data set of

variable record format.

 3. For text files, all <newline> characters are stripped during the copy. Each line

in the file ending with a <newline> character is copied into a record of the MVS

data set. If text file format is specified or already exists for the source file, that

file format will be used for end-of-line delimiter instead of <newline>. Note that

cp looks for IBM-1047 end-of-line delimiters in data.

You cannot copy a text file to an MVS data set that has an undefined record

format:

v For an MVS data set in fixed record format, any line copied longer than the

record size will cause cp to fail with a displayed error message and error

code. If the line is shorter than the record size, the record is padded with

blanks.

v For an MVS data set in variable record format: Any line copied longer than

the largest record size will cause cp to fail with a displayed error message

and error code. Record length is set to the length of the line.

 4. For binary files, all copied data is preserved:

v For an MVS data set in fixed record format, data is cut into chunks of size

equal to the record length. Each chunk is put into one record. The last

record is padded with blanks.

v For an MVS data set in variable record format, data is cut into chunks of

size equal to the largest record length. Each chunk is put into one record.

The length of the last record is equal to length of the data left.

v For an MVS data set in undefined record format, data is cut into chunks of

size equal to the block size. Each chunk is put into one record. The length

of the last record is equal to the length of the data left.

 5. For load modules, the partitioned data set specified must be in undefined

record format otherwise the executable will not be copied.

 6. If more than one filename is the same, the file is overwritten on each

subsequent copy.

 7. If a UNIX filename contains characters that are not allowed in an MVS data

set, it will not be copied. If the UNIX filename has more than 8 characters, it

can not be copied to an MVS data set member. (See the –ACMS options for

converting filenames)

 8. You are not allowed to copy files into data sets with spanned records.

cp

162 z/OS V1R9.0 UNIX System Services Command Reference

9. PDSE cannot have a mixture of program objects and data members. PDS

allows mixing, but it is not recommended.

10. Special files such as character special, external links, and fifo will not be

copied to an MVS data set.

11. If a file is a symbolic link, cp will copy the resolved file, not the link itself.

12. UNIX file attributes are lost when copying to MVS. If you wish to preserve file

attributes, you should use the pax utility.

MVS to UNIX

1. If the target UNIX file exists, the new data overwrites the existing data. The

mode of the file is unchanged (except the S_ISUID and S_ISGID bits are turned

off).

2. If the specified UNIX file does not exist, it will be created using 666 mode value

if binary or text (this is subject to umask). If the data to be copied is a shell

script or executable, the UNIX file will be created with 777 mode value (also

subject to umask).

3. Allocating an MVS data set to either RECFM(VB) or RECFM(U) will preserve

trailing blanks when copying from MVS to UNIX.

4. When you copy MVS data sets to UNIX binary files, the <newline> character is

not appended to the record.

5. You cannot use cp to copy data sets with spanned record lengths.

6. Due to an XL C/C++ Run-Time restriction, when copying a file from a file

system to an MVS sequential data set with the same name and case, you need

to prefix the file in the file system with ″./″. For example:

cp ./SMPL.DATA "//’’SMPL.DATA’’"

Examples

1. If _UNIX03 is unset or not ’YES’, to specify –P params for a non-existing

sequential target:

cp -P "RECFM=U,space=(500,100)" file "//’turbo.gammalib’"

This cp command is equivalent to:

 cp -W "seqparms=’RECFM=U,space=(500,100)’" file "//’turbo.gammalib’"

2. To copy file f1 to a fully qualified sequential data set ’turbo.gammalib’ and treat

it as a binary:

cp -F bin f1 "//’turbo.gammalib’"

3. To copy all members from a fully qualified PDS ’turbo.gammalib’ to an existing

UNIX directory dir:

cp "//’turbo.gammalib’" dir

4. To drop .c suffixes before copying all files in UNIX directory dir to an existing

PDS ’turbo.gammalib’:

cp -S d=.c dir/* "//’turbo.gammalib’"

Environment Variables

cp uses the following environment variable when copying records to or from MVS

data sets:

_EDC_ZERO_RECLEN

If set to Y before calling cp, an empty record (zero-length) is treated as a

single newline and is not ignored. Also, a single newline is written to the file

as an empty record, and a single blank will be represented by ” \n”. If you

cp

Chapter 2. Shell command descriptions 163

do not set this environment variable when copying records, then the string

” \n” is copied the same way as the string ”\n”: both are read and written as

”\n”, where ”\n” indicates that z/OS C/C++ will write a record containing a

single blank to the file (the default behavior of z/OS C/C++). All other blanks

in the output are read back as blanks, and any empty records are ignored.

cp also uses the following environment variable:

_UNIX03

For more information about the effect of _UNIX03 on this command, see

Appendix N, “UNIX shell commands changed for UNIX03,” on page 943.

Localization

cp uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v An argument had a trailing slash (/) but was not a directory

v Inability to find a file

v Inability to open an input file for reading

v Inability to create or open an output file

v A read error occurred on an input file

v A write error occurred on an output file

v The input and output files were the same file

v An irrecoverable error when using –r or –R. Possible irrecoverable –r or

–R errors include:

– Inability to access a file

– Inability to change permissions on a target file

– Inability to read a directory

– Inability to create a directory

– A target that is not a directory

– Source and destination directories are the same

2 Failure due to any of the following:

v An incorrect command-line option

v Too few arguments on the command line

v A target that should be a directory but isn’t

v No space left on target device

v Insufficient memory to hold the data to be copied

v Inability to create a directory to hold a target file

Messages

Possible error messages include:

cp

164 z/OS V1R9.0 UNIX System Services Command Reference

|

|
|
|

cannot allocate target string

cp has no space to hold the name of the target file. Try to release some

memory to give cp more space.

name is a directory (not copied)

You did not specify –r or –R, but one of the names you asked to copy was

the name of a directory.

target name?

You are attempting to copy a file with the –i option, but there is already a

file with the target name. If you have specified –f, you can write over the

existing file by typing y and pressing <Enter>. If you do not want to write

over the existing file, type n and press <Enter>. If you did not specify –f and

the file is read-only, you are not given the opportunity to overwrite it.

source name and target name are identical

The source and the target are actually the same file (for example, because

of links). In this case, cp does nothing.

unreadable directory name

cp cannot read the specified directory—for example, because you do not

have appropriate permission.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –f and –m options are extensions of the POSIX standard.

Related Information

cat, cpio, ln, mv, rm

cpio — Copy in/out file archives

Format

cpio –o [–aBcvyz] [–C blocksize] [–O file] [–V volpat]

cpio –i [–BbcdfmrsStuvqyz] [–C blocksize] [–I file] [–V volpat] [pattern ...]

cpio –p [–aBdlmruv] directory

Note: The cpio utility is fully supported for compatibility with older UNIX systems.

However, it is recommended that the pax utility be used instead because it

may provide greater functionality and is considered the standard for portable

UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description

cpio reads and writes files called cpio archives. A cpio archive is a concatenation

of files and directories preceded by a header giving the filename and other file

system information. With cpio, you can create a new archive, extract contents of an

existing archive, list archive contents, and copy files from one directory to another.

Options

Every call to cpio must specify one and only one of the following selector options:

–i Reads an existing archive (created with the –o option) from the standard

input (stdin). Unless you specify the –t option, cpio extracts all files

matching one or more of the given pattern arguments from the archive.

cp

Chapter 2. Shell command descriptions 165

Patterns are the same as those used by filename generation (see sh).

When you do not specify a pattern argument, the default pattern * is used;

as a result, cpio extracts all files.

–o Writes a new archive to the standard output (stdout), using the list of files

read from stdin. Such a list might be produced by the ls or find

commands. For example:

ls . | cpio –o >arch

uses ls to list the files of the working directory and then pipes this list as

input to cpio. The resulting archive contains the contents of all the files,

and is written to arch.

–p Is shorthand for:

cpio –o | (cd directory; cpio –i)

where cpio –i is performed in the given directory. You can use this option to

copy entire file trees.

Consult the syntax lines to determine which of the following additional options can

be applied with a particular selector option:

–a Resets the access time (of each file accessed for copying to the archive) to

what it was before the copy took place.

–B Uses buffers of 5120 bytes for input and output rather than the default

512-byte buffers.

–b Causes 16-bit words to be swapped within each longword and bytes to be

swapped within each 16-bit word of each extracted file. This facilitates the

transfer of information between different processor architectures. This is

equivalent to specifying both the –s and –S options.

–C blocksize

Sets the buffer size to a specified blocksize, rather than the default

512-byte buffers.

–c Reads and writes header information in ASCII form. Normally, cpio writes

the header information in a compact binary format. This option produces an

archive more amenable to transfer through nonbinary streams (such as

some data communication links) and is highly recommended for those

moving data between different processors.

–d Forces the creation of necessary intermediate directories when they do not

already exist.

–f Inverts the sense of pattern matching. More precisely, cpio extracts a file

from the archive if and only if it does not match any of the pattern

arguments.

–I file Causes input to be read from the specified file, rather than from stdin.

–l Gives permission to create a link to a file rather than making a separate

copy.

–m Resets the modification time of an output file to the modification time of the

source file. Normally, when cpio copies data into a file, it sets the

modification time of the file to the time at which the file is written. This

option has no effect on directories.

–O file Causes output to be written to the specified file, rather than to stdout.

cpio

166 z/OS V1R9.0 UNIX System Services Command Reference

–q Assumes all created files are text. This means that any \r (carriage return)

characters are stripped, and only the \n (newlines) are retained.

 Do not use the –q option for converting text to a system-independent

format, because that would require all files to be read twice.

–r Lets you rename files as cpio works. When extracting, cpio displays the

name of the component it is about to extract and gives you the chance to

specify a name for the extracted file. If you enter . as the name, cpio

processes the file or directory with no modification to the name. If you just

press Enter, cpio skips the file.

–S For portability reasons, swaps pairs of 16-bit words within longwords (a

32-bit or 64-bit word) only when extracting files. This option does not affect

the headers.

–s For portability reasons, swaps pairs of bytes within each 16-bit word only

when extracting files. –s does not affect the headers.

–t Prevents files extraction, producing instead a table of filenames contained

in the archive. See the description of the –v option.

–u Copies an archive file to a target file even if the target is newer than the

archive. Normally, cpio does not copy the file.

–V volpat

Provides automatic multivolume support. cpio writes output to files, the

names of which are formatted using volpat. The current volume number

replaces any occurrence of # in volpat. When you invoke cpio with this

option, it asks for the first number in the archive set, and waits for you to

type the number and a carriage return before its precedes with the

operation. cpio issues the same sort of message when a write error or read

error occurs on the archive; the reasoning is that this kind of error means

that cpio has reached the end of the volume and should go on to a new

one.

–v Provides more verbose information than usual. cpio prints the names of

files as it extracts them from or adds them to archives. When you specify

both –v and –t, cpio prints a table of files in a format similar to that

produced by the ls –l command.

–y When used with –V, does not ask for a volume number to begin with, but

does ask if it gets a read or write error.

–z Performs Lempel-Ziv compression. Output is always a 16-bit compression.

On input, any compression up to 16-bit is acceptable.

Usage notes

1. Use the pax command if you need to use multibyte patterns when searching for

filenames.

2. The POSIX 1003.1 standard defines formats for cpio archives that limit the

UIDs and GIDs that can be stored to the maximum value of 262143. Values

larger than this will not be properly restored.

3. The byte and word swapping done by the –b, –S, and –s options is effective

only for the file data written. With or without the –c option, header information is

always written in a machine-invariant format.

cpio

Chapter 2. Shell command descriptions 167

Localization

cpio uses the following localization environment variable:

v LANG

v LC_ALL

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v An incorrect option

v Incorrect command-line arguments

v Out of memory

v Compression error

v Failure on extraction

v Failure on creation

Portability

X/Open Portability Guide, non-Berkeley UNIX systems after Version 7.

The –q, –V, –y, and –z options are specific to the z/OS shell.

Related Information

compress, cp, dd, find, ls, mv, pax, tar, cpio, uncompress

Also see the pax file format description in Appendix H.

cron daemon — Run commands at specified dates and times

Format

cron

Description

cron is a clock daemon that runs commands at specified dates and times. You can

specify regularly scheduled commands as described in crontab. You can also

submit jobs that are to be run only once using the at command. cron runs

commands with priorities and limits set by the queuedefs file. cron uses the value

from queuedefs to lower the priority for non-UID=0 users only. The priority is

unchanged for UID=0 users.

cron only examines crontab files and at command files when initializing or when a

file changes using crontab or at. This reduces the overhead of checking for new or

changed files at regularly scheduled intervals.

The setuid bit for cron should never be set; however, it must be started by a user

with appropriate privileges to issue the setuid call for any UID. Because cron never

exits, it should only be run once, normally during the system initialization process.

cron automatically forks and runs itself in the background, in a new shell session.

cron uses the pid file to prevent more than one cron running at the same time.

cpio

168 z/OS V1R9.0 UNIX System Services Command Reference

When matching the date and time expressions given in crontab entries, cron uses

the time zone in effect when the system started the daemon. As a result, you

should ensure that the TZ environment variable is set at this time. For information

on setting the TZ environment variable, see Appendix I. For at jobs, cron uses the

value of TZ in effect when you submitted the job.

at, batch, and crontab submit jobs to cron; the data for those jobs can contain

doublebyte characters. When the jobs are executed, the data in the jobs are

interpreted in the locale that cron is using. Because it is strongly recommended that

cron be started in the POSIX locale, doublebyte characters in the jobs may not be

interpreted correctly. You can get around this by calling the setlocale() system call

in the job itself.

The crontab, batch, and at job files store information about the MVS identity and

the UNIX identity (the real UID) of the user who created the jobs. The cron daemon

uses that information to set up the environment in which to run the jobs as follows:

v the MVS identity is set to the user’s MVS identity.

v the UNIX real and effective UIDs are set to the user’s real UID.

cron handles the following externally generated signals in a special way:

SIGTERM

Causes cron to exit. You can cause cron to exit with the following

command:

kill –TERM pid

where pid is the cron’s PID number. To find the cron’s PID number, you can

use:

ps -e | grep cron

SIGUSR1

Is sent by either at or crontab to indicate a new at job or an updated

crontab entry. cron does not delete at jobs until they finish running. If the

cron daemon is terminated while at jobs are running, cron runs them again

when the daemon is restarted.

SIGUSR2

Writes internal cron queue information to the log file.

The following is an example of output to a cron log from ’kill -USR2 5’. The

output was written to the log on a test system when the queuedefs job limit of 5

was exceeded. The number of jobs that are running is 5 (the limit is 500):

 Queue `c’ 5j2n15w:

 queued 4, running 5, jobs 5

 Next try for queued jobs 13 seconds

 RUNNING: uid/gid: 0/512: pid 33554441: sleep 10000 RUNNING: uid/gid: 0/512:

 pid 385875972: echo start; sleep 10000; echo end RUNNING: uid/gid: 0/512: pid

 67108876: echo start; sleep 10000; echo end RUNNING: uid/gid: 0/512: pid

 33554445: echo start; sleep 10000; echo end RUNNING: uid/gid: 0/512: pid

 67108879: echo start; sleep 10000; echo end QUEUED: uid/gid: 0/512: echo Hello!

 QUEUED: uid/gid: 0/512: echo start; sleep 10000; echo end

 QUEUED: uid/gid: 0/512: echo Hello!

 QUEUED: uid/gid: 0/512: echo start; sleep 10000; echo end

cron uses a number of files in the /usr/lib/cron directory to determine which users

may and may not use the at and crontab commands.

v The file at.allow contains the list of users who have permission to use at.

v The file at.deny contains the list of users who do not have permission to use at.

cron daemon

Chapter 2. Shell command descriptions 169

If these files do not exist, only the superuser can use the at command. To allow all

users access to at, there must be a null at.deny file and no at.allow file.

cron uses the files cron.allow and cron.deny in a similar manner.

v cron.allow contains the list of users who have permission to use crontab.

v cron.deny contains the list of users who do not have permission to use crontab.

If these files do not exist, only the superuser can use crontab. To allow all users

access to crontab, there must be a null cron.deny file and no cron.allow file.

Files

cron uses the following files which reside in a system-defined directory:

/etc/mailx.rc

Although cron does not use this file directly, cron may call mailx which

uses this file for configuration settings. Specifically, for cron to deliver

messages properly, this file should contain a valid setting for the mailx

sendmail variable. This file is generally copied from /samples/mailx.rc.

/usr/spool/cron

The main cron directory.

/usr/spool/cron/atjobs

A directory containing at files.

/usr/spool/cron/crontabs

A directory containing crontab files.

/usr/spool/cron/log

A file that maintains a history of the commands being run. The systems

administrator should truncate this file periodically.

/usr/spool/cron/pid

A file that cron uses to ensure that only one version of cron is currently

running on the system. This file must be unique per system which is

particularly important when you are setting up a sysplex. For more

information about customizing cron when setting up a sysplex see

″Customizing cron, uucp, and mail Utilities for a Read-Only root file system″

and ″Customizing the cron and uucp Utilities″ in z/OS UNIX System

Services Planning.

/usr/lib/cron/at.allow

Contains a list of the users who can use the at command (one per line).

/usr/lib/cron/at.deny

Contains a list of the users who cannot use the at command (one per line).

/usr/lib/cron/cron.allow

Contains a list of the users who can use the crontab command (one per

line).

/usr/lib/cron/cron.deny

Contains a list of the users who cannot use the crontab command (one per

line).

/usr/lib/cron/queuedefs

The queue description file (see the description of queuedefs in 921).

Related Information

at, crontab, mailx

cron daemon

170 z/OS V1R9.0 UNIX System Services Command Reference

Appendix I also explains how to set the local time zone with the TZ environment

variable.

For more information about customizing cron, see ″Customizing the cron, uucp,

and mail utilities for a read-only root file system″ and ″Customizing the cron and

uucp Utilities″ in z/OS UNIX System Services Planning.

crontab — Schedule regular background jobs

Format

crontab [–e|–l|–r] [–u user] [file]

Description

crontab creates or changes your crontab entry. The crontab is a system facility that

automatically runs a set of commands for you on a regular schedule. For example,

you might set up your crontab entry so it runs a job every night at midnight, or once

a week during low-use hours. This job could perform regular maintenance chores,

for example, backing up files or getting rid of unnecessary work files.

To set up a crontab entry, use:

crontab file

If you omit the file argument, crontab takes input from standard input (stdin).

Note: In this mode, you must provide your entire crontab file. This replaces any

other existing crontab entries. If you issue crontab with no options, do not

enter the end-of-file character or you will end up with an empty crontab file.

Press INTERRUPT instead.

Input consists of six fields, separated by blanks. All blank lines and any input that

contains a # as the first non-blank character are ignored. The first five give a date

and time in the following form:

v A minute, expressed as a number from 0 through 59

v An hour, expressed as a number from 0 through 23

v A day of the month, expressed as a number from 1 through 31

v A month of the year, expressed as a number from 1 through 12

v A day of the week, expressed as a number from 0 through 6 (with 0 standing for

Sunday)

Important Note: All times use a system default time zone. Your system

administrator can tell you what it is. The cron daemon does not

use the value of the environment variable TZ when crontab is

invoked.

Any of these fields may contain an asterisk (*) standing for all possible values. For

example, if you have an * as the day of the month, the job runs every day of the

month. A field can also contain a set of numbers separated by commas, or a range

of numbers, with the first number followed by a minus sign – followed by the second

number. If you give specific days for both day of the month and day of the week,

the two are ORed together. Here are some examples:

cron daemon

Chapter 2. Shell command descriptions 171

0 0 * * * -- Midnight every day

 0 0 * * 1-5 -- Midnight every weekday

 0 0 1,15 * * -- Midnight on 1st and 15th of month

 0 0 1 * 5 -- Midnight on 1st of month and every Friday

The sixth field of a crontab entry is a string that your shell executes at the specified

time. When the shell executes this string, it sets the HOME, LOGNAME, PATH, and

SHELL environment variables to default values for you.

If the string in your crontab entry contains percent characters %, the shell interprets

them as newline characters, splitting your string in several logical lines. The first

logical line (up to the first %) is interpreted as the command you want to execute;

subsequent logical lines are used as standard input to the command. If any real

(not logical) line in the file is blank or begins with #, the shell ignores the line (treats

it as a comment).

To obtain the output of the command in your crontab entry, redirect the standard

output (stdout) and the standard error (stderr) into a file. If you do not do this, the

system mails you the output from the command.

at, batch, and crontab submit jobs to cron; the data for those jobs may contain

doublebyte characters. When the jobs are run, the data in the jobs are interpreted

in the locale that cron is using. Because it is strongly recommended that cron be

started in the POSIX locale, doublebyte characters in the jobs may not be

interpreted correctly. You can get around this by calling setlocale() in the job itself.

Options

–e Lets you edit your crontab entry. crontab invokes an editor to edit the entry.

If you have an EDITOR environment variable defined, crontab assumes

that the variable’s value is the name of the editor you want to use. If you do

not have EDITOR defined, crontab uses vi.

 If you do not have a crontab entry, crontab sets up a blank entry for you.

When you exit from the editor, crontab uses the edited entry as your new

entry.

–l Displays your current crontab entry on stdout.

–r Removes (deletes) your current crontab entry.

–u user

Uses the crontab entry of user. The user specified has to be the same

username that the crontab entry was created under in /usr/spool/cron/
crontabs. This requires the appropriate privileges.

 You can specify only one of the –e, –l, or –r options.

Environment Variables

cron uses the following environment variables:

EDITOR

Specifies the editor that the –e option invokes. The default editor is vi.

HOME Is set to your user ID’s home directory (not necessarily the current value of

HOME) when the commands in your crontab entry are run.

LOGNAME

Is set to your user ID when the commands in your crontab entry are run.

crontab

172 z/OS V1R9.0 UNIX System Services Command Reference

PATH Is set to a system-wide default value when the commands in your crontab

entry are run.

TZ Is not used in time calculations. The cron daemon does, however, use this

variable when cron is first started, usually when the system is started.

Localization

crontab uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Returned if the command fails for any reason. In this case, crontab does

not change your crontab entry.

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The –u option is an extension to the POSIX standard.

Related Information

at, batch, bg, cron

Also see the queuedef file format description in Appendix H.

csplit — Split text files

Format

csplit [–Aaks] [–f prefix] [–n number] file arg arg ...

Description

csplit takes a text file as input and breaks up its contents into pieces, based on

criteria given by the arg value on the command line. For example, you can use

csplit to break up a text file into chunks of ten lines each, then save each of those

chunks in a separate file. See “Splitting Criteria” on page 174 for more information.

If you specify – as the file argument, csplit uses the standard input (stdin).

The files created by csplit normally have names of the form

xxnumber

where number is a 2-digit decimal number that begins at zero and increments by

one for each new file that csplit creates.

csplit also displays the size, in bytes, of each file that it creates.

crontab

Chapter 2. Shell command descriptions 173

Options

–A Uses uppercase letters in place of numbers in the number portion of

created filenames. This generates names of the form xxAA, xxAB, and so on.

–a Uses lowercase letters in place of numbers in the number portion of created

filenames. This generates names of the form xxaa, xxab, and so on.

–f prefix

Specifies a prefix to use in place of the default xx when naming files. If it

causes a filename longer than NAME_MAX bytes, an error occurs and csplit

exits without creating any files.

–k Leaves all created files intact. Normally, when an error occurs, csplit

removes files that it has created.

–n number

Specifies the number of digits in the number portion of created filenames.

–s Suppresses the display of file sizes.

Splitting Criteria

csplit processes the args on the command line sequentially. The first argument

breaks off the first chunk of the file, the second argument breaks off the next chunk

(beginning at the first line remaining in the file), and so on. Thus each chunk of the

file begins with the first line remaining in the file and goes to the line given by the

next arg.

arg values can take any of the following forms:

/regexp/

Takes the chunk as all the lines from the current line up to but not including

the next line that contains a string matching the regular expression regexp.

After csplit obtains the chunk and writes it to an output file, it sets the

current line to the line that matched regexp.

/regexp/offset

Is the same as the previous criterion, except that the chunk goes up to but

not including the line that is a given offset from the first line containing a

string that matches regexp. The offset can be a positive or negative integer.

After csplit has obtained the chunk and written it to an output file, it sets

the current line to the line that matched regexp.

Note: This current line is the first one that was not part of the chunk just

written out.

%regexp%

Is the same as /regexp/, except that csplit does not write the chunk to an

output file. It simply skips over the chunk.

%regexp%offset

Is the same as /regexp/offset, except csplit does not write the chunk to an

output file.

linenumber

Obtains a chunk beginning at the current line and going up to but not

including the linenumberth line. After split writes the chunk to an output file,

it sets the current line to linenumber.

{number}

Repeats the previous criterion number times. If it follows a regular

csplit

174 z/OS V1R9.0 UNIX System Services Command Reference

expression criterion, it repeats the regular expression process number more

times. If it follows a linenumber criterion, csplit splits the file every

linenumber lines, number times, beginning at the current line. For example,

csplit file 10 {10}

obtains a chunk from line 1 to line 9, then every 10 lines after that, up to

line 109.

Errors occur if any criterion tries to "grab" lines beyond the end of the file, if a

regular expression does not match any line between the current line and the end of

the file, or if an offset refers to a position before the current line or past the end of

the file.

Localization

csplit uses the following localization variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v csplit could not open the input or output files

v A write error on the output file

2 Failure due to any of the following:

v Unknown command-line option

v The prefix name was missing after –f

v The number of digits was missing after –n

v The input file was not specified

v No arg values were specified

v The command ran out of memory

v An arg was incorrect

v The command found end-of-file before it was expected

v A regular expression in an arg was badly formed

v A line offset/number in an arg was badly formed

v A {number} repetition count was misplaced or badly formed

v Too many filenames were generated when using –n

v Generated file names would be too long

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The –A and –a options are extensions to the POSIX standard.

csplit

Chapter 2. Shell command descriptions 175

Related Information

awk, sed

For more information about regexp, see Appendix C.

ctags — Create tag files for ex, more, and vi

Format

ctags [–aBFwx] [–f tagfile] sourcefile ...

Description

ctags creates a file named tags in the current directory. It summarizes the locations

of various objects in the C source files named on the command line. All files with a

.c or .h suffix are treated as C source files.

For C source code, ctags summarizes function, macro and typedef definitions. See

Appendix H for a description of the format of the tags file.

The tags file is used by ex, more, and vi to support the tag command. The tag

command can be used to edit the file containing a name in the tags file.

For ex and vi, the command is:

: tag name

For more, the command is:

:tname

After these commands are run, the tags file is searched for name. If it is found, the

file associated in the tags file with that name is loaded and the line containing the

name is made the current line.

Options

–a Appends output to the existing tags file rather than overwriting the file.

–B Produces a tags file that searches backward from the current position to

find the pattern matching the tag.

–F Searches for tag patterns in the forward direction. This is the default.

–f Generates a file named tagfile rather than the default tags file.

–w Suppresses warning messages.

–x Produces a report on the standard output. The report gives the definition

name, the line number of where it appears in the file, the name of the file in

which it appears, and the text of that line. ctags arranges this output in

columns and sorts it in order by tag name according to the current locale’s

collation sequence. This option does not produce a tags file.

Localization

ctags uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLECT

v LC_CTYPE

csplit

176 z/OS V1R9.0 UNIX System Services Command Reference

v LC_MESSAGES

v LC_TIME

See Appendix F for more information.

Files

ctags uses the following file:

tags Output tags file

Usage notes

1. It can be difficult to recognize a function definition in C source code. Because

ctags does not know which C preprocessor symbols are defined, there may be

some misplaced function definition information if sections of code within

#if...#endif are not complete blocks.

2. ctags invokes the sort internally.

3. ctags makes special provision for the main() function, which may occur in

several C source files. The tags file contains an entry for the first main() routine

found. For all occurrences of main(), including the first, the tags file contains an

entry for Mname, where name is the name of the input source file, with the .c

suffix and any leading pathname components removed. For example, a tags file

created for a C source code file named foo.c would contain an entry for Mfoo,

which represents the main() routine in foo.c).

4. ctags uses sort to sort the file by tag name, according to the POSIX locale’s

collation sequence.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Unknown command-line option

v Cannot create the output file

v Cannot open the output file

v One of the input files was unrecognized

Portability

POSIX.2, X/Open Portability Guide, 4.2BSD and higher.

This utility only understands characters from the POSIX locale.

The –B, –F, and –w options are extensions to the POSIX and XPG standards.

Related Information

more, sort, vi

See the tags file format description in Appendix H.

cu — Call up another system (stub only)

Format

 cu [–dehot] [–l device_name] [–s speed] [system_name | phone_num]

 cu –n [–dehot] [–l device_name] [–s speed]

ctags

Chapter 2. Shell command descriptions 177

Note: The cu utility is fully supported for compatibility with older UNIX systems.

However, because it is no longer supported by POSIX.2 IEEE standard

1003.2-1992, this utility should be avoided for applications intended to be

portable to other UNIX- branded systems.

Description

cu connects to remote systems specified in the UUCP configuration file. You can

use it for simple terminal connections, or to do simple file transfer with no error

checking.

cu is recognized, but its functions are disabled. Traditionally, it is used for simple

terminal connections to remote systems specified in the UUCP configuration file. cu

requires a direct connection (such as with a modem) to the remote system, but this

is not supported by z/OS.

cut — Cut out selected fields from each line of a file

Format

 cut –b list [–n] [file...]

 cut –c list [file...]

 cut –f list [–d char] [–s] [file...]

Description

cut reads input from files, each specified with the file argument, and selectively

copies sections of the input lines to the standard output (stdout). If you do not

specify any file, or if you specify a file named –, cut reads from standard input

(stdin).

Options

–b list Invokes byte position mode. After this comes a list of the byte positions you

want to display. This list may contain multiple byte positions, separated by

commas (,) or blanks or ranges of positions separated by dashes (–). Since

the list must be a single argument, shell quoting is necessary if you use

blanks. You can combine these to allow selection of any byte positions of

the input.

Attention: When using the –b option with doublebyte characters, you

should also specify the –n option to ensure that entire characters are

displayed. If you do not specify the –n option, cut simply assumes that the

low byte of a range is the first byte of a character and that the high byte of

a range is the last byte of a doublebyte character, possibility resulting in the

misinterpretation of the characters represented by those byte positions.

–c list Invokes character-position mode. After this comes a list of character

positions to retain in the output. This list can contain many character

positions, separated by commas (,) or blanks or ranges of positions

separated by a dash (–). Since the list must be a single argument, shell

quoting is necessary if you use blanks. You can combine these to allow

selection of any character positions of the input.

–d char

Specifies char as the character that separates fields in the input data; by

default, this is the horizontal tab.

–f list Invokes field delimiter mode. After this comes a list of the fields you want to

cu

178 z/OS V1R9.0 UNIX System Services Command Reference

display. You specify ranges of fields and multiple field numbers in the same

way you specify ranges of character positions and multiple character

positions in –c mode.

–n Does not split characters. If the low byte in a selected range is not the first

byte of a character, cut extends the range downward to include the entire

character; if the high byte in a selected range is not the last byte of a

character, cut limits the range to include only the last entire character

before the high byte selected. If –n is selected, cut does not list ranges that

do not encompass an entire character, and these ranges do not cause an

error.

–s Does not display lines that do not contain a field separator character.

Normally, cut displays lines that do not contain a field separator character

in their entirety.

Example

cd /bin

ls –al | cut –c 42–48,54–66

prints a directory listing containing file creation dates and filenames of files in the

working directory.

Localization

cut uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Cannot open the input file

v Out of memory

2 Failure due to any of the following:

v An incorrect command-line argument

v You did not specify any of –b, –c, or –f

v You omitted the list argument

v Badly formed list argument

Portability

POSIX.2, X/Open Portability Guide, UNIX System V.

Related Information

paste, uname

cut

Chapter 2. Shell command descriptions 179

cxx — Compile, link-edit and assemble z/OS C and z/OS C++ source

code and create an executable file

See c89/xlc or man xlc.

Note: When working in the shell, to view man page information about cxx, type:

man c89 or man xlc.

date — Display the date and time

Format

date [–cu] [+format]

Description

date displays the operating system’s idea of the current date and time. The

following example shows the default format of the date:

Wed Feb 26 14:01:43 EST 1986

Options

date accepts the following options:

–c Displays the date and displays the time according to Greenwich Mean Time

(Coordinated Universal Time) using CUT as the time zone name.

–u Displays the date and displays the time according to Greenwich Mean Time

(Coordinated Universal Time) using GMT as the time zone name.

If the argument to date begins with a + character, date uses format to display the

date. date writes all characters in format, with the exception of the % and the

character that immediately follows it, directly to the standard output. After date

exhausts the format string, it outputs a newline character. The % character

introduces a special format field similar to the printf() function in the C library. date

supports the following field descriptors:

%A The full weekday name (for example, Sunday).

%a The three-letter abbreviation for the weekday (for example, Sun).

%B The full month name (for example, February).

%b The three-letter abbreviation for the month name (for example, Feb).

%C The first two digits of the year (00 to 99).

%c The local representation of the date and time (see %D and %T).

%D The date in the form mm/dd/yy.

%d The two-digit day of the month as a number (01 to 31).

%e The day of the month in a two-character, right-aligned, blank-filled field.

%H The two-digit hour (00 to 23).

%h The three-letter abbreviation for the month (for example, June).

%I The hour in the 12-hour clock representation (01 to 12).

%j The numeric day of the year (001 to 366).

%M The minute (00 to 59).

cxx

180 z/OS V1R9.0 UNIX System Services Command Reference

|

|

|

|
|

|

%m The month number (01 to 12).

%n The newline character.

%p The local equivalent of a.m. or p.m.

%r The time in a.m.–p.m. notation (11:53:29 a.m.).

%S The seconds (00 to 61). There is an allowance for two leap seconds.

%T The time (14:53:29).

%t A tab character.

%U The week number in the year, with Sunday being the first day of the week

(00 to 53).

%W The week number in the year, with Monday being the first day of the week

(00 to 53).

%w The weekday number, with Sunday being 0.

%X The local time representation (see %T).

%x The local date representation (see %D).

%Y The year.

%y The two-digit year.

%Z The time zone name (for example, EDT).

%% A percent-sign character.

The date command also supports the following modified field descriptors to indicate

a different format as specified by the locale indicated by LC_TIME. If the current

locale does not support a modified descriptor, date uses the unmodified field

descriptor value.

%EC The name of the base year (period) in the current locale’s alternate

representation.

%Ec The current locale’s alternate date and time representation.

%Ex The current locale’s alternate date representation.

%EY The full alternate year representation.

%Ey The offset from %EC (year only) in the current locale’s alternate

representation.

%Od The day of the month using the current locale’s alternate numeric symbols.

%Oe The day of the month using the current locale’s alternate numeric symbols.

%OH The hour (24-hour clock) using the current locale’s alternate numeric

symbols.

%OI The hour (12-hour clock) using the current locale’s alternate numeric

symbols.

%OM The minutes using the current locale’s alternate numeric symbols.

%Om The month using the current locale’s alternate numeric symbols.

%OS The seconds using the current locale’s alternate numeric symbols.

%OU The week number of the year (0–53) (with Sunday as the first day of the

week) using the current locale’s alternate numeric symbols.

date

Chapter 2. Shell command descriptions 181

%OW The week number of the year (0–53) (with Monday as the first day of the

week) using the current locale’s alternate numeric symbols.

%Ow The weekday as a number using the current locale’s alternate numeric

symbols (Sunday=0).

%Oy The year (offset from %C) using the current locale’s alternate numeric

symbols.

Example

The command:

date ’+%a %b %e %T %Z %Y’

produces the date in the default format—as shown at the start of this command

description.

Environment Variable

date uses the following environment variables:

TZ Gives the time zone for date to use when displaying the time. This is

ignored if you specify either the –c or the –u option.

 For information on setting the local time zone with the TZ environment

variable, see Appendix I.

Localization

date uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_TIME

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

>0 Failure due to any of the following:

v An incorrect command-line option

v Too many arguments on the command line

v A bad date conversion

v A formatted date that was too long

v You do not have permission to set the date

Messages

Possible error messages include:

Bad format character x

A character following “%” in the format string was not in the list of field

descriptors.

No permission to set date

The system has denied you the right to set the date.

date

182 z/OS V1R9.0 UNIX System Services Command Reference

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –c option is an extension of the POSIX standard.

Related Information

touch

Appendix I also explains how to set the local time zone with the TZ environment

variable.

dbx — Use the debugger

Format

dbx [options] [executable-file [program-arguments ...]]

dbx [options] [attach-type] process-id

dbx [options] -C core-file

Description

dbx is a source-level debugger for z/OS UNIX System Services. It provides an

environment to debug and run C and C++ programs, as well as performing machine

level debug. You can carry out operations such as the following:

v Examine object files

v Run a program in a controlled environment

v Set breakpoints at selected statements or run the program one line at a time

v Debug using symbolic variables and display them in their correct format

v View an MVS dump

v Attach to a running program, and perform debugging operations.

The executable-file argument is an load module produced by a compiler. To perform

source-level debugging, you need to compile your executable with symbolic

information. This is accomplished by specifying the –g or –Wc,debug compiler flags

on the compiler command line.

Note: If the object file is not compiled with the –g or –Wc,debug option on the

c89/cc/c++ command, or if the user compiles with optimization, the

capabilities of the dbx command will be reduced.

The core-file argument is an MVS dump that exists as a file in the z/OS UNIX file

system or in an MVS data set.

dbx allows the end user to customize its behavior via two files that are processed

during initialization. These are .dbxsetup and .dbxinit . Each file can contain a list

of dbx subcommands that will be run before the dbx prompt is displayed. During

startup, dbx will first search for these files in the current working directory and then

in the user’s $HOME directory. If a file is found, it is parsed and the search for that

specific file terminates. Use a text editor to create a .dbxsetup or .dbxinit file.

Any subcommands in the .dbxsetup file are executed before the debug target

program is loaded. This allows the user to tailor dbx’s operational behavior during

date

Chapter 2. Shell command descriptions 183

|

this phase of the dbx startup process. Any subcommands in the .dbxinit file are

executed just before the dbx prompt is displayed.

You can use the man command to view descriptions of dbx subcommands. To do

this, you must prefix all subcommands with dbx. For example, to view a description

of the dbx alias subcommand, you would enter the following:

man dbxalias

Attach-types

–a ProcessID

Attaches the debug program to a running process. The debug program

becomes active as soon as the process wakes up. To attach the debug

program, you need authority to use the kill command on this process.

–A ProcessID

Reattaches the debug program to a running process that is already being

debugged by dbx. Use this option to reattach a child process that was

created when a debugged parent process did a fork while multiprocess

debugging mode was active. To reattach to the debug program, you need

authority to use the kill command on this process.

Options

-b Suppresses processing of .dbxsetup and .dbxinit files (bare startup).

–c script

Runs dbx subcommands from a specified script file before reading from

standard input.

–C dump–filename

Puts dbx in dump reading (core file) processing mode.

–d Deprecated. This option will be ignored and remains only for compatibility

purposes.

–f Deprecated. This option will be ignored and remains only for compatibility

purposes.

–F Starts debug target in a different address space than the one dbx currently

resides in; or starts dbx in its own address space when attaching to a

running target program.

–h Prints the dbx command syntax.

–I directory

Appends the given directory to the list of directories searched for source

and debug files. The default list contains the working directory and the

directory containing the object files. The search path can also be set with

the use subcommand.

–m dbxmode

Instructs dbx to start in a specific mode:

v Specifying –m4 forces dbx to run in 31-bit mode, even on a machine

capable of running it in 64-bit mode.

v Specifying –m8 forces dbx to run in 64-bit mode. If this is impossible,

dbx will terminate.

-p ipaddress | name[:port]

Tells dbx to open a socket and connect to the ipAddress:port or

machineName:port which is assumed to be a GUI that supports remote

dbx

184 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|

debugging. For example: dbx -p 9.123.456.78:8001 mypgm. In this mode

the command line prompt will not be displayed nor will the user be able to

enter dbx subcommands through the command line interface. In addition,

the following dbx subcommands are not supported when entered via a GUI

debug console (command line) interface: detach, edit, multproc, object,

quit, rerun, run, sh.

 If :port is not specified, port 8001 will be used as the default.

–q Suppresses some of the dbx startup messages. Specifically, this will only

print the dbx version information before the prompt is displayed. All other

messages will be suppressed. Note that this option does not affect the

verbosity of normal dbx operation.

–r Runs the object file immediately. If it ends successfully, the dbx debug

program is exited. Otherwise, the debug program is entered and the reason

for termination is reported.

Note: Unless –r is specified, the dbx command prompts the user and waits

for a command. However, you can specify program arguments on

dbx even when –r is not used. For example:

dbx myprog arg1 arg2 arg3

–u Deprecated. This option will be ignored and remains only for compatibility

purposes.

Expression Handling

Specify expressions in dbx with a subset of C and Pascal syntax. A prefix *

(asterisk) or a postfix ^ (circumflex) denotes indirection. Specify portions of an array

by separating the lower and upper bounds with .. (two periods).

Use [] (square brackets) or () (parentheses) to enclose array subscripts. Use the

field reference operator . (period) with pointers and records.

Note: The field reference operator . (period) makes the C operator → unnecessary

(although it is supported).

When displaying variables and expressions, the dbx command resolves names first

using the static scope of the current function. The dynamic scope is used if the

name is not defined in the first scope. If static and dynamic searches do not yield a

result, an arbitrary symbol is chosen and the system prints the message (using

Module.Variable). The Module.Variable construction is the name of an identifier

qualified with a block name. Override the name resolution procedure by qualifying

an identifier with a block name. Source files are treated as modules named by the

filename without the language suffix (such as the .c suffix on a C language

program).

The dbx command debug program checks types of expressions. Override types of

expressions by using TypeName (Expression). When there is no corresponding

named type, use the &TypeName special construct to represent a pointer to the

named type. Represent a pointer to enum, struct, or union tag with the

$$TagName construct.

A condition can be any dbx expression that evaluates to a true or false value. This

pertains to four dbx subcommands: stop, stopi, trace, and tracei.

dbx

Chapter 2. Shell command descriptions 185

|
|
|
|
|
|

|

|
|
|

The following operators are valid in expressions:

 Expression Operators

exp (exponentiation) Algebraic + (addition), - (subtraction), *

(multiplication), / (floating point division),

div (integral division), mod (modulo

division), exp (exponentiation)

Bitwise ? (unary minus), ? (bitwise or), & (bitwise

and), ? (bitwise xor), ~ (one’s

complement), << (bitwise left shift), >>

(bitwise right shift), bitand (bitwise and),

xor (bitwise xor)

Logical ?? (logical or), && (logical and), ! (logical

not), or, and, not

Comparison < (less than), > (greater than), <= (less

than or equal to), >= (greater than or

equal to), <> (not equal to), != (not equal

to), = (equal to), == (equal to)

Other sizeof

Files

a.out The object file a.out is the default name of an executable file produced by

the compiler. If no executable is specified on the dbx command line, then

dbx will look for an a.out file to debug.

.dbxinit

Contains initial commands.

.dbxsetup

Contains initial commands.

.dbxhistory

Contains a listing of recently used dbx commands. Used by the history dbx

subcommand.

Examples

1. This example shows you how to attach dbx to a running process. To do this, it

is useful to insert a sleep(30) call into the program to be debugged. This will

give you enough time to issue the ps -Aef shell command to find the process ID

of the program. Once you have the process id, issue the shell command: dbx -a

process-id.

Before starting the server, set the following environment variable to have all

DLLs and executables loaded into read/write storage:

export _BPX_PTRACE_ATTACH=yes

You must also ensure that the following environment variable is set before

invoking dbx. This ensures that Language Environment notifies dbx of important

program events.

export _CEE_RUNOPTS="test(all)"

Use dbx commands to set breakpoints, step through program statements, print

variables, work with threads, examine storage, and actions as needed.

2. Example of creating .dbxinit file in your home directory:

dbx

186 z/OS V1R9.0 UNIX System Services Command Reference

|||

||
|
|
|

||
|
|
|
|

||
|

||
|
|
|

||
|

alias nsf "use /sandbox3/UNIX_notes/CGOOD/notes/nsf/"

alias asc "set $asciichars ; set $asciistrings"

alias ebc "unset $asciichars ; unset $asciistrings"

set $repeat

set $history_unique

set $hold_next

set $showbases

3. Sample dbx commands issued after starting server and seeing ″sleeping for 30

seconds″ message for server process ID 50331876:

/sandbox3/UNIX_notes/CGOOD/notes/os> dbx -a 50331876

FDBX0278: Waiting to attach to process 50331876 ...

FDBX0089: dbx for MVS.

FDBX0399: Compiled: Sep 28 2001 10:22:24 GMT as BFP

FDBX0400: OS level: 12.00 03, LE level: 4.1.2 with CWIs.

FDBX0100: Type ’help’ for help.

FDBX0099: reading symbolic information ...

FDBX0900: reading symbols for

/sandbox3/UNIX_notes/CGOOD/usr/lpp/lotus/notes/latest/os390/server ...

FDBX0037: XPLink module found

FDBX0900: reading symbols for

/sandbox3/UNIX_notes/CGOOD/usr/lpp/lotus/notes/latest/os390/libnotes ...

attached in sleep at 0xebcd024 ($t1)

sleep() at 0xebcd024

unnamed block $b64, line 873 in "meminit.c"

MemoryInit1(), line 873 in "meminit.c"

OSInitExt() at 0x1000cdc4

ServerMain() at 0xf80ac38

main() at 0xf80a12e

.() at 0xeeb2f4a

.() at 0x6f8e976

0x0ebcd024 (+0xff3c3024) 47060003 nop X’3’($r6,)

(dbx) stop at "meminit.c":875

[1] stop at "meminit.c":875

(dbx) c

[1] stopped in unnamed block $b64 at line 875 in file "meminit.c" ($t1)

(dbx) where

unnamed block $b64, line 875 in "meminit.c"

MemoryInit1(), line 875 in "meminit.c"

OSInitExt() at 0x1000cdc4

ServerMain() at 0xf80ac38

main() at 0xf80a12e

.() at 0xeeb2f4a

.() at 0x6f8e976

(dbx) list 872,875

 872 __printf_a("sleeping for 30 seconds time to dbx\n");

 873 sleep(30);

 874 __printf_a("Done sleeping \n");

 875 if (loc_num_of_segs > MAX_NUM_OF_SEGM)

(dbx) print loc_num_of_segs

4

(dbx) &loc_num_of_segs/8x

0fc55af8: 0000 0004 0000 01b0 0400 0000 0f9d 57f8

(dbx) 0xfc55af8/8x

0fc55af8: 0000 0004 0000 01b0 0400 0000 0f9d 57f8

(dbx) n

stopped in unnamed block $b64 at line 971 in file "meminit.c" ($t1)

 971 DoAgain2:

(dbx) n

stopped in unnamed block $b64 at line 972 in file "meminit.c" ($t1)

 972 hMMShMemId = shmget(ShmemAccessKey,

FirstSegSize, IPC_CREAT|IPC_EXCL|loc_shm390flags|perms);

Related Information

c89/cc/c++

dbx

Chapter 2. Shell command descriptions 187

dbx subcommands

The following list of dbx subcommands can have their output redirected to a file.

 alias

 args

 condition

 dump

 examine

 list

 listfiles

 listfuncs

 listi

 map

 mutex

 onload

 readwritelock

 rerun

 registers

 run

 sh

 status

 thread

 whatis

 where

 whereis

 which

The following dbx subcommands will return an error message in GUI mode (-p).

v detach

v edit

v multproc

v object

v quit

v rerun

v run

v sh

.

? subcommand for dbx: Search backward for a pattern

Format

? [RegularExpression]

Description

The ? subcommand searches backward in the current source file for the pattern

specified by the RegularExpression argument. Entering the ? subcommand with no

arguments causes dbx to search backward for the previous regular expression.

dbx

188 z/OS V1R9.0 UNIX System Services Command Reference

|

|

|

|

|

|

|

|

|

|

|

Usage Note

The ? subcommand can be run only while the dbx debug program is running.

Examples

1. To search backward in the current source file for the letter z, enter:

?z

2. To repeat the previous search, enter:

?

Related Information

The / (search) subcommand.

/ subcommand for dbx: Search forward for a pattern

Format

/ [RegularExpression]

Description

The / subcommand searches forward in the current source file for the pattern

specified by the RegularExpression argument. Entering the / subcommand with no

arguments causes dbx to search forward for the previous regular expression.

Usage Note

The / subcommand can be run only while the dbx debug program is running.

Examples

1. To search forward in the current source file for the number 12, enter:

/ 12

2. To repeat the previous search, enter:

/

Related Information

The ? (search) subcommand.

alias subcommand for dbx: Display and assign subcommand aliases

Format

alias [name] [string]

Description

The alias subcommand creates aliases for dbx subcommands. The name

argument is the alias being created. The string argument is a series of dbx

subcommands that, after the execution of this subcommand, can be referred to by

name. If the alias subcommand is used without aliases, it displays all current

aliases.

Usage Note

The alias subcommand can be run only while the dbx debug program is running.

Examples

1. To set tracef1 to be an alias for trace in f1, enter:

alias tracef1 "trace in f1"

2. To define a stopf alias with file and line arguments to allow shorthand for

setting a breakpoint within a file, enter:

dbx: ?

Chapter 2. Shell command descriptions 189

alias stopf(file, line) "stop at \"file\":line"

args subcommand for dbx: Display program arguments

Format

args

Description

The args subcommand displays the argument count and a list of arguments that

are passed to the user’s program when dbx starts debugging the program.

Usage Note

The args subcommand can be run only while the dbx debug program is running.

Examples

To display the current arguments, enter:

args

Related Information

The rerun and run subcommands.

assign subcommand for dbx: Assign a value to a variable

Format

assign [variable=expression]

Description

The assign subcommand assigns the value specified by the expression argument

to the variable specified by the variable argument.

Usage notes

1. The assign subcommand can be run only while the dbx debug program is

running.

2. Functions cannot be specified with the expression argument.

Examples

1. To assign the value 5 to a variable x, enter:

assign x = 5

2. To assign the value of a variable y to a variable x, enter:

assign x = y

3. To assign a value to a storage location, enter:

assign 0x02e0f7f0 = 0xff

4. To assign a value to a register, enter:

assign $r7 = 123

5. To change the exit_status of a specific thread, enter:

assign $t1.exit_status=&$void(0x2d95840);

case subcommand for dbx: Change how dbx interprets symbols

Format

case [default | mixed | lower | upper]

dbx: alias

190 z/OS V1R9.0 UNIX System Services Command Reference

Description

The case subcommand changes how the dbx debug program interprets symbols.

Use case if a symbol needs to be interpreted in a way not consistent with the

default behavior.

Entering case with no parameters displays the current case mode.

Options

default

Varies with the current language.

mixed Causes symbols to be interpreted as they actually appear.

lower Causes symbols to be interpreted as lowercase.

upper Causes symbols to be interpreted as uppercase.

Usage Note

The case subcommand can be run only while the dbx debug program is running.

Examples

1. To instruct dbx to interpret symbols as they actually appear, enter:

case mixed

2. To instruct dbx to interpret symbols as uppercase, enter:

case upper

catch subcommand for dbx: Start trapping a signal

Format

catch [signalnumber | signalname]

Description

The catch subcommand starts the trapping of a specified signal before that signal

is sent to the application program. This subcommand is useful when the application

program being debugged handles such signals as interrupts. The signal to be

trapped can be specified by number or by name using either the signalnumber or

the signalname argument, respectively. Signal names are case-insensitive, and the

SIG prefix is optional. All signals are caught by default except the SIGDUMP,

SIGHUP, SIGCHLD, SIGALRM, and SIGKILL signals. If no arguments are

specified, the current list of signals to be caught is displayed.

Usage Note

The catch subcommand can be run only while the dbx debug program is running.

Examples

1. To display a current list of signals to be caught by dbx, enter:

catch

2. To trap signal SIGALRM, enter:

catch SIGALRM

or:

catch ALRM

or:

catch 14

Related Information

The ignore subcommand.

dbx: case

Chapter 2. Shell command descriptions 191

clear subcommand for dbx: Remove all stops at a given source line

Format

clear sourceline

Description

The clear subcommand removes all stops at a given source line. The sourceline

argument can be specified in two formats:

v As an integer

v As a filename string followed by a : (colon) and an integer

Usage Note

The clear subcommand can be run only while the dbx debug program is running.

Example

To remove breakpoints set at line 19, enter:

clear 19

Related Information

The cleari and delete subcommands.

cleari subcommand for dbx: Remove all breakpoints at an address

Format

cleari address

Description

The cleari subcommand clears all the breakpoints at the address specified by the

address argument.

Usage Note

The cleari subcommand can be run only while the dbx debug program is running.

Examples

1. To remove a breakpoint set at address 0X100001B4, enter:

cleari 0x100001b4

2. To remove a breakpoint set at the address of the main() procedure, enter:

cleari &main

Related Information

The clear and delete subcommands.

condition subcommand for dbx: Display a list of active condition

variables

Format

 condition [number ...]

 condition wait

 condition nowait

Description

The condition subcommand displays a list of active condition variables for the

application program. All active condition variables are listed unless you use the

dbx: clear

192 z/OS V1R9.0 UNIX System Services Command Reference

number parameter to specify the condition variables you want listed. You can also

select condition variables with or without waiters by using the wait or nowait

options.

In order to capture the condition variables, dbx must be debugging your program

before the condition variable is created. You must have coded your application in

one of the following ways:

v Add the following line at the top of the C program:

#pragma runopts(TEST(ALL))

Or:

v Code an assembler program, CEEUOPT, to invoke the CEEXOPT macro, which

specifies TEST(ALL). For examples of how to code this program, see z/OS XL

C/C++ Programming Guide .

Usage Note

The condition subcommand can be run only while the dbx debug program is

running.

Examples

1. To display all condition variables, enter:

condition

2. To display condition variables number 1 and number 4, enter:

condition 1 4

3. To display all condition variables with waiters, enter:

condition wait

4. To display all condition variables without waiters, enter:

condition nowait

cont subcommand for dbx: Continue program execution

Format

cont [signalnumber | signalname]

Description

The cont subcommand continues the execution of the program from the current

stopping point until either the program finishes, another breakpoint is reached, a

signal is received that is trapped by the dbx command, or an event occurs (such as

a fork, an exec, or a program abend).

If a signal is specified, either by the number specified in the signalnumber argument

or by the name specified in the signalname argument, the program continues as if

that signal had been received by the focus thread.

If a signal is not specified, the dbx debug program variable $sigblock is set, and a

signal caused the debugged program to stop, then the program resumes execution.

If a signal is not specified, the dbx debug program variable $sigblock is not set,

and a signal caused the debugged program to stop, then typing in the cont

command with no signal causes the program to continue as if it had received the

original signal.

Signal names are not case-sensitive, and the SIG prefix is optional. If no signal is

specified, the program continues as if it had not been stopped.

dbx: condition

Chapter 2. Shell command descriptions 193

Usage Note

The cont subcommand can be run only while the dbx debug program is running.

Examples

1. To continue program execution from the current stopping point, enter:

cont

2. To continue program execution as though it had received the signal SIGQUIT,

enter:

cont SIGQUIT

Related Information

The step, next, goto, and skip subcommands.

delete subcommand for dbx: Remove traces and stops

Format

delete [all | number...]

Description

The delete subcommand removes traces and stops from the program. You can

specify the traces and stops to be removed through the number arguments, or you

can remove all traces and stops by using the all option. To display the numbers

associated by the dbx debug program with a trace or stop, use the status

subcommand.

Option

all Removes all traces and stops.

Usage Note

The delete subcommand can be run only while the dbx debug program is running.

Examples

1. To remove all traces and stops from the program, enter:

delete all

2. To remove traces and stops for event number 4, enter:

delete 4

Related Information

The status, clear, and cleari subcommands.

detach subcommand for dbx: Continue program execution without dbx

control

Format

detach [signalnumber | signalname]

Description

The detach subcommand continues the execution of a program from the current

stopping point without control of dbx.

If a signal is specified, either by the number specified in the signalnumber argument

or by the name specified in the signalname argument, the program continues

dbx: cont

194 z/OS V1R9.0 UNIX System Services Command Reference

|

|

without dbx control as if that signal had been received by the focus thread. If the

signal is not specified, the program continues with no signal and without dbx

control.

Signal names are not case-sensitive, and the SIG prefix is optional. If no signal is

specified, the program continues without dbx control as if it had not been stopped.

Usage

v The detach subcommand can be run only while the dbx debug program is

running.

v The detach subcommand is not supported in GUI (socket) mode (-p).

Examples

1. To continue program execution from the current stopping point without dbx in

control, enter:

detach

2. To continue program execution without dbx control as though it had received

the signal SIGQUIT, enter:

detach SIGQUIT

Related Information

The cont subcommand.

display memory subcommand for dbx: Display the contents of

memory

Format

address, address/[mode]

address/[count][mode]

[b| Bd | Bf | Bq | c | d | D | f | g | h | i | I | ld | lo | lx | o | O | q | s | S | o | W | X]

[>file]

Description

The display memory subcommand displays the contents of memory. The display

starts at the first address, and terminates at either the second address or until count

items are printed. If the address is ″.″, the address following the one most recently

printed is used. The mode specifies how memory is to be printed; if it is omitted the

previous mode specified is used. The initial mode is ″X″.

v The range of memory displayed is controlled by specifying:

–- Two address arguments, in which case all lines between those two

addresses are displayed (address/address), or

–- One address argument, where the display starts, and count, which

determines the number of lines displayed from address

(address/count).

. Used in place of the first address argument, this displays from the

point where you left off (see example 3 on page 197).

v Symbolic addresses are specified by preceding the name with an &

(ampersand).

v Registers are denoted by ″$rN″, ″$frN″ or ″$drN″, where N is the number of

the register.

dbx: detach

Chapter 2. Shell command descriptions 195

|
|

|

|

|

||
|

||
|

v Addresses may be expressions made up of other addresses and the

operators +, -, and * indirection.

v Any expression enclosed in parentheses is interpreted as an address.

v The format in which the memory is displayed is controlled by the mode

argument. The default for the mode argument is the current mode. The

initial value of mode is X. The possible modes include:

b Print a byte in octal

Bf Print single precision real number in BFP

Bg Print a double precision real number in BFP

Bq Print a long double precision real number in BFP

c Print a byte as a character

C Print a wchar_t character

d Print a short word in decimal

D Print a long word in decimal

Df Print single precision real number in DFP

Dg Print a double precision real number in DFP

Dq Print a long double precision real number in DFP

f Print a single precision real number in HFP

g Print a double precision real number in HFP

h Print a byte in hexadecimal

ha Print a byte in hexadecimal and ASCII

he Print a byte in hexadecimal and EBCDIC

i Print the machine instruction

I Print a wint_t character

ld Print a long long in signed decimal

lo Print a long long in octal

lu Print a long long in unsigned decimal

lx Print a long long in hexadecimal

o Print a short word in octal

O Print a long word in octal

q Print a long double precision real number in HFP

s Print a string (terminated by a null byte)

S Print a wchar_t string

W Print a wint_t string

x Print a short word in hexadecimal

X Print a long word in hexadecimal

Option

>file Redirects output to the specified file.

dbx: display memory

196 z/OS V1R9.0 UNIX System Services Command Reference

||
|

||

||
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Usage Note

The display memory subcommand can be run only while the dbx debug program

is running.

Examples

1. To display one long word of memory content in hexadecimal starting at the

address 0X3FFFE460, enter:

0x3fffe460 / x

2. To display 2 bytes of memory content as characters starting at the address of

variable y, enter:

&y/2c

3. To display from the point where you left off, when using . (period) in place of

one of the addresses, enter:

0x100 / 2 which displays 2 words starting at x’100’

followed by:

. / 3 which displays 3 words starting at x’108’

Related Information

See also: cleari, gotoi, registers, stepi, nexti, tracei, and stopi commands.

down subcommand for dbx: Move the current function down the stack

Format

down [count]

Description

The down subcommand moves the current function down the stack count number

of levels. The current function is used for resolving names. The default for the count

argument is 1.

Usage Note

The down subcommand can be run only while the dbx debug program is running.

Examples

1. To move one level down the stack, enter:

down

2. To move three levels down the stack, enter:

down 3

Related Information

The up and where subcommands.

dump subcommand for dbx: Display the names and values of

variables in a procedure

Format

dump [procedure] [>file]

Description

The dump subcommand displays the names and values of all variables in the

specified procedure. If the procedure argument is . (dot), all active variables are

displayed. If the procedure argument is not specified, the current procedure is used.

If the >file option is used, the output is redirected to the specified file.

dbx: display memory

Chapter 2. Shell command descriptions 197

|
|

Option

>file dump output to the specified file.

Usage Note

The dump subcommand can be run only while the dbx debug program is running.

dump redirects output to the specified file.

Examples

1. To display names and values of variables in the current procedure, enter:

dump

2. To display names and values of variables in the add_count procedure, enter:

dump add_count

3. To redirect names and values of variables in the current procedure to the

var.list file, enter:

dump > var.list

edit subcommand for dbx: Invoke an editor

Format

edit [procedure | file]

Description

The edit subcommand invokes an editor on the specified file. The file can be

specified through the file argument or through the procedure argument (in which

case the editor is invoked on the file containing that procedure). If no file is

specified, the editor is invoked on the current source file. The default editor is the

ed editor. Override the default by resetting the EDITOR environment variable to the

name of the desired editor.

Usage Note

v The edit subcommand can be run only while the dbx debug program is running.

v The edit subcommand is not supported in GUI (socket) mode (-p).

Examples

1. To invoke an editor on the current source file, enter:

edit

2. To invoke an editor on the main.c file, enter:

edit main.c

3. To invoke an editor on the file containing the do_count procedure, enter:

edit do_count

Related Information

The ed editor.

The list subcommand for the dbx command.

file subcommand for dbx: Change the current source file

Format

file [file]

dbx: dump

198 z/OS V1R9.0 UNIX System Services Command Reference

|

|

|

Description

The file subcommand changes the current source file to the file specified by the file

argument; it does not write to that file. If the file argument is not specified, the file

subcommand displays the name of the current source file.

Usage Note

The file subcommand can be run only while the dbx debug program is running.

Examples

1. To change the current source file to the main.c file, enter:

file main.c

2. To display the name of the current source file, enter:

file

func subcommand for dbx: Change the current function

Format

func [procedure]

Description

The func subcommand changes the current function to the procedure or function

specified by the procedure argument. If the procedure argument is not specified, the

default current function is displayed. Changing the current function implicitly

changes the current source file to the file containing the new function; the current

scope used for name resolution is also changed.

Usage notes

The func subcommand can be run only while the dbx debug program is running.

Examples

1. To change the current function to the do_count procedure, enter:

func do_count

2. To display the name of the current function, enter:

func

goto subcommand for dbx: Run a specified source line

Format

goto sourceline

Description

The goto subcommand causes the specified source line to be run next. Normally,

the source line must be in the same function as the current source line. To override

this restriction, use the set subcommand with the $unsafegoto variable.

Usage Note

The goto subcommand can be run only while the dbx debug program is running.

Example

To change the next line to be executed to line 6, enter:

goto 6

Related Information

The cont, gotoi, and set subcommands.

dbx: file

Chapter 2. Shell command descriptions 199

gotoi subcommand for dbx: Change the program counter address

Format

gotoi address

Description

The gotoi subcommand changes the program counter address to the address

specified by the address argument.

Usage Note

The gotoi subcommand can be run only while the dbx debug program is running.

Example

To change the program counter address to address 0X100002B4, enter:

gotoi 0x100002b4

Related Information

The goto subcommand.

help subcommand for dbx: Display a subcommand synopsis

Format

help [subcommand] [topic]

Description

The help subcommand displays a synopsis of common dbx subcommands.

Usage Note

The help subcommand can be run only while the dbx debug program is running.

Examples

To obtain a synopsis of common dbx subcommands, enter one of the following:

help

help subcommand

help topic

The help subcommand with no arguments lists available dbx subcommands and

topics.

help subcommand, where subcommand is one of the dbx subcommands, displays

a synopsis and brief description of the subcommand. help topic—where topic is

execution, expression, files, machine, scope, usage, or variables—displays a

synopsis and brief description of the topic.

history subcommand for dbx: Display commands in a history list

Format

history

Usage Note

The history subcommand displays the commands in the history list. As each

command is entered, it is appended to the history list. A mechanism for history

substitution is provided through the exclamation (!) operator. The allowable forms

are !! for a previous command, !n for the nth command, and !string for the previous

command that starts with string. The number of commands retained and displayed

is controlled by the dbx internal variable $historywindow.

dbx: gotoi

200 z/OS V1R9.0 UNIX System Services Command Reference

ignore subcommand for dbx: Stop trapping a signal

Format

ignore [signalnumber | signalname]

Description

The ignore subcommand stops the trapping of a specified signal before that signal

is sent to the program. This subcommand is useful when the program being

debugged handles such signals as interrupts.

The signal to be trapped can be specified by:

v Number, with the signalnumber argument

v Name, with the signalname argument

Signal names are not case-sensitive. The SIG prefix is optional.

If neither the signalnumber nor the signalname argument is specified, all signals

except the SIGDUMP, SIGHUP, SIGCHLD, SIGALRM, and SIGKILL signals are

ignored by default. The dbx debug program cannot catch SIGKILL or SIGDUMP. If

no arguments are specified, the list of currently ignored signals is displayed.

Usage Note

The ignore subcommand can be run only while the dbx debug program is running.

Examples

To cause dbx to ignore alarm clock timeout signals sent to the program, enter:

ignore sigalrm

or:

ignore alrm

or:

ignore 14

Related Information

The catch subcommand.

list subcommand for dbx: Display lines of the current source file

Format

list [procedure | SourcelineExpression] [,SourcelineExpression]

Description

The list subcommand displays a specified number of lines in the source file. The

number of lines displayed are specified in one of two ways:

v By specifying a procedure using the procedure argument. In this case, the list

subcommand displays lines before the first executable line of source in the

specified procedure and until the list window is filled.

v By specifying a starting and ending source line number using the

SourcelineExpression argument. Use the current filename or source filename if

specified.

The SourcelineExpression argument should consist of a valid line number

followed by an optional + or − and an integer. In addition, a SourcelineExpression

of $ can be used to denote the current line number, and a SourcelineExpression

of @ can be used to denote the next line number to be listed.

dbx: ignore

Chapter 2. Shell command descriptions 201

All lines from the first line number specified to the second line number specified,

inclusive, are then displayed, provided these lines fit in the list window.

If the second source line is omitted, ten lines are printed, beginning with the line

number specified in the SourcelineExpression argument.

If the list subcommand is used without arguments, the default number of lines are

printed, beginning with the current source line. The default is 10.

To change the number of lines to list by default, set the special debug program

variable, $listwindow, to the number of lines you want. Initially, $listwindow is set

to 10.

Usage Note

The list subcommand can be run only while the dbx debug program is running.

Examples

1. To list the lines 1 through 10 in the current file, enter:

list 1,10

2. To list 10, or $listwindow, lines around the first executable line in the main

procedure, enter:

list main

3. To list 11 lines around the current line, enter:

list $-5,$+5

Related Information

The edit, listi, move, and set subcommands.

listfiles subcommand for dbx: Display the list of source files

Format

listfiles [loadmap-index]

Description

The listfiles subcommand displays the list of files associated with each module in

the load map.

If the listfiles subcommand is used without arguments, the files for every module in

the load map will be listed.

Usage notes

The listfiles subcommand can be run only while the dbx debug program is running.

Examples

1. To list all files in all modules, enter:

listfiles

2. To list the files only for module with index 0 in the loadmap, enter:

listfiles 0

Related Information

The listfuncs and map subcommands.

dbx: list

202 z/OS V1R9.0 UNIX System Services Command Reference

listfuncs subcommand for dbx: Display the list of functions

Format

listfuncs [filename]

Description

The listfuncs subcommand displays a list of functions associated with each file in

the program.

If the listfuncs subcommand is used without arguments, the function for every file in

the program will be listed.

Usage notes

The listfuncs subcommand can be run only while the dbx debug program is

running.

Examples

1. To list all functions in all files, enter:

listfuncs

2. To list the function only for file mypgm.c, enter:

listfuncs mypgm.c

Related Information

The func subcommand.

listi subcommand for dbx: List instructions from the program

Format

listi [procedure | at | sourceline | address] [,address]

Description

The listi subcommand displays a specified set of instructions from the source file.

The instructions displayed are specified by:

v Providing the procedure argument, in which case the listi subcommand lists

instructions from the beginning of procedure until the list window is filled.

v Using the atsourceline option, in which case the listi subcommand displays

instructions beginning at the specified source line and continuing until the list

window is filled.

v Specifying a beginning and ending address using the address arguments, in

which case all instructions between the two addresses, inclusive, are displayed.

If the listi subcommand is used without options or arguments, the next $listwindow

instructions are displayed. To change the current size of the list window, use the set

$listwindow=value subcommand.

Option

at sourceline

Specifies a starting source line for the listing.

Usage Note

The listi subcommand can be run only while the dbx debug program is running.

dbx: listfuncs

Chapter 2. Shell command descriptions 203

Examples

1. To list the next 10, or $listwindow, instructions, enter:

listi

2. To list the machine instructions beginning at source line 10, enter:

listi at 10

3. To list the instructions between addresses 0X10000400 and 0X10000420, enter:

listi 0x10000400, 0x10000420

Related Information

The list and set subcommands.

map subcommand for dbx: Display load characteristics

Format

map [>file]

Description

The map subcommand displays characteristics for each loaded portion of the

program. This information includes the name, text origin, text length, text end, text

subpool, data origin, data length, data subpool, and file descriptor for each loaded

module. The data origin, data length, data subpool, and file descriptor do not

contain meaningful information.

Option

>file Redirects output to the specified file.

Usage Note

The map subcommand can be run only while the dbx debug program is running.

Example

To examine the characteristics of the loaded portions of the application, enter:

map

move subcommand for dbx: Display or change the next line to be

shown with the list command

Format

move

move sourceline

move function

Description

The move subcommand changes the next line to be displayed to the line specified

by the sourceline argument. This subcommand changes the value of the @

variable. The sourceline argument can either be a line number in the current file, or

a function name. Omitting the sourceline argument will display the current line

number.

Usage Note

The move subcommand can be run only while the dbx debug program is running.

dbx: listi

204 z/OS V1R9.0 UNIX System Services Command Reference

Example

To change the next line to be listed to line 12, enter:

move 12

To change the next line to be listed to be the function main, enter:

move main

To display the current line number, enter :

move

Related Information

The list subcommand.

multproc subcommand for dbx: Enable or disable multiprocess

debugging

Format

 multproc

 multproc [on]

 multproc [off]

 multproc [parent]

 multproc [child]

Description

The multproc subcommand alters the way dbx behaves when the process that is

being debugged issues a fork() runtime call. By default, multiprocess debugging is

disabled when dbx is started. If no options are specified, the multproc

subcommand returns the current status of multiprocess debugging.

Options

on dbx will notify the user that a fork has occurred, provide the PID of the new

child process, and follow the parent process.

off dbx will ignore any forks that occur.

parent

dbx will notify the user that a fork has occurred and follow the parent

process.

child dbx will notify the user that a fork has occurred and follow the child

process.

Usage Note

v The multproc subcommand can be run only while the dbx debug program is

running.

v The multproc subcommand is not supported in GUI (socket) mode (-p).

Examples

1. To check the current status of multiprocess debugging, enter:

multproc

2. To have dbx notify the user that the process being debugged has forked, enter:

multproc on

3. To have dbx ignore all forks by the process being debugged, enter:

multproc off

Related Information

The fork() function.

dbx: move

Chapter 2. Shell command descriptions 205

|

|

|
|

|

mutex subcommand for dbx: Display a list of active mutex objects

Format

 mutex [number ...]

 mutex lock

 mutex unlock

 mutex wait

 mutex nowait

Description

The mutex subcommand displays a list of active mutex objects for the application

program. All active mutex objects are listed unless you use the number parameter

to specify the mutex objects you want listed. You can also select only locked or

unlocked mutexes, or mutexes with or without waiters, by using the lock, unlock,

wait, or nowait options.

In order to capture the mutex variables, dbx must be debugging your program

before the mutex variable is created. You must have coded your application in one

of the following ways:

v Add the following line at the top of the C program:

#pragma runopts(TEST(ALL))

Or:

v Code an assembler program, CEEUOPT, to invoke the CEEXOPT macro, which

specifies TEST(ALL). For examples of how to code this program, see z/OS XL

C/C++ Programming Guide .

Usage Note

The mutex subcommand can be run only while the dbx debug program is running.

Examples

1. To display all mutex objects, enter:

mutex

2. To display mutex objects number 1 and number 4, enter:

mutex 1 4

3. To display all locked mutex objects, enter:

mutex lock

4. To display all unlocked mutex objects, enter:

mutex unlock

5. To display all mutex objects with waiters, enter:

mutex wait

6. To display all mutex objects without waiters, enter:

mutex nowait

next subcommand for dbx: Run the program up to the next source line

Format

next [number]

Description

The next subcommand runs the application program up to the next source line. The

number argument specifies the number of times the next subcommand runs. If the

number argument is not specified, next runs once only.

dbx: mutex

206 z/OS V1R9.0 UNIX System Services Command Reference

Usage notes

1. The next subcommand can be run only while the dbx debug program is

running.

2. If the $hold_next variable is defined, dbx holds all threads except the focus

thread during a next subcommand. Then dbx unholds the threads after the

next subcommand finishes.

Examples

1. To continue execution up to the next source line, enter:

next

2. To continue execution up to the third source line following the current source

line, enter:

next 3

Related Information

The cont, goto, nexti, and step subcommands.

nexti subcommand for dbx: Run the program up to the next machine

instruction

Format

nexti [number]

Description

The nexti subcommand runs the application program up to the next instruction. The

number argument specifies the number of times the nexti subcommand is to be

run. If the number argument is not specified, nexti runs only once.

Usage notes

1. The nexti subcommand can be run only while the dbx debug program is

running.

2. If the $hold_next variable is defined, dbx holds all threads except the focus

thread during a nexti subcommand. Then dbx unholds the threads after the

nexti subcommand finishes.

Examples

1. To continue execution up to the next machine instruction, enter:

nexti

2. To continue execution up to the third machine instruction following the current

machine instruction, enter:

nexti 3

Related Information

The gotoi, next, and stepi subcommands.

object subcommand for dbx: Load an object file

Format

object filename

Description

The object subcommand loads the specified object file for execution, without the

overhead of reloading dbx.

dbx: next

Chapter 2. Shell command descriptions 207

|

Usage Note

v The object subcommand can be run only while the dbx debug program is

running.

v The object subcommand is not supported in GUI (socket) mode (-p).

Example

To complete debugging of the current program, and to start debugging a new

program without reloading dbx, enter:

object myprog

onload subcommand for dbx: Evaluate stop/trace after dll load

Format

v onload delete [all | number ...]

v onload list

v onload stop at sourceline

v onload stop in procedure

v onload trace at sourceline

v onload trace in procedure

Description

The onload subcommand defers building of stop or trace events until the procedure

or sourceline is defined in the program dbx is debugging. dbx will evaluate the

onload list after a DLL is loaded and generate stop/trace events if the procedure or

sourcefile is now known to dbx after symbolics for the DLL are processed. If the

procedure or sourceline is already known to dbx, then a normal stop or trace event

will be generated and no event will be added to the onload list.

Usage Note

The onload subcommand can be run only while the dbx debug program is running.

Examples

To defer the building of a stop or trace event, enter:

onload stop in myfunc

onload stop in myclass::memfunc

onload stop in myclassvar.memfunc

onload stop in "mypgm.c":52

onload trace in myfunc

onload trace in myclass::memfunc

onload trace in myclassvar.memfunc

onload trace in "mypgm.c":52

Related Information

The stop and trace subcommands.

plugin subcommand for dbx: Pass the specified command to the

plug-in parameter

Format

plugin[name[command]]

Description

The plugin subcommand passes the command specified by the command

parameter to the plug-in specified by the name parameter. If no parameters are

specified, the names of all available plug-ins are displayed.

dbx: object

208 z/OS V1R9.0 UNIX System Services Command Reference

|
|

|

Usage notes

The plugin subcommand can be run only while the dbx debug program is running.

Examples

1. To list all available plug-ins, enter:

plugin

2. To invoke the subcommand help of a plug-in named sample, enter:

plugin sample help

3. To invoke the subcommand interpret 0x12345678of a plug-in named xyz,

enter:

plugin xyz interpret 0x12345678

See the pluginload subcommand, also see the topic on Developing for dbx Plug-in

Framework in z/OS UNIX System Services Programming Tools.

pluginload subcommand for dbx: Load the specified plug-in

Format

pluginload file

Description

The pluginload subcommand loads the plug-in specified by the file parameter. The

file parameter should specify a path to the plug-in.

Usage notes

The pluginload subcommand can be run only while the dbx debug program is

running.

Examples

1. To load the plug-in named sample located at /home/user/dbx_plugins/
libdbx_sample.dll, enter:

pluginload /home/user/dbx_plugins/libdbx_sample.dll

See the pluginload subcommand, also see the topic on developing for dbx plug-in

framework in z/OS UNIX System Services Programming Tools.

pluginunload subcommand for dbx: Unload the specified plug-in

Format

pluginunload name

Description

The pluginunload subcommand unloads the plug-in specified by the name

parameter. The name parameter should specify a name of plug-in that is currently

loaded.

Usage notes

The pluginunload subcommand can be run only while the dbx debug program is

running.

Examples

1. To unload the plug-in named sample, enter:

pluginunload sample

dbx: plugin

Chapter 2. Shell command descriptions 209

See the plugin subcommand and the pluginload subcommand. Also see the topic

on developing for dbx P\plug-in framework in z/OS UNIX System Services

Programming Tools.

print subcommand for dbx: Print the value of an expression

Format

print [expression,...] [(parameters)]

Description

The print subcommand prints the value of a list of expressions, specified by the

expression arguments.

Usage Note

The print subcommand can be run only while the dbx debug program is running.

Examples

1. To display the value of x and the value of y shifted left 2 bits, enter:

print x, y << 2

2. To display a specific condition variable, enter:

print $c1

3. To display the number of waiters for a specific mutex object, enter:

print $m1.num_wait

4. To display the exit value of a specific thread, enter:

print $t1.exit_status

Related Information

The assign and set subcommands.

prompt subcommand for dbx: Change the dbx command prompt

Format

prompt [“string”]

Description

The prompt subcommand changes the dbx command prompt to the string

specified by the string argument.

Usage Note

The prompt subcommand can be run only while the dbx debug program is running.

Example

To change the prompt to dbx>, enter:

prompt "dbx>"

quit subcommand for dbx: End the dbx debugging session

Format

quit

Description

The quit subcommand ends the dbx debugging session.

dbx: pluginunload

210 z/OS V1R9.0 UNIX System Services Command Reference

|

Usage Note

v The quit subcommand can be run only while the dbx debug program is running.

v The quit subcommand is not supported in GUI (socket) mode (-p).

Example

To exit the dbx debug program, enter:

quit

readwritelock subcommand for dbx: Display a list of active read/write

lock objects

Format

 readwritelock [number ...]

 readwritelock lock

 readwritelock unlock

 readwritelock holder

 readwrite noholder

Description

The readwritelock subcommand displays a list of active read/write lock objects for

the application program. All active read/write lock objects are listed unless you use

the number parameter to specify the read/write lock objects you want listed. You

can also select only locked or unlocked read/write locks, or read/write locks with or

without holders, by using the lock, unlock, holder, or noholder options.

In order to capture the read/write lock variables, dbx must be debugging your

program before the read/write lock variable is created. You must have coded your

application in one of the following ways:

v Add the following line at the top of the C program:

#pragma runopts(TEST(ALL))

Or:

v Code an assembler program, CEEUOPT, to invoke the CEEXOPT macro, which

specifies TEST(ALL). For examples of how to code this program, see z/OS XL

C/C++ Programming Guide .

Or:

v Specify test(all) in the _CEE_RUNOPTS environment variable:

export _CEE_RUNOPTS="test(all)"

Usage Note

The readwritelock subcommand can be run only while the dbx debug program is

running.

Examples

1. To display all read/write lock objects, enter:

readwritelock

2. To display read/write lock objects number 1 and number 4, enter:

readwritelock 1 4

3. To display all locked read/write lock objects, enter:

readwritelock lock

4. To display all unlocked read/write lock objects, enter:

readwritelock unlock

5. To display all read/write lock objects with holders, enter:

dbx: quit

Chapter 2. Shell command descriptions 211

|

|

readwritelock holder

6. To display all read/write lock objects without holders, enter:

mutex noholders

record subcommand for dbx: Append user’s commands to a file

Format

record filename

Description

The record subcommand appends the user’s command lines to the specified file

until a record command is entered with no parameters.

The record subcommand is started by specifying a file name on the record

command. A second record command with no parameters will stop the current

record process and close the file.

Usage notes

The record subcommand can be run only while the dbx debug program is running.

Examples

1. To start recording the dbx commands to file /tmp/mycmds, enter:

record /tmp/mycmds

2. To stop the previous recording to file /tmp/mycmds, enter:

record

Related Information

The source subcommand.

registers subcommand for dbx: Display the value of registers

Format

registers [>file]

Description

The registers subcommand displays the values of general-purpose registers,

system control registers, floating-point registers, and the current instruction register,

such as the program status word (PSW) for z/OS.

v General-purpose registers are denoted by the $rnumber variable, where the

number argument indicates the number of the register.

v Floating-point registers are denoted by the $frnumber variable. By default, the

floating-point registers are not displayed. To display the floating-point registers,

use the unset $noflregs dbx subcommand.

Option

>file Redirects output to the specified file.

Usage Note

The registers subcommand can be run only while the dbx debug program is

running.

Example

To display the registers, enter:

registers

dbx: readwritelock

212 z/OS V1R9.0 UNIX System Services Command Reference

Related Information

The set and unset subcommands.

rerun subcommand for dbx: Begin running a program with the

previous arguments

Format

rerun [arguments] [<file | >file | 2>file | >>file | 2>file | >&file | >>&file]

Description

The rerun subcommand begins execution of the object file. The values specified

with the arguments argument are passed as command-line arguments. If the

arguments argument is not specified, the arguments from the last run or rerun

subcommand are reused.

Options

<file Redirects input so that input is received from file.

>file Redirects output to file.

2>file Redirects standard error to file.

>>file Appends redirected output to file.

2>>file Appends redirected standard error to file.

>&file Redirects output and standard error to file.

>>&file

Appends output and standard error to file.

Usage Note

v The rerun subcommand can be run only while the dbx debug program is

running.

v The rerun subcommand is not supported in GUI (socket) mode (-p).

Example

To rerun the program with the previously entered arguments, enter:

rerun

Related Information

The run subcommand.

return subcommand for dbx: Continue running a program until a

return is reached

Format

return [procedure]

Description

The return subcommand causes the program to run until a return to the procedure

specified by the procedure argument is reached. If the procedure argument is not

specified, execution ceases when the current procedure returns.

Usage Note

The return subcommand can be run only while the dbx debug program is running.

dbx: registers

Chapter 2. Shell command descriptions 213

|

|

|
|

|

Examples

1. To continue execution to the calling routine, enter:

return

2. To continue execution to the main routine, enter.

return main

run subcommand for dbx: Run a program

Format

run [arguments] [<file | >file | 2>file | >>file | 2>file | >&file | >>&file]

Description

The run subcommand begins execution of the object file. The values specified with

the arguments argument are passed as command-line arguments.

Options

<file Redirects input so that input is received from file.

>file Redirects output to file.

2>file Redirects standard error to file.

>>file Appends redirected output to file.

2>>file Appends redirected standard error to file.

>&file Redirects output and standard error to file.

>>&file

Appends output and standard error to file.

Usage Note

v The run subcommand can be run only while the dbx debug program is running.

v The run subcommand is not supported in GUI (socket) mode (-p).

Example

To run the application with the arguments blue and 12, enter:

run blue 12

Related Information

The rerun subcommand.

set subcommand for dbx: Define a value for a dbx variable

Format

set [variable=expression]

Description

The set subcommand defines a value, which is specified by the expression

argument, for the dbx debug program variable, which is specified by the variable

argument. The name of the variable should not conflict with names in the program

being debugged. A variable is expanded to the corresponding expression within

other commands. If the set subcommand is used without arguments, the variables

currently set are displayed.

Variables

The following variables are set with the set subcommand:

dbx: return

214 z/OS V1R9.0 UNIX System Services Command Reference

|

|

|

|

$asciichars

When set, any dbx operation that displays the value of a character will

interpret the binary representation of the character as ascii.

$asciistrings

When set, any dbx operation that displays the value of a string will interpret

the binary representation of the string as ascii.

$c<n> Condition variables

$catchbp

Catches breakpoints during the execution of the next command.

$charset

Specifies the input and output charset for displaying string data.

$columns

Specifies the number of columns used to display arrays. Currently this is

only defined for FORTRAN.

$commandedit

Enables the command line facility.

$current

Defined as a constant with the value of the focus thread.

$cv_events

When set, dbx notifies the user but does not stop when a condition variable

event is processed. The following trace information is sent to the user for

the different events:

(dbx) cont

.

.

cv initialize, object=0x2e04567

cv wait, object=0x2e04567, mutex=0x2d04567, thid=0x0102030405060708

cv unwait, object=0x2e04567, mutex=0x2d04567, thid=0x0102030405060708

cv destroy, object=0x2e04567

.

.

$dll_loads

Set by default. When set, dbx processes symbolics for dlls as they are

loaded.

$dll_loadstop

Set by default. When set, dbx will attempt to stop the function call that

caused the dll to be loaded. If the dll was loaded due to a variable

reference or an explicit load, dbx will stop at the source line that caused

the dll to be loaded.

$expandunions

Displays values of each part of variant records or unions.

$flprecision

Determines the precision in bytes of floating-point registers when used in

expressions.

$fr<n>

Hexidecimal floating-point register.

$frb<n>

Binary floating-point register

dbx: set

Chapter 2. Shell command descriptions 215

$frame

Uses the stack frame pointed to by the address designated by the value of

$frame for doing stack tracebacks and accessing local variables.

$hexchars

Prints characters as hexadecimal values.

$hexin

Interprets addresses in hexadecimal.

$hexints

Prints integers as hexadecimal values.

$hexstrings

Prints character pointers in hexadecimal.

$historypage

Determines how many history items are traversed when using the page up

and page down keys.

$history_unique

Prevents consecutive duplicate commands from being saved to the dbx

history list.

$historywindow

Determines how many items are saved in the history list.

$hold_next

When set, dbx automatically holds all threads except the focus thread

during the next, nexti, step, or stepi command execution. If not set, all

threads resume execution and may reach the breakpoint set by the next,

nexti, step, or stepi command execution.

$KERNEL_dlls

When set, dbx will use kernel interfaces to process and recognize DLLS.

This flag is mutually exclusive with $LE_dlls.

$l<n> Read/write locks variables.

$LE_dlls

When set, dbx will use LE interfaces to process and recognize DLLs. This

flag is mutually exclusive with $KERNEL_dlls.

$LE-hookstep

When set, dbx will process source level stepping using an LE interface

instead of machine instruction trace.

$listwindow

Specifies the number of lines to list around a function and to list when the

list subcommand is used without parameters.

$lv_events

When set, dbx notifies the user but does not stop when a read/write lock

object event is processed. The following trace information is sent to the

user for the different events:

dbx: set

216 z/OS V1R9.0 UNIX System Services Command Reference

(dbx) cont

.

.

lv initialize, object=0x2d04567

lv wait, object=0x2d04567, thid=0x0102030405060708

lv unwait, object=0x2d04567, thid=0x0102030405060708

lv lock, object=0x2d04567, thid=0x0102030405060708

lv unlock, object=0x2d04567, thid=0x0102030405060708

lv relock, object=0x2d04567, thid=0x0102030405060708

lv unrelock, object=0x2d04567, thid=0x0102030405060708

lv destroy, object=0x2d04567

.

.

$m<n>

Specifies mutex variables.

$mv_events

When set, dbx notifies the user but does not stop when a mutex object

event is processed. The following trace information is sent to the user for

the different events:

(dbx) cont

.

.

mv initialize, object=0x2d04567

mv wait, object=0x2d04567, thid=0x0102030405060708

mv unwait, object=0x2d04567, thid=0x0102030405060708

mv lock, object=0x2d04567, thid=0x0102030405060708

mv unlock, object=0x2d04567, thid=0x0102030405060708

mv relock, object=0x2d04567, thid=0x0102030405060708

mv unrelock, object=0x2d04567, thid=0x0102030405060708

mv destroy, object=0x2d04567

.

.

$noargs

Omits arguments from subcommands, such as where, up, down, and

dump.

$noflbregs

When set, do not display the binary floating point representation of the

floating point registers with the registers subcommand.

$nofldregs

When set, do not display the decimal floating point representation of the

floating point registers with the registers subcommand.

$noflregs

When set, do not display the hexidecimal floating point representation of the

floating point registers with the registers subcommand.

$octin Interprets addresses in octal.

$octints

Prints integers in octal.

$pc Program counter register.

$psw First word of the Program Status Word register.

$psw0

First word of the Program Status Word register.

$psw1

Second word of the Program Status Word register.

dbx: set

Chapter 2. Shell command descriptions 217

|
|
|

|
|
|

|
|
|

$r<n> General register.

$repeat

Repeats the previous command if no command was entered.

$showbases

When set, dbx will show base class data when a derived class is printed.

$sigblock

Blocks all signals from reaching the program being debugged.

$sticky_debug

When set, dbx will recognize sticky bit programs and DLLs in the loadmap.

$t<n> Thread variables

$tv_events

When set, dbx notifies the user but does not stop when a thread object

event is processed. The following trace information is sent to the user for

the different events:

(dbx) cont

.

.

IPT create, thid=0x1234567890123456, stack=5200

IPT exit, thid=0x1234567890123456

tv create, thid=0x1234567890123456, created thid=0x1234567890123422,

 stack=5200

tv created, thid=0x1234567890123456, stack=5200

tv exit, thid=0x1234567890123456

tv wait, thid=0x1234567890123456, joining thid=0x1234567890123422

tv unwait, thid=0x1234567890123456, joined thid=0x1234567890123422

$unsafeassign

Turns off strict type checking between the two sides of an assign

subcommand.

$unsafebounds

Turns off subscript checking on arrays.

$unsafecall

Turns off strict type checking for arguments to subroutines or function calls.

$unsafegoto

Turns off the goto subcommand destination checking.

$vardim

Specifies the dimension length to use when printing arrays with unknown

bounds. The default value is 10. This variable is not supported.

$vectint

Displays the vector register contents as integer values. (This is the default).

This variable is not supported.

Usage notes

1. The $unsafe variables limit the usefulness of the dbx debug program in

detecting errors.

2. The set subcommand can be run only while the dbx debug program is running.

Examples

1. To change the default number of lines to be listed to 20, enter:

set $listwindow=20

2. To disable type checking on the assign subcommand, enter:

dbx: set

218 z/OS V1R9.0 UNIX System Services Command Reference

set $unsafeassign

Related Information

The unset subcommand.

sh subcommand for dbx: Pass a command to the shell for execution

Format

sh [command]

Description

The sh subcommand passes the command specified by the command parameter to

the shell for execution. The SHELL environment variable determines which shell is

used. The default is the sh shell. If no argument is specified, control is transferred

to the shell.

Restriction: This subcommand will return an error message in GUI (-p) mode.

Usage Note

v The sh subcommand can be run only while the dbx debug program is running.

v The sh subcommand is not supported in GUI (socket) mode (-p).

Examples

1. To run the ls command, enter:

sh ls

2. To escape to a shell, enter:

sh

skip subcommand for dbx: Continue from the current stopping point

Format

skip [number]

Description

The skip subcommand continues execution of the application program from the

current stopping point. A number of breakpoints equal to the value of the number

argument are skipped, and execution then ceases when the next breakpoint is

reached or when the program finishes. If the number argument is not specified, it

defaults to a value of 1.

Usage Note

The skip subcommand can be run only while the dbx debug program is running.

Example

To continue execution until the second breakpoint is encountered, enter:

skip 1

Related Information

The cont subcommand.

source subcommand for dbx: Read subcommands from a file

Format

source file

dbx: set

Chapter 2. Shell command descriptions 219

|

|

|

|

Description

The source subcommand reads dbx subcommands from the file specified by the

file argument.

Usage Note

The source subcommand can be run only while the dbx debug program is running.

Example

To read the dbx subcommands in the cmdfile file, enter:

source cmdfile

status subcommand for dbx: Display the active trace and stop

subcommands

Format

status [>file]

Description

The status subcommand displays the trace and stop subcommands currently

active. The > option sends the output of the status subcommand to a file specified

in the file argument.

Option

>file Redirects output to file.

Usage Note

The status subcommand can be run only while the dbx debug program is running.

Examples

1. To display the currently active trace and stop subcommands, enter:

status

2. To stop at line 52 only when thread $t2 reaches that line, enter:

stop at 52 if $t2==$current

Related Information

The clear, delete, stop, and trace subcommands.

step subcommand for dbx: Run one or more source lines

Format

step [number]

Description

The step subcommand runs source lines of the program. Specify the number of

lines to be run with the number argument. If the number argument is omitted, it

defaults to a value of 1.

Usage notes

1. The step subcommand can be run only while the dbx debug program is

running.

2. If the $hold_next variable is defined, dbx holds all threads except the focus

thread during a step subcommand. Then dbx unholds the threads after the

step subcommand finishes.

dbx: source

220 z/OS V1R9.0 UNIX System Services Command Reference

Examples

1. To continue execution for one source line, enter:

step

2. To continue execution for five source lines, enter:

step 5

Related Information

The cont, goto, next, and stepi subcommands.

stepi subcommand for dbx: Run one or more machine instructions

Format

stepi [number]

Description

The stepi subcommand runs instructions of the program. Specify the number of

instructions to be run in the number argument. If the number argument is omitted, it

defaults to 1.

Usage notes

1. The stepi subcommand can be run only while the dbx debug program is

running.

2. If the $hold_next variable is defined, dbx holds all threads except the focus

thread during a stepi subcommand. Then dbx unholds the threads after the

stepi subcommand finishes.

Examples

1. To continue execution for one machine instruction, enter:

stepi

2. To continue execution for five machine instructions, enter:

stepi 5

Related Information

The gotoi, nexti, and step subcommands.

stop subcommand for dbx: Stop execution of a program

Format

 stop if condition

 stop [variable] at ["filename":]sourceline [if condition]

 stop [variable] in procedure [if condition]

 stop variable [if condition]

Description

The stop subcommand stops execution of the program when certain conditions are

fulfilled. The program is stopped when:

v The condition is true, if the if condition option is used.

v The sourceline line number is reached, if the at sourceline option is used.

v The procedure is called, if the in procedure option is used.

v The variable is changed, if the variable argument is specified.

The dbx debug program associates event numbers with each stop subcommand.

To view these numbers, use the status subcommand. To turn stop off, use the

delete or clear subcommand.

dbx: step

Chapter 2. Shell command descriptions 221

|

|

Options

at [″filename″:]sourceline

Specifies the source line number in either the specified filename or the file

that is currently being debugged. If a specific file name is specified, the

filename must be enclosed with quotation marks and a colon must separate

the ″filename″ from the sourceline. For example:

stop at "myfile":1234

if condition

Specifies the condition, such as true.

in procedure

Specifies the procedure to be called.

Usage Note

The stop subcommand can be run only while the dbx debug program is running.

Examples

1. To stop execution at the first executable statement in the main procedure, enter:

stop in main

2. To stop execution when the value of the x variable is changed on line 12 of the

execution, enter:

stop x at 12

3. To stop execution at a specified line (line 23), when the value of the variable

(myvar) is greater than 2, enter:

stop at 23 if myvar > 2

4. To stop at line 52 only when thread $t2 reaches that line, enter:

stop at 42 if $t2==$current

Related Information

The stopi, delete, clear, and trace subcommands.

stopi subcommand for dbx: Stop at a specified location

Format

 stopi address [if condition]

 stopi [address] at address [if condition]

 stopi [address] in procedure [if condition]

Description

The stopi subcommand sets a stop at the specified location.

v With the ifcondition option, the program stops when the condition is true.

v With the address argument, the program stops when the contents of address

change.

v With the ataddress option, a stop is set at the specified address.

v With the inprocedure option, the program stops when the procedure specified

with the procedure argument is called.

Options

ifcondition

Specifies the condition, such as true.

inprocedure

Specifies the procedure to be called.

dbx: stop

222 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|
|
|

|

ataddress

Specifies the machine instruction address.

Usage Note

The stopi subcommand can be run only while the dbx debug program is running.

Examples

1. To stop execution at address 0X100020F0, enter:

stopi at 0x100020f0

2. To stop execution when the contents of address 0X100020F0 change, enter:

stopi 0x100020f0

3. To stop at address 0x2d04567 only when thread $t2 reaches that address,

enter:

stopi at 0x2d04567 if $t2=$current

Related Information

The stop subcommand.

thread subcommand for dbx: Display a list of active threads

Format

 thread [number ...]

 thread hold [number ...]

 thread unhold [number ...]

 thread info [number ...]

 thread current [number ...]

 thread activ

 thread async

 thread dead

 thread pcanc

Description

The thread subcommand displays a list of active threads for the application

program. All active threads are listed unless you use the number parameter to

specify the threads you want listed. You can also select threads by their states

using the activ, async, dead, or pcanc options.

You can use the info option to display full information about a thread, and threads

can be held or unheld with the hold or unhold options. The focus thread is

defaulted to the running thread; dbx uses it as the context for normal dbx

subcommands such as register. You can use the current option to switch the dbx

focus thread.

Examples

 1. To display all thread objects, enter:

thread

 2. To display thread objects number 1 and 2, enter:

thread 1 2

 3. To display all active threads, enter:

thread activ

 4. To display all threads in dead state, enter:

thread dead

dbx: stopi

Chapter 2. Shell command descriptions 223

5. To display all threads in async state (that is, threads with a cancelability type of

PTHREAD_INTR_ASYNCHRONOUS) that are waiting to be scheduled), enter:

thread async

Because this thread was created with the PTATASYNCHRONOUS attribute

and the limit was reached, this thread was queued for execution. For example,

if the thread limit is set to ten and there are 12 threads, two of them will be

shown as async for the dbx thread command.

 6. To display all threads in pcanc state (that is, threads that have been requested

to be canceled by pthread_cancel(), enter:

thread pcanc

 7. To hold all threads, enter:

thread hold

 8. To hold thread number 1 and 4, enter:

thread hold 1 4

 9. To unhold thread number 1 and 4, enter:

thread unhold 1 4

10. To display the focus thread, enter:

thread current

11. To set the focus thread to thread number 1, enter:

thread current 1

12. To get information about thread number 3, enter:

thread info 3

trace subcommand for dbx: Print tracing information

Format

 trace [if condition]

 trace procedure [if condition]

 trace [variable] at sourceline [if condition]

 trace [variable] in procedure [if condition]

 trace sourceline [if condition]

 trace expression at sourceline [if condition]

Description

The trace subcommand prints tracing information for the specified procedure,

function, source line, expression, or variable when the program runs. A condition

can be specified. The dbx debug program associates a number with each trace

subcommand. To view these numbers, use the status subcommand. To turn tracing

off, use the delete subcommand.

Options

atsourceline

Specifies the source line at which to find the expression being traced.

ifcondition

Specifies a condition for the beginning of the trace. The trace begins only

ifcondition is true.

inprocedure

Specifies the procedure in which to find the procedure or variable being

traced.

dbx: thread

224 z/OS V1R9.0 UNIX System Services Command Reference

Usage Note

The trace subcommand can be run only while the dbx debug program is running.

Examples

1. To trace each call to the printf() procedure, enter:

trace printf

2. To trace each execution of line 22 in the hello.c file, enter:

trace "hello.c":22

3. To trace changes to the x variable within the main procedure, enter:

trace x in main

4. To trace at line 52 only when mutex $m1 is not held, enter:

trace at 52 if $m2.lock == 0

Related Information

The tracei subcommand.

tracei subcommand for dbx: Turn on tracing

Format

 tracei [if condition]

 tracei address [at address] [if condition]

 tracei address [in procedure] [if condition]

 tracei expression at address [if condition]

Description

The tracei subcommand turns on tracing when:

v The contents of the storage at the address change, if the address argument is

specified.

v The instruction at the specified address is executed, if the ataddress option is

specified.

v The procedure specified by procedure is active, if the inprocedure option is

included.

v The condition specified by the condition argument is true, if the ifcondition option

is included.

Options

ataddress

Specifies an address. Tracing is enabled when the contents of this address

change.

ifcondition

Specifies a condition, the meeting of which causes tracing to be enabled.

inprocedure

Specifies a procedure. Tracing is enabled when this procedure is active.

Usage Note

The tracei subcommand can be run only while the dbx debug program is running.

Examples

1. To trace each instruction run, enter:

tracei

2. To trace each time the instruction at address 0X100020F0 is run, enter:

tracei at 0x100020f0

dbx: trace

Chapter 2. Shell command descriptions 225

3. To trace each time the contents of memory location 0X20004020 change while

the main procedure is active, enter:

tracei 0x20004020 in main

4. To trace at address 0x2d04567 only when thread $t2 reaches that address,

enter:

tracei at 0x2d04567 if $t2=$current

Related Information

The trace subcommand.

unalias subcommand for dbx: Remove an alias

Format

unalias name

Description

The unalias subcommand removes the alias specified by the name argument.

Usage Note

The unalias subcommand can be run only while the dbx debug program is running.

Example

To remove an alias named printx, enter:

unalias printx

Related Information

The alias subcommand.

unset subcommand for dbx: Delete a variable

Format

unset name

Description

The unset subcommand deletes the dbx debug program variable associated with

the name specified by the name argument.

Usage Note

The unset subcommand can be run only while the dbx debug program is running.

Example

To delete the variable inhibiting the display of floating-point registers, enter:

unset $noflregs

Related Information

The set subcommand.

up subcommand for dbx: Move the current function up the stack

Format

up [count]

dbx: tracei

226 z/OS V1R9.0 UNIX System Services Command Reference

Description

The up subcommand moves the current function up the stack count number of

levels. The current function is used for resolving names. The default for the count

argument is 1.

Usage Note

The up subcommand can be run only while the dbx debug program is running.

Examples

1. To move the current function up the stack two levels, enter:

up 2

2. To display the current function on the stack, enter:

up 0

Related Information

The down subcommand.

use subcommand for dbx: Set the list of directories to be searched

Format

use [directory...]

Description

The use subcommand sets the list of directories to be searched when the dbx

debug program looks for source files. If the use subcommand is specified without

arguments, the current list of directories to be searched is displayed.

If the C primary source is in an MVS data set, the use subcommand can be

specified with a double-slash (//) argument to indicate that the source file be sought

outside the hierarchical file system.

Usage Note

The use subcommand can be run only while the dbx debug program is running.

Examples

1. To change the list of directories to be searched to the working directory, the

parent directory, and /tmp, enter:

use . .. /tmp

2. To change the list of directories to be searched to look for the C source as an

MVS data set, enter:

use //

Related Information

The edit and list subcommands.

whatis subcommand for dbx: Display the type of program components

Format

whatis name

Description

The whatis subcommand displays the declaration of name, where the name

argument designates a variable, procedure, or function name, optionally qualified

with a block name.

dbx: up

Chapter 2. Shell command descriptions 227

Usage notes

1. Variables declared with the const attribute (in your C program) are displayed

without the const attribute.

2. The whatis subcommand can be run only while the dbx debug program is

running.

Examples

1. To display the declaration of the x variable, enter:

whatis x

2. To display the declaration of the main function, enter:

whatis main

3. To display the declaration of the x variable within the main function, enter:

whatis main.x

4. To display the declaration of a specific condition variable, $c1, enter:

whatis $c1

5. To display the declaration of a specific mutex object, $m1, enter:

whatis $m1

6. To display the declaration of a specific thread, $t1, enter:

whatis $t1

where subcommand for dbx: List active procedures and functions

Format

where [>file]

Description

The where subcommand displays a list of active procedures and functions. By

using the >file option, you can redirect the output of this subcommand to the

specified file.

Options

>flag Redirects output to the specified file.

Usage Note

The where subcommand can be run only while the dbx debug program is running.

Example

To display the list of active routines, enter:

where

Related Information

The up and down subcommands.

whereis subcommand for dbx: Display the full qualifications of

symbols

Format

whereis identifier

dbx: whatis

228 z/OS V1R9.0 UNIX System Services Command Reference

Description

The whereis subcommand displays the full qualifications of all the symbols whose

names match the specified identifier. The order in which the symbols print is not

significant.

Usage Note

The whereis subcommand can be run only while the dbx debug program is

running.

Example

To display the qualified names of all symbols named x, enter:

whereis x

Related Information

The which subcommand.

which subcommand for dbx: Display the full qualification of an

identifier

Format

which identifier

Description

The which subcommand displays the full qualification of the given identifier. The full

qualification consists of a list of the outer blocks with which the identifier is

associated.

Usage Note

The which subcommand can be run only while the dbx debug program is running.

Example

To display the full qualification of the x symbol, enter:

which x

Related Information

The whereis subcommand.

dd — Convert and copy a file

Format

dd [bs=size] [cbs=size] [conv=conversion] [count=n] [ibs=size] [if=file]

[imsg=string] [iseek=n] [obs=s] [of=file] [omsg=string] [seek=n] [skip=n]>

Description

dd reads and writes data by blocks. It can convert data between formats. It is

frequently used for such devices as tapes that have discrete block sizes, or for fast

multisector reads from disks. dd performs conversions to accommodate

nonprogrammable terminals, which require deblocking, conversion to and from

EBCDIC, and fixed-length records.

dd processes the input data as follows:

1. dd reads an input block.

dbx: whereis

Chapter 2. Shell command descriptions 229

2. If this input block is smaller than the specified input block size, dd pads it to the

specified size with null bytes. When you also specify a block or unblock

conversion, dd uses spaces instead of null bytes.

3. If you specified bs=s and requested no conversion other than sync or noerror,

dd writes the padded (if necessary) input block to the output as a single block

and omits the remaining steps.

4. If you specified the swab conversion, dd swaps each pair of input bytes. If there

is an odd number of input bytes, dd does not attempt to swap the last byte.

5. dd performs all remaining conversions on the input data independently of the

input block boundaries. A fixed-length input or output record may span these

boundaries.

6. dd gathers the converted data into output blocks of the specified size. When dd

reaches the end of the input, it writes the remaining output as a block (without

padding if conv=sync is not specified). As a result, the final output block may be

shorter than the output block size.

Options

bs=size

Sets both input and output block sizes to size bytes. You can suffix this

decimal number with w, b, k, or x number, to multiply it by 2, 512, 1024, or

number, respectively. You can also specify size as two decimal numbers

(with or without suffixes) separated by x to indicate the product of the two

values. Processing is faster when ibs and obs are equal, since this avoids

buffer copying. The default block size is 1B. bs=size supersedes any

settings of ibs=size or obs=size.

 If you specify bs=size and you request no other conversions than noerror,

notrunc, or sync, dd writes the data from each input block as a separate

output block; if the input data is less than a full block and you did not

request sync conversion, the output block is the same size as the input

block.

cbs=size

Sets the size of the conversion buffer used by various conv options.

conv=conversion[, conversion, ...]

conversion can be any one of the following:

ascii Converts EBCDIC input to ASCII for output; it is provided for

compatibility purposes only.

 To copy a file and convert between a shell code page and ASCII,

use iconv, not dd.

block Converts variable-length records to fixed-length records. dd treats

the input data as a sequence of variable-length records (each

terminated by a newline or an EOF character) independent of the

block boundaries. dd converts each input record by first removing

any newline characters and then padding (with spaces) or

truncating the record to the size of the conversion buffer. dd reports

the number of truncated records on standard error (stderr). You

must specify cbs=size with this conversion.

Note: When working with doublebyte characters, dd truncates the

record after the last complete doublebyte character that will

fit in the conversion buffer. dd then pads the record with

spaces if it is shorter than the conversion buffer size.

dd

230 z/OS V1R9.0 UNIX System Services Command Reference

convfile

Uses convfile as a translation table if it is not one of the

conversion formats listed here and it is the name of a file of exactly

256 bytes.

 You can perform multiple conversions at the same time by

separating arguments to conv with commas; however, some

conversions are mutually exclusive (for example, ucase and lcase).

Notes:

1. When you specify one or more of the character set conversions

(ascii, ebcdic, ibm, or convfile), dd assumes that all

characters are singlebyte characters, regardless of the locale.

Do not use these conversions with doublebyte character sets.

2. When working with DBCS text, dd treats the input and output

files as character strings and handles DBCS characters

correctly (no splitting and retaining of proper shift states). This

happens only if any of the conversion options (block, unblock,

ucase, or lcase) are specified. Otherwise, DBCS strings can be

corrupted with the seek, count, or iseek processing.

ebcdic

Converts ASCII input to EBCDIC for output; it is provided for

compatibility purposes only.

 To copy a file and convert between a shell code page and ASCII,

use iconv, not dd.

ibm Like ebcdic, converts ASCII to EBCDIC; it is provided for

compatibility purposes only.

 To copy a file and convert between code page 01047 (used in the

z/OS shell) and ASCII, use iconv, not dd.

lcase Converts uppercase input to lowercase.

noerror

Ignores errors on input.

notrunc

Does not truncate the output file. dd preserves blocks in the output

file that it does not explicitly write to.

swab Swaps the order of every pair of input bytes. If the current input

record has an odd number of bytes, this conversion does not

attempt to swap the last byte of the record.

sync Specifies that dd is to pad any input block shorter than ibs to that

size with NUL bytes before conversion and output. If you also

specified block or unblock, dd uses spaces instead of null bytes for

padding.

ucase Converts lowercase input to uppercase.

unblock

Converts fixed-length records to variable-length records by reading

a number of bytes equal to the size of the conversion buffer,

deleting all trailing spaces, and appending a newline character. You

must specify cbs=size with this conversion.

count=n

Copies only n input blocks to the output.

dd

Chapter 2. Shell command descriptions 231

ibs=size

Sets the input block size in bytes. You specify it in the same way as with

the bs option.

if=file Reads input data from file. If you don’t specify this option, dd reads data

from standard input (stdin).

imsg=string

Displays string when all data has been read from the current volume,

replacing all occurrences of %d in string with the number of the next volume

to be read. dd then reads and discards a line from the controlling terminal.

iseek=n

seeks to the nth block of the input file. The distinction between this and the

skip option is that iseek does not read the discarded data. There are some

devices, however, such as tape drives and communication lines, on which

seeking is not possible, so only skip is appropriate.

obs=size

Sets the output block size in bytes. You specify it in the same way as the

bs value. The size of the destination should be a multiple of the value

chosen for size. For example, if you choose obs=10K, the destination’s size

should be a multiple of 10K.

of=file Writes output data to file. If you don’t specify this option, dd writes data to

standard output (stdout). dd truncates the output file before writing to it,

unless you specified the seek=n operand. If you specify seek=n, but do not

specify conv=notrunc, dd preserves only those blocks in the output file over

which it seeks. If the size of the seek plus the size of the input file is less

than the size of the output file, this can result in a shortened output file.

omsg=string

Displays string when dd runs out of room while writing to the current

volume. Any occurrences of %d in string are replaced with the number of the

next volume to be written. dd then reads and discards a line from the

controlling terminal.

seek=n

Initially seeks to the nth block of the output file.

Note: Use caution when working with DBCS characters and the seek

option. Seeking into the output file that contains DBCS characters

can cause the DBCS string in the output file to be corrupted. Be sure

that the seek count is not aligned with an existing DBCS string in the

output file. Otherwise, part of the existing DBCS string either is

written over with singlebyte data or has extra shift codes from the

input file’s DBCS data.

skip=n

Reads and discards the first n blocks of input.

Example

Entering:

dd if=in of=out conv=ascii cbs=80 ibs=6400 obs=512

converts 80-byte fixed-length EBCDIC card images in 6400-byte input blocks to

variable-length ASCII lines, 512 bytes to the output block.

dd

232 z/OS V1R9.0 UNIX System Services Command Reference

Localization

dd uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v I/O errors on read/write

v Incorrect command-line option

v Incorrect arguments to a conversion

2 Failure resulting in a usage message such as:

v An option that should contain = does not

v Unknown or incorrect command-line option

Messages

Possible error messages include:

badly formed number number

A value specified as a number (for example, a block size) does not have

the form of a number as recognized by dd. For example, you may have

followed the number with a letter that dd does not recognize as a block-size

unit (w, b, k).

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The conv=convfile, iseek, imsg, and omsg options plus the w suffix described in

the bs= option are all extensions of the POSIX standard.

Related Information

cp, cpio, iconv, mv, tr

df — Display the amount of free space in the file system

Format

df [–kPStv][filename] ...

Description

df shows the amount of free space left on a file system. Space can have the

following values:

Space Used

Total amount of space allocated to existing files in the file system.

dd

Chapter 2. Shell command descriptions 233

Space Free

Total amount of space available in file system for the creation of new files

by unprivileged users.

Space Reserved

Space reserved by the system which is not normally available to a user.

Total Space

Includes space used, space free, and space reserved.

df measures space in units of 512-byte disk sectors. You can specify a particular

file system by naming any filename on that file system. If you do not give an

argument, df reports space for all mounted file systems known to the system, in the

following format:

v File system root

v File system name

v Space available and total space

The total space reported is the space in the already allocated extents (primary

and any already allocated secondary extents) of the data set that holds this file

system. Therefore, the total space may increase as new extents are allocated.

v Number of free files (inodes).

This number is only meaningful for file systems created using DFSMS 1.3.0 and

later. For file systems created with earlier versions of DFSMS, this number will

always be 4 294 967 295.

v File system status

Tips: For zFS file systems, the df command might not provide sufficient information

to indicate whether a file system is running out of space. For complete information

about zFS space usage, use the zfsadm aggrinfo -long command. See z/OS

Distributed File Service System z File System Administration for more information.

Options

–k Uses 1024-byte (1KB) units instead of the default 512-byte units when

reporting space information.

–P Lists complete information on space used, in the following order:

v File system name

v Total space

v Space used

v Space free

v Percentage of space used

v File system root

–S Display SMF accounting fields.

–t Display total allocated file slots, in addition to the total number of free files

that are already displayed.

–v Lists more detailed information on the file system status.

v File system root

v File system name

v Space available and total space

v Number of free files (inodes)

v File system status

v File system type, mode bits and device number

v File system mount parm data

df

234 z/OS V1R9.0 UNIX System Services Command Reference

v File system mount tag value

v Whether ACLs are supported by the security product and file system.

v Aggregate Name, if one exists

v File system ID issuing a quiesce request

For systems in a shared file system environment, the following additional

fields are displayed:

v File system ID (owner/mounted file system server)

v File system automove status (yes-Y, no-N, include-I, exclude-E or

unmount-U)

v File system client status

v System list and Include/Exclude indicator, if system list exists

Example

If you issue a df –v on a file system whose owner is participating in shared file

system, status information such as the following will be displayed:

Mounted on Filesystem Avail/Total Files Status

/u/billyjc (OMVS.ZFS.BILLYJC) 365824/3165120 4294924769 Available

ZFS, Read/Write, Device: 17,ACLS=Y, No SUID, Exported, No Security

FSFULL(90,1)

File System owner: AQFT Automove=E Client=N

System List (Exclude): sysname1 sysname2 sysnameN

Quiesce Owner : AQTS Quiesce Jobname : MEGA Quiesce PID: 16777321

Filetag : T=on codeset=ISO8859-1

Aggregate Name: POSIX.ZFS.ETC

Localization

df uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to access filename

v Inability to access device

v device is not a device
2 Incorrect command-line option

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information

du, ls

diff — Compare two text files and show the differences

Format

diff [–befHhimnrsw] [–C n] [–c[n]] [–Difname] path1 path2

df

Chapter 2. Shell command descriptions 235

Description

The diff command attempts to determine the minimal set of changes needed to

convert a file whose name is specified by the path1 argument into the file specified

by the path2 argument.

Input files must be text files. If either (but only one) filename is –, diff uses a copy

of the standard input (stdin) for that file. If exactly one of path1 or path2 is a

directory, diff uses a file in that directory with the same name as the other filename.

If both are directories, diff compares files with the same filenames under the two

directories; however, it does not compare files in subdirectories unless you specify

the –r option. When comparing two directories, diff does not compare character

special files, or FIFO special files with any other files.

By default, output consists of descriptions of the changes in a style like that of the

ed text editor. A line indicating the type of change is given. The three types are a

(append), d (delete), and c (change). The output is symmetric: A delete in path1 is

the counterpart of an append in path2. diff prefixes each operation with a line

number (or range) in path1 and suffixes each with a line number (or range) in

path2. After the line giving the type of change, diff displays the deleted or added

lines, prefixing lines from path1 with < and lines from path2 with >.

Options

Options that control the output or style of file comparison are:

–b Ignores trailing blanks and tabs and considers adjacent groups of blanks

and tabs elsewhere in input lines to be equivalent.

 For example, if one file contained a string of three spaces and a tab at a

given location while the other file contained a string of two spaces at the

same location, diff would not report this as a difference.

–C n Shows n lines of context before and after each change. diff marks lines

removed from path1 with –, lines added to path2 with +, and lines changed

in both files with !.

–c[n] Is equivalent to –Cn, but n is optional. The default value for n is 3. diff

marks lines removed from path1 with –, lines added to path2 with +, and

lines changed in both files with !.

–Difname

Displays output that is the appropriate input to the C preprocessor to

generate the contents of path2 when ifname is defined, and the contents of

path1 when ifname is not defined.

–e Writes out a script of commands for the ed text editor, which converts path1

to path2. diff sends the output to the standard output (stdout).

–f Writes a script to stdout (but it will be in a form not suitable for use with the

ed editor) showing the modifications necessary to convert path1 to path2 in

the reverse order of that produced by the –e option. The commands

produced will be reversed from that produced by –e, and the line number

ranges will be separated by spaces, rather than commas. This option

conflicts with the –m option.

–H Uses the half-hearted (–h) algorithm only if the normal algorithm runs out of

system resources.

–h Uses a fast, half-hearted algorithm instead of the normal diff algorithm. This

diff

236 z/OS V1R9.0 UNIX System Services Command Reference

algorithm can handle arbitrarily large files; however, it is not particularly

good at finding a minimal set of differences in files with many differences.

–i Ignores the case of letters when doing the comparison.

–m Produces the contents of path2 with extra formatter request lines

interspersed to show which lines were added (those with vertical bars in the

right margin) and deleted (indicated by a * in the right margin).

–M Is an IBM internal option and is not supported.

–n Is an IBM internal option and is not supported.

–N Is an IBM internal option and is not supported.

–r Compares corresponding files under the directories, and recursively

compares corresponding files under corresponding subdirectories under the

directories. You can use this option when you specify two directory names

on the command line.

–s Compares two directories, file by file, and prints messages for identical files

between the two directories.

–w Ignores white space when making the comparison.

Examples

The following example illustrates the effect of the –c option on the output of the diff

command. The following two files, price1 and price2, are compared with and

without the use of the –c option.

The contents of price1 are as follows:

Company X Price List:

$ 0.39 -- Package of Groat Clusters

$ 5.00 -- Candy Apple Sampler Pack

$ 12.00 -- Box of Crunchy Frog Chocolates

$ 15.99 -- Instant Rain (Just Add Water)

$ 20.00 -- Asparagus Firmness Meter

$ 25.00 -- Package of Seeds for 35 Herbs

$ 30.00 -- Child’s Riding Hood (Red)

$ 35.00 -- Genuine Placebos

$ 45.00 -- Case of Simulated Soy Bean Oil

$ 75.88 -- No-Name Contact Lenses

$ 99.99 -- Kiddie Destructo-Bot

$125.00 -- Emperor’s New Clothes

The contents of price2 are as follows:

Company X Price List:

$ 0.39 -- Package of Groat Clusters

$ 5.49 -- Candy Apple Sampler Pack

$ 12.00 -- Box of Crunchy Frog Chocolates

$ 15.99 -- Instant Rain (Just Add Water)

$ 17.00 -- Simulated Naugahyde cleaner

$ 20.00 -- Asparagus Firmness Meter

$ 25.00 -- Package of Seeds for 35 Herbs

$ 30.00 -- Child’s Riding Hood (Red)

$ 35.00 -- Genuine Placebos

$ 45.00 -- Case of Simulated Soy Bean Oil

$ 75.88 -- No-Name Contact Lenses

$ 99.99 -- Kiddie Destructo-Bot

The command:

diff price1 price2

diff

Chapter 2. Shell command descriptions 237

results in the following output:

3c3

< $ 5.00 -- Candy Apple Sampler Pack

> $ 5.49 -- Candy Apple Sampler Pack

5a6

> $ 17.00 -- Simulated Naugahyde cleaner

13d13

< $125.00 -- Emperor’s New Clothes

The addition of the –c option, as in:

diff -c price1 price2

results in the following output:

*** price1 Wed Oct 1 13:59:18 1997

--- price2 Wed Oct 1 14:03:36 1997

*** 1,8 ****

Company X Price List:

 $ 0.39 -- Package of Groat Clusters

! $ 5.00 -- Candy Apple Sampler Pack

 $ 12.00 -- Box of Crunchy Frog Chocolates

 $ 15.99 -- Instant Rain (Just Add Water)

 $ 20.00 -- Asparagus Firmness Meter

 $ 25.00 -- Package of Seeds for 35 Herbs

 $ 30.00 -- Child’s Riding Hood (Red)

--- 1,9 ----

 Company X Price List:

 $ 0.39 -- Package of Groat Clusters

! $ 5.49 -- Candy Apple Sampler Pack

 $ 12.00 -- Box of Crunchy Frog Chocolates

 $ 15.99 -- Instant Rain (Just Add Water)

+ $ 17.00 -- Simulated Naugahyde cleaner

 $ 20.00 -- Asparagus Firmness Meter

 $ 25.00 -- Package of Seeds for 35 Herbs

 $ 30.00 -- Child’s Riding Hood (Red)

*** 10,13 ****

 $ 45.00 -- Case of Simulated Soy Bean Oil

 $ 75.88 -- No-Name Contact Lenses

 $ 99.99 -- Kiddie Destructo-Bot

- $125.00 -- Emperor’s New Clothes

--- 11,13 ----

diff –c marks lines removed from price1 with –, lines added to price1 with + and

lines changed in both files with !. In the example, diff shows the default three lines

of context around each changed line. One line was changed in both files (marked

with !), one line was added to price1 (marked with +), and one line was removed

from price1 (marked with –).

Note: If there are no marks to be shown in the corresponding lines of the file being

compared, the lines are not displayed. Lines 11 to 13 of price2 are

suppressed for this reason.

Localization

diff uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

diff

238 z/OS V1R9.0 UNIX System Services Command Reference

v LC_MESSAGES

v LC_TIME

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 No differences between the files compared.

1 diff compared the files and found them to be different.

2 Failure due to any of the following:

v Incorrect command-line argument

v Inability to find one of the input files

v Out of memory

v Read error on one of the input files

4 At least one of the files is a binary file containing embedded NUL (\0) bytes

or newlines that are more than LINE_MAX bytes apart.

Messages

Possible error messages include:

file filename: no such file or directory

The specified filename does not exist. filename was either typed explicitly,

or generated by diff from the directory of one file argument and the

basename of the other.

Files file1 and file2 are identical

The –s option was specified and the two named files are identical.

Common subdirectories: name and name

This message appears when diff is comparing the contents of directories,

but you have not specified –r. When diff discovers two subdirectories with

the same name, it reports that the directories exist, but it does not try to

compare the contents of the two directories.

Insufficient memory (try diff –h)

diff ran out of memory for generating the data structures used in the file

differencing algorithm. (See “Limits” on page 240.) The –h option of diff can

handle any size file without running out of memory.

Internal error—cannot create temporary file

diff was unable to create a working file that it needed. Ensure that you

either have a directory /tmp or that the environment contains a variable

TMPDIR, which names a directory where diff can store temporary files.

Also, ensure that there is sufficient file space in this directory.

Missing ifdef symbol after -D

You did not specify a conditional label on the command line after the –D

option.

Only one file may be –

Of the two input files normally found on the command line of diff, only one

can be the standard input (stdin).

Too many lines in filename

A file of more than the maximum number of lines (see “Limits” on page 240)

was given to diff.

diff

Chapter 2. Shell command descriptions 239

Limits

The longest input line is 1024 bytes. Except under –h, files are limited to INT_MAX

lines. INT_MAX is defined in limits.h.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –D, –f, –H, –h, –i, –m, –s, and –w options, and the n argument to the –c

option, are extensions of the POSIX standard.

Related Information

cmp, comm, patch

J. W. Hunt and M. D. McIlroy, An Algorithm for Differential File Comparison, Report

41, from Computing Science, Bell Laboratories, Murray Hill, NJ 07974, (June 1976),

9 pages.

dircmp — Compare directories

Format

dircmp [–d] [–s] [–wn] dir1 dir2

Note: The dircmp utility is fully supported for compatibility with older UNIX

systems. However, it is recommended that diff –r be used instead because it

may provide greater functionality and is considered the standard for portable

UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description

dircmp examines dir1 and dir2 and generates listings about the contents of the

directories. Listings of files that are unique to each directory are generated for all

the options. If no option is entered, a list is output indicating whether the filenames

common to both directories have the same contents.

Options

–d Compare the contents of files with the same name in both directories and

output a list telling what must be changed in the two files to bring them into

agreement. The list format is described in diff.

–s Suppress messages about identical files.

–wn Change the width of the output line to n characters. The default width is 72.

Localization

dircmp uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

diff

240 z/OS V1R9.0 UNIX System Services Command Reference

Related Information

cmp, diff

dirname — Return the directory components of a pathname

Format

dirname pathname

Description

dirname deletes the trailing part of a filename. The result is the pathname of the

directory that contains the file. This is useful in shell scripts. dirname does not try

to validate the pathname. For validation, use pathchk.

dirname follows these rules:

1. If pathname is //, return it.

2. Otherwise, if it is all slashes, return one slash.

3. Otherwise, remove all trailing slashes.

4. If there are no slashes remaining in pathname, return period (.).

5. Otherwise, remove trailing nonslash characters.

6. If the remaining string is //, return it.

7. Otherwise, remove any trailing slashes.

8. If the resulting string is empty, return period (.).

9. Otherwise, return the resulting string.

Examples

The command:

dirname src/lib/printf.c

produces:

src/lib

Localization

dirname uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failed

2 Unknown command-line option

Portablity

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

basename, pathchk

dircmp

Chapter 2. Shell command descriptions 241

. (dot) — Run a shell file in the current environment

Format

. file [argument ...]

Description

. (dot) runs a shell script in the current environment and then returns. Normally, the

shell runs a command file in a child shell so that changes to the environment by

such commands as cd, set, and trap are local to the command file. The . (dot)

command circumvents this feature.

If there are slashes in the filename, . (dot) looks for the named file. If there are no

slashes . (dot) searches for file in the directories specified in the PATH variable.

This may surprise some people when they use dot to run a file in the working

directory, but their search rules are not set up to look at the working directory. As a

result, the shell doesn’t find the shell file. If you have this problem, you can use:

 . ./file

This indicates that the shell file you want to run is in the working directory. Also, the

file need not be executable, even if it is looked for on the PATH. If you specify an

argument list argument ..., . (dot) sets the positional parameters to the arguments

while running the shell script, then restores the invoker’s positional parameters. If

no argument list is specified, the shell script has the same positional parameters as

the invoker. Any changes made to the positional parameters (e.g. by the set

command) in the shell script remain in effect when the . (dot) command ends.

Usage notes

1. . (dot) is a special built-in shell command.

2. The file specified is treated as a shell script containing shell commands. Files

which are not shell scripts (e.g. REXX execs, executable programs) should not

be specified as file.

Localization

. (dot) uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

1 The path search failed

2 Failure because of an incorrect command-line option

 Otherwise, the exit status is the exit status of the last command run from the script.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

. (dot)

242 z/OS V1R9.0 UNIX System Services Command Reference

Related Information

cd, set, sh, trap

dspcat — Display all or part of a message catalog

Format

dspcat [–gt] CatalogName [SetNumber [MessageNumber]]

Description

dspcat displays a particular message, all of the messages in a set, or all of the

messages in a catalog. Messages are displayed as they are specified in the

message catalog; no substitution of variables takes place.

It directs the messages to standard output (stdout).

It has the following parameters:

v The CatalogName parameter specifies a message catalog.

v The SetNumber parameter specifies a set in the catalog specified by the

CatalogName parameter. If you specify a nonexistent SetNumber value, all

messages in the catalog are displayed.

v The MessageNumber parameter specifies a particular message in the set

specified by the SetNumber parameter.

If you include all three parameters, dspcat displays a particular message. If you do

not include the MessageNumber parameter, or if the MessageNumber value is in

error, all the messages in the set are displayed. If you specify only the

CatalogName parameter, all the messages in the catalog are displayed. You must

include the SetNumber parameter if you include the MessageNumber parameter.

Use the NLSPATH environment variable to find the specified message catalog if

slash (/) characters are not used in the value of the CatalogName parameter.

Options

–g Formats the output so it can be used as input to the gencat command. The

MessageNumber parameter is not valid when –g is specified.

–t Displays the timestamp of the message catalog.

Examples

To display message number 2 in set number 1 of test.cat, enter:

dspcat test.cat 1 2

dspmsg — Display selected messages from message catalogs

Format

dspmsg [–d] [–s SetNumber] CatalogName MessageNumber

[’DefaultMessage’[Arguments]]

Description

dspmsg displays either the text of a particular message from a message catalog

generated with the gencat command or, if the message cannot be retrieved, a

. (dot)

Chapter 2. Shell command descriptions 243

default message supplied as a parameter to the command. dspmsg directs the

message to standard output. This command is intended for use in shell scripts as a

replacement for the echo command.

The NLSPATH environment variable and the LANG category are used to find the

specified message catalog if / (slash) characters are not used in the value of the

CatalogName parameter. If the catalog named by the CatalogName parameter is

not found or if the message named by the MessageNumber parameter (and

optional SetNumber value) is not found, then the supplied DefaultMessage value

is displayed. If a DefaultMessage value is not specified, a system-generated error

message is displayed.

dspmsg allows up to ten string arguments to be substituted into the message if it

contains the %s or %n$s, fprintf() conversion specification. Only string variables are

allowed. If arguments are specified, then a DefaultMessage must also be specified.

Missing arguments for conversion specifications result in a dspmsg error message.

Normal fprintf() subroutine control character escape codes (for example, –n) are

recognized.

Options

–d If you are receiving the default message, use this option to request

debugging information on why dspmsg cannot get the message from the

message catalog.

–s SetNumber

Specifies an optional set number. The default value for the SetNumber

variable is 1.

Examples

To display set number 1, message number 2 of the test.cat catalog, enter:

dspmsg –s 1 test.cat 2 ’message %s not found’ 2

If the message is not found, message 2 not found is displayed.

du — Summarize usage of file space

Format

du [–a|–s[–krtx] [pathname ...]

Description

du reports the amount of file space used by the files indicated by the given

pathname. If the pathname is a directory, du reports the total amount of file space

used by all files in that directory and in each subdirectory in its hierarchy. If you do

not specify a pathname, du assumes the current directory. Files with multiple links

are only counted once. On systems supporting symbolic links, only the disk space

used by the symbolic link is counted.

du measures file space in 512-byte units.

Options

–a Generates a report for all files in pathname.

dspmsg

244 z/OS V1R9.0 UNIX System Services Command Reference

–k Displays file sizes in 1024-byte (1KB) units.

–r Reports files that cannot be opened and directories that cannot be read;

this is the default.

–s Does not display file size totals for subdirectories.

–t Displays the total amount of space used by all pathnames examined.

–x Displays file sizes for only those files contained on the same device as

pathname.

Usage notes

du computes file space in units of 512 bytes. The actual disk space used by files

and directories may be more, since some systems allocate space in units of some

multiple of a sector. On UNIX System V, it is usually two sectors; on UNIX Version

7, it is one sector.

The allocation unit is file system specific.

Localization

du uses the following localization variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Incorrect command-line option

v Cannot access a directory

v Cannot read a directory

v Cannot access file information

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The –t option is an extension to the POSIX standard.

Related Information

df, find, ls

echo — Write arguments to standard output

Format

echo argument ...

tcsh shell: echo [-n] word ...

du

Chapter 2. Shell command descriptions 245

Description

echo writes its arguments, specified with the argument argument, to standard

output. echo accepts these C-style escape sequences:

\a Bell

\b Backspace

\c Removes any following characters, including \n and \r.

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\0num The byte with the numeric value specified by the zero to three-digit octal

num.

\– Backslash

echo follows the final argument with a newline unless it finds \c in the arguments.

Arguments are subject to standard argument manipulation.

echo in the tcsh shell

In the tcsh shell, echo writes each word to the shell’s standard output, separated by

spaces and terminated with a newline.

tcsh echo accepts these C-style escape sequences:

\a Bell

\b Backspace

\e Escape

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\nnn The EBCDIC character corresponding to the octal number nnn

See “tcsh — Invoke a C shell” on page 626.

Examples

1. One important use of echo is to expand filenames on the command line, as in:

echo *.[ch]

This displays the names of all files with names ending in .c or .h—typically C

source and include (header) files. echo displays the names on a single line. If

there are no filenames in the working directory that end in .c or .h, echo simply

displays the string *.[ch].

2. echo is also convenient for passing small amounts of input to a filter or a file:

echo 'this is\nreal handy' > testfile

Usage Note

echo is a built-in shell command.

Localization

echo uses the following localization environment variables:

v LANG

v LC_ALL

echo

246 z/OS V1R9.0 UNIX System Services Command Reference

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Value

echo always returns the following exit status value:

0 Successful completion

Portability

POSIX.2, X/Open Portability Guide, UNIX System V.

The POSIX.2 standard does not include escape sequences, so a strictly conforming

application cannot use them. printf is suggested as a replacement.

Related Information

sh, tcsh

ed — Use the ed line-oriented text editor

Format

ed [–bs] [–p prompt] [file]

Description

ed is a line-oriented text editor that lets you manipulate text files interactively. ed

reads the text of a file into memory and stores it in an area called a buffer. Various

subcommands let you edit the text in the buffer. You can also write the contents of

the buffer back out to the file, thereby overwriting the old contents of the file.

Options

–b Lets you edit larger files by restricting the amount of memory dedicated to

paging. This frequently makes ed run slower.

–p prompt

Displays the given prompt string prompting you to input a subcommand. By

default, ed does not usually prompt for subcommand input. See the

description of the P subcommand for more on subcommand prompting (see

“Subcommands” on page 249).

–s Puts ed into a quiet mode, in which e, E, r, and w, subcommands do not

display file size counts; the q and e subcommands do not check buffer

modification; and ! is not displayed after calling the shell to run a

subcommand. This mode is particularly useful when you invoke ed from

within a shell script.

 If the optional file argument is present on the command line, ed reads the specified

file into the editor by simulating an efile subcommand.

Addresses

You can prefix subcommands in ed with zero, one, or two addresses. These

addresses let you refer to single lines or ranges of lines in the buffer. You do not

echo

Chapter 2. Shell command descriptions 247

|

need to specify addresses for certain subcommands that use default addresses.

Consult the description for a particular subcommand. You can construct each

address out of the following components:

. The single dot character represents the current line in the buffer. Many

subcommands set the current line; for example the e command sets it to

the last line of the new file being edited.

$ The dollar sign refers to the last line in the buffer.

n The number n refers to the nth line in the buffer.

/regexp/

This searches for a line containing a string that matches the regular

expression, regexp. (For information on regular expressions, see

Appendix F.) The search begins at the line immediately following the current

line. It proceeds forward through the buffer; if ed reaches the end of the

buffer without finding a match, it wraps around to the first line of the buffer

and continues the search. If ed does not find a match, the search ends

when it reaches the original current line. If it does find a match, the address

/regexp/ refers to the first matching line. If you omit regexp, the last used

regular expression becomes the object of the search. You can omit the

trailing /. Within regexp, \/ represents a literal slash and not the regexp

delimiter.

?regexp?

This is similar to the previous address form, except that the search goes

backward through the buffer. If the search reaches the first line in the buffer

without finding a match, ed wraps around and continues searching

backward from the last line in the buffer. If you omit regexp, the last used

regular expression becomes the object of the search. You can omit the

trailing ?. Within regexp, \? represents a literal question mark and not the

regexp delimiter.

'l The address is the line marked with the mark name l. The name l must be

a lowercase letter set by the k subcommand.

You can combine these basic addresses with numbers using the + and – operators,

with the usual interpretation. Missing left operands default to . (dot); missing right

operands default to 1. Missing right operands also have a cumulative effect; so an

address of – – refers to the current line number less two.

You can specify address ranges in the following ways:

a1,a2 Specifies a range of addresses from address a1 to address a2, inclusive. If

you omit a1 and a2 (that is, the comma alone is specified), this is

equivalent to the range 1,$.

a1;a2 Is similar to the previous form except that ed resets the current line after

calculating the first address, a1, so that the second address, a2, is relative

to a1. If you omit a1 and a2 (that is, the semicolon alone is specified), this

is equivalent to .;$. If you specify only a1 and the command requires both

a1 and a2, the command operates as though you specified a range of:

a1;. command

> Is equivalent to .,.+22 (that is, page forward), except that it never attempts

to address any line beyond $.

< Is equivalent to .–22,. (that is, page backward), except that it never

addresses any line before line 1.

ed

248 z/OS V1R9.0 UNIX System Services Command Reference

|

Subcommands

An ed command has the form [address] command

All commands end with a newline; you must press <Enter>. Most commands allow

only one command on a line, although you can modify commands by appending the

l, n, and p commands.

Subcommands generally take a maximum of zero, one, or two addresses,

depending upon the particular subcommand. In the following descriptions, we show

commands with their default addresses (that is the addresses used when you don’t

specify any addresses) in a form that shows the maximum number of permitted

addresses for the command. In any of the subcommands that take a file argument,

file can be a pathname or:

!command-line

If you use the ! form, ed runs the given command line, reading its standard output

(stdout) or writing its standard input (stdin), depending on whether the ed

command does reading or writing.

If a terminal disconnect is detected:

v If the buffer is not empty and has changed since the last write, the ed utility will

attempt to write a copy of the buffer to a file named ed.hup in the current

directory. If this write fails, ed will attempt to write a copy of the buffer to a

filename ed.hup in the directory named by the HOME environment variable. If

both these attempts fail, ed will exit without saving the buffer.

v The ed utility will not write the file to the currently remembered pathname or

return to command mode, and will terminate with the exit status of 1.

If an end-of-file is detected on standard input:

v If the ed utility is in input mode, ed will terminate input mode and return to

command mode. Any partially entered lines (that is, input text without a

terminating newline) will be saved.

v If the ed utility is in command mode, it will act as if a q command had been

entered.

ed accepts the following subcommands:

.a Appends text after the specified line. Valid addresses range from 0 (text is

placed at the beginning of the buffer, before the first line) to $ (text is placed

after the last line of the buffer). ed reads lines of text from the workstation

until a line consisting solely of an unescaped . (dot) is entered. ed sets the

current-line indicator to the last line appended.

.,.c Changes the addressed range of lines by deleting the lines and then

reading new text in the manner of the a or i subcommands. If the variable

_UNIX03 is set to YES, address 0 is valid for this subcommand and it will

be interpreted as if address 1 were specified.

.,.d Deletes the addressed range of lines. The line after the last line deleted

becomes the new current line. If you delete the last line of the buffer, ed

sets the current line to the new last line. If no lines remain in the buffer, it

sets the current line to 0.

E[file] Is similar to the e command, but ed gives no warning if you have changed

the buffer.

e [file] Replaces the contents of the current buffer with the contents of file. If you

ed

Chapter 2. Shell command descriptions 249

|
|
|

|

|
|
|
|
|

|
|

|

|
|
|

|
|

|
|
|
|

did not specify file, ed uses the remembered filename, if any. In all cases,

the e subcommand sets the remembered filename to the file that it has just

read into the buffer. ed displays a count of the bytes in the file unless it is in

quiet mode. If you have changed the current buffer since the last time its

contents were written, ed warns you if you try to run an e subcommand,

and does not run the subcommand. If you enter the e subcommand a

second time, ed goes ahead and runs the command.

f [file] Changes the remembered filename to file. ed displays the new

remembered filename. If you do not specify file, ed displays the current

remembered filename.

1,$G/regexp/

Is similar to the g command except that when ed finds a line that matches

regexp, it prints the line and waits for you to type in the subcommand to be

run. You cannot use the a, c, i, g, G, v, and V subcommands. If you enter

&, the G subcommand reruns the last subcommand you typed in. If you just

press <Enter>, G does not run any subcommand for that line. Note that the

subcommands input as part of the execution of the G subcommand can

address and affect any lines in the buffer. If the variable _UNIX03 is set to

YES, any line modified by the subcommand will be unmarked.

1,$g/regexp/command

Performs command on all lines that contain strings matching the regular

expression regexp. This subcommand works in two passes. In the first

pass, ed searches the given range of lines and marks all those that contain

strings matching the regular expression regexp. The second pass performs

command on those lines. If the variable _UNIX03 is set to YES, any line

modified by the command will be unmarked. You cannot use !, g, G, V, or v

as command. command consists of one or more ed subcommands, the first

of which must appear on the same line as the g subcommand. All lines of a

multiline command list, except the last, must end with a backslash (\). If

command is empty, ed assumes it to be the p subcommand. If no lines

match regexp, ed does not change the current line number; otherwise, the

current line number is the one set by the last subcommand in command.

Instead of the slash (/) to delimit regexp, you can use any character other

than space or newline.

H Tells ed to display more descriptive messages when errors occur. If ed is

already printing descriptive messages, H returns to terse error messages.

Normally, ed indicates error messages by displaying a ?. When you turn on

descriptive error messages with this subcommand, ed also displays the

descriptive message for the most recent ? message.

h Provides a brief explanation of the last error that occurred. This does not

change the current line number.

.i Works similarly to the a subcommand, except that ed places the text before

the addressed line. Valid addresses range from line 1 to $ (the last line). ed

sets the current line number to the last inserted line. If the variable

_UNIX03 is set to YES, address 0 is valid for this subcommand and it will

be interpreted as if address 1 were specified.

.,.+1j Joins a range of lines into one line. To be precise, the j command removes

all newline characters from the addressed range of lines, except for the last

one. ed sets the current line number to the resulting combined line.

.kx Marks the addressed line with the mark name x, which is any single

lowercase letter of the alphabet. This lets you refer to a marked line with

ed

250 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

the construct 'x. This is called an absolute address, because it always

refers to the same line, regardless of changes to the buffer.

.,.l Displays the addressed range of lines, representing nonprintable (control)

characters in a visible manner. The end of each line will be marked with a

’$’ character. The characters listed in the Base Definitions volume of IEEE

Std 1003.1-2001, Table 5-1, Escape Sequences and Associated Actions (

’\\’, ’\a’, ’\b’, ’\f’, ’\r’, ’\t’, ’\v’) shall be written as the corresponding escape

sequence; the ’\n’ in that table is not applicable. If the variable _UNIX03 is

set to YES,’$’ characters within the text will be written with a preceding

backslash. ed sets the current line to the last line so displayed. You can

append this subcommand to most other commands, to check on the effect

of those subcommands.

.,.ma Moves the addressed lines to the point immediately following the line given

by the address a. The address a must not be in the range of addressed

lines. If address a is 0, ed moves the lines to the beginning of the buffer.

The last line moved becomes the new current line.

.,.n Displays the addressed lines in a way similar to the p command, but ed

puts the line number and a tab character at the beginning of each line. The

last line displayed becomes the new current line. You can append n to any

subcommand (except for E, e, f, Q, r, w, or !) so that you can check on the

effect that the subcommands had.

P Turns on subcommand prompting if it is not already on. If you specified the

–p prompt option on the ed command line, ed displays the prompt string

whenever it is ready for you to type in another subcommand. If you did not

include the –p option, ed uses the * character as a prompt. If subcommand

prompting is currently turned on, issuing the P subcommand turns it off.

.,.p Displays (prints) the addressed lines. The last line displayed becomes the

new current line. You can append p to most subcommands, so that you can

check on the effect that the subcommands had.

 You can append p to any subcommand (except for E, e, f, Q, r, w, or !) so

that you can check on the effect that the subcommands had.

Q Quits unconditionally, without checking for buffer changes.

q Causes the editor to exit. If you have made changes to the buffer since the

last save and you try to quit, ed issues a warning. Entering the q

subcommand again lets you quit, regardless of unsaved changes.

$r [file]

Reads the contents of the file into the buffer after the addressed line. If the

address is 0, ed places the text before the first line in the buffer. If you do

not specify file, ed uses the remembered filename; if no remembered

filename exists, file becomes the new remembered name. If file contains

bytes that are not valid in the current character set, they are replaced by

the rubout character.

 The r subcommand displays the number of bytes read from file unless you

specified the –s option. The last line read from the file becomes the new

current line. If file is replaced by !, the rest of the line is considered a shell

command line, the output of which is to be read.

.,.s/regexp/new/[flags]

Searches the specified range of lines for strings matching the regular

expression regexp. Normally the s subcommand replaces the first such

matching string in each line with the string new. The s subcommand sets

ed

Chapter 2. Shell command descriptions 251

|
|
|
|
|
|
|
|
|
|

the current line to the last line on which a substitution occurred. If ed makes

no such replacements, ed considers it an error.

 flags can be one of the following:

n Replaces the nth matching string in the line instead of the first one.

g Replaces every matching string in each line, not just the first one.

l Displays the new current line in the format of the l subcommand.

n Displays the new current line in the format of the n subcommand.

p Displays the new current line in the format of the p subcommand.

 You can use any single printable character other than space or newline

instead of / to separate parts of the subcommand provided that you use the

same character to delimit all parts of the subcommand. You can omit the

trailing delimiter.

 You can include a newline in the new string by putting a \ immediately in

front of the newline. This is a good way to split a line into two lines. If new

consists only of the % character, s uses the new string from the previous s

command. If the variable _UNIX03=YES is set and there was no previous s

command, the use of % in this manner is an error. If & appears anywhere in

new, ed replaces it with the text matching the regexp. If you want new to

contain a literal ampersand, or percent sign, put a backslash (\) in front of

the & or % character.

.,.ta Copies the addressed lines to the point after the line given by the address

a. The address a must not fall in the range of addressed lines. If address a

is 0, ed copies the lines to the beginning of the buffer. This sets the current

line to the last line copied.

u Rolls back the effect of the last subcommand that changed the buffer. For

the purposes of u, subcommands that change the buffer are: a, c, d, g, G,

i, j, m, r, s, t, v, V, and (of course) u. This means that typing u repeatedly

switches the most recent change back and forth. This subcommand sets

the current line number to the value it had immediately before the

subcommand being undone started.

1,$V/regexp/

Is similar to the G subcommand, except that this subcommand gives you

the chance to edit only those lines that do not match the given regular

expression.

1,$v/regexp/commands

Is similar to the g (global) command, except that ed applies the given

commands only to lines that do not match the given regular expression.

1,$W [file]

Is similar to the w subcommand, except that this command appends data to

the given file if the file already exists.

1,$w [file]

Writes the addressed lines of the buffer to the named file. This does not

change the current line. If you do not provide file, ed uses the remembered

filename; if there is no remembered filename, file becomes the remembered

name. If the output file does not exist, ed creates it. ed displays the number

of characters written unless you had specified the –s option.

X Prompts you to enter an encryption key. All subsequent e, r, and w

subcommands use this key to decrypt or encrypt text read from or written to

files. To turn encryption off, issue an X subcommand and press <Return> in

response to the prompt for an encryption key.

ed

252 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|
|
|
|
|
|

!command

Runs command as if you typed it to your chosen command interpreter. If

command contains the % character, ed replaces it with the current

remembered filename. If you want a subcommand to contain a literal %, put

a backslash (\) in front of the character. As a special case, typing !! reruns

the previous command.

$= Displays the line number of the addressed line. This does not change the

current line.

.= Displays the current line number.

.+1.,.+1

If you supply zero, one, or two addresses without an explicit subcommand,

ed displays the addressed lines in the mode of the last print subcommand:

p, l, or n. This sets the current line number to the last line displayed.

Environment Variables

ed uses the following environment variables:

COLUMNS

Contains the terminal width in columns. ed folds lines at that point. If it is

not set, ed uses the appropriate value from the terminfo database or if that

is not available, it uses a default of 80.

HOME Contains the pathname of your home directory.

SHELL

Contains the full pathname of the current shell.

TMPDIR

The pathname of the directory being used for temporary files. If it is not set,

ed uses /tmp.

_UNIX03

For more information about the effect of _UNIX03 on this command, see

Appendix N, “UNIX shell commands changed for UNIX03,” on page 943.

Files

ed uses the following files:

/tmp/e*

This is the paging file. It holds a copy of the file being edited. You can

change the directory for temporary files using the environment variable

TMPDIR.

ed.hup

When ed receives a hangup signal (or detects a terminal disconnect) and

the current buffer has changed since the last write, ed will attempt to write

the current buffer to ed.hup in the current directory. If this write fails, ed will

attempt to write the current buffer to ed.hup in the $HOME directory.

Localization

ed uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

ed

Chapter 2. Shell command descriptions 253

|
|
|

|
|
|
|

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Addressed line out of range

v Only one filename is allowed

v No space for the line table

v Temporary file error

v Badly constructed regular expression

v No remembered regular expression

v File read error

v Out of memory

v Unknown command

v Command suffix not permitted

v No match found for regular expression

v Wrong number of addresses for the subcommand

v Not enough space after the subcommand

v The name is too long

v Badly formed name

v Subcommand redirection is not permitted

v Restricted shell

v No remembered filename

v The mark name must be lowercase

v The mark name is not defined

v m and t subcommands require a destination address

v The destination cannot straddle source in m and t

v A subcommand not allowed inside g, v, G, or V

v The x subcommand has become X (uppercase)

v The global command is too long

v Write error (no disk space)

2 Usage error

Messages

The error messages are issued only if h or H subcommands are used after ed

displays ?. Possible error messages include:

Destination cannot straddle source in m and t

The range of lines being moved or copied by m or t cannot include the

destination address.

Global command too long

There is a limit on the length of a global instruction (g or v). See Limits for

this limit.

m and t require destination address

You must follow the m or t subcommands with an address indicating where

you want to move or copy text. You omitted this address.

No remembered filename

You tried to run a subcommand that used a remembered filename (for

example, you used w to write without specifying an output filename).

ed

254 z/OS V1R9.0 UNIX System Services Command Reference

However, there is no remembered filename at present. Run the

subcommand again, but specify a filename this time.

Restricted shell

The command line invoked the restricted form of ed, but you tried an action

that was not allowed in the restricted editor (the ! subcommand).

Temporary file error

You ran out of space on disk or encountered other errors involving the page

file stored in the temporary file.

Warning: file not saved

You entered a subcommand to quit editing the current file, for example, q or

e to edit a new file; however, you have changed the file since the last time

you saved it. ed is suggesting that you save the file before you exit it;

otherwise, your recent changes will be lost. To save the file, use the w

command. If you really do not want to save the recent changes, use q to

quit or e to edit a new file.

?file An error occurred during an attempt to open or create file. This is applicable

to the e, r, and w subcommands.

? An unspecified error occurred. Use the h or H subcommand for more

information. If the input to ed comes from a script rather than from a

workstation, ed exits when any error occurs.

Limits

ed allows a limit of 1024 bytes per line and 28 000 lines per file. It does not allow

the NUL ('\0') character. The maximum length of a global command is 256

characters, including newlines.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The addresses < and >, the –b option, and the W and X subcommands are

extensions of the POSIX standard.

Related Information

awk, diff, env, ex, grep, sed, vi

See Appendix C for more information about regexp.

edcmtext — Display errnojr reason code text

Format

edcmtext errnojr_value

Description

edcmtext displays the description and action text for C/C++ run-time library errnojr

(errno2) values. No other values are supported by this command. This command is

intended as an aid for problem determination.

errnojr_value is specified as 8 hexadecimal characters.

ed

Chapter 2. Shell command descriptions 255

|

|

|

|

|
|
|

|

The user can specify one of the following in place of a errnojr value to view a help

dialog: -h, help, ?.

The user can specify the -U option to display the output in uppercase.

Usage notes

errnojr_values are also accepted in mixed case and with hex digits prefixed with the

″0x″.

Message returns

If the user specifies a -h, help or ? in place of the errnojr_value, the following

message is displayed:

 Usage: edcmtext errnojr_value

If no text is available for the errnojr_value the following message is displayed:

 errnojr_value: No information is currently available for this errnojr_value.

If the errnojr_value is not comprised of 1-8 hex digits the following message is

displayed:

Usage: edcmtext errnojr_value

If the errnojr_value is not in the C/C++ run-time library range the following message

is displayed:

Notice: The errnjr_value is not in the C/C++ run-time library range.

If the environment that edcmtext is being run in is not TSO/E or z/OS UNIX the

following message is displayed:

Error: The environment is not TSO/E or z/OS UNIX.

errnojr (errno2) values will be found in z/OS Language Environment Run-Time

Messages.

Examples

The command:

edcmtext C00B0021

produces data displayed in the following format:

JrEdc1opsEinval01: The mode argument passed to fopen() or freopen() did not begin

with r, w, or a.

Action: Correct the mode argument. The first keyword of the mode argument must be

the open mode. Ensure the open mode is specified first and begins with r, w, or a.

Source: edc1opst.c

Exit Values

0 Successful completion

2 Failure due to an argument that is not 1–8 hex digits

8 Bad Input due to an errnojr_value out of the C/C++ run-time range.

14 Environment not TSO/E or z/OS UNIX

>20 Contact IBM due to Internal Error

edcmtext

256 z/OS V1R9.0 UNIX System Services Command Reference

|
|

|

|

|
|

|

|
|

|

|

|

|
|

|

|
|

|

|
|

|

|
|

|

|

|

|

|
|
|
|
|
|
|

|

||

||

||

||

||

egrep — Search a file for a specified pattern

Format

egrep [–bcilnqsvx] [–e pattern] ... [–f patternfile] ... [pattern] [file ...]

Note: The egrep utility is fully supported for compatibility with older UNIX systems.

However, it is recommended that grep –e be used instead because it may

provide greater functionality and is considered the standard for portable

UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description

See grep.

env — Display or set environment variables for a process

Format

 env [–i] [variable=value ...] [command argument ...]

 env [–] [variable=value ...] [command argument ...]

Description

If you enter env with no arguments, it displays the environment variable that it

received from its parent (presumably the shell).

Arguments of the form variable=value let you add new environment variables or

change the value of existing environment variables.

If you specify command, env calls command with the arguments specified with the

argument argument that appear on the command line, passing the accumulated

environment variable to this command. The command is run directly as a program

found in the search PATH, and is not interpreted by a shell.

In a doublebyte locale, environment variable values may contain doublebyte

characters. The equal sign (=) must be singlebyte.

Options

env supports the following two options, both of which have the same effect.

–i Specifies that the environment variable inherited by env not be used.

– Specifies that the environment variable inherited by env not be used.

Examples

Compare the output of the following two examples:

env foo=bar env

env –i foo=bar env

Localization

env uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

egrep

Chapter 2. Shell command descriptions 257

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Not enough memory

v Name is too long

2 Incorrect command-line argument

126 env found command but could not invoke it

127 env was unable to find command

Portability

POSIX.2, X/Open Portability Guide, UNIX System V.

printenv on Berkeley UNIX systems works like env.

Related Information

env, sh

eval — Construct a command by concatenating arguments

Format

eval [argument ...]

tcsh shell: eval argument ...

Description

The shell evaluates each argument as it would for any command. eval then

concatenates the resulting strings, separated by spaces, and evaluates and

executes this string in the current shell environment.

eval in the tcsh shell

In the tcsh shell, eval treats the arguments as input to the shell and executes the

resulting commands in the context of the current shell. This is usually used to

execute commands generated as the result of command or variable substitution,

since parsing occurs before these substitutions. See “tcsh — Invoke a C shell” on

page 626.

Examples

The command:

for a in 1 2 3

do

 eval x$a=fred

done

sets variables x1, x2, and x3 to fred. Then:

echo $x1 $x2 $x3

env

258 z/OS V1R9.0 UNIX System Services Command Reference

produces: fred fred fred

Usage Note

eval is a special built-in shell command.

Localization

eval uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Value

The only possible exit status value is:

0 You specified no arguments or the specified arguments were empty strings

Otherwise, the exit status of eval is the exit status of the command that eval runs.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

exec, sh, tcsh

ex — Use the ex text editor

Format

ex [–eRrsvx] [+ command] [–c command] [–t tag] [–w size] [file ...]

Description

ex is the line-editor mode of the vi text editor.

Options

The ex internal commands are described in vi. It supports the following options:

+command

Begins the editing session by running the specified editor command. To

specify multiple commands, separate them with an “or” bar (|).

–c command

Begins editing by executing the specified editor command. You can specify

multiple commands by separating them with an “or” bar (|). command can

be any ex command except those that enter input mode, such as insert or

append.

–e Invokes ex. This option is intended for use with vi.

–r Lets you recover named files after an editor or system fails. If you don’t

specify a file argument, ex lists all recoverable files and then exits.

–R Sets read-only mode.

eval

Chapter 2. Shell command descriptions 259

–s Suppresses all interactive feedback (quiet mode). This is for batch mode

operation; ex assumes the terminal cannot display text and ignores the

value of TERM. ex also ignores all startup files and ignores the value of

EXINIT.

–t tag Edits the file containing the specified tag and sets the virtual position in the

edit buffer to point of definition for the tag.

–v Invokes vi.

–w size

Sets the option variable window equal to size.

–x Uses encryption.

Localization

ex uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

–x is an extension to the POSIX standard.

Related Information

ed, vi

exec — Run a command and open, close, or copy the file descriptors

Format

exec [–a name] [command_line]

tcsh shell: exec command

Description

The command_line argument for exec specifies a command line for another

command. exec runs this command without creating a new process. Some people

picture this action as overlaying the command on top of the currently running shell.

Thus, when the command exits, control returns to the parent of the shell.

Input and output redirections are valid in command_line. You can change the input

and output descriptors of the shell by giving only input and output redirections in the

command. For example:

exec 2>errors

redirects the standard error stream to errors in all subsequent commands ran by

the shell.

If you do not specify command_line, exec returns a successful exit status.

ex

260 z/OS V1R9.0 UNIX System Services Command Reference

exec in the tcsh shell

In the tcsh shell, exec executes the specified command in place of the currrent

shell. See “tcsh — Invoke a C shell” on page 626.

Option

–a name

The shell passes name as the zero’th argument (argv[0]) to command_line.

–a name can be used to replace the current shell with a new login shell, by

specifying name as a shell with a prefix of a dash (–).

Example

To replace the current shell process with a new login shell (which will run the login

profiles), specify:

exec -a -sh /bin/sh

Usage Note

exec is a special built-in shell command.

Localization

exec uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

If you specify command_line, exec does not return to the shell. Instead, the shell

exits with the exit status of command_line or one of the following exit status values:

1–125 A redirection error occurred.

126 The command in command_line was found, but it was not an executable

utility.

127 The given command_line could not be run because the command could not

be found in the current PATH environment.

If you did not specify command_line, exec returns with an exit value of zero.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

sh, tcsh

exec

Chapter 2. Shell command descriptions 261

exit — Return to the shell’s parent process or to TSO/E

Format

exit [expression]

tcsh shell: exit [expr]

Description

exit ends the shell. If there is an expression, the value of the expression is the exit

status of the shell.

The value of expression should be between 0 and 255. For values outside this

range, the exit status will be the least significant 8 bits of the value of the

expression. The EXIT trap is raised by the exit command, unless exit is being

called from inside an EXIT trap.

If you have a shell background job running, you cannot exit from the shell until it

completes. However, you can switch to subcommand mode and exit.

exit in the tcsh shell

The shell exits either with the value of the specified expression or, without

expression, with the value of the status variable. The value of expression should be

between 0 and 255. See “tcsh — Invoke a C shell” on page 626.

Usage Note

exit is a special built-in shell command.

Localization

exit uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

exit returns the value of the arithmetic expression specified by the expression

argument to the parent process as the exit status of the shell. If you omit

expression, exit returns the exit status of the last command run.

Related Information

return, sh, tcsh

The exit() ANSI C function, the _exit callable service, and the _exit() POSIX C

function are unrelated to the exit shell command.

exit

262 z/OS V1R9.0 UNIX System Services Command Reference

expand — Expand tabs to spaces

Format

 expand [–t tablist] [file ...]

 expand [–number] [–number,number ...] [file ...]

Description

expand reads text input from the files specified on the command line, converts tabs

into spaces, and writes the result to the standard output (stdout). If you do not

specify any files on the command line, expand reads from the standard input

(stdin).

expand preserves backspace characters. By default, tab stops are set every eight

columns. A tab after the last tabstop is replaced by a space.

Options

The first syntax of expand supports the following option:

–t tablist

Sets tab stops at positions indicated by tablist. Numbers in tablist must be

in ascending order (origin 0) and separated by commas or blanks; however,

the list must be one argument so you need shell quoting if you are using

blanks. The list can consist of a single number, in which case tabs are set

every tablist positions apart.

The second syntax of expand (which the POSIX standard considers obsolete)

supports the following options:

–number

Sets tab stops every number columns.

–number,number ...

Sets tab stops at each column number (origin 0).

Localization

expand uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Cannot open the input file

v Insufficient memory

v Incorrect tab stop specification

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, 4.2BSD and higher.

expand

Chapter 2. Shell command descriptions 263

Related Information

pr, unexpand

export — Set a variable for export

Format

 export [name [=value] ...]

 export –p

Description

export marks each variable name so that the current shell makes it automatically

available to the environment of all commands run from that shell. Exported

variables are thus available in the environment to all subsequent commands.

Several commands (for example, cd, date and vi) look at environment variables for

configuration or option information.

Variable assignments of the form name=value assign value to name as well as

marking name for export. The name can contain only the underscore and

alphanumeric characters from the portable character set.

Calling export without arguments lists, with appropriate quoting, the names and

values of all variables in the format Variable=″value″. If you reinput this format to

another shell, variables are assigned appropriately but not exported. The –p option

lists variables in a format suitable for reinput to the shell (see the description of the

–p option).

Option

–p Lists variables in a form that is suitable for reinput to the shell:

export name="value"

Usage Note

export is a special built-in shell command.

Localization

export uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to incorrect command-line argument

2 Failure, usually due to incorrect an incorrect command-line argument, that

results in a usage message

Portability

POSIX.2, X/Open Portability Guide.

expand

264 z/OS V1R9.0 UNIX System Services Command Reference

Assigning a value to name, and the behavior given for calling export with

arguments are extensions of the POSIX standard.

Related Information

cd, date, set, sh, typeset, vi

expr — Evaluate arguments as an expression

Format

expr –W expression

Description

The set of arguments passed to expr constitutes an expression to be evaluated.

Each command argument is a separate token of the expression. expr writes the

result of the expression on the standard output. This command is primarily intended

for arithmetic and string manipulation on shell variables.

expr supports the following operators. Operators explained together have equal

precedence; otherwise, they are in increasing order of precedence. expr stores an

expression as a string and converts it to a number during the operation. If the

context requires a Boolean value, a numeric value of 0 (zero) or a null string ("") is

false, and any other value is true. Numbers have an optional leading sign. If the -W

option is not specified, numbers are decimal. If the -W option is specified,

expressions may contain octal, hexidecimal, or decimal numbers. expr determines

the base of the number as follows:

v Any number that starts with 0x is hex.

v Any number that starts with 0 is octal.

v Any number that does not start with 0x or 0 is decimal.

Numbers are manipulated as long integers.

expr1 | expr2

Results in the value expr1 if expr1 is true; otherwise, it results in the value

of expr2.

expr1 & expr2

Results in the value of expr1 if both expressions are true; otherwise, it

results in 0.

expr1 <= expr2 | expr1 < expr2 | expr1 = expr2 | expr1 != expr2 | expr1 >= expr2 |

expr1 > expr2

If both expr1 and expr2 are numeric, expr compares them as numbers;

otherwise, it compares them as strings. If the comparison is true, the

expression results in 1; otherwise, it results in 0.

expr1 + expr2 | expr1 – expr2

Performs addition or subtraction on the two expressions. If either

expression is not a number, expr exits with an error.

expr1 * expr2 | expr1 / expr2 | expr1 % expr2

Performs multiplication, division, or modulus on the two expressions. If

either expression is not a number, expr exits with an error.

expr1 : re | match expr1 re

matches the regular expression re against expr1 treated as a string. The

regular expression is the same as that accepted by ed, except that the

match is always anchored—that is, there is an implied leading ^. Therefore,

export

Chapter 2. Shell command descriptions 265

expr does not consider ^ to be a metacharacter. If the regular expression

contains \(...\), \) and it matches at least part of expr1, expr results in only

that part; if there is no match, expr results in 0. If the regular expression

doesn’t contain this construct, the result is the number of characters

matched. The function match performs the same operation as the colon

operator.

substr expr1 expr2 expr3

Results in the substring of expr1 starting at position expr2 (origin 1) for the

length of expr3.

index expr1 expr2

Searches for any of the characters in expr2 in expr1 and results in the

offset of any such character (origin 1), or 0 if no such characters are found.

length expr1

Results in the length of expr1.

(expr) Groups expressions.

Option

–W Allows the expression to use hex and octal numbers.

Usage Note

The parser stack depth is limited to 150 levels. Attempting to process extremely

complicated expressions may result in an overflow of this stack, causing an error.

Examples

1. The example

fname=src/fn_abs.c

expr $fname : ’*_\(.*\)\.c’

returns abs.

2. The example

a=`expr $a + 1`

adds 1 to the value of the shell variable a.

Localization

expr uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 The result of expression is true.

1 The result of expression is false.

2 Failure due to any of following:

v Not enough memory.

expr

266 z/OS V1R9.0 UNIX System Services Command Reference

v Command-line syntax error.

v Too few arguments on the command line.

v Incorrect regular expression.

v Regular expression is too complicated.

v Nonnumeric value found where a number was expected.

 Messages

Possible error messages include:

internal tree error

Syntax errors or unusual expression complexity make it impossible for expr

to evaluate an expression. If an expression has syntax errors, correct them;

if not, simplify the expression (perhaps by breaking it into parts).

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

In the shell, let largely supersedes this command.

match, substr, length, and index are not documented on all UNIX systems,

though they do appear to exist. They are extensions of the POSIX standard.

Related Information

ed, let, sh, test

See Appendix C for more information about regexp.

exrecover daemon — Retrieve vi and ex files

Format

 exrecover [–s] [name_file ...]

 exrecover [–v]

Description

The exrecover daemon recovers text files from working files created by vi and ex.

(These working files are in one or more temporary directories.) It is normally

invoked from a system startup file before these working files are purged.

Options

–s Suppresses error messages.

–v Displays the version number of exrecover.

Environment Variables

exrecover uses the following environment variables:

TMP_VI

Contains a directory pathname that can be specified by an administrator as

a location for vi temporary files. This is useful if the current default directory

for these files (usually /tmp) is implemented as a TFS. In this case, all vi

temporary files that the exrecover daemon uses for recovery would be

gone after a system crash.

expr

Chapter 2. Shell command descriptions 267

IBM recommends that this environment variable be set by a system

administrator as opposed to a user setting it for their environment. If the

latter occurs and the user sets the TMP_VI directory to something different

than what exrecover recognizes as TMP_VI, the user will need to run the

exrecover daemon manually to allow the temporary files to be converted to

the recoverable files used by vi (located in /etc/recover/$LOGNAME).

Note: A system administrator should NOT set TMP_VI to

/etc/recover/$LOGNAME. Also, the administrator should not set

TMP_VI to any directory where a pathname component is an

environment variable with a user’s value different than the

initialization process’s value (for example, $HOME). vi temporary

files are converted into a form recoverable by vi when exrecover is

run during IPL. Since exrecover is issued during IPL, it is owned by

the initialization process and will therefore contain different values for

certain environment variables, if those environment variables are set.

Throughout the file system, there may exist some temporary files

that can only be converted by exrecover. This conversion can be

done manually by a system administrator (to recover files owned by

all users) or by a single user (to recover only their own files).

TMPDIR

The default directory. When this environment variable is set, exrecover

looks in this directory for the ex and vi working files.

TMP If TMPDIR is not set, TMP specifies the directory to be searched when

looking for the ex and vi working files.

If both TMPDIR and TMP are not set, exrecover uses the directory that the C/C++

Run-Time Library function tempnam() would use.

Localization

exrecover uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Files

exrecover uses the following files:

/tmp/VIl*

Line table files.

/tmp/VIn*

Name files.

/tmp/VIt*

Paged text files.

/etc/recover

The directory containing subdirectories of user names whose files have

been recovered. Only users with the appropriate privileges, such as the

system administrator, can create the /etc/recover directory.

/etc/recover/$LOGNAME/VIn*

Contains the name of the file that was being edited.

exrecover daemon

268 z/OS V1R9.0 UNIX System Services Command Reference

/etc/recover/$LOGNAME/VIt*

Contains the recovered text of the file that corresponds to the VIn* file

Rule: Using a TFS for vi temporary files will make it impossible to recover vi files

after a system crash. vi writes temporary files to TMP_VI or TMPDIR (or /tmp by

default), and if the system crashes, those files can be recovered by the exrecover

command, which automatically runs from /etc/rc. If the files are written to a TFS,

then they will be wiped out when the system is IPLed. See TMP_VI description

under Environment Variables section of this command.

Usage notes

1. To recover all the files in the temporary directory, this command must be run

with appropriate permissions (for example, superuser privileges) so the

recovered files can be stored in the /etc/recover directory with the appropriate

ownerships and permissions.

For example, the following is a shell script to recover the files from TMPDIR,

where TMPDIR is the default directory:

export TMPDIR=/tmp

exrecover

2. If it is invoked by a nonprivileged user (for example, a user who is not a root

user), then only those files owned by that user are recovered. Because vi and

ex create their working files in directories specified by the TMPDIR or TMP

environment variables, one of these environment variables must be set before

exrecover can be issued.

For example, the following is a shell script that recovers files from $HOME/tmp:

export TMPDIR=$HOME/tmp

exrecover

3. exrecover is also invoked by vi or ex when you issue the ex preserve

command or when exrecover receives a SIGHUP signal. The working files

created by vi and ex are found in a default temporary directory (such as /tmp)

or in the directory specified by the TMPDIR or in the directory specified by the

TMP_VI, TMPDIR, or TMP environment variable. Three working files are

created:

name_file

Contains the actual name of the vi file. The names of all name_files

begin with VIn.

line_table_file

Contains a dummy page followed by data that gives, in line number

order, the offset for each line of text in the corresponding

paged_text_file. The page size is typically 1K, but may vary on some

systems. The names of all line table files begin with VIl.

paged_text_file

Contains lines of text that are at most LINE_MAX bytes in length. Lines

shorter than LINE_MAX byte are ended by a newline. The names of all

paged text files begin with VIt.

4. You can also run the program by specifying name_file on the command line. For

example:

exrecover /tmp/VInaaaa.111 /tmp/VInbbbb.222 ...

exrecover searches for a name_file and tries to open the associated line table

and paged text files. If all these files are found, exrecover builds, from the line

table and paged text files, a text file and stores it in the directory

/etc/recover/$LOGNAME.

exrecover daemon

Chapter 2. Shell command descriptions 269

It also stores a corresponding name_file to identify the file that was recovered

and sends mail, using the mailx utility, to the owner of the file indicating the

date, time, and name of the file recovered. You can retrieve recovered files in

one of the following ways:

vi –r file [issued from a shell command line]

ex –r file [issued from a shell command line]

:recover file [issued from within a vi session]

Each command loads the most recent occurrence of the file recovered from a

system failure or the ex preserve command. If vi successfully loads the file, it

removes the preserved file.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Memory allocation error

v No working files were found

v No /etc/recover directory errors that affect the overall operation of the

exrecover command

v An incomplete set of working files were found

2 Usage error

3 An error occurred while recovering a specific file. Some, but not all, files

were recovered.

Related Information

ex, vi

extattr — Set, reset, and display extended attributes for files

Format

extattr [+alps] [−alps] [-Fformat] file ...

Note: l is a lower case L, not an upper case i.

Description

extattr sets, resets, and displays extended attributes for files.

Extended attributes

The following extended attributes are defined:

a When this attribute is set (+a) on an executable program file (load module),

it behaves as if loaded from an APF-authorized library. For example, if this

program is exec()ed at the job step level and the program is linked with the

AC=1 attribute, the program will be executed as APF-authorized.

 To be able to use the extattr command for the +a option, you must have at

least read access to the BPX.FILEATTR.APF resource in the FACILITY

class profile. For more information about BPX.FILEATTR.APF, see z/OS

UNIX System Services Planning.

l When this attribute is set (+l) on an executable program file (load module),

it will be loaded from the shared library region.

exrecover daemon

270 z/OS V1R9.0 UNIX System Services Command Reference

To be able to use the extattr command for the +l option, you must have at

least read access to the BPX.FILEATTR.SHARELIB resource in the

FACILITY class. For more information about BPX.FILEATTR.SHARELIB,

see z/OS UNIX System Services Planning.

Note: l is a lower case L, not an upper case i.

p When this attribute is set (+p) on an executable program file (load module),

it causes the program to behave as if an RDEFINE had been done for the

load module to the PROGRAM class. When this program is brought into

storage, it does not cause the environment to be marked dirty.

 To be able to use the extattr command for the +p option, you must have at

least read access to the BPX.FILEATTR.PROGCTL resource in the

FACILITY class. For more information about BPX.FILEATTR.PROGCTL ,

see z/OS UNIX System Services Planning.

s When this attribute is not set (–s), the _BPX_SHAREAS=YES and

_BPX_SHAREAS=REUSE environment variable settings are ignored when

the file is spawn()ed. Use of the _BPX_SHAREAS=MUST setting and the

–s option will result in a spawn() failure. By default, this attribute is set (+s)

for all executable files.

Rule: To specify any of these attributes, the user must be the owner of the file or

have superuser authority.

Options

-F format file ...

extattr command will accept the -F option flag with values consistent with

the cp command to indicate the format of the file. The command will set the

file format accordingly.

Note: Setting the file format flag on a file does not modify the data in the

file. The file format can be displayed via ls -H command.

For format you can specify:

NA Not specified

BIN Binary data
NL Newline

CR Carriage return

LF Line feed

CRLF Carriage return followed by line feed

LFCR Line feed followed by carriage return

CRNL Carriage return followed by newline

The format option can be specified in lowercase, uppercase or in mixed

cases. The format option can also be specified with a space or no space

after the file format flag (-F). For example: extattr -FLFcr file

 The file format flag (-F) can be used with other extattr flags (+alps/-alps),

but it must be separated by a space or tab. For example:

 extattr +aps -F BIN file is a valid entry.

 extattr -apsF NA file is not a valid entry.

Examples

Following are valid examples of the use of extattr:

exrecover daemon

Chapter 2. Shell command descriptions 271

extattr +ap -F BIN -sl <filename>

extattr -F NA -aps +l <filename>

extattr -FCRnl <filename>

To have the c89 and tso utilities not run in an address space shared with other

processes, issue:

extattr -s /bin/c89 /bin/tso

Related Information

ls, ISHELL

false — Return a nonzero exit code

Format

false [argument ...]

Description

false returns an exit status value of 1 (failure). It ignores any arguments given on

the command line. This can be useful in shell scripts.

Usage Note

false is a built-in shell command.

Localization

false uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Value

false always returns an exit status value of 1.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

sh

fc — Process a command history list

Format

 fc [–r] [–e editor] [first[last]]

 fc –l [–nr] [first[last]]

 fc –s [old=new] [specifier]

exrecover daemon

272 z/OS V1R9.0 UNIX System Services Command Reference

Description

fc displays, edits, and reenters commands that have been input to an interactive

shell. fc stands for “fix commands.” If the variable HISTSIZE is not defined, 128

commands are accessible. The number of commands that are accessible is

determined by the HISTSIZE variable.

The shell stores these commands in a history file. When the HISTFILE environment

variable is defined as the name of a writable file, the shell uses this as the history

file. Otherwise, the history file is $HOME /.sh_history, if HOME is defined and the

file is writable. If the HOME variable is not defined, or the file is not writable, the

shell attempts to create a temporary file for the history. If a temporary file cannot be

created, the shell does not keep a history file.

Note: A shell shares history (commands) with all shells that have the same history

file. A login shell truncates the history file if it is more than HISTSIZE lines

long.

Normally, the shell does not keep a history of commands run from a profile file or

the ENV file. By default, however, it begins recording commands in the history file

when it encounters a function definition in either of these setup files. This means

that the HISTSIZE and HISTFILE variables must be set up appropriately before the

first function definition. If you do not want the history file to begin at this time, use:

set -o nolog

For further information, see sh and set. Any variable assignment or redirection that

appears on the fc command line affects both the fc command itself and the

commands that fc produces.

The first form of fc in “Format” on page 272 puts you into an editor with a range of

commands to edit. When you leave the editor, fc inputs the edited commands to the

shell.

The first and last command in the range are specified with first and last. There are

three ways to specify a command.

v If the command specifier is an unsigned or positive number, fc edits the

command with that number.

v If the command specifier is a negative number –n, fc edits the command that

came n commands before the current command.

v If the command specifier is a string, fc edits the most recent command beginning

with that string.

The default value of last is first. If you specify neither first nor last, the default

command range is the previous command entered to the shell.

Options

–e editor

Invokes editor to edit the commands. If you do not specify the –e option, fc

assumes that the environment variable FCEDIT, if defined, contains the

name of the editor for fc to use. If FCEDIT is not defined, fc invokes ed to

edit the commands.

–l Displays the command list. This option does not edit or reenter the

commands. If you omit last with this option, fc displays all commands from

fc

Chapter 2. Shell command descriptions 273

the one indicated by first through to the previous command entered. If you

omit both first and last with this option, the default command range is the

16 most recently entered commands.

–n Suppresses command numbers when displaying commands.

–r Reverses the order of the commands in the command range.

–s Reenters exactly one command without going through an editor. If a

command specifier is given, fc selects the command to reenter as

described earlier; otherwise, fc uses the last command entered. To perform

a simple substitution on the command before reentry, use a parameter of

the form old=new. The string new replaces the first occurrence of string old.

fc displays the (possibly modified) command before reentering it.

Environment Variables

fc uses the following environment variables:

FCEDIT

Contains the default editor to be used if none is specified with the –e

option.

HISTFILE

Contains the pathname of the history file.

HISTSIZE

Gives the maximum number of previous commands that are accessible.

Files

/tmp Used to store temporary files. You can use the TMPDIR environment

variable to dictate a different directory to store temporary files.

$HOME/.sh_history

This default history file is created.

Localization

fc uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Usage notes

1. fc is a built-in shell command.

2. r is a built-in alias for fc –s. history is a built-in alias for fc –l.

Exit Values

0 If you specified –l, this indicates successful completion.

1 Failure due to any of the following:

v Missing history file

v Inability to find the desired line in the history file

v Inability to create temporary file

fc

274 z/OS V1R9.0 UNIX System Services Command Reference

2 An incorrect command-line option or argument

 If fc runs one or more commands, the exit status of fc is the exit status of the last

run command.

Messages

Possible error messages include:

Cannot create temporary file

fc must create a temporary file to do some operations, such as editing. It

prints this message when it cannot create its temporary file—for example,

because the disk is full.

No command matches string

You asked to edit a command beginning with a particular string, but there

was no such command in the history file.

Portability

POSIX.2.

Related Information

alias, ed, print, read, sh, vi

fg — Bring a job into the foreground

Format

fg [%job-identifier]

tcsh shell: fg [%job ...]

Description

fg restarts a suspended job or moves a job from the background to the foreground.

To identify the job, you give a job-identifier (preceded by %) as given by the jobs

command.

If you do not specify job-identifier, fg uses the most recent job to be suspended

(with the kill command) or placed in the background (with the bg command). fg is

available only if you have enabled job control. See the –m option of set for more

information.

fg in the tcsh shell

In the tcsh shell, fg brings the specified jobs (or, without arguments, the current job)

into the foreground, continuing each if it is stopped. job may be ’’, %, +, –, a

number, or a string. See also the run-fg-editor editor command described in “tcsh

— Invoke a C shell” on page 626.

Localization

fg uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

fc

Chapter 2. Shell command descriptions 275

See Appendix F for more information.

Exit Values

0 Successful completion

>0 No current job

Messages

Possible error messages include:

Not a stopped job

Job was not stopped.

Portability

POSIX.2 User Portability Extension.

Related Information

bg, jobs, kill, ps, tcsh

fgrep — Search a file for a specified pattern

Format

fgrep [–bcilnqsvx] [–e pattern] ... [–f patternfile] ... [pattern] [file ...]

Note: The fgrep utility is fully supported for compatibility with older UNIX systems.

However, it is recommended that grep –f be used instead because it may

provide greater functionality and is considered the standard for portable

UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description

See grep.

file — Determine file type

Format

file [–BcdEh] [–f filelist] [-M magic] [–m magic] file ...

file -i [-h] [–f filelist] file ...

Description

file determines the format of each file by inspecting the attributes and (for a regular

file) reading the contents of the file. If the file is an executable, its addressing mode

is determined for output. If file is not an executable, file compares each file to

entries found in one or more magic files to determine their file type.

file then divides files that do not match a template in the magic file into text files

and binary data. Then, by reading the text files and making an informed guess

based on the contents, file further divides text files into various types such as C

programs, assembler programs, files of commands to the shell, and yacc or lex

programs.

file displays the name of each file along with the file type.

fg

276 z/OS V1R9.0 UNIX System Services Command Reference

|

|

|

|
|
|
|

|
|
|
|
|

|

v If the variable _UNIX03=YES is set, a space is used to separate the file name

and the type.

v If the variable _UNIX03 is unset or is not set to YES, a tab is used to separate

the file name and the file type.

The file utility uses three types of tests to determine the file type: the file attribute

tests, the position-sensitive tests and the context-sensitive tests.

v The ″file attribute tests″ determine file types such as directory, character special,

FIFO, socket, symbolic link, and external link.

v The ″position-sensitive tests’’ determine file types by looking for certain string or

binary values at specific offsets in the file being examined. The ″default

position-sensitive tests″ are defined by:

– The /etc/magic file

– The AMODE test built into the file utility

If a magic file test succeeds, the message field of the line will be printed and no

further tests will be applied, except for tests on immediately following lines

beginning with a single ’>’ character.

v The ″default context-sensitive tests″ are built into the file utility. These tests look

for language constructs in text files trying to identify shell scripts, C, FORTRAN,

and other computer language source files, and even plain text files. The ″default

context-sensitive tests″ will never be applied before any ″position-sensitive tests″

even if the -d option is specified before an -m magic option or -M magic option.

Options

–c Only checks the file magic (specified by -m or -M) and /etc/magic (If the

semantics imply it, see ″Usage Notes″) for validity of format.

-d Apply any default position-sensitive tests and default context-sensitive tests

to the file. This is the default if no -M or -m option is specified. See ″Usage

Notes″.

-E Uses the magic file and bypasses the checking of regular files for

executables.

–f filelist

Examines the files listed in the file filelist.

-h When a symbolic link is encountered, identify file as a symbolic link instead

of following the link.

 If -h is not specified and

 file is an external link or file is a symbolic link referring to a nonexistent

file:

If the variable _UNIX03=YES is set

The type will be reported as if -h was specified.

If the variable _UNIX03 is unset or is not set to YES

The type will be reported as if -h was not specified.

-i If file is a regular file, does not attempt to classify the type of the file further.

This option can only be used with -h and -f options. See ″Usage Notes″ for

the file types that file command does not attempt to classify.

–M magic

Uses the file magic to classify the file type. No default position-sensitive

file

Chapter 2. Shell command descriptions 277

|
|

|
|

|
|

|
|

|
|
|

|

|

|
|
|

|
|
|
|
|

||
|
|

||
|

|

|
|

|
|

|
|

||
|
|

|
|

tests, default context-sensitive tests, nor AMODE tests shall be applied,

unless the -d option is also specified. See ″Usage Notes″.

–m magic

Alters the classification of regular files when examining the file content.

If the variable _UNIX03=YES is set

Then file attempts to classify the file type using the following tests,

in order:

1. Using the file magic.

2. Using the default position-sensitive tests (/etc/magic).

3. Using the default context-sensitive tests built into the file

command.

If the variable _UNIX03 is unset or is not set to YES

Then file attempts to classify the file type using the following tests,

in order:

1. Using the file magic rather than /etc/magic.

2. Using the default context-sensitive built into the file command.

See ″Usage Notes″.

File Tag Specific Options

–B Disable autoconversion of tagged files.

Environment variables

file uses the following environment variable:

_UNIX03

For more information about the affect of _UNIX03 on this command, see

Appendix N, “UNIX shell commands changed for UNIX03,” on page 943.

Localization

file uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Files

file uses the following file:

/etc/magic

Default system magic file.

For file to work, you need to copy the magic file from the /samples directory to the

/etc directory.

For more information on enabling file, see “Enabling the file Utility” in z/OS UNIX

System Services Planning. Additional information on the magic file can be found in

“magic — Format of the /etc/magic file” on page 912.

file

278 z/OS V1R9.0 UNIX System Services Command Reference

|
|

|
|

|
|
|

|

|

|
|

|
|
|

|

|

|

|

|

|
|
|

|

Usage notes

1. LC_SYNTAX only affects the interpretation of the input file that did not match

any magic file template. It does not affect the interpretation of the magic file.

Because of this, an input file that contains characters from a code page other

than IBM-1047 cannot match the magic file, which contains IBM-1047

characters. If you need to match character in different code pages, you can use

-m or -M to specify a magic file created with the desired code page.

2. The tests applying to a file when running the command follow the table below.

 Table 11. file command tests

If the following options are

specified...

Then the position-sensitive tests are

applied in the following sequence...

Default

context-
sensitive tests

applied?

AMODE > /etc/magic Yes

-d AMODE > /etc/magic Yes

-M MAGIC MAGIC No

-m magic

 If the variable _UNIX03=YES is set,

 magic > AMODE > /etc/magic

 If the variable _UNIX03 is unset or is

not set to YES,

 AMODE > magic

Yes

-d -M MAGIC AMODE > /etc/magic > MAGIC Yes

-M MAGIC -d MAGIC > AMODE > /etc/magic Yes

-d -m magic AMODE > /etc/magic > magic Yes

-m magic -d magic > AMODE > /etc/magic Yes

-M MAGIC -m magic MAGIC > magic No

-m magic -M MAGIC magic > MAGIC No

-d -M MAGIC -m magic AMODE > /etc/magic > MAGIC > magic Yes

-d -m magic -M MAGIC AMODE > /etc/magic > magic > MAGIC Yes

-M MAGIC -d -m magic MAGIC > AMODE > /etc/magic > magic Yes

-M MAGIC -m magic -d MAGIC > magic > AMODE > /etc/magic Yes

-m magic -d -M MAGIC magic > AMODE > /etc/magic > MAGIC Yes

-m magic -M MAGIC -d magic > MAGIC > AMODE > /etc/magic Yes

Notes:

a. The first column specifies the appearance of the -d, -M and -m options in

the command line.

b. The second column gives what position-sensitive tests are applied and in

what sequence, given the options specified in the first column:

 AMODE is a default position-sensitive system test which is only used on

an executable file to determine the addressing mode.

 ″/etc/magic″ means the default position-sensitive tests in /etc/magic.

 ″MAGIC″ means the position-sensitive tests in the magic file specified by

″-M″.

 ″magic″ means the position-sensitive tests in the magic file specified by

″-m″.

file

Chapter 2. Shell command descriptions 279

|

|
|

|
|
|
|

|

||

|
|
|
|

|
|
|
|

|||

|||

|||

||

|

|
|

|

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|

|
|

|
|

|
|

|

|
|

|
|

Tests not appearing in the cell are not applied.

c. The third column gives whether the default context-sensitive tests (built into

the file command) are applied, given the options specified in the first

column.

3. If -d option is specified together with -E option, the AMODE tests will not be

applied. If -M magic option is specified alone, the AMODE tests will not be

applied.

4. The standard output messages of file utility will contain the specified strings, but

not limited to, listed in the following table.

 Table 12. Output messages of file utility

If file is: Will contain the string: Notes

Nonexistent cannot open

Block special block special a

Character special character special a

Directory directory a

FIFO fifo a

Socket socket a

Symbolic link symbolic link to a

External symbolic link external link to a

Regular file regular file a,b

Empty regular file empty c

Regular file that cannot be

read

cannot open c

Executable binary executable d,f

ar archive library (see ar) archive d,f

Extended cpio format (see

pax)

cpio archive d,f

Extended tar format (see

ustar in pax)

tar archive d,f

Shell script commands text e,f

C-language source c program text e,f

FORTRAN source fortran program text e,f

Regular file whose type

cannot be determined

data

Notes:

a. This is a file attribute test.

b. This test is applied only if the -i option is specified.

c. This test is applied only if the -i option is not specified.

d. This is a default position-sensitive test.

e. This is a default context-sensitive test.

f. Default position-sensitive tests and default context-sensitive tests are not

applied if the -M magic option is specified unless the -d option is also

specified.

file

280 z/OS V1R9.0 UNIX System Services Command Reference

|

|
|
|

|
|
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|
|
||

|||

|||

|
|
||

|
|
||

|||

|||

|||

|
|
||

|

|

|

|

|

|

|

|
|
|

Exit Values

0 Successful completion

1 Failure due to any of the following:

v A missing filelist after –f

v More than one –f option on the command line

v Cannot find the magic file

v Incorrect command-line option

v Too few command-line arguments

v Cannot access a specified file

v Cannot open filelist

v Cannot open the magic file

v A format error in the magic file

v Out of memory for reading or magic entries

v A bad number in the magic file

v A misplaced > in the magic file.

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

All options are extensions to the POSIX standard.

Related Information

See Appendix H for more information about the magic file format.

find — Find a file meeting specified criteria

Format

find path ... expression

Description

find searches a given file hierarchy specified by path, finding files that match the

criteria given by expression. Each directory, file, and special file is “passed through”

expression. If you use the –exec, –ok, or –cpio primary, expression runs a

specified command on each file found. A nonexistent expression or an expression

with commands to run automatically uses the –print primary to display the name of

any file that matches the criteria of expression.

find builds expression from a set of primaries and operators; juxtaposition of two

primaries implies a logical AND operator.

Operators and Primaries

find supports the following operators:

–a Used between primaries for a logical AND. You can omit this operator to get

the same result, since logical AND is assumed when no operator is used

between two primaries.

–o Used between primaries for a logical OR.

! Precedes an expression in order to negate it.

You can group primaries and operators using parentheses. You must delimit all

primaries, operators, numbers, arguments, and parentheses with white space. Each

file

Chapter 2. Shell command descriptions 281

|

number noted in the primary list is a decimal number, optionally preceded by a plus

or minus sign. If a number is given without a sign, find tests for equality; a plus

sign implies “greater than” or “older than,” and a minus sign implies “less than” or

“newer than”.

Options

This section lists the primaries that find supports.

Tip: If you use the ACL primaries, with the exception of -acl, performance may be

affected.

–aaudit auditmask

The -aaudit primary is used to match the auditor audit bits. See –audit

auditmask.

-acl c Matches if the type of ACL is the same as the type given by the character

c. Possible values of the character are:

a Access ACL (matches only if there are extended ACL entries)

d Directory default ACL

f File default ACL

If acl c is not defined, then find matches any of the these ACLs when other

ACL primaries are used.

-acl_count number

Matches if the numbers of extended ACL entries for any of the types of

ACLs for the object is is number.

 number is a decimal number, optionally preceded by a plus or minus sign. If

a number is given without a sign, find tests for equality; a plus sign implies

“greater than” or “older than,” and a minus sign implies “less than” or

“newer than”.

-acl_entry acl_text

Matches if the ACL on the file contains an entry equivalent to acl_text

where acl_text is a single extended ACL entry. This primary matches using

user and group names rather than UID and GID numbers. If aliases exist

for a name, then it is possible a match may not occur. This behavior is

different than the -acl_user and -acl_group primaries which match based on

UID and GID. Extended ACL entries have the following format:

[d[efault]: | f[default]:]u[ser]:uid:[+|^]perm

[d[efault]: | f[default]:]g[roup]:gid:[+|^]perm

where:

d[efault] If specified, extended ACL refers to directory default ACL

f[default] If specified, extended ACL refers to file default ACL

u[ser] Extended ACL refers to a particular numeric user ID (UID)

or user name

g[roup] Extended ACL refers to a particular numeric group ID (GID)

or group name

uid User name or numeric user ID (UID)

gid Group name, or numeric group ID (GID)

find

282 z/OS V1R9.0 UNIX System Services Command Reference

perm Permissions specified either in absolute form (string rwx

with - as a placeholder or octal form), or in relative format

(using the + or^ modifiers).

 Rule: For relative permission settings, specifying "+perm"

means that you want the ACL entry to have that permission

turned on. Specifying "^perm" means that you want the ACL

entry to have that permission off. For example, specifying

the following will find files with an extended access ACL

entry for user Billy in which the permissions are either -w-

or rw-:

user:Billy:+w^x

If the permission field of acl_text is omitted, then the ACL

entries are searched to match only the ACL type, and user

or group portions of the user-supplied entry.

 If you want to find any of the base ACL entries (user, group,

or other), you can use the -perm primary.

The first field of an ACL entry may specify the type of ACL (access,

directory default, or file default) that will be processed. If the type is not

specified, the operation applies only to the access ACL. If you are updating

the ACL entries, you can specify the base ACL entries; however, specifying

the base ACL entries may cause the file or directory’s permission bits to

change if what is specified is different than the current settings.

-acl_group groupid

Matches if the object has an extended group ACL entry for groupid. groupid

can also be a group ID number.

 If your security product supports ACLs, the group base ACL entry can be

matched using this primary. If a numeric group exists as a group name in

the group data base, the group ID number associated with that group is

used.

-acl_nogroup

Matches if a group ACL entry (for any type of ACL) exists in which a group

is not defined. The GID for at least one extended ACL entry for the file does

not have a group name associated with it.

-acl_nouser

Matches if a user ACL entry (for any type of ACL) exists in which a user is

not defined. The UID for at least one extended ACL entry for the file does

not have a user name associated with it.

-acl_user userid

Matches if the ACL of the object has an extended user ACL entry for userid.

userid can also be a user ID number.

 If a numeric owner exists as a user name in the user data base, the user ID

number associated with that user name is used. If your security product

supports ACLs, the user base ACL entry can be matched, using this

primary.

–atime number

Matches if someone has accessed the file exactly number days ago.

find

Chapter 2. Shell command descriptions 283

number is a decimal number, optionally preceded by a plus or minus sign. If

a number is given without a sign, find tests for equality; a plus sign implies

“greater than” or “older than,” and a minus sign implies “less than” or

“newer than”.

–audit auditmask

The -audit primary is used to match the user audit bits. auditmask can be

in octal or in symbolic form. The mask can be preceded by a - character (as

in the perm primary), but it is ignored.

 Symbolic form is an operation=condition list, separated by commas:

[rwx]=[sf]

where:

=sf Success or failure on any of rwx

r=s Success on read

r=s, x=sf

Success on read or exec, failure on exec

r, w=s Incorrect syntax

x Incorrect syntax

 Octal form is specified by using the chaudit bit constant definitions in the

/usr/include/sys/stat.h header file. For example, in stat.h, the flag for failing

read accesses is AUDTREADFAIL. It is defined to be 0x02000000, which

has an octal value of 200000000. This octal value can be used as the

auditmask to find failure on read.

–cpio cpio-file

Writes the file found to the target file cpio-file in cpio format. This is

equivalent to:

find ... | cpio -o >cpio-file

This primary matches if the command succeeds.

–ctime number

Matches if someone has changed the attributes of the file exactly number

days ago.

 number is a decimal number, optionally preceded by a plus or minus sign. If

a number is given without a sign, find tests for equality; a plus sign implies

“greater than” or “older than,” and a minus sign implies “less than” or

“newer than”.

–depth

Processes directories after their contents. If present, this primary always

matches.

–exec command ;

Takes all arguments between –exec and the semicolon as a command line,

replacing any argument that is exactly {} (that is, the two brace characters)

with the current filename. It then executes the resulting command line,

treating a return status of zero from this command as a successful match,

nonzero as failure. You must delimit the terminal semicolon with white

space.

 Rule: The semicolon is a shell metacharacter. To use it in expression, you

must escape it, either by enclosing it in single quotes or by preceding it with

/.

–ext c Matches when the regular file has the extended attribute specified by

find

284 z/OS V1R9.0 UNIX System Services Command Reference

|

|

|
||
||
|
|
||
||

|
|
|
|
|

character c. See “extattr — Set, reset, and display extended attributes for

files” on page 270 for details on extended attributes. Possible values of the

character are:

a Program runs APF authorized if linked AC = 1

l Program is loaded from the shared library region

p Program is considered program-controlled

s Program is allowed to run in a shared address space

–follow

Follows symbolic links. If present, this primary always matches.

–group name

Matches if the group owner is name. If name is not a valid group name, it is

treated as a group ID.

–inum number

Matches if the file has inode number number.

 number is a decimal number, optionally preceded by a plus or minus sign. If

a number is given without a sign, find tests for equality; a plus sign implies

“greater than” or “older than,” and a minus sign implies “less than” or

“newer than”.

–level number

Does not descend below number levels.

 number is a decimal number, optionally preceded by a plus or minus sign. If

a number is given without a sign, find tests for equality; a plus sign implies

“greater than” or “older than,” and a minus sign implies “less than” or

“newer than”.

–links number

Matches if there are number links to the file.

 number is a decimal number, optionally preceded by a plus or minus sign. If

a number is given without a sign, find tests for equality; a plus sign implies

“greater than” or “older than,” and a minus sign implies “less than” or

“newer than”.

–mtime number

Matches if someone has modified the file exactlynumber days ago.

 number is a decimal number, optionally preceded by a plus or minus sign. If

a number is given without a sign, find tests for equality; a plus sign implies

“greater than” or “older than,” and a minus sign implies “less than” or

“newer than”.

–name pattern

Compares the current filename with pattern. If there is no match, the

expression fails. The pattern uses the same syntax as filename generation

(see sh). It matches as many trailing pathname components as specified in

pattern. Slashes in the pattern are matched explicitly.

–ncpio cpio-file

Writes the file found to the target file cpio-file in cpio –c format. This is

equivalent to:

find ... | cpio -oc >cpio-file

This primary matches if the command succeeds.

find

Chapter 2. Shell command descriptions 285

–newer file

Compares the modification date of the found file with that of the file given.

This matches if someone has modified the found file more recently than file.

–nogroup

Matches if no defined group owns the file.

–none Indicates that some action has been taken; thus find does not invoke the

default –print action. If present, this primary always matches.

–nouser

Matches if no defined user owns the file.

–okcommand;

Is similar to –exec, but before find executes the command, it displays the

command to confirm that you want to go ahead. find executes the

command line only if your input matches the expression for “yes” (yes and

no expressions are defined in LC_MESSAGES). If you type the expression

for “no”, the primary does not match. You must delimit the terminal

semicolon with white space.

 Rule: The semicolon is a shell metacharacter. To use it in expression, you

must quote it.

–perm[-] mask

By default, matches if the permissions on file are identical to the ones given

in mask. You can specify mask in octal or in symbolic mode (see chmod).

If you use symbolic mode, find assumes that you begin with no bits set in

mask, and that the symbolic mode is a recipe for turning the bits you want

on and off. A leading minus sign (−) is special. It means that a file matches

if at least all the bits in mask are set. As a result, with symbolic mode, you

cannot use a mask value that begins with a minus sign (−).

 If you use octal mode, find uses only the bottom 12 bits of mask. With an

initial minus sign (−), find again matches only if at least all the limits in

mask are set in the file permissions lists.

–print Displays the current filename. This primary always matches.

–prune

Stops searching deeper into the tree at this point. If present, this primary

always matches. –prune has no effect if –depth is also specified.

–seclabel pattern

Compares the file’s seclabel with pattern. If there is no match, the

expression fails. The pattern uses the same syntax as filename generation

(see “Filename Generation” on page 566).

–size number[c]

Matches if the size of the file is number blocks long, where a block is 512

bytes. If you include the suffix c, the file size is number bytes.

 number is a decimal number, optionally preceded by a plus or minus sign. If

a number is given without a sign, find tests for equality; a plus sign implies

“greater than” or “older than,” and a minus sign implies “less than” or

“newer than”.

–type c

Matches if the type of the file is the same as the type given by the

character c. Possible values of the character are:

b — Block special file (not supported for z/OS UNIX System

Services)

find

286 z/OS V1R9.0 UNIX System Services Command Reference

c — Character special file

d — Directory

f — Regular file

l — Symbolic link

n — Network file

p — FIFO (named pipe)

s — Socket

–user name

Matches if the owner of the file is name. name can also be a user ID

number.

–xdev Does not cross device boundaries from the root of the tree search. If

present, this primary always matches.

File Tag Specific Options

–filetag c Matches if the file tag is the same as the one given by character c.

Possible values of the character are:

b Matches if the file is tagged as binary (txtflag = OFF and

ccsid = 0xFFFF)

n Matches if the file has txtflag = OFF

t Matches if the file is tagged as text (txtflag = ON)

u Matches if the file is untagged (ccsid = 0)

–filetag_codeset codeset

Matches if the file is tagged with the given codeset

Note: Codesets which are aliases of each other exist which may

cause the test to fail, since the file inquiry operator may

return an alias of the codeset you are testing.

Examples

 1. To find all files with a suffix of .c that have the audit mode set to rwx (read,

write, execute), issue:

find / –name "*.c" –audit rwx=sf

The quotes are required around the "*.c" if you do not want the shell to expand

this value to all files with a suffix of .c from within the current directory.

 2. To find all files with a suffix of .c and audit mode bits set to 777 (rwx), issue:

find / –name "*.c" –audit 777

 3. To find all files with the extensions .c and .h, starting at the current point in the

directory hierarchy:

find . –name "*.[ch]"

 4. To find all files that have the extension .Z and that have not been accessed in

the last three days:

find . –name "*.Z" –mtime +3

 5. To find all files that have seclabel OS390:

find . -seclabel OS390

 6. To find all files that have seclabel starting with OS390:

find . -seclabel "OS390*"

 7. To find all files that have no seclabel:

find . ! -seclabel "*"

find

Chapter 2. Shell command descriptions 287

8. To find all files and directories starting at the current directory point, with an

extended ACL user entry for user Billy for any ACL (access, file default, or

directory default), issue:

 find . -acl_user Billy

or

find . -acl_entry user:Billy -o -acl_entry d:u:Billy -o -acl_entry f:u:Billy

 9. To find all files and directories (starting from the current directory) that have

more than 10 extended ACL entries for any of the ACL types, issue:

find . -acl_count +10

10. To find all files and directories containing access ACLs which have an

extended ACL entry for user Averi, starting from the current user’s home

directory:

find ~ -acl_entry user:Averi

11. To find all directories whose file default ACLs have a group entry for Lakers,

starting at the current point in the directory hierarchy:

find . -acl_entry fdefault:group:Lakers

12. To find all files for user Marc (in other words, all the files that Marc owns),

starting from his home directory:

find /u/marc -user marc

13. To find all directories (starting from current directory) which have file default

ACLs:

find . -acl f

14. To find all directories whose file default or directory default ACLs have a group

entry for Lakers, starting at the current point in the directory hierarchy:

find . -acl_entry fdefault:group:Lakers -o -acl_entry default:group:Lakers

Localization

find uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Not enough memory

v Incorrect character specified after –type

v Inability to get information on a file for –newer

v Incorrect permissions for –perm

v Inability to open a file for the –cpio option

v Unknown user or group name

v Unable to access the PATH variable

v Cannot run a command specified for –exec or –ok

v Syntax error

find

288 z/OS V1R9.0 UNIX System Services Command Reference

v Stack overflow caused by an expression that is too complex

2 Failure due to one of the following:

v Incorrect command-line option

v Not enough arguments on the command line

v Missing option

v Argument list that is not properly ended

Messages

Possible error messages include:

bad number specification in string

You specified an option that takes a numeric value (for example, –atime,

–ctime) but did not specify a valid number after the option.

cannot stat file name for -newer

You used a –newer option to compare one file with another; however, find

could not obtain a modification time for the specified file. Typically, this

happens because the file does not exist or you do not have appropriate

permissions to obtain this information.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Most UNIX systems do not have a default action of –print. Therefore, they do not

need the –none option. The –a operator is not documented on many UNIX

systems.

The following primaries are extensions of the POSIX standard: –aaudit, –acl,

–acl_count, –acl_entry, –acl_group, –acl_nogroup–acl_nouser, –acl_user,

–audit, –audit, –cpio, –follow, –level, –ncpio, –none

The aaudit and audit options are unique to the z/OS shell.

Related Information

chaudit, chmod, cpio, sh

fold — Break lines into shorter lines

Format

fold [–bs] [–w width] [–width] [file...]

Description

fold reads the standard input (stdin) or each file, if you specify any. Each input line

is broken into lines no longer than width characters. If you do not specify width on

the command line, the default line length is 80. The output is sent to the standard

output (stdout).

Options

–b Specifies width in bytes rather than in column positions; that is, fold does

not interpret tab, backspace, and carriage return characters. If the last byte

specified by width is part of a doublebyte character, fold does not break the

character. Instead, the line is broken before the doublebyte character.

find

Chapter 2. Shell command descriptions 289

–s Breaks each line at the last blank within width column positions. If there is

no blank that meets the requirement, fold breaks the line normally.

–w width

Specifies a maximum line length of width characters.

–width Is identical in effect to –w width.

Localization

fold uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure because the input file could not be opened

2 Invalid command-line option or a missing width argument

Portability

POSIX.2, 4.2BSD.

The –width option is an extension of the POSIX standard.

Related Information

pr

functions — Display or assign attributes to functions

Format

functions [*tux][name ...]

Note: * indicates a + or – character.

Description

functions is an alias for typeset –f.

See “typeset — Assign attributes and values to variables” on page 716 for more

information.

Related Information

typeset, sh

fuser — List process IDs of processes with open files

Format

fuser [–cfku] file ...

fold

290 z/OS V1R9.0 UNIX System Services Command Reference

Description

The fuser command writes to standard output the process IDs of all processes

running on the local system that have one or more named files open. file is the

pathname of the file for which information is to be reported, or, if the –c options is

used, the pathname of a file on the file system for which information is to be

reported.

The fuser command writes additional information to standard error, such as the

user name of the process and a character indicating how the process is using the

file. fuser only reports on local processes, not remote ones.

Option

–c fuser reports on all open files within the file system that the specified file is

a member of

–f fuser reports on only the named files. This is the default.

–k fuser sends the SIGKILL signal to each local process (with the exception of

the fuser process and parent processes of fuser). Only a superuser can

terminate a process that belongs to another user. This option is a z/OS

extension.

–u fuser writes to standard error the user name associated with each process

ID written to standard output.

Usage notes

fuser will write the process ID for each process to standard output. fuser also

writes the following to standard error:

v The pathname of each file specified on the command line.

v An indicator of how the process is using this file (written after the process ID):

–c The process is using the file as its current directory.

–r The process is using the file as its root directory.

If no character follows the PID, this means that the process has the file open.

v When the –u option is specified, fuser writes the user name corresponding to the

process’ real user ID.

Examples

1. To list the process numbers of local processes using the /etc/magic file, enter:

fuser /etc/magic

which will give you the following output:

/etc/magic: 67109274 144

2. To display the user names associated with the processes accessing the file

/etc/magic:

fuser -u /etc/magic

Your output would be:

/etc/magic: 67109274(Steve) 144(Fred)

3. To terminate all of the processes using a given file system, enter either the

mount point name or the name of a file in that file system:

fuser -ku /u/home

fuser

Chapter 2. Shell command descriptions 291

or

fuser -kuc /u/home/code

Your output would look like:

/u/home/code: 111111c(Steve) 222222r(Erin) 333333(Garth)

444444c(Steve) 555555r(Renata) 66666c(Angie)

This command lists the process number and user name, and then sends a kill

signal to each process that is using the /u/home file system. Only a superuser

can terminate processes that belong to another user. You might want to use this

command if you are trying to unmount the /u/home file system and a process

that is accessing the file system prevents this.

Exit Values

0 Successful completion

1 An error

Related Information

kill, ps

gencat — Create or modify message catalogs

Format

gencat CatalogFile MessageFile ...

Description

gencat merges the message text source files MessageFile (usually *.msg) into a

formatted message catalog CatalogFile (usually *.cat). The file CatalogFile is

created if it does not already exist. If CatalogFile does exist, its messages are

modified according to the directives in the MessageFiles. If set and message

numbers are the same, the new message text defined in MessageFile replaces the

message text defined in CatalogFile.

You can specify any number of MessageFiles. gencat processes the MessageFiles

one after another, in the sequence specified. Each successive MessageFile

modifies the CatalogFile.

If – is specified for CatalogFile, standard output (stdout) is used. If – is specified for

MessageFile, standard input (stdin) is used.

gencat does not accept symbolic message identifiers. You must use mkcatdefs if

you want to use symbolic message identifiers.

Extended Description

The format of a message text source file is defined as follows. All characters must

be encoded as singlebyte characters except where noted. The fields of a message

text source line are separated by a single blank character. Any other blank

characters are considered as being a part of the subsequent field.

$set n comment

Specifies the set identifier of the following messages until the next $set or

end of file appears. The n denotes the set identifier, which is defined as a

number in the range 1–NL_SETMAX. Set identifiers must be in ascending

fuser

292 z/OS V1R9.0 UNIX System Services Command Reference

order within a single source file, but need not be contiguous. Any string

following the set identifier is treated as a comment. If no $set directive is

specified in a message text source file, all messages are located in default

message set NL_SETD.

$delset n comment

Deletes message set n from an existing message catalog. The n denotes

the set number, 1–NL_SETMAX. Any string following the set number is

treated as a comment.

$ comment

A line beginning with $ followed by a blank character is treated as a

comment.

m message-text

The m denotes the message identifier, which is defined as a number in the

range 1–NL_MSGMAX. Message identifiers must be in ascending order

within a single set, but need not be contiguous. The length of message-text

must be in the range –NL_TEXTMAX. The message text is stored in the

message catalog with the set identifier specified by the last $set directive,

and with message identifier m. If the message text is empty, and a blank

character field separator is present, an empty string is stored in the

message catalog. If a message source line has a message number, but not

a field separator or message text, the existing message with that number (if

any) is deleted from the catalog. The message text can contain doublebyte

characters.

$quote c

Specifies an optional quote character c, which can be used to surround

message-text so trailing spaces or null (empty) messages are visible in a

message source line. By default, or if an empty $quote directive is

supplied, no quoting of message-text is recognized. The quote character

can be a doublebyte character.

$timestamp

Specifies a time stamp that can be used to identity the subsequent .cat file

as having come from this file. The timestamp can be up to 20 characters

long and can be any format you wish. Usually it follows this format:

$timestamp 1994 137 19:09 UTC

The mkcatdefs command automatically generates a timestamp in the file it

creates for input to gencat.

Empty lines in a message text source file are ignored. Lines starting with any

character other than those defined are considered invalid.

Text strings can contain the special characters and escape sequences defined in

the following table:

 Description Sequence

Backspace \b

backslash \

Carriage-return \r

Double quote \"

Form-feed \f

Horizontal tab \t

Newline \n

Octal bit pattern \ddd

gencat

Chapter 2. Shell command descriptions 293

Description Sequence

Vertical tab \v

These sequences must be encoded as singlebyte characters.

The escape sequence \ddd consists of backslash followed by one, two, or three

octal digits, which are taken to specify the value of the desired character. If the

character following a backslash is not one of those specified, the backslash is

ignored.

A backslash (\) followed by a newline character is also used to continue a string on

the following line. Thus the following two lines describe a single message string:

1 This line continues \

to the next line

which is equivalent to:

1 This line continues to the next line

Portability of Message Catalogs

gencat works with the z/OS C runtime library function catgets() to correctly display

message text in the locale that the C program using catgets() is running in. gencat

adds information to the CatalogFile about the codeset that was in effect when

gencat processed the CatalogFile. gencat should be run with the same locale that

the recipients of the messages will be using. This should be the same locale that

was used to create the message text in MessageFile.

Message catalogs produced by gencat are binary-encoded, meaning that their

portability cannot be guaranteed between systems. Thus, just as C programs need

to be recompiled, so message catalogs must be re-created via gencat when moved

to another system.

Example

To generate a test.cat catalog from the source file test.msg, enter:

gencat test.cat test.msg

Localization

gencat uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

Exit Values

0 Successful completion

1 An error occurred

Portability

X/Open Portability Guide.

gencat

294 z/OS V1R9.0 UNIX System Services Command Reference

getconf — Get configuration values

Format

 getconf –a

 getconf system_var

 getconf [–a] path_var pathname

Description

getconf writes the value of a configuration variable to the standard output (stdout).

You can specify the configuration variable using one of forms listed in the Format

section. If you use the first form, getconf writes the value of the variable

system_var. If you use the second form, getconf writes the value of the variable

path_var for the pathname given by pathname. The –a option prompts getconf to

display all current configuration variables, and their values, to stdout.

getconf writes numeric values in decimal format and nonnumeric values as simple

strings. If the value is not defined, getconf writes the string undefined to stdout.

Options

–a Writes out all the configuration variables for the current system, and their

values, to stdout. Path variables are written based on a pathname of dot

(.).

Configuration Variables

You can use the second form of getconf to find the value of the following

POSIX.1-1990 standard configuration variables for the specified pathname:

LINK_MAX

Specifies the maximum number of links that this file can have.

MAX_CANON

Specifies the maximum number of bytes in the workstation’s canonical input

queue (before line editing).

MAX_INPUT

Specifies the space available in the workstation’s input queue.

NAME_MAX

Specifies the largest filename size.

PATH Specifies the standard PATH setting.

_CS_PATH

Specifies the standard PATH setting.

PATH_MAX

Specifies the maximum number of bytes in a pathname.

PIPE_BUF

Specifies the largest atomic write to a pipe.

_POSIX_CHOWN_RESTRICTED

Specifies the restrictions that apply to file ownership changes.

_POSIX_NO_TRUNC

If set, it is an error for any pathname component to be longer than NAME_MAX

bytes.

getconf

Chapter 2. Shell command descriptions 295

_POSIX_VDISABLE

Specifies that processes are allowed to disable ending special characters.

You can use the first form of getconf to find the value of the following

POSIX.1-1990 standard configuration variables:

ARG_MAX

Specifies the maximum length of arguments for running a program,

including environment data.

CHILD_MAX

Specifies the maximum number of simultaneous processes allowed per real

user.

CLK_TCK

Specifies the number of intervals per second in the machine clock.

NGROUPS_MAX

Specifies the number of simultaneous group IDs per process.

OPEN_MAX

Specifies the maximum number of open files at any time per process.

STREAM_MAX

Specifies the number of streams that one process can have open at one

time.

TZNAME_MAX

Specifies the maximum number of bytes supported for the name of a time

zone (not of the TZ variable).

_POSIX_ARG_MAX

Specifies the minimum conforming value for ARG_MAX.

_POSIX_CHILD_MAX

Specifies the minimum conforming value for CHILD_MAX.

_POSIX_JOB_CONTROL

Specifies the POSIX job control supported.

_POSIX_LINK_MAX

Specifies the minimum conforming value for LINK_MAX.

_POSIX_MAX_CANON

Specifies the minimum conforming value for MAX_CANON.

_POSIX_MAX_INPUT

Specifies the minimum conforming value for MAX_INPUT.

_POSIX_NAME_MAX

Specifies the minimum conforming value for NAME_MAX.

_POSIX_NGROUPS_MAX

Specifies the minimum conforming value for NGROUPS_MAX.

_POSIX_OPEN_MAX

Specifies the minimum conforming value for OPEN_MAX.

_POSIX_PATH_MAX

Specifies the minimum conforming value for PATH_MAX.

_POSIX_PIPE_BUF

Specifies the minimum conforming value for PIPE_BUF.

getconf

296 z/OS V1R9.0 UNIX System Services Command Reference

_POSIX_SAVED_IDS

Specifies that processes have saved set-user-ID and saved set-group-ID

bits set.

_POSIX_SSIZE_MAX

Specifies the value that can be stored in an object of type ssize_t.

_POSIX_STREAM_MAX

Specifies the minimum conforming value for STREAM_MAX.

_POSIX_TZNAME_MAX

Specifies the minimum conforming value for TZNAME_MAX.

_POSIX_VERSION

Specifies the version of POSIX adhered to in this release.

You can use the first form of getconf to find the value of the POSIX.2 standard

configuration variables:

BC_BASE_MAX

Specifies the maximum ibase and obase values for the bc command.

BC_DIM_MAX

Specifies the maximum number of elements permitted in a bc array.

BC_SCALE_MAX

Specifies the maximum scale size allowed in bc.

BC_STRING_MAX

Specifies the maximum number of characters in a string in bc.

COLL_WEIGHTS_MAX

Specifies the maximum number of weights assignable to an entry of the

LC_COLLATE order keyword.

EXPR_NEST_MAX

Specifies the maximum number of expressions that you can nest inside

parentheses in an expression evaluated by expr.

LINE_MAX

Specifies the maximum number of bytes that a utility can accept as an input

line (either from the standard input or a text file) when the utility takes text

files as input. This number includes the trailing <newline>.

RE_DUP_MAX

Specifies the maximum number of repeated occurrences of a regular

expression when using the interval notation \{m,n\}.

 (See Appendix C.)

POSIX2_C_BIND

Indicates if the system supports the C Language Bindings Option.

POSIX2_C_DEV

Indicates if the system supports the C Language Development Utilities

Option.

POSIX2_FORT_DEV

Indicates if the system supports the FORTRAN Development Utilities

Option.

POSIX2_FORT_RUN

Indicates if the system supports the FORTRAN Runtime Utilities Option.

getconf

Chapter 2. Shell command descriptions 297

POSIX2_LOCALEDEF

Indicates if the system supports the creation of locales.

POSIX2_SW_DEV

Indicates if the system supports the Software Development Utilities Option.

POSIX2_CHAR_TERM

Indicates if the system supports at least one terminal type capable of all

operations necessary for the User Portability Utilities Option. This parameter

name is correct only on if POSIX2_UPE is on.

POSIX2_UPE

Indicates if the system supports the User Portability Utilities Option.

POSIX2_VERSION

Specifies the version of POSIX.2 adhered to in this release.

POSIX2_BC_BASE_MAX

Specifies the minimum conforming value for BC_BASE_MAX.

POSIX2_BC_DIM_MAX

Specifies the minimum conforming value for BC_DIM_MAX.

POSIX2_BC_SCALE_MAX

Specifies the minimum conforming value for BC_SCALE_MAX.

POSIX2_BC_STRING_MAX

Specifies the minimum conforming value for BC_STRING_MAX.

POSIX2_COLL_WEIGHTS_MAX

Specifies the minimum conforming value for EQUIV_CLASS_MAX.

POSIX2_EXPR_NEST_MAX

Specifies the minimum conforming value for EXPR_NEST_MAX.

POSIX2_LINE_MAX

Specifies the minimum conforming value for LINE_MAX.

POSIX2_RE_DUP_MAX

Specifies the minimum conforming value for RE_DUP_MAX.

You can use the third form of getconf to find the value of the POSIX.2 standard

configuration variables:

_ACL Specifies that access control lists (ACLs) are supported by the security

product and file system.

_PC_ACL_ENTRIES_MAX

Specifies the maximum number of extended ACL entries that can be placed

in an access control list for the specified file.

This implementation of getconf also supports the following non-POSIX-conforming

name:

_CS_SHELL

Specifies the default shell (command interpreter).

_PC_ACL

Security product supports access control lists (ACLs).

_PC_ACL_ENTRIES_MAX

Maximum number of entries that can be placed in an access control list for

a specified file.

getconf

298 z/OS V1R9.0 UNIX System Services Command Reference

Example

This example uses getconf to find the minimum conforming value for PATH_MAX,

which is contained in the variable _POSIX_PATH_MAX. If you issue

getconf _POSIX_PATH_MAX

getconf displays

255

Localization

getconf uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

See Appendix F for more information.

Exit Values

0 The specified parameter_name was valid and getconf displayed its value

successfully.

>0 An error occurred.

Portability

POSIX.2, X/Open Portability Guide.

_CS_SHELL is an extension of the POSIX standard. Some symbols are supported

only on systems that support POSIX.2.

Related Information

bc, expr, sh

See Appendix C for more information about regexp.

getfacl — Display owner, group, and access control list (ACL) entries

Format

getfacl [–acdfhmoqs] [-e user] file ...

Description

getfacl displays the comment header, base ACL (access control list) entries, and

extended ACL entries, if there are any, for each file that is specified. It also resolves

symbolic links. You can specify whether to display access, file default, or directory

default. You can also change the default display format. The output can be used as

input to setfacl.

A comprehensive description of access control list entries can be found in z/OS

UNIX System Services Planning.

getconf

Chapter 2. Shell command descriptions 299

Options

–a Displays the access ACL entries. This is the default if -a, -d, or -f is not

specified.

–c Displays each ACL entry, using commas to separate the ACL entries

instead of newlines, which is the default. Does not display the header.

–d Displays the directory default ACL entries. If the file is not a directory, a

warning is issued.

–e user

Displays only the ACL entries for the specified types of access control lists

(-a, -d, -f) which affects the specified user’s access. If users look at the

output, they may be able to determine why the access is granted or denied.

The user can be an UID or username. The output includes the user’s entry,

if it exists, as well as entries for any group to which the user is connected.

–f Displays the file default ACL entries. If the file is not a directory, a warning

is issued.

–h Does not resolve the symbolic link. (ACLs are not allowed on symbolic

links, so the file will not have anything displayed.)

–m Specifies that the comment header (the first three lines of each file’s output)

is not to be displayed.

–o Displays only the extended ACL entries. Does not display the base ACL

entries.

–q Quiet mode. Suppresses the warning messages and gives a successful

return code if there are no other errors.

–s Skips files that only have the base ACL entries (such as owner, group,

other). Only files that have the extended ACL entries are displayed.

Examples

1. To display access ACL information for file file, issue:

getfacl file

Where the following is a sample of the output::

#file: file

#owner: WELLIE

#group: SYS

user::rwx <=== The owner’s permission bit setting

group::rwx <=== The group’s permission bit setting

other::rw- <=== Permission bit setting if neither user nor group

user: WELLIE2: rw-

group:SYS1:rwx

2. To display access, file default, and directory default ACL information for directory

directory, issue:

getfacl -a -f -d directory

Where the the following is a sample of the output:

#file: file

#owner: WELLIE

#group: SYS

user::rwx

group::rwx

other::rw-

user: WELLIE2: rw-

getfacl

300 z/OS V1R9.0 UNIX System Services Command Reference

group:SYS1:rwx

fdefault:user: WELLIE2: rw-

fdefault:group:SYS1:rwx

default:user:WELLIE4:---

3. To copy the ACL entries from file foo such that the file bar will have the same

ACL entries:

getfacl foo | setfacl -S - bar

Localization

getfacl uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

>0 Failure

 getfacl displays the ACL entries in the following order: access, file default, and

directory default. Errors will occur in the following situations:

v If a file is not a directory and the -d or -f option was used, you will get a warning

and getfacl will continue to the next file.

v If the user does not have access to a file, you will get a warning and getfacl will

continue to the next file.

Portability

An approved POSIX standard does not exist for getfacl.

Related Information

find, ls, setfacl

getopts — Parse utility options

Format

getopts opstring name [arg ...]

Description

getopts obtains options and their arguments from a list of parameters that follows

the standard POSIX.2 option syntax (that is, single letters preceded by a hyphen (–)

and possibly followed by an argument value). Typically, shell scripts use getopts to

parse arguments passed to them. When you specify arguments with the arg

argument on the getopts command line, getopts parses those arguments instead

of the script command-line arguments (see set).

Options

opstring

Gives all the option letters that the script recognizes. For example, if the

getfacl

Chapter 2. Shell command descriptions 301

script recognizes –a, –f, and –s, opstring is afs. If you want an option letter

to be followed by an argument value or group of values, put a colon after

the letter, as in a:fs. This indicates that getopts expects the –a option to

have the form –a value. Normally one or more blanks separate value from

the option letter; however, getopts also handles values that follow the letter

immediately, as in –avalue. opstring cannot contain a question mark (?)

character.

name Specifies the name of a shell variable. Each time you invoke getopts, it

obtains the next option from the positional parameters and places the

option letter in the shell variable name.

 getopts places a question mark (?) in name if it finds an option that does

not appear in opstring, or if an option value is missing.

arg ... Each option on the script command line has a numeric index. The first

option found has an index of 1, the second has an index of 2, and so on.

When getopts obtains an option from the script command line, it stores the

index of the script in the shell variable OPTIND.

 When an option letter has a following argument (indicated with a : in

opstring), getopts stores the argument as a string in the shell variable

OPTARG. If an option doesn’t take an argument, or if getopts expects an

argument but doesn’t find one, getopts unsets OPTARG.

 When getopts reaches the end of the options, it exits with a status value of

1. It also sets name to the character ? and sets OPTIND to the index of the

first argument after the options. getopts recognizes the end of the options

by any of the following:

v Finding an argument that doesn’t start with –

v Finding the special argument ––, marking the end of options

v Encountering an error (for example, an unrecognized option letter)

 OPTIND and OPTARG are local to the shell script. If you want to export

them, you must do so explicitly. If the script invoking getopts sets OPTIND

to 1, it can call getopts again with a new set of parameters, either the

current positional parameters or new arg values.

 By default, getopts issues an error message if it finds an unrecognized

option or some other error. If you do not want such messages printed,

specify a colon as the first character in opstring.

Example

Following is an example of using getopts in a shell script:

Example illustrating use of getopts builtin. This

shell script would implement the paste command,

using getopts to process options, if the underlying

functionality was embedded in hypothetical utilities

hpaste and vpaste, which perform horizontal and

vertical pasting respectively.

paste=vpaste # default is vertical pasting

seplist="" # default separator is tab

while getopts d:s o

do case "$o" in

 d) seplist="$OPTARG";;

 s) paste=hpaste;;

 [?]) print >&2 "Usage: $0 [-s] [-d seplist] file ..."

 exit 1;;

getopts

302 z/OS V1R9.0 UNIX System Services Command Reference

esac

done

shift $OPTIND-1

perform actual paste command

$paste -d "$seplist" "$@"

Environment Variables

getopts uses the following environment variables:

OPTARG

Stores the value of the option argument found by getopts.

OPTIND

Contains the index of the next argument to be processed.

Localization

getopts uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

See Appendix F for more information.

Usage Note

getopts is a built-in shell command.

Exit Values

0 getopts found a script command line with the form of an option. This

happens whether or not it recognizes the option.

1 getopts reached the end of the options, or an error occurred.

2 Failure because of an incorrect command-line option

Portability

POSIX.2, X/Open Portability Guide.

On UNIX systems, getopts is built in both the KornShell and Bourne shell.

Related Information

sh

grep — Search a file for a specified pattern

Format

 grep [–bcEFilnqsvx] [–e pattern] ... [–f patternfile] ... [pattern] [file ...]

 egrep [–bcilnqsvx] [–e pattern] ... [–f patternfile] ... [pattern] [file ...]

 fgrep [–bcilnqsvx] [–e pattern] ... [–f patternfile] ... [pattern] [file ...]

Description

fgrep searches files for one or more pattern arguments. It does not use regular

expressions; instead, it directs string comparisons to find matching lines of text in

the input.

getopts

Chapter 2. Shell command descriptions 303

egrep works in a similar way, but uses extended regular expression matching. (For

information about regular expression matching, see Appendix C.) If you include

special characters in patterns typed on the command line, escape them by

enclosing them in apostrophes to prevent inadvertent misinterpretation by the shell

or command interpreter. To match a character that is special to egrep, put a

backslash (\) in front of the character. It is usually simpler to use fgrep when you

don’t need special pattern matching.

grep is a combination of fgrep and egrep. If you do not specify either –E or –F,

grep behaves like egrep, but matches basic regular expressions instead of

extended ones. You can specify a pattern to search with either the –e or –f option.

If you do not specify either option, grep (or egrep or fgrep) takes the first

non-option argument as the pattern for which to search. If grep finds a line that

matches a pattern, it displays the entire line. If you specify multiple input files, the

name of the current file precedes each output line.

Options

grep accepts all the following options while egrep and fgrep accept all but the –E

and –F options.

–b Precedes each matched line with its file block number.

–c Displays only a count of the number of matched lines and not the lines

themselves.

–E Matches using extended regular expressions (causes grep to behave like

egrep).

–e pattern

Specifies one or more patterns separated by newlines for which grep is to

search.

 You can indicate each pattern with a separate –e option character, or with

newlines within pattern. For example, the following two commands are

equivalent:

grep –e pattern_one –epattern_two file

grep –e 'pattern_one

pattern_two' file

–F Matches using fixed strings (causes grep to behave like fgrep).

–f patternfile

Reads one or more patterns from patternfile. Patterns in patternfile are

separated by newlines.

–i Ignores the case of the strings being matched.

–l Lists only the filenames that contain the matching lines.

–n Precedes each matched line with its fileline number.

–q Suppresses output and returns the appropriate return code.

–s Suppresses the display of any error messages for nonexistent or

unreadable files.

–v Complements the sense of the match—that is, displays all lines not

matching a pattern.

–x Requires a string to match an entire line.

grep

304 z/OS V1R9.0 UNIX System Services Command Reference

Example

To display every line mentioning an astrological element:

egrep "earth|air|fire|water" astro.log

Localization

grep uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 At least one match for pattern was found.

1 No matches for pattern were found.

2 Failure due to any of the following:

v The –e option was missing pattern.

v The –f option was missing patternfile.

v Out of memory for input or to hold a pattern.

v patternfile could not be opened.

v Incorrect regular expression.

v Incorrect command-line option.

v The command line had too few arguments.

v The input file could not be opened.

If the program fails to open one input file, it tries to go on to look at any

remaining input files, but it returns 2 even if it succeeds in finding matches

in other input files.

Messages

Possible error messages include:

input lines truncated—result questionable

One or more input lines were longer than grep could handle; the line has

been truncated or split into two lines. Shorten the line or lines, if possible.

This message does not affect the exit status.

out of space for pattern string

grep did not have enough memory available to store the code needed to

work with the given pattern (regular expression). The usual cause is that the

pattern is very complex. Make the pattern simpler, or try to release memory

so that grep has more space to work with.

Limits

The longest input record (line) is restricted by the system variable LINE_MAX. It is

always at least 2048 bytes. fgrep may be able to handle lines longer than

LINE_MAX. Longer lines are treated as two or more records.

grep

Chapter 2. Shell command descriptions 305

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Only the grep command is part of the POSIX and X/Open standards. The egrep

and fgrep commands are extensions. The –b option is an extension of the POSIX

standard.

Related Information

ed, find

See Appendix C for more information about regexp.

hash — Create a tracked alias

Format

 hash [name ...]

 hash -r

Description

hash creates one or more tracked aliases. Each name on the command line

becomes an alias that is resolved to its full pathname; thus the shell avoids

searching the PATH directories for the command whenever you issue it. A tracked

alias is assigned its full pathname the first time that the alias is used. It is

reassigned a pathname the first time that it is used after the variable PATH is

changed or the shell command cd is used.

hash is a built-in alias defined with

alias hash=’alias -t’

If you specify hash without any arguments on the command line, hash displays the

current list of tracked aliases.

Option

–r Removes all current tracked aliases.

Usage Note

hash is a built-in shell command.

Localization

hash uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure because of an incorrect command-line option

grep

306 z/OS V1R9.0 UNIX System Services Command Reference

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

alias, sh

head — Display the first part of a file

Format

 head [–bcklmnB num] [file ...]

 head [–num] [file ...]

Description

By default, head displays the first 10 lines of each file given on the command line.

If you do not specify file, head reads standard input (stdin).

Options

–b num

Displays the first num blocks (a block is 512 bytes) of each file.

–c num

Displays the first num bytes of each file.

–k num

Displays the first num kilobytes (1024 bytes) of each file.

–l num

Displays the first num lines of each file.

–m num

Displays the first num megabytes of each file.

–n num

Displays the first num lines of each file.

–num Displays the first num lines of each file.

File Tag Specific Options

–B Disable autoconversion of tagged files.

Localization

head uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to open an input file

v Read error on stdin

v Write error on stdout
2 Failure due to any of the following:

hash

Chapter 2. Shell command descriptions 307

v Unknown command-line option

v Missing or incorrect num in an –n option

 Messages

Possible error messages include:

Badly formed line or character count num

The value num, following a –b, –c, –k, –l, –m, or –n option, was not a valid

number.

Portability

POSIX.2, X/Open Portability Guide.

This program originated with Berkeley Software Distribution (BSD) and is a frequent

add-on to UNIX systems.

The POSIX.2 standard included only the –n num and –num options, though it

considers the latter obsolete.

Related Information

cat, sed, tail

history — Display a command history list

Format

history [first[last]]

tcsh shell:

history [-hTr] [n]

history -S|-L|-M [filename]

history -c

Description

history is an alias for fc –l. Like fc –l, history displays the list of commands that

have been input to an interactive shell. This command does not edit or reenter the

commands. If you omit last, history displays all commands from the one indicated

by first through to the previous command entered. If you omit both first and last with

this command, the default command range is the 16 most recently entered

commands.

See “fc — Process a command history list” on page 272 for more information.

history in the tcsh shell

In the tcsh shell, history, used alone, prints the history event list. If n is given only

the n most recent events are printed or saved.

Note: See “tcsh — Invoke a C shell” on page 626 for descriptions of the tcsh shell

variables and commands indicated below.
The tcsh shell history built-in command uses the following options:

v With -h, the history list is printed without leading numbers.

head

308 z/OS V1R9.0 UNIX System Services Command Reference

v With -T, timestamps are printed also in comment form. (This can be used to

produce files suitable for loading with history -L or source -h.)

v With -r, the order of printing is most recent first rather than oldest first.

v With -S, history saves the history list to filename. If the first word of the savehist

shell variable is set to a number, at most that many lines are saved. If the

second word of savehist is set to merge, the history list is merged with the

existing history file instead of replacing it (if there is one) and sorted by time

stamp. Merging is intended for an environment like the X Window System with

several shells in simultaneous use. Currently it only succeeds when the shells

quit one after another.

v With -L, the shell appends filename, which is presumably a history list saved by

the -S option or the savehist mechanism, to the history list. -M is like -L, but the

contents of filename are merged into the history list and sorted by timestamp. In

either case, histfile is used if filename is not given and ~/.history is used if

histfile is unset. history -L is exactly like source -h except that it does not

require a filename.

v With -c, clears the history list.

tcsh login shells do the equivalent of history -L on startup and, if savehist is set,

history -S before exiting. Because only ~/.tcshrc is normally sourced before

~/.history, histfile should be set in ~/.tcshrc rather than ~/.login. If histlit is set,

the first form (history [-hTr] [n]) and second form (history -S|-L|-M [filename]) print

and save the literal (unexpanded) form of the history list.

Related Information

fc, sh, tcsh

iconv — Convert characters from one codeset to another

Format

 iconv [–sc] –f oldset –t newset [file ...]

 iconv –l[–v]

File Tag Specific Options:

 iconv [–F] [–M] [–T]

Description

iconv converts characters in file (or from stdin if no file is specified) from one code

page set to another. The converted text is written to stdout. See z/OS XL C/C++

Programming Guide for more information about the code sets supported for this

command.

If the input contains a character that is not valid in the source code set, iconv

replaces it with the byte 0xff and continues, unless the –c option is specified.

If the input contains a character that is not valid in the destination code set,

behavior depends on the system’s iconv() function. See z/OS XL C/C++ Run-Time

Library Reference for more information about the character used for converting

incorrect characters.

Also, z/OS XL C/C++ Programming Guide has a list of code pages supported by

the z/OS shell.

history

Chapter 2. Shell command descriptions 309

You can use iconv to convert singlebyte data or doublebyte data.

Options

–c Characters containing conversion errors are not written to the output. By

default, characters not in the source character set are converted to the

value 0xff and written to the output.

–f oldset

oldset can be either the codeset name or a pathname to a file containing an

external codeset.

–l Lists supported codesets and CCSIDs. (This option was accepted in

releases prior to V1R3, but was not supported.)

–s Suppresses all error messages about faulty encodings.

–t newset

Specifies the destination codeset for the output. newset can be either the

codeset name or a pathname to a file containing an external codeset.

–v Specifies verbose output.

File Tag Specific Options

–F Use the input file’s codeset (as defined in the file tag) as the source

codeset. If –f is also specified, and the oldset matches the file tag

or if there is no file tag codeset, then oldset is used as the source

codeset. If –F and –f are specified and oldset does not match the

file tag codeset, then iconv fails with an error.

–M Tag a new output file as mixed, that is, the text flag (txtflag) will be

off and the value for codeset will be the same as what’s specified

on the –t option.

–T Tag a new output file as text, that is, the txtflag will be on and the

value for codeset will be the same as what’s specified on the –t

option.

For more information on file tagging and codeset specifications, see z/OS UNIX

System Services Planning.

Localization

iconv uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Examples

1. To convert the file words.txt from the IBM-1047 standard codeset to the ISO

8859-1 standard codeset and store it in converted:

iconv –f IBM-1047 –t ISO8859-1 words.txt > converted

Also, for the exact conversion table names, refer to z/OS XL C/C++

Programming Guide.

iconv

310 z/OS V1R9.0 UNIX System Services Command Reference

2. To convert the file mbcsdata, which is in code page IBM-932 (doublebyte

ASCII), to code page IBM-939 and put the output in a file called dbcsdata:

iconv –f IBM-932 –t IBM-939 mbcsdata > dbcsdata

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Insufficient memory

v Inability to open the input file

v Incorrect or unknown option

2 Input contained a character sequence that is not permitted in the source

codeset

Portability

X/Open Portability Guide.

–v is an extension to the POSIX.2 standard. The –c, –l, and –s options are

extensions to the XPG standard.

id — Return the user identity

Format

 id [user]

 id –G [–n] [user]

 id –g [–nr] [user]

 id –u [–nr] [user]

 id –M

Description

id displays the user name and group affiliations of the user who issued the

command. Specifying a user argument on the command line displays the same

information for the given user instead of the person invoking id. In this case, you

require appropriate permissions.

The output has the format:

uid=runum(username) gid=rgnum(groupname)

where runum is the user’s real user ID (UID) number, username is the user’s real

user name, rgnum is the user’s real group ID (GID) number, and groupname is the

user’s real group name.

A user’s real and effective IDs may differ. In this case, there may be separate

entries for effective user ID (UID) with the format:

euid=eunum(euname)

where eunum is the effective user ID number and euname is the effective user

name. An entry for effective group ID has the format:

egid=egnum(egname)

where egnum is the effective group ID number and egname is the effective group

name.

iconv

Chapter 2. Shell command descriptions 311

If a user is a member of other supplemental groups, these are listed at the end of

the output, with this format:

groups=gnum(groupname)

where gnumis the user’s supplemental group ID number and groupname is the

user’s supplemental group name.

id may also display the multilevel security label for the user’s current address

space. See z/OS Planning for Multilevel Security and the Common Criteria for more

information on multilevel security.

Options

–G Displays all different group IDs (effective, real, and supplementary) as

numbers separated by spaces.

–g Displays only the effective group ID number.

–M Displays the multilevel security label for the user’s current address space.

See z/OS Planning for Multilevel Security and the Common Criteria for

more information on multilevel security.

–n With –G, –g, or –u, displays the name rather than the number.

–r With –g or –u, displays the real ID rather than the effective one.

–u Displays only the effective user ID number.

Localization

id uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_NUMERIC

v NLSPATH

See Appendix F for more information.

Example

> id -M

SYSHIGH

Usage Note

See z/OS Planning for Multilevel Security and the Common Criteria for more

information about multilevel security and seclabels.

Exit Values

0 Successful completion

1 You specified an incorrect user with the –u option

2 Failure due to an incorrect command-line argument

Portability

POSIX.2, X/Open Portability Guide, UNIX System V.

id

312 z/OS V1R9.0 UNIX System Services Command Reference

Related Information

logname

inetd daemon — Provide Internet Service Management

Format

inetd [–d] [configuration file]

Description

The inetd daemon provides service management for a network. For example, it

starts the rlogind program whenever there is a remote login request from a

workstation.

The rlogind program is the server for the remote login command rlogin commonly

found on UNIX systems. It validates the remote login request and verifies the

password of the target user. It starts a z/OS shell for the user and handles

translation between ASCII and EBCDIC code pages as data flows between the

workstation and the shell.

When inetd is running and receives a request for a connection, it processes that

request for the program associated with that socket. For example, if a user tries to

log in from a remote system into the z/OS shell while inetd is running, inetd

processes the request for connection and then issues a fork() and execl() to the

rlogin program to process the rlogin request. It then goes back to monitoring for

further requests for those applications that can be found as defined in the

/etc/inetd.conf file.

Options

–d Specifies that the inetd daemon be started in debug mode. All debug

messages are written to stderr.

configuration file

Specifies that the inetd daemon be started with a configuration file other

than the default /etc/inetd.conf file.

Signals

inetd recognizes the following signals:

SIGTERM

Terminates inetd in an ordinary fashion and deletes /etc/inetd.pid. You can

restart inetd, if you want.

SIGINT

Same as SIGTERM.

SIGHUP

Rereads the inetd configuration file. This can be used to start new services,

or to restart services with a different port.

Other signals that normally end a process (such as SIGQUIT or SIGKILL) should

not normally be sent to inetd because the program will not have a chance to

remove /etc/init.pid.

id

Chapter 2. Shell command descriptions 313

Usage notes

1. Buffer sizes should only be specified if the documentation for the daemon being

specified in the inetd.conf statement calls for something other than the default.

2. The configuration file is field-sensitive, but not column-sensitive. Fields should

be arranged in the order shown in Table 13. Continuation lines for an entry must

begin with a space or tab. Each entry must contain all fields. The inetd daemon

uses the configuration file entry to properly set up the environment expected by

the server. Specifying an incorrect value for one or more of the parameters is

likely to cause the server to fail.

 Table 13. Fields in the Configuration File (inetd daemon)

[ip_address:]service_name ip_address is a local IP, followed by a colon. If specified, the address is used

instead of INADDR_ANY or the current default. To specifically request

INADDR_ANY, use ″*:″. If ip_address (or a colon) is specified, without any

other entries on the line, it becomes the default for subsequent lines until a

new default is specified. service_name is a well-known service name such

as login or shell. The name and protocol specified must match one of the

server names defined in /etc/services. For more information on

/etc/services, see z/OS Communications Server: IP Configuration

Reference. and z/OS Communications Server: New Function Summary

socket_type Stream or dgram

protocol[,sndbuf=n][,rcvbuf=n] protocol can be tcp or udp, or (for IPv6) tcp6 or udp6. tcp4 and udp4 can

also be specified to explicitly request IPv4. The protocol is used to further

qualify the service name. Both the service name and the protocol should

match an entry in /etc/services, except that, the ″4″ or the ″6″ should not

be included in the /etc/services entry. For more information on

/etc/services, see z/OS Communications Server: IP Configuration

Reference and z/OS Communications Server: New Function Summary. Note

that, if tcp6 or udp6 is specified, the socket will support IPv6 (that is,

AF_INET6 will be used.)

sndbuf and rcvbuf specify the size of the send and receive buffers. The size

may be in bytes, or a ″k″ or ″m″ may be added to indicate kilobytes or

megabytes respectively. sndbug and rcvbuf can be used in either order.

wait_flag [.max] Wait or nowait. Wait indicates the daemon is single-threaded and another

request will not be serviced until the first one completes.

If nowait is specified, the inet daemon issues an accept when a connect

request is received on a stream socket. If wait is specified, the inet daemon

does not issue the accept. It is the responsibility of the server to issue the

accept if this is a stream socket.

max is the maximum number of users allowed to request service in a 60

second interval. Default is 40. If exceeded, the service’s port is shut down.

inetd daemon

314 z/OS V1R9.0 UNIX System Services Command Reference

Table 13. Fields in the Configuration File (inetd daemon) (continued)

login_name User ID and group that the forked daemon is to execute under. inetd can run

a program with a UID that is not 0. However, if the program that inetd runs

needs to change the identity of the process to that of the user, then the

login_name must have been defined to RACF via ADDUSER as a superuser

with a UID of 0 (UID 0) and the login_name must have been defined to

RACF. This will allow inetd to use special functions like setgid() and

setuid().

If the program that will be invoked by inetd requires the use of special

functions like setuid() and seteuid(), then it must be permitted to the

BPX.DAEMON class as in the following example for login, which is a typical

ADDUSER command.

ADDUSER rlogind omvs(uid(0) home(/)

A typical permit command is:

permit bpx.daemon class(facility)

 id(rlogind) access(read)

How you set up security for daemons is the final determining factor. For

more information, see z/OS UNIX System Services Planning.

server_program Full pathname of the service. For example:

/usr/sbin/rlogind

is the full pathname for the rlogind command.

server_arguments Maximum of 20 arguments. The first argument is the server name.

Related Information

The inetd daemon creates a temporary file, /etc/inetd.pid, that contains the PID of

the currently executing inetd daemon. This PID value is used to identify syslog

records that originated from the inetd daemon process, and also to provide the PID

value for commands such as kill that require you to specify a PID, and to provide a

lock to prevent more than one inetd from being active at one time.

For more information on setting up the inetd configuration file and configuring

daemons in general, see z/OS UNIX System Services Planning or z/OS

Communications Server: IP Configuration Reference.

infocmp — Compare or print the terminal description

Format

infocmp [–ducn] [–ILC] [–1Vv] [–s d|i|l|c] [–A directory] [–B directory]

[term_names...]

Description

infocmp compares terminfo database entries, or prints a terminfo database entry.

Output is written to standard output (stdout).

The Curses application uses the terminfo database, which contains a list of terminal

descriptions. This enables you to manipulate a terminal’s display regardless of the

terminal type. To create the terminfo database, use tic. For information on defining

the terminfo database, see z/OS UNIX System Services Planning.

inetd daemon

Chapter 2. Shell command descriptions 315

For more information about curses, see z/OS C Curses.

Options

d Prints the two terminal definitions showing the differences between the

capabilities.

u Prints the differences between the two terminal definitions.

c Prints entries that are common to the two terminfo databases.

n Does not print entries in either terminfo database.

I Prints the current terminal description using capname. (capname is the

short name for a capability specified in the terminfo source file.)

C Prints the current terminal description using termcap.

L Prints the current terminal description using variables (names that the

curses functions can use when working with the terminfo database)

1 Single-column output.

V Prints the program version.

v Prints debugging information (verbose) to stderr.

s Changes sort order of the fields printed.

d Sorts by database

i Sorts by terminfo

c Sorts by termcap

l Sorts by the variables (names that the curses function can use

when working with the terminfo database)

A First terminfo database.

B Other terminfo database.

term_names

Names of entries to be processed.

Usage notes

When displaying terminal database information for entries that are to be processed,

infocmp operates as follows:

1. If you omit term_names, infocmp locates the terminal database information

specified by the TERM environment variable and displays that as the entry’s

terminal database information.

2. If you specify a single term_name, infocmp displays terminal database

information for that named entry.

3. If you specify more than one term_name, infocmp displays the results of a

terminal database comparison between all of the specified term_names.

Examples

1. To print out the current terminal description using capname, issue:

infocmp

You will see:

infocmp ibm3101

Reconstructed via infocmp from file:/usr/share/lib/terminfo/i

ibm3101|IBM 3101-10:\

infocmp

316 z/OS V1R9.0 UNIX System Services Command Reference

ibm3101|IBM 3101-10,

 am,

 cols#80, lines#24,

 bel=¬?, clear=¬.\322, cr=\r, cub1=\b, cud1=\n,

 cuf1=¬.\303,

2. To print out the current terminal description using the curses capability names,

issue:

infocmp –L

You will get:

infocmp –L ibm3101

Reconstructed via infocmp from file:/usr/share/lib/terminfo/i

ibm3101|IBM 3101-10:\

Terminal type ibm3101

 ibm3101|IBM 3101-10

flags

 auto_right_margin,

numbers

 columns = 80, lines = 24,

strings

 bell = ’¬?’, carriage_return = ’\r’, clear_all_tabs = ’¬.\310’,

 clear_screen = ’¬.\322’, clr_eol = ’¬.\311’, clr_eos = ’¬.\321’,

3. To print out the current terminal description using capname, issue:

infocmp –I

You will get:

infocmp –I ibm3101

Reconstructed via infocmp from file:/usr/share/lib/terminfo/i

ibm3101|IBM 3101-10:\

ibm3101|IBM 3101-10,

 am,

 cols#80, lines#24,

 bel=¬?, clear=¬.\322, cr=\r, cub1=\b, cud1=\n,

 cuf1=¬.\303,

4. To print out the current terminal description using termcap, issue:

infocmp –C

You will get:

infocmp –C ibm3101

Reconstructed via infocmp from file:/usr/share/lib/terminfo/i

ibm3101|IBM 3101-10:\

 :am:bs:\

 :.co#80:li#24:kn#2:\

 :.cd=\EJ:.ce=\EI:.cl=\EK:\

 :.c:.cm=\EY%p1%’ ’%+%c%p2%’

’%+%c:.ct=\EH:.ho=\EH:\

 :.nd=\EC:.st=\E0:.up=\EA:

5. To print entries in single-column format, issue:

infocmp –1

You will get:

infocmp –C –1 ibm3101

Reconstructed via infocmp from file:/usr/share/lib/terminfo/i

ibm3101|IBM 3101-10:\

 :am:\

 :bs:\

infocmp

Chapter 2. Shell command descriptions 317

:co#80:\

 :li#24:\

 :kn#2:\

 :.cd=\EJ:\

 :.ce=\EI:\

 :.cl=\EK:\

6. To print the two terminal definitions showing the difference between the

capabilities (F indicates False, entry not present; T indicates True, entry

present):

infocmp –d ibm3101 hft-c

You will get:

Reconstructed via infocmp from file:/usr/share/lib/terminfo/i

ibm3101|IBM 3101-10:\

 comparing ibm3101 to hft-c.

 comparing booleans.

 bw:F:T.

 msgr:F:T.

 xon:F:T.

 comparing numbers.

 it:-1:8.

 lines:24:25.

 comparing strings.

 batt1:’NULL’,’\206\361’.

 batt2:’NULL’,’\206\361\224\204’.

To print the capabilities that are different between the two terminal definitions.

The values for the first terminal definitions are shown.

infocmp –u ibm3101 hft-c

You will get:

Reconstructed via infocmp from file:/usr/share/lib/terminfo/i

ibm3101|IBM 3101-10:\

 ibm3101|IBM 3101-10,

 bw@, msgr@, xon@,

 it@, lines#24,

 batt1@, batt2@, blink@, bold@, box1@, box2@,

 clear=¬.\322, colb0@, colb1@, colb2@, colb3@, colb4@,

 colb5@, colb6@, colb7@, colf0@, colf1@, colf2@,

 colf3@, colf4@, colf5@, colf6@, colf7@, cub@, cud@,

 cuf@, cuf1=¬.\303,

7. To print the capabilities that are the same in both terminal definitions, issue:

infocmp –c ibm3101 hft-c

You will get:

Reconstructed via infocmp from file:/usr/share/lib/terminfo/i

ibm3101|IBM 3101-10:\

 comparing ibm3101 to hft-c.

 comparing booleans.

 am= T.

 comparing numbers.

 cols= 80.

 comparing strings.

 bel= ’¬?’.

 cr= ’\r’.

 cub1= ’\b’.

 cud1= ’\n’.

8. To print the capabilities that are not found in either terminal definition, issue:

infocmp –u ibm3101 hft-c

infocmp

318 z/OS V1R9.0 UNIX System Services Command Reference

You will get:

Reconstructed via infocmp from file:/usr/share/lib/terminfo/i

ibm3101|IBM 3101-10:\

 comparing ibm3101 to hft-c.

 comparing booleans.

 !bce.

 !ccc.

 !chts.

 !cpix.

 !crxm.

 !da.

 !daisy.

Environment Variables

infocmp uses the following environment variable:

TERMINFO

Contains the pathname of the terminfo database.

TERM Contains the name of your terminal, that is, the current terminal definition.

Related Information

captoinfo, tic

integer — Mark each variable with an integer value

Format

integer [number]

Description

integer is an alias for typeset –i. Like typeset –i, integer marks each variable as

having an integer value, thus making arithmetic faster. If number is given and is

nonzero, the output base of each variable is number. The default is decimal.

See “typeset — Assign attributes and values to variables” on page 716 for more

information.

Related Information

typeset, sh

ipcrm — Remove message queues, semaphore sets, or shared

memory IDs

Format

ipcrm [–m SharedMemoryID] [–M SharedMemoryKey] [–q QMessageID] [–Q

MessageKey] [–s SemaphoreID] [–S SemaphoreKey]

Description

ipcrm removes one or more message queues, semaphores set, or shared memory

identifiers.

infocmp

Chapter 2. Shell command descriptions 319

Options

–m SharedMemoryID

Removes the shared memory identifier SharedMemoryID. The shared

memory segment and data structure associated with SharedMemoryID are

also removed after the last detach operation.

–M SharedMemoryKey

Removes the shared memory identifier, created with the key

SharedMemoryKey. The shared memory segment and data structure

associated with it are also removed after the last detach operation.

–q MessageID

Removes the message queue identifier MessageID and the message

queue and data structure associated with it.

–Q MessageKey

Removes the message queue identifier, created with the key MessageKey,

and the message queue and data structure associated with it.

–s SemaphoreID

Removes the semaphore identifier SemaphoreID and the set of

semaphores and data structure associated with it.

–S SemaphoreKey

Removes the semaphore identifier, created with the key SemaphoreKey,

and the set of semaphores and data structure associated with it.

 The msgctl, shmctl, and semctl subroutines provide details of the remove

operations. You can use the ipcs command to find the identifiers and keys.

Examples

1. To remove the shared memory segment associated with SharedMemoryID

18602, enter:

ipcrm –m 18602

2. To remove the message queue that was created with a key of 0xC1C2C3C3,

enter:

ipcrm –Q 0xC1C2C3C4

Exit Values

0 Successful completion

1 Incorrect command-line option

Related Information

ipcs

ipcs — Report status of the interprocess communication facility

Format

ipcs [–mqsS] [–a b c o p t w x y M B]

ipcrm

320 z/OS V1R9.0 UNIX System Services Command Reference

Description

ipcs writes to the standard output information about active interprocess

communication facilities. If you do not specify any flags, ipcs writes information in a

short form about currently active message queues, shared memory segments, and

semaphores.

The column headings and the meaning of the columns in an ipcs command listing

are listed in Table 14. The letters in parentheses indicate the command flags that

cause the corresponding heading to appear. (all) means that the heading is always

displayed. These flags determine what information is provided for each facility. They

do not determine which facilities are listed.

 Table 14. Explanation of the ipcs Command Listing

Column Heading Meaning of the Column

T

(all except y)

The type of facility:

q Message queue

m Shared memory segment

s Semaphore

S Map Memory Service

ID

(all except x,w,y,S,B)

The identifier for the facility entry

KEY

(all except y,S,B)

The key used as a parameter to the msgget subroutine, the

semget subroutine, or the shmget subroutine to make the

facility entry. (The key of a shared memory segment is

changed to IPC_PRIVATE when the segment is removed

until all processes attached to the segment detach it.)

MODE

(all except x,w,y,S,B)

The facility access modes and flags. The mode consists of

11 characters that are interpreted as follows:

The first two characters can be the following:

R If a process is waiting in a msgrcv() system call.

S If a process is waiting in a msgsnd() system call.

D If the associated shared memory segment has

been removed. It disappears when the last process

attached to the segment detaches it.
The next nine characters are interpreted as three sets of

three characters each. The first set refers to the owner’s

permissions; the next to permissions of others in the user

group of the facility entry; and the last to all others. Within

each set, the first character indicates permission to read,

the second character indicates permission to write or alter

the facility entry, and the last character is currently unused.

The permissions are indicated as follows:

r If read permission is granted

w If write permission is granted

a If alter permission is granted

– If the indicated permission is not granted

OWNER (all, except S,B) The login name or user ID of the owner of the facility entry.

GROUP (all) The name or group ID of the group that owns the facility

entry.

CREATOR (a,c) The login name or user ID of the creator of the facility entry.

ipcs

Chapter 2. Shell command descriptions 321

Table 14. Explanation of the ipcs Command Listing (continued)

Column Heading Meaning of the Column

CGROUP (a,c) The group name or group ID of the creator of the facility

entry.

CBYTES (a,x,o) The number of bytes in messages currently outstanding on

the associated message queue.

INFO (x) Provides additional extended state information. Under this

field will be returned one or more of the following codes

(codes are not mutually exclusive unless noted):

For shared memory output:

M megaroo

For semaphore output:

P PLO in use. Mutually exclusive with L.

L Latch in use. Mutually exclusive with P.

B Binary semaphore.

For message queue output:

P PLO in use. Mutually exclusive with L.

L Latch in use. Mutually exclusive with P.

R RCV type PID.

S Send type PID.

1 PLO1 flag on––IPC_PLO1 set on msgget()

2 PLO2 flag on––IPC_PLO2 set on msgget()

QNUM (a,o) The number of messages currently outstanding on the

associated message queue.

QBYTES (a,b) The maximum number of bytes allowed in messages

outstanding on the associated message queue.

LSPID (p) The ID of the last process that sent a message to the

associated queue.

LRPID (p) The ID of the last process that received a message from the

associated queue.

STIME (a,t) The time when the last message was sent to the associated

queue.

RTIME (a,t) The time when the last message was received from the

associated queue.

CTIME (a,t) The time when the associated entry was created or

changed.

NATTCH (a,o) The number of processes attached to the associated shared

memory segment.

SEGSZPG (a,b,x) The size in pages of the associated shared memory

segment.

PGSZ (a,b,x) The page size of the associated shared memory segment.

SEGSZ (a,b,x) The size in bytes of the associated shared memory

segment.

CPID (p) The process ID of the creator of the shared memory entry.

LPID (p) The process ID of the last process to attach or detach the

shared memory segment.

ATIME (a,t) The time when the last attach was completed to the

associated shared memory segment.

ipcs

322 z/OS V1R9.0 UNIX System Services Command Reference

Table 14. Explanation of the ipcs Command Listing (continued)

Column Heading Meaning of the Column

DTIME (a,t) The time the last detach was completed on the associated

shared memory segment.

NSEMS (a,b) The number of semaphores in the set associated with the

semaphore entry.

OTIME (a,t) The time the last semaphore operation was completed on

the set associated with the semaphore entry.

RCVWAIT (x) A count of msgrcv() waiters.

SNDWAIT (x) A count of msgsnd() waiters.

MSGQPID (w) For the message Q report, up to 10 lines of data will be

shown under this heading.

MSGQTYPE (w) For the message Q report, up to 10 lines of data will be

shown under this heading.

RCVPID (w) The process ID of a msgrcv() waiter. A maximum of 10

process IDs can be written.

RCVTYP (w) The message type of a msgrcv() waiter associated with

RCVPID. A maximum of 10 message type will be written. If

the caller does not have read access, this field is not

displayed.

SNDPID (w) The process ID of a msgsnd() waiter. A maximum of 10

process IDs can be written

SNDLEN (w) The message send length of a msgsnd() waiter associated

with SNDPID. A maximum of 10 message send lengths can

be written.

TERMA (x) The number of times sem_val was changed during

termination for semaphore adjustments.

CNADJ (x) The current number of processes with semaphore

adjustments.

SNCNT (x) The number of waiters waiting for a sem_val greater than

zero.

SZCNT (x) The number of waiters waiting for a sem_val equal to zero.

WTRPID (w) The process IDs of a semop waiter. A maximum of 10

semop waiters are written.

WTRNM (w) The semaphore number associated with WTRPID. A

maximum of 10 semaphore numbers are written.

WTROP (w) The semaphore operation value associated with WTRNM

and WTRPID. A maximum of 10 semaphore operation

values are written.

AJPID (w) The process ID of a process with semaphore adjustments. A

maximum of 10 process IDs are written.

AJNUM (w) The semaphore number of the semaphore adjustment

associated with AJPID. A maximum of 10 semaphore

numbers are written.

AJPID (w) The process ID of a process with semaphore adjustments. A

maximum of 10 process IDs are written.

AJNUM (w) The semaphore number of the semaphore adjustments

associated with AJPID. A maximum of 10 semaphore

numbers are written.

ipcs

Chapter 2. Shell command descriptions 323

Table 14. Explanation of the ipcs Command Listing (continued)

Column Heading Meaning of the Column

AJVAL (w) The semaphore adjustment value associated with AJNUM

and AJPID. A maximum of 10 semaphore adjustment values

are written.

ATPID (x) The process ID of a process that is attached to this shared

memory segment. A maximum of 10 process IDs are

written.

ATADDR (x) The shared memory address where the process ATPID is

attached to this segment. A maximum of 10 addresses are

written.

MNIDS (y) The system limit for maximum number of message queues,

semaphores, or shared memory IDs.

HWIDS (y) The most message queues, semaphores, or shared memory

IDs created.

CIDSA (y) The current number of message queues, semaphores, or

shared memory IDs available.

CPRIV (y) The current number of message queues, semaphores, or

shared memory IDs created with IPC_PRIVATE

CKEY (y) The current number of message queues, semaphores, or

shared memory IDs created with a key.

GETEX (y) The number of times msgget, semget, or shmget

exceeded the maximum number of IDs MNID.

MAXQB (y) The system limit for maximum number of bytes on a

message queue.

QMNUM (y) The system limit for maximum number messages on a

message queue.

ENOMEM (y) The number of times msgsnd() calls returned ENOMEM.

MNSEMS (y) The system limit for maximum number of semaphores per

set.

MNOPS (y) The system limit for maximum number of operations per

semop.

CSBYTES (y) The current number of bytes used by the system for

semaphores.

TPAGES (y) The system limit for number of system-wide shared memory

pages

SPAGES (y) The system limit for number of pages per shared memory

segment.

SEGPR (y) The system limit for number of segments per process.

CPAGES (y) The current number of system-wide shared memory pages

MAXSEG (y) The largest number of shared memory pages allocated to a

single shared memory segment.

CREATEPID (S,B) The creator PID of the map memory area. It is an unique

identifier of the map area.

USERPID (S,B) The user PID of the map memory area, which is currently

using it.

USER (S,B) The user name of the user of the map memory segments

entry.

ipcs

324 z/OS V1R9.0 UNIX System Services Command Reference

Table 14. Explanation of the ipcs Command Listing (continued)

Column Heading Meaning of the Column

SHUTDOWN (S,B) This field indicates that for this particular map memory

object, shutdown flag has been marked for freeing of this

area. While blocks can be freed in this area, the map

memory object is not freed until the last process using it

terminates.

BLKSIZE (B) The block size of the map area object in megabytes.

BLKSINUSE (B) The number of blocks is in use in the map memory area

object.

BLKSINMAP (B) The number of blocks in this map area object.

BLKSMAPPED (B) The number of blocks mapped by this process.

SECLABEL (M) The multilevel security label associated with Message

queues, Semaphores, and Shared Memory.

Options

–q Writes information about active message queues.

–m Writes information about active shared memory segments.

–s Writes information about active semaphore set.

–S Write information about active __map memory segments.

 If –q, –m, –s, or –S are specified, only information about those facilities is written. If

none of these four are specified, information about message queues, shared

memory segments and semaphores are written subject to the following options.

__Map memory information will not written unless the –S is specified.

–a Uses the –b, –c, –o, –p, and –t flags.

–b Writes the maximum number of bytes in messages on queue for message

queues, the size of segments for shared memory, and the number of

semaphores in each semaphores set. This option will be ignored for __map

memory option [–S].

–c Writes the login name and group name of the user that made the facility.

This option will be ignored for __map memory option [–S].

–m Writes information about active shared memory segments.

–o Writes the following usage information:

v Number of messages on queue

v Total number of bytes in messages in queue for message queues

v Number of processes attached to shared memory segments

–p Writes the following:

v Process number of the last process to receive a message on message

queues

v Process number of the creating process

v Process number of last process to attach or detach on shared memory

segments

–q Writes information about active message queues.

–s Writes information about active semaphore set.

ipcs

Chapter 2. Shell command descriptions 325

–t

v Time of the last control operation that changed the access permissions

for all facilities

v Time of the last msgsnd() and msgrcv() on message queues

v Time of the last shmat and shmdt on shared memory

v Time of the last semop on semaphore sets

–w Writes message queue wait status and semaphore adjustment status in

these fields:

 AJNUM KEY RCVPID T

AJPID MSGQPID RCVTYP WTRNM

AJVAL MSGQTYP SNDLEN WTROP

GROUP OWNER SNDPID WTRPID

This option ignores all other print options except –x and –y.

–x Writes extended status in these fields:

 ATADDR KEY SEGSZ T

ATPID OWNER SEGSZPG TERMA

CNADJ PGSZ SNCNT

GROUP QCBYTES SNDWAIT

INFO RCVWAIT SZCNT

This option will be ignored for __map memory option [–S]. This option

ignores all other print options except the –y option.

–y Writes summary and system limit status in these fields:

 CIDSA ENOMEM MAXSEG SPAGES

CKEY GETEX MNIDS TPAGES

CPAGES HWIDS MNOPS

CPRIV QMNUM MNSEMS

CSBYTES MAXQB SEGPR

This option ignores all other print options. This option is a summary and

system limit status for message queues, semaphores and shared memory.

It will not include the __map memory segments [–S] summary and system

limit status.

–M Writes multilevel security label associate with the resources except __map

memory facility. See z/OS Planning for Multilevel Security and the Common

Criteria for more information on multilevel security.

–B Writes extended information about __map memory segments in these fields:

 BLKSIZE BLKSINUSE BLKSINMAP BLKSMAPPED

This option only applies to __map memory segments [–S].

Examples

Following is a sample output from entering ipcs without flags:

 IPC status as of Wed Apr 6 14:56:22 EDT 1994

 Message Queues:

 T ID KEY MODE OWNER GROUP

 q 1234567890 0x4107001c -Rrw-rw---- root printq

 Shared Memory:

 T ID KEY MODE OWNER GROUP

 m 0 0x0d07021e --rw------- root system

ipcs

326 z/OS V1R9.0 UNIX System Services Command Reference

m 1 0x0d08c984 --rw-rw-rw- root system

 Semaphores:

 T ID KEY MODE OWNER GROUP

 s 4096 0x0108c86e --ra------- root system

 s 1 0x6208c8ef --ra-r--r-- root system

 s 2 0x4d0b00a6 --ra-ra---- root system

 s 24579 0x00bc614e --ra-ra-ra- xlin vendor

 s 176132 0x00000058 --ra-ra-ra- xlin vendor

Following is a sample output from entering ipcs -S:

 IPC status as of Wed Oct 6 14:56:22 EDT 2002

 Map Memory Service:

 T CREATEPID USERPID USER GROUP SHUTDOWN

 S 1096 165 root system Y

 S 4 114 John system Y

 S 6 324 John system N

 S 1052 111 Andrew vendor N

 S 96 678 xlin vendor Y

Exit Values

0 Successful completion

1 Failure due to incorrect command-line option

Related Information

ipcrm

jobs — Return the status of jobs in the current session

Format

jobs [–l|–p] [job-identifier...]

tcsh shell: jobs [-l]

Description

jobs produces a list of the processes in the current session. Each such process is

numbered for easy identification by fg or kill, and is described by a line of

information:

[job-identifier] default state shell_command

job-identifier

Is a decimal number that identifies the process for such commands as fg

and kill (preface job-identifier with % when used with these commands).

default Identifies the process that would be the default for the fg and bg

commands (that is, the most recently suspended process). If default is a +,

this process is the default job. If default is a –, this job becomes the default

when the current default job exits. There is at most one + job and one –

job.

state Shows a job as:

Running

If it is not suspended and has not exited

Done If it exited successfully

Done(exit status)

If it exited with a nonzero exit status

ipcs

Chapter 2. Shell command descriptions 327

Stopped (signal)

If it is suspended; signal is the signal that suspended the job

shell_command

Is the associated shell command that created the process.

jobs in the tcsh shell

In the tcsh shell, jobs lists the active jobs. With-l, lists process IDs in addition to the

normal information. See “tcsh — Invoke a C shell” on page 626.

Options

–l Displays the process group ID of a job (before state).

–p Displays the process IDs of all processes.

 The –l and –p options are mutually exclusive.

Localization

jobs uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Usage Note

jobs is a built-in shell command.

Exit Values

0 Successful completion

2 Failure due to an incorrect command-line argument

Portability

POSIX.2 User Portability Extension.

Related Information

bg, fg, kill, ps, wait, tcsh

join — Join two sorted textual relational databases

Format

 join [–a n] [–e s] [–o list] [–t c] [–v n] [–1 n] [–2 n] file1 file2

 join [–a n] [–e s] [–j[n] m] [–o list] [–t c] file1 file2

Description

join joins two databases. It assumes that both file1 and file2 contain textual

databases in which each input line is a record and that the input records are sorted

in ascending order on a particular join key field (by default the first field in each file).

If you specify – in place of file1 or file2, join uses the standard input (stdin) for that

file. If you specify – – in place of both file1 and file2, the output is undefined.

jobs

328 z/OS V1R9.0 UNIX System Services Command Reference

Conceptually, join computes the Cartesian product of records from both files. By

default, spaces or tabs separate input fields and join discards any leading or trailing

white space. (There can be no white-space-delimited empty input fields.) It then

generates output for those combined records in which the join key field (the first

field by default) matches in each file. The default output for join is the common join

key field, followed by all the other fields in file1, and then all the other fields in file2.

The other fields from each file appear in the same order they appeared in the

original file. The default output field separator is a space character.

Options

–a n Produces an output line for lines that do not match in addition to one for a

pair of records that does match. If you specify n as one of 1 or 2, join

produces unpaired records from only that file. If you specify both –a 1 and

–a 2, it produces unpaired records from both files.

–e string

Replaces an empty field with string on output. In a doublebyte locale, string

can contain doublebyte characters.

–j[n] m

Uses field number m as the join key field. By default, the join key field is

the first field in each input line. As with the –a option, if n is present, this

option specifies the key field just for that file; otherwise, it specifies it for

both files.

–o list Specifies the fields to be output. You can specify each element in list as

either n.m, where n is a file number (1 or 2) and m is a field number, or as

0 (zero), which represents the join field. You can specify any number of

output fields by separating them with blanks or commas. The

POSIX-compatible version of this command (first form in the syntax)

requires multiple output fields to be specified as a single argument;

therefore, shell quoting may be necessary. join outputs the fields in the

order you list them.

–t c Sets the field separator to the character c. Each instance of c introduces a

new field, making empty fields possible. In a doublebyte locale, c can be a

doublebyte character.

–v n Suppresses matching lines. If you specify n as one of 1 or 2, join produces

unpaired records from only that file. If you specify both –v 1 and –v 2, it

produces unpaired records from both files. This does not suppress any lines

produced using the –a option.

–1 n Uses the nth field of file1 as the join key field.

–2 n Uses the nth field of file2 as the join key field.

Examples

1. The following script produces a report about files in the working directory

containing filename, file mode, and an estimate at what the file contains:

file * | tr –s ':' ';' >temp1

ls –l | tr –s ' ' ' ';' >temp2

join –t';' –j2 9 –o 1.1 2.1 1.2 ---

temp1 temp2

rm temp[12]

2. This example uses the historical implementation of the join command. The third

line in the POSIX-compatible script could be:

join –t';' –2 9 –o 1.1,2.1,1.2 -- temp1 temp2

join

Chapter 2. Shell command descriptions 329

Localization

join uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Incorrect syntax

v The wrong number of command-line arguments

v Inability to open the input file

v Badly constructed output list

v Too many –o options on the command line
2 Failure due to an incorrect command-line argument

Messages

Most diagnostics deal with argument syntax and are self-explanatory. For example:

Badly constructed output list at list

Indicates that the list for a –o option did not have the proper syntax.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

POSIX considers the –j option to be obsolete.

Related Information

awk, comm, cut, paste, sort

kill — End a process or job, or send it a signal

Format

 kill –l [exit_status]

 kill [–s signal_name] [

 kill –K [pid...][job-identifier...]

 kill [–signal_name] [pid ...] [job-identifier ...]

 kill [–signal_number] [pid ...] [job-identifier ...]

tcsh shell:

kill [-signal] %job|pid ...

kill –K %job|pid...

kill -l

join

330 z/OS V1R9.0 UNIX System Services Command Reference

Description

kill ends a process by sending it a signal. The default signal is SIGTERM.

kill in the tcsh shell

In the tcsh shell, kill [-signal] %job|pid ... sends the specified signal (or if none is

given, the TERM (terminate) signal) to the specified jobs or processes. job may be

a number, a string, ’’, %, + or - . Signals are either given by number or by name.

When using the tcsh kill command, do not use the first three characters (SIG) of

the signal_name. Enter the signal_name with uppercase characters. For example, if

you want to send the SIGTERM signal, you would enter kill -TERM pid not kill

-SIGTERM pid.

There is no default job. Specifying kill alone does not send a signal to the current

job. If the signal being sent is TERM or HUP (hangup), then the job or process is

sent a CONT (continue) signal as well.

kill -l lists the signal names. See “tcsh — Invoke a C shell” on page 626.

The signal_numbers and signal_names described in “Options” are also used with

the tcsh kill command.

Options

–K Sends a superkill signal to force the ending of a process or job that did not

end as a result of a prior KILL signal. The process is ended with a

non-retryable abend. The regular KILL signal must have been sent at least

3 seconds before the superkill signal is sent. The superkill signal cannot be

sent to a process group (by using pid of 0 or a negative number) or to all

processes (by using a pid of -1).

–l Displays the names of all supported signals. If you specify exit_status, and

it is the exit code of a ended process, kill displays the ending signal of that

process.

–s signal_name

Sends the signal signal_name to the process instead of the SIGTERM

signal. When using the kill command, do not use the first three characters

(SIG) of the signal_name. Enter the signal_name with uppercase

characters. For example, if you want to send the SIGABRT signal, enter:

kill –s ABRT pid

–signal_name

(Obsolete.) Same as –s signal_name.

–signal_number

(Obsolete.) A non-negative integer representing the signal to be sent to the

process, instead of SIGTERM.

 The signal_number represents the signal_name shown below:

signal_number

signal_name

0 SIGNULL

1 SIGHUP

2 SIGINT

3 SIGQUIT

4 SIGILL

5 SIGPOLL

6 SIGABRT

kill

Chapter 2. Shell command descriptions 331

7 SIGSTOP

8 SIGFPE

9 SIGKILL

10 SIGBUS

11 SIGSEGV

12 SIGSYS

13 SIGPIPE

14 SIGALRM

15 SIGTERM

16 SIGUSR1

17 SIGUSR2

18 SIGABND

19 SIGCONT

20 SIGCHLD

21 SIGTTIN

22 SIGTTOU

23 SIGIO

24 SIGQUIT

25 SIGTSTP

26 SIGTRAP

27 SIGIOERR

28 SIGWINCH

29 SIGXCPU

30 SIGXFSZ

31 SIGVTALRM

32 SIGPROF

38 SIGDCE

39 SIGDUMP

Note: The signal_numbers (3 and 6) associated with SIGQUIT and SIGABRT,

respectively, differ from the values of SIGQUIT and SIGABRT used by the

z/OS kernel, but they are supported for compatibility with other UNIX

platforms. (The kill command will send the z/OS SIGQUIT or SIGABRT to

the process.) (This note is also true for kill in the tcsh shell.)

Options

job-identifier

Is the job identifier reported by the shell when a process is started with &. It

is one way to identify a process. It is also reported by the jobs command.

When using the job identifier with the kill command, the job identifier must

be prefaced with a percent (%) sign. For example, if the job identifier is 2,

the kill command would be entered as follows:

kill –s KILL %2

pid Is the process ID that the shell reports when a process is started with &.

You can also find it using the ps command. The pid argument is a number

that may be specified as octal, decimal, or hex. Process IDs are reported in

decimal. kill supports negative values for pid.

 If pid is negative but not −1, the signal is sent to all processes whose

process group ID is equal to the absolute value of pid. The negative pid is

specified in this way:

kill –KILL –– –nn

where nn is the process group ID and may have a range of 2 to 7 digits (nn

to nnnnnnn).

kill

332 z/OS V1R9.0 UNIX System Services Command Reference

kill –s KILL –– –9812753

The format must include the –– before the –nn in order to specify the

process group ID.

 If pid is 0, the signal is sent to all processes in the process group of the

invoker.

 The process to be killed must belong to the current user, unless he or she is the

superuser.

Localization

kill uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Usage notes

1. kill is a built-in shell command.

2. z/OS UNIX signal delivery restrictions are documented in the ″Environmental

Restrictions″ section of z/OS UNIX System Services Programming: Assembler

Callable Services Reference.

Exit Values

0 Successful completion

1 Failure due to one of the following:

v The job or process did not exist

v There was an error in command-line syntax

2 Failure due to one of the following:

v Two jobs or processes did not exist

v Incorrect command-line argument

v Incorrect signal

>2 Tells the number of processes that could not be killed

Messages

Possible error messages include:

job-identifier is not a job

You specified an incorrect ID.

signal_name is not a valid signal

You specified a noninteger signal for kill, or you specified a signal that is

outside the range of valid signal numbers.

Portability

POSIX.2, X/Open Portability Guide.

kill

Chapter 2. Shell command descriptions 333

Related Information

jobs, ps, sh, tcsh

[(left bracket) — Test for a condition

See the test command.

Note: When working in the shell, to view man page information about [(left

bracket), type: man left.

ld — Link object files

Format

ld [–cVv]

[–b option[,option]...]...

[–e function]

[–f filename]...

[–L directory]...

[–l libname]...

[–O name[,name]...]

[–o outfile]

[–S syslibdset]...

[–u function]

[–x sidefile]

[file.o] ... [file.a] ... [file.x]... [–l libname] ...

Description

The ld utility combines object files and archive files into an output executable file,

resolving external references. ld runs the Program Management Binder.

Options

-b option[,option]...

Specifies options to be passed to the binder. For more information about

the binder and its options, see z/OS MVS Program Management: User’s

Guide and Reference. Binder options that are not specified will take the

binder default, except when other ld options affect binder options.

–c Causes pseudo-JCL to be written to stdout without actually running the

binder. Pseudo-JCL provides information about exactly which binder options

are being passed, and also which data sets are being used.

 Also see –v.

-e function

Specifies the name of the function to be used as the entry point of the

program.

 The default value of the -e option is affected by the setting of environment

variable _LD_ENTRY_POINT (see Environment Variables). If the -e option

is not specified and _LD_ENTRY_POINT is null, or if function is null, the

default rules of the binder will determine the entry point of the program. For

more information about the binder and the ENTRY control statement, see

z/OS MVS Program Management: User’s Guide and Reference.

 Also see -O.

kill

334 z/OS V1R9.0 UNIX System Services Command Reference

-f filename

Specifies a file that contains a list of the names of object and archive files

to be used as input. The listed files will be used in addition to any files

specified as operands.

-L directory

Specifies the directories to be used to search for archive libraries specified

by the -l operand. The directories are searched in the order specified, and

then in the directories specified by the _LD_LIBDIRS environment variable

or its default. You cannot specify an MVS data set as an archive library

directory.

-l libname

Specifies the name of an archive library. ld searches for the file

liblibname.a in the directories specified on the -L option and then in the

directories specified by the _LD_LIBDIRS environment variable or its

default. The first occurrence of the archive library is used.

 You can also specify an MVS data set; you must specify the full data set

name, because there are no rules for searching library directories.

 The data set specified must be a C370LIB object library or a load library. If

a data set specified as a library has undefined (U) record format, then it is

assumed to be a load library. For more information about the z/OS C/C++

Object Library Utility, see z/OS XL C/C++ Programming Guide. For more

information about how load libraries are searched, see Usage Notes.

-O name[, name]...

Specifies the name of the code topic to be ordered to the beginning of the

executable. The binder control statement order will be generated. The

default value of -O can be provided by the environment variable

_LD_ORDER (see Environment Variables).

-o outfile

Specifies the name of the executable file produced by ld. The default output

file is a.out.

-S syslibdset

Specifies the name of a system library (SYSLIB) data set that will be used

to resolve symbols.

-u function

Specifies the name of the function to be added to the list of external

symbols to be resolved. This option can be useful if the only input is archive

libraries. If this option is not specified, no external symbol is added.

-V This verbose option produces binder listings and directs them to stdout.

-v This verbose option causes pseudo-JCL to be written to stdout before the

binder is run. It provides information about exactly which binder oiptions are

being passed, and also which data sets are being used.

-X sidefile

Specifies the name of a side deck file or data set that ld will write to when

producing a DLL (dynamic link library).

Operands

file.a Specifies the name of an archive file, as produced by the ar command, to

be used by the binder for resolving external references. To specify an MVS

data set name, precede the name with double slash (//), in which case the

last qualifier of the data set name must be LIB. The data set specified must

ld

Chapter 2. Shell command descriptions 335

be a C370LIB object library or a load library. See the description of the –l

libname operand for more information about using data sets as libraries.

file.o Specifies the name of an object file, produced by z/OS compiler or

assembler, to be link-edited.

 To specify an MVS data set name to be link-edited, precede the file name

with double slash (//), in which case the last qualifier of the data set name

must be OBJ.

 If a partitioned data set is specified, more than one member name may be

specified by separating each with a comma (,):

 Example:

ld //file.OBJ(mem1,mem2,mem3)

file.x Specifies the name of a definition side-deck produced by ld when creating

a DLL (dynamic link library), and used by ld when linking an application

using the DLL. See the description of side-deck processing in z/OS MVS

Program Management: User’s Guide and Reference.

 To specify an MVS data set name, precede the file name with double slash

(//), in which case the last qualifier of the data set name must be EXP.

 If a partitioned data set is specified, more than one member name may be

specified by separating each with a comma (,):

 Example:

ld //file.EXP(mem1,mem2,mem3)

Environment variables

You can use environment variables to specify necessary system and operational

information to ld. When a particular environment variable is not set, ld uses the

default shown. For information about the JCL parameters used in these

environment variables, see z/OS MVS JCL User’s Guide.

_LD_ACCEPTABLE_RC

The maximum allowed return code (result) of the binder invocation. If the

result is between zero and this value (inclusive), then it is treated internally

by ld exactly as if it were a zero result, except that message IEW5033 may

be issued. For more information about binder return codes, see z/OS MVS

Program Management: User’s Guide and Reference. The default value is:

"4"

_LD_ASUFFIX

The suffix by which ld recognizes an archive file. This environment variable

does not affect the treatment of archive libraries specified as -l operands,

which are always prefixed with lib and suffixed with .a. The default value is:

"a"

_LD_ASUFFIX_HOST

The suffix by which ld recognizes a library data set. This environment

variable does not affect the treatment of data set libraries specified as -l

operands, which are always used exactly as specified. The default value is:

"LIB"

_LD_DAMPLEVEL

The minimum severity level of dynamic allocation messages returned by

dynamic allocation message processing. Messages with severity greater

than or equal to this number are written to stderr. However, if the number is

ld

336 z/OS V1R9.0 UNIX System Services Command Reference

out of the range shown here (that is, less than 0 or greater than 8), thenld

dynamic allocation message processing is disabled. The default value is:

"4"

Following are the values:

0 Informational

1–4 Warning

5–8 Severe

_LD_DAMPNAME

The name of the dynamic allocation message processing program called by

ld. It must be a member of a data set in the search order used for MVS

programs. The default dynamic allocation message processing program is

described in z/OS MVS Programming: Authorized Assembler Services

Guide. The default value is:

"IEFDB476"

_LD_DCBU

The DCB parameters used by ld for data sets with the attributes of record

format undefined and data set organization partitioned. This DCB is used by

ld for the output file when it is to be written to a data set. The default value

is:

"(RECFM=U,LRECL=0,BLKSIZE=6144,DSORG=PO)"

_LD_DCB80

The DCB parameters used by ld for data sets with the attributes of record

format fixed blocked and logical record length 80. The default value is:

"(RECFM=FB,LRECL=80,BLKSIZE=5680)"

_LD_DEBUG_DUMP

The name of a data set to be used for capturing diagnosis data during

execution of the binder. An unformatted dump will be written to this data set

by the binder when it encounters a binder ABEND situation (usually

accompanied by message IEW2900W) or when the binder option DUMP is

specified. The data set must have been created before ld is invoked, and

must be created with RECFM=VBA and LRECL=125. If this environment

variable is null, the binder dump will not be captured. The default value is

"" (null)

_LD_DEBUG_TRACE

The name of a data set to be used for capturing diagnosis data during

execution of the binder. An unformatted trace will be written to this data set

by the binder. The data set must have been created before ld is invoked,

and must be created with RECFM=VB and LRECL=84. If this environment

variable is null, the binder trace will not be captured. The default value is

"" (null)

_LD_ENTRY_POINT

The value to be used as the -e option if -e is not specified. The default

value is

"" (null)

_LD_EXTRA_SYMBOL

The value to be used as the -u option if -u is not specified. The default

value is

"" (null)

ld

Chapter 2. Shell command descriptions 337

_LD_LIBDIRS_

The directories used by ld as the default place to search for archive

libraries which are specified using the –l operand. The default value is:

"/lib /usr/lib"

_LD_ORDER

The value to be used as the -O option if -O is not specified. The default

value is

"" (null)

_LD_NEW_DATACLAS

The DATACLAS parameter used by ld for any new data sets it creates. The

default value is

"" (null)

_LD_NEW_DSNTYPE

The DSNTYPE parameter used by ld for any new data sets it creates. The

default value is

"LIBRARY"

which means that new data sets will be created as type PDSE.

_LD_NEW_MGMTCLAS

The MGMTCLAS parameter used by ld for any new data sets it creates.

The default value is

"" (null)

_LD_NEW_SPACE

The SPACE parameter used by ld for any new data sets it creates. The

default value is

"" (null)

_LD_NEW_STORCLAS

The STORCLAS parameter used by ld for any new data sets it creates.

The default value is

"" (null)

_LD_NEW_UNIT

The UNIT parameter used by ld for any new data sets it creates. The

default value is

"" (null)

_LD_OPERANDS

These operands are parsed as if they were specified after all other

operands on the ld command line. The default value is

"" (null)

_LD_OPTIONS

These options are parsed as if they were specified after all other operands

on the ld command line. The default value is

"" (null)

_LD_OSUFFIX

The suffix by which ld recognizes an object file. The default value is

"o"

_LD_OSUFFIX_HOST

The suffix by which ld recognizes an object data set. The default value is

"OBJ"

ld

338 z/OS V1R9.0 UNIX System Services Command Reference

_LD_SYSLIB

The system library data set concatenation to be used to resolve symbols.

The default value is:

" " (null)

_LD_SYSIX

The system definition side-deck list to be used to resolve symbols. A

definition side-deck contains link-editing phase IMPORT control statements

naming symbols which are exported by a DLL. The default value is

"" (null)

_LD_XSUFFIX

The suffix by which ld recognizes a definition side-deck file of exported

symbols. The default value is

"x"

_LD_XSUFFIXHOST

The suffix by which ld recognizes a definition side-deck data set of

exported symbols. The default value is

"EXP"

Usage notes

 1. Messages generated from the use of the ld command are provided in z/OS

MVS System Messages, Vol 8 (IEF-IGD).

 2. ld provides similar function to the link-edit step of the c89 command. It does

not provide any functions of the compile and assembly phases of c89, nor any

steps of the link-edit phase except for the link-edit step --ld merely calls the

program management binder. The other main difference is that c89 has default

settings that are designed for linking an object file produced by the IBM C/C++

compiler for execution in the Language Environment, whereas the default

settings of ld do not include compiler or environment assumptions, and it can

therefore be more easily used to link objects from other compilers or that are

destined for environments other than Language Environment.

You can use ld options, operands, or environment variables to cause ld to

create executable modules that are compatible with those c89 produces by

default:

 Option/operand Environment variable Value for c89 compatibility

-e _LD_ENTRY_POINT CEESTART

or, for AMODE 64 code,

CELQSTRT

-O _LD_ORDER CEESTART

or, for AMODE 64 code,

CELQSTRT

-S _LD_SYSLIB //’CEE.SCEELKEX’:

//’CEE.SCEELKED’:

//’CBC.SCCNOBJ’:

//’SYS1.CSSLIB’

or installation equivalent

names

ld

Chapter 2. Shell command descriptions 339

-u _LD_EXTRA_SYMBOL CEEMAIN

or, for AMODE 64 code,

CELQMAIN

file.a _LD_OPERANDS //CEE.SCEEOBJ

 3. When a data set name is specified, the argument must start with double-slash

(//) followed by the data set name. If the name is enclosed in single quotes, it

is assumed to be fully qualified and is taken as-is. Otherwise, the user login

name followed by a period is prefixed.

 4. To be able to specify an operand that begins with a dash (-), you must use the

double dash (--) end-of-options delimiter.

 5. When ld is invoked from the shell, any option-arguments or operands specified

that contain characters with special meaning to the shell must be escaped. For

example, source files specified as PDS member names contain parentheses;

and if they are specified as fully qualified names, they contain single quotes.

To escape these special characters, either enclose the option-argument or

operand in double quotes, or precede each character with a backslash.

 6. Options and arguments are processed in the order read (from left to right).

Where there are conflicts, the last specification is used. If options that require

arguments are specified more than once, the last specification is used except

as follows:

-b Binder options are appended in the order they are specified

-f Each file is processed when the -f option is encountered

-L Library directories are appended in the order they are specified

-l Libraries are searched when the -l option is encountered

-S SYSLIB data sets are appended in the order they are specified

All operands are processed in the order they are specified.

 7. Because archive library files are searched when their names are encountered,

the placement of -l operands and file.a operands is significant. You may have

to specify a library multiple times on the command string, if subsequent

specification of file.o files requires that additional symbols be resolved from

that library.

 8. The following environment variable specifies the name of an MVS program to

be executed and can be at most eight characters in length. You can

dynamically alter the search order used to find MVS programs by using the

STEPLIB environment variable. For more information about the STEPLIB

environment variable, see z/OS UNIX System Services Planning, GA22-7800.

It is also described under the sh command.

v _LD_DAMP_NAME

 9. The following environment variables can be at most 15 characters in length.

You should not specify any periods (.) when setting these environment

variables because they would then never match their corresponding operands:

v _LD_ASUFFIX

v _LD_ASUFFIX_HOST

v _LD_OSUFFIX

v _LD_OSUFFIX_HOST

v _LD_XSUFFIX

ld

340 z/OS V1R9.0 UNIX System Services Command Reference

v _LD_XSUFFIX_HOST

10. The following environment variable is a parsed colon-delimited data set name,

and represents a data set concatenation or a data set list:

v _LD_SYSLIB

11. The following environment variables specify the names of MVS databases and

can be at most 44 characters in length:

v _LD_DEBUG_DUMP

v _LD_DEBUG_TRACE

12. The following environment variables can be at most 63 characters in length:

v _LD_NEW_DATACLAS

v _LD_NEW_DSNTYPE

v _LD_NEW_MGMTCLAS

v _LD_NEW_SPACE

v _LD_NEW_STORCLAS

v _LD_NEW_UNIT

13. The following environment variable is for specification of the SPACE

parameter, and supports only the syntax as shown below, including all commas

and parentheses (example: ″(,(10,10,10))″). PRIMARY is the number of tracks

of primary to be allocated, SECONDARY the number of secondary tracks, and

DIRBLOCKS the number of directory blocks. DIRBLKS must be specified even

when it is not needed.

v _LD_NEW_SPACE

14. The following environment variable is for specification of the DSNTYPE

parameter, and supports only the sub-parameters LIBRARY or PDS (or null for

the default, LIBRARY):

v _LD_NEW_DSNTYPE

15. The following environment variables can be at most 127 characters in length:

v _LD_DCBU

v _LD_DCB80

Restriction: These environment variables are for specification of DCB

information, and support only the following DCB sub-parameters, with the

noted restrictions:

RECFM

Incorrect values are ignored.

LRECL

None

BLKSIZE

None

DSORG

Incorrect values are treated as if no value had been specified.

16. The following environment variables are parsed as blank-delimited words, and

therefore no embedded blanks or other white-space is allowed in the value

specified. The maximum length of each word is 1024 characters:

v _LD_LIBDIRS

v _LD_OPTIONS

v _LD_OPERANDS

ld

Chapter 2. Shell command descriptions 341

Localization

ld uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

Exit values

0 Successful completion.

>0 An error occurred during processing.

Related information

c89

let — Evaluate an arithmetic expression

Format

 let expression ...

 ((expression))

Description

let evaluates each arithmetic expression from left to right, with normal algebraic

precedence (multiplication before addition, for example). let uses long integer

arithmetic with no checks for overflow. No output is generated; the exit status is 0 if

the last expression argument has a nonzero value, and 1 otherwise.

The following two lines are equivalent: the second form avoids quoting and

enhances readability. These two forms are extensions to the POSIX standard.

let "expression"

((expression))

The POSIX version of this command is as follows:

$((expression))

Expressions consist of named variables, numeric constants, and operators.

Characters in the names of named variables must come from the POSIX portable

character set.

See “Arithmetic Substitution” on page 562

Examples

Examples of the three forms of the let command are as follows:

1. The example

let a=7

echo $a

produces:

7

2. The example

echo $((a=7*9))

ld

342 z/OS V1R9.0 UNIX System Services Command Reference

produces:

63

3. The example

((a=3*4))

echo $a

produces:

12

Usage Note

let is a built-in shell command.

Localization

let uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 The last argument evaluated to a nonzero value

1 The last argument evaluated to a zero value, or the expression contained a

syntax error or tried to divide by zero

Portability

POSIX.2. let and ((expression)) are extensions to the POSIX.2 standard. The

POSIX.2 portable facility for arithmetic expression evaluation is $((expression)). See

“Arithmetic Substitution” on page 562 for more information.

The (()) syntax only works if the set –o korn option is in effect.

Related Information

expr, sh, test

lex — Generate a program for lexical tasks

Format

lex [–achlntTv] [–o file.c] [–P proto] [–p prefix] [file.l ...]

Description

lex reads a description of a lexical syntax, in the form of regular expressions and

actions, from file.l. If you do not provide file.l, or if the file is named –, lex reads the

description from standard input (stdin). It produces a set of tables that, together

with additional prototype code from /etc/yylex.c, constitute a lexical analyzer to

scan those expressions. The resulting recognizer is suitable for use with yacc. You

can find detailed information regarding the use of lex in z/OS UNIX System

Services Programming Tools.

let

Chapter 2. Shell command descriptions 343

For a description of the typedefs, constants, variables, macros, and functions in the

table file, which can be used to access the lexical analyzer’s variables or to control

its operations, see z/OS UNIX System Services Programming Tools.

Options

–a Generates 8-bit tables instead of 7-bit tables. On systems with 8-bit

character sets (such as this one), this option is always enabled.

–c Generates C code. Because this is the default, this option is provided only

for compatibility with other implementations.

–h Prints a brief list of the options and quits.

–l Suppresses #line directives in the generated code.

–n Suppresses the display of table sizes by the –v option. If you did not

specify –v and their are no table sizes specified in file.1, lex behaves as

though you specified –n.

–o file.c

Writes the lexical analyzer (internal state tables) onto the named output file,

instead of the default file lex.yy.c.

–P proto

Uses the named code file, instead of the default prototype file /etc/yylex.c.

–p prefix

Uses the given prefix instead of the prefix yy in the generated code.

–T Writes a description of the analyzer onto the file l.output.

–t Writes the lexical analyzer onto standard output (stdout) instead of the file

lex.yy.c.

–v Displays the space used by the various internal tables. Normally lex

displays these statistics on stdout, but if you also specified the –t option, it

displays them on stderr. If you did not choose this option and file.1

specifies table sizes, lex still displays these statistics unless you specified

the –n option.

 The lex library contains a number of functions essential for use with lex. These

functions are described in z/OS UNIX System Services Programming Tools . The

actual library to use depends on your system and compiler. For z/OS programs, you

should use –ll.

Some lex programs can cause one or more tables within lex to overflow. These

tables are the NFA, DFA, and move tables; lex displays an appropriate message if

an overflow occurs. You can change table sizes by inserting the appropriate line

into the definition section of the lex input, with the number size giving the number of

entries to use. This is shown in Table 15.

 Table 15. Internal Table Sizes (lex command)

Line Table Size Affected Default

%esize Number of NFA entries 1000

%nsize Number of DFA entries 500

%psize Number of move entries 2500

You can often reduce the NFA and DFA space to make room for more move entries.

lex

344 z/OS V1R9.0 UNIX System Services Command Reference

Locale

A locale is the subset of a user’s environment that depends on language and

cultural conventions. A locale defines such things as the definition of characters,

and the collation sequence of those characters. POSIX.2 defines a POSIX locale,

which is essentially USASCII.

Since lex generates code that is then compiled before being executed, it is difficult

for lex to act properly on collation information. The POSIX.2 standard therefore

does not require lex to accept any locales other than the POSIX locale. lex accepts

regular expressions in this locale only.

Files

lex uses the following files:

l.output

Scanner machine description

lex.yy.c

Tables and action routines

/etc/yylex.c

The prototype lex scanner

/usr/lib/libl.a

lex archive library with functions compiled for 31–bit addressing mode.

/usr/lib/liblxp.a

lex archive library with functions compiled with XPLINK. Includes two

versions: 64–bit addressing mode and 31–bit addressing mode.

Localization

lex uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to create an output file

v Inability to open the file

v Missing output filename after –o

v Missing prefix after –p

v No lex rules

v No memory for DFA moves

v Out of NFA state space

v Out of DFA move space

v Out of DFA state space

v Push-back buffer overflow

v Read error on file

v Table too large for machine

v Too many character classes

lex

Chapter 2. Shell command descriptions 345

v Too many translations

v Unknown option

v Write error on file

v Incomplete %{ declaration

v Token buffer overflow

Limits

The parser stack depth is limited to 150 levels. Attempting to process extremely

complicated syntaxes may result in an overflow, causing an error.

Portability

POSIX.2, POSIX.2 C-Language Development Utilities Option, UNIX systems.

The –a, –h, –l, –o, –p, –P, and –T options are extensions of the POSIX standard.

Related Information

yacc

For more information, see z/OS UNIX System Services Programming Tools.

line — Copy one line of standard input

Format

line

Note: The line utility is fully supported for compatibility with older UNIX systems.

However, it is recommended that the read utility be used instead because it

may provide greater functionality and is considered the standard for portable

UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description

line copies one input line from its standard input (stdin) to its standard output

(stdout). The end of the line is the first newline encountered. This is useful in shell

files that need small amounts of input (for example, responses to prompts).

Examples

echo “Enter name:\c”

NAME=`line`

Localization

line uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 A line was read successfully

1 line reached end-of-file before finding a newline character

lex

346 z/OS V1R9.0 UNIX System Services Command Reference

Portability

X/Open Portability Guide, UNIX System V.

Related Information

cat, head, read, sh, tail

link — Create a hard link to a file

Format

link oldfile newfile

Description

link creates a hard link to an existing file. A link is a new directory entry that refers

to the same file. This entry can be in the same directory that currently contains the

file or in a different directory. The result is that you get a new pathname that refers

to the file. You can access the file under the old or new pathname since both

pathnames are of equal importance. If you use rm to remove one pathname, the

other remains and the file contents are still available under that name. The contents

of the file do not disappear until the last remaining link associated with the file is

removed.

Following the format, new becomes a new pathname for the existing file old. If old

names a symbolic link, link creates a hard link to the file that results from resolving

the pathname contained in the symbolic link.

Links are allowed to files only, not to directories. A file can have any number of links

to it. Thus, you can establish any number of different pathnames for any file.

link is implemented as a shell built-in.

Localization

link uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v A file specified could not be found

v No write permission on the directory intended to contain the link

v No search permission on a pathname component of old or new

v No permission to access old

v The pathname of one of the arguments is a directory

v The new link file already exists

2 Failure due to incorrect number of arguments

line

Chapter 2. Shell command descriptions 347

Related Information

link, ln, rm

ln — Create a link to a file

Format

 ln [–fiRrse] old new

 ln [–fiRrse] old old ... dir

Description

ln creates a link to an existing file or set of files. A link is a new directory entry that

refers to the same file. This entry can be in the same directory that currently

contains the file or in a different directory. The result is that you get a new

pathname that refers to the file. You can access the file under the old pathname or

the new one. Both pathnames are of equal importance. If you use rm to remove

either name, the other one still remains and the file contents are still available under

that name. The contents of the file do not disappear until you remove the last link.

A file can have any number of links to it. Thus you can establish any number of

different pathnames for any file.

In the first form given in the syntax, new becomes a new pathname for the existing

file old. In the second form, ln creates entries for all the old files under the directory

dir. For example:

ln yourdir/* mydir

creates links under mydir to all the files under yourdir. The files have the same

names under mydir that they had under yourdir. ln always assumes this directory

form when the last operand on the command line is the name of a directory. In this

case, none of the old names can be a directory, unless —r or —R is specified.

There could already be a file with the same name as the link you are trying to set

up: a conflicting pathname. To deal with a conflicting pathname, ln follows these

steps.

v If you have specified –i, ln writes a prompt to stderr to ask if you want to get rid

of the conflicting pathname. If you answer affirmatively, ln attempts to remove it.

v Otherwise, if you have specified –f, ln attempts to remove the existing file without

a warning.

v Otherwise, ln prints a diagnostic message.

v ln gets to this point if it is going to get rid of the conflicting pathname. It therefore

attempts to get rid of the conflicting pathname in the same way that rm does. ln

deletes the file associated with the pathname if this pathname is the last link to

the file. If ln can’t get rid of the conflicting pathname, it does not attempt to

establish the new link; it simply prints an error message on stderr and goes on

to process any other files.

v If ln successfully gets rid of the conflicting pathname, it then establishes the link.

Options

–e Specifies that the link created by ln be an external link. One purpose for

creating an external link is to create a mount point that an NFS client can

use to access a data set through the Network File System feature. The

normal content of an external link is a name that refers to an object outside

link

348 z/OS V1R9.0 UNIX System Services Command Reference

the hierarchical file system, such as a data set. The data set that the

Network File System feature uses can be any type of MVS data set. For a

partitioned data set, however, you specify a fully qualified name in all caps.

For example:

ln -e NOLL.PLIB.PGMA /u/noll/plib/pgma

Restriction: Due to the NFS protocol limitation, -e does not create an

external link on NFS. If you want to create an external link on NFS, see the

topic on creating an external link for details in z/OS Network File System

Guide and Reference.

 External links can also be used to map an HFS file name to a PDS or

PDSE member name for an executable load module. An example of how

you would define the external link is:

ln -e MYPGM /u/smorg/mylongpgmname

If an application attempts to access /u/smorg/mylongpgmname as an

executable file, the kernel will attempt to load MYPGM from the current

MVS search order (Job Pack Queue, STEPLIB/JOBLIB, LPA, LINK LIST).

The kernel services which behave this way for external links are:

v exec() (all flavors)

v spawn() (including _spawn2, spawnp, _spawnp2)

v loadhfs which is used for all DLL processing and locales

Note: For OS/390 releases prior to Release 6, an external link name

cannot be specified as a shell command. Starting in Release 6, an

external link can be used as a shell command to invoke a program

in the current MVS search order.

–f Gets rid of any conflicting pathnames without asking you for confirmation.

–i Checks with you before getting rid of conflicting pathnames. You must not

specify both –f and –i.

–R Links files recursively. That is, you can link an entire hierarchy of

subdirectories at once.

–r Is identical to –R.

–s Creates a symbolic link.

 Note, for a symbolic link,old refers to the file you want to create the link to

(this file does not have to exist). new is the name of the symlink you are

creating. For example, if you have a file called f1 and you want to create a

symlink to it called my_sym, you input the following:

ln -s f1 my_sym

 The locale settings for LC_COLLATE, LC_CTYPE, and LC_MESSAGES affect the

program’s interpretation of what constitutes a “yes” answer when ln asks if you

want to get rid of a conflicting pathname.

Examples

If you define /u/user1/name1 as a symbolic link to /u/user1/name2, and then

invoke name1:

1. The shell will spawn name1.

ln

Chapter 2. Shell command descriptions 349

|
|
|
|

2. spawn() will access the file for name1 unaware that there is a symbolic link

already established. It will access the name2 file by its underlying vnode, not

the name2 handle.

3. If the sticky bit is on for the name2 file, spawn() will do the MVS search for

name1 (the only name it has to work with).

Symbolic and external links with a sticky bit:

Note: DLLs, and all flavors of spawn() and exec(), follow the same processing as

described below. Where it says exec(), it covers all forms of module loading.

1. External links:

exec() does a stat() on the passed filename. stat() does the search, not exec().

If the filename is an external link, then stat() fails with a unique reason code

which causes exec() to read the external link. If the external link name is a valid

PDS member name (1–8 alphanumeric/special characters), then exec() will

attempt to locate the module in the MVS search order. If it cannot be found,

exec() fails.

The external link is normally used when you want to set the sticky bit on for a

file name which is longer than 8 characters or contains characters unacceptable

for a PDS member name.

2. Symbolic links:

If the filename you specify is a symbolic link, and exec() sees the sticky bit on,

then it will truncate any dot qualifiers. So, as long as the base filename is an

acceptable PDS member name, the need to set up links in order to get exec()

to go to the MVS search order should not be an issue.

For example, if you have a file named java.jll, when you put the sticky bit on,

exec() will attempt to load JAVA. If exec() cannot find JAVA, it will revert to

using the java.jll file in the file system.

The important thing to understand is that exec() never sees the name that the

symbolic link resolves to even though it can see the stat() data for the final file.

Localization

ln uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 All requested links were established successfully.

1 Failure due to any of the following:

v An argument had a trailing / but was not the name of a directory.

v A file could not be found.

v An input file could not be opened for reading.

v An output file could not be created or opened for output.

v The new link file already exists.

v A link could not be established.

v A read error occurred on an input file.

v A write error occurred on an output file.

ln

350 z/OS V1R9.0 UNIX System Services Command Reference

v The input and output files were the same file.

v Inability to access a file when using –r.

v Inability to read a directory when using –r.

v Inability to create a directory when using –r.

v A target is not a directory when using –r.

v Source and destination directory are the same when using –r.

2 Failure due to any of the following:

v Incorrect command-line option.

v Too few arguments on the command line.

v A target that should be a directory but isn’t.

v No space left on target device.

v Out of memory to hold the data to be copied.

v Inability to create a directory to hold a target file.

Messages

Possible error messages include:

link to target name failed

ln could not establish the link to the given file or directory. This may be

because you do not have appropriate permissions, or because the target

did not exist.

source name and target name are identical

The source and the target are actually the same file (for example, because

of links, on UNIX systems). In this case, ln does nothing.

target directory name on different file system than source name

You cannot establish a normal link between files that are two different file

systems.

target name must be a directory

The target name must be a directory

cannot find file name

The filename could not be found.

target file name already exists

The target filename already exists.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Only the –f option is part of the POSIX standard.

Related Information

cp, locale, mv, rm

locale — Get locale-specific information

Format

 locale [–a|–m]

 locale [–ck] name ...

ln

Chapter 2. Shell command descriptions 351

Description

locale displays information about the current locale and all locales accessible to the

current application. locale searches directory /usr/lib/nls/locale for all the compiled

locales.

Invoking locale with no options or operands displays the values of the LANG and

LC_* environment variables. If a LC_* variable is not set or is overridden by

LC_ALL, locale displays its implied value in double quotes.

The operand name can be a category name, keyword name, or the reserved name

charmap. If it is a category name, locale selects the given category and all

keywords within it for output. If name is a keyword name, locale selects the given

keyword and its category for output. If name is charmap, locale displays the name

of the charmap used with the localedef –f option when the locale was created.

Options

–a Displays information about all accessible locales including POSIX, the

POSIX locale.

–c Displays the names of selected categories.

–k Displays the names of selected keywords. If you do not specify the –k

option, locale displays the values of selected keywords but not their names.

With –k, strings are written in an unambiguous form using the escape

character from the current locale.

–m Displays a list of all available character maps.

 The following list contains valid locale keywords:

lower Lower-case alphabet

upper Upper-case alphabet

alpha All alphabetic characters (upper and lower case)

digit All numeric characters

space How white space is represented

cntrl Control characters

punct Punctuation characters

graph Graphic characters

print Printable characters

xdigit Hex digits

blank How a blank is represented

tolower

Upper to lower case conversion

toupper

Lower to upper case conversion

character-collation

The collating sequence

d_t_fmt

Date and time format

locale

352 z/OS V1R9.0 UNIX System Services Command Reference

d_fmt Date format

t_fmt Time format

t_fmt_ampm

Long date format

am_pm

AM and PM string

day Full day names

abday Abbreviated day names

mon Full month names

abmon

Abbreviated month names

decimal_point

Decimal-point characters

thousands_sep

Character used to separate groups of digits to the left of the decimal-point

character in formatted nonmonetary quantities

grouping

String indicating the size of each group of digits in formatted nonmonetary

quantities

int_curr_symbol

International currency symbol for the current locale

currency_symbol

Local currency symbol of the current locale

mon_decimal_point

Decimal-point character used to format monetary quantities

mon_thousands_sep

Separator for digits in formatted monetary quantities

mon_grouping

String indicating the size of each group of digits in formatted monetary

quantities

positive_sign

String indicating the positive sign used in monetary quantities

negative_sign

String indicating the negative sign used in monetary quantities

int_frac_digits

The number of displayed digits to the right of the decimal place for

internationally formatted monetary quantities

frac_digits

Number of digits to the right of the decimal place in monetary quantities

p_cs_precedes

1 if the currency_symbol precedes the value for a nonnegative formatted

monetary quantity; 0 if it does not

p_sep_by_space

1 if the currency_symbol is separated by a space from the value of a

locale

Chapter 2. Shell command descriptions 353

nonnegative formatted monetary quantity; 0 if it does not; 2 if a space

separates the symbol and the string–if adjacent

n_cs_precedes

1 if the currency_symbol precedes the value for a negative formatted

monetary quantity; 0 if it does not

n_sep_by_space

1 if the currency_symbol is separated by a space from the value of a

negative formatted monetary quantity; 0 if it does not; 2 if a space

separates the symbol and the sign string–if adjacent

p_sign_posn

Value indicating the position of the positive_sign for a nonnegative

formatted monetary quantity

n_sign_posn

Value indicating the position of the negative_sign for a negative formatted

monetary quantity

yesexpr

Expression for affirmative

noexpr

Expression for negative

charmap

Mapping of character symbols to actual character encodings

code_set_name

Name of the coded character set used

mb_cur_max

Maximum number of bytes used to represent a character

codeset

Same as code_set_name

backslash

Encoding of \

right_bracket

Encoding of]

left_bracket

Encoding of [

right_brace

Encoding of }

left_brace

Encoding of {

circumflex

Encoding of ^

tilde Encoding of ~

exclamation_mark

Encoding of !

number_sign

Encoding of #

vertical_line

Encoding of |

locale

354 z/OS V1R9.0 UNIX System Services Command Reference

dollar_sign

Encoding of $

commercial_at

Encoding of @

grave_accent

Encoding of `

Examples

In the following examples, let’s assume that locale environment variables are set as

follows:

LANG=locale_x

LC_COLLATE=locale_y

1. The command:

locale

produces the following output:

LANG=locale_x

LC_CTYPE="locale_x"

LC_COLLATE=locale_y

LC_TIME="locale_x"

LC_NUMERIC="locale_x"

LC_MONETARY="locale_x"

LC_MESSAGES="locale_x"

LC_ALL=

2. The command:

LC_ALL=POSIX locale -ck decimal_point

produces:

LC_NUMERIC

decimal_point="."

3. The following command shows an application of locale to determine whether a

user supplied response is affirmative:

if printf "s%\n" "$response" | grep -Eq "$(locale yesexpr)"

then

 affirmative processing goes here

else

 nonaffirmative processing goes here

fi

Localization

locale uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 An error occurred

2 A usage message was printed

locale

Chapter 2. Shell command descriptions 355

Portability

POSIX.2, UNIX System V.

Related Information

localedef

localedef — Define the locale environment

Format

localedef [–c] [–f charmap] [–i sourcefile] [–m methodfile] [–w] [–A] [–L

binderoptions] [–X] [–6] name

Description

localedef converts source definitions for locale categories into a format usable by

functions and utilities.

localedef, which is installed as part of z/OS Language Environment, utilizes c89,

which is installed as part of z/OS C/C++ Run-Time Library Extensions.

c89 requires the installation of the C/C++ optional feature of z/OS (which provides

among other things a C compiler).

See z/OS Introduction and Release Guide for further details.

A TSO/E utility called LOCALDEF is installed as part of z/OS Language

Environment.

v It is not supported by the z/OS shell; for more information see z/OS XL C/C++

User’s Guide.

v The TSO/E BATCH versions of the utility do not support ASCII (-A) nor

AMODE-64 (-6) options.

For information about the charmap file and locale definition source file formats see

z/OS XL C/C++ Programming Guide.

Options

–c Creates permanent output even if there were warning messages. Normally,

localedef does not create permanent output when it has issued warning

messages.

–f charmap

Specifies a charmap file that contains a mapping of character symbols and

collating element symbols to actual character encodings.

–i sourcefile

Specifies the file that contains the source definitions. If there is no –i,

localedef reads the source definitions from the standard input.

–m methodfile

Specifies the name of a method file that describes the methods to be

overridden when constructing a locale. localedef reads the method file and

uses entry points when constructing the locale objects. The code set

methods specified are also used in parsing the file pointed to by the

CharMap variable. This requires that you provide the overriding methods in

a DLL which is explicitly loaded by localedef before processing the

locale

356 z/OS V1R9.0 UNIX System Services Command Reference

charmap file. User method files are supported only for ASCII locales. The

-m option is invalid without the -A option.

–w Produces warning messages for duplicate definitions.

–A Instructs localedef to generate an ASCII locale object. The –X option is

implied when this option is specified.

–L binderoptions

Instructs localedef to pass additional binder options (mostly for diagnostic

purposes).

–X Instructs localedef to generate an XPLINK AMODE 31 locale object (DLL).

–6 Instructs localedef to generate an XPLINK AMODE 64 locale object (DLL).

The -X option is implied when this option is specified.

name Is the target locale. If it contains no slashes, the locale is public and

localedef converts name to a full pathname using the NLSPATH

environment variable. If name contains one or more slashes, localedef

interprets it as a full pathname of where to store the created definition.

 See “locale — Get locale-specific information” on page 351 for related information.

Localization

localedef uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

The LC_COLLATE and LC_CTYPE environment variables have no effect on

localedef. localedef always behaves as though these variables were set to the

POSIX locale.

See Appendix F for more information.

Exit Values

0 No errors occurred; the locale was successfully created.

1 Warnings occurred; the locale was successfully created.

2 The locale specification exceeded implementation limits, or the coded

character set used was not supported by implementation. No locale was

created.

3 The capability to create new locales is not supported by the implementation.

(POSIX2_LOCALEDEF is not defined.)

>3 Warnings or errors occurred; no output was created.

localedef issues warnings when:

v The LC_CTYPE or LC_COLLATE category description uses a symbolic name

not found in the charmap file.

v The number of operands to the order keyword exceeds the COLL_WEIGHTS_MAX

limit.

Portability

POSIX.2; UNIX System V.

localedef

Chapter 2. Shell command descriptions 357

Related Information

locale

logger — Log messages

Format

logger [–IisTu] [–d dest] [–f filename] [–p priority] [–t tag] [–a tag2] string ...

Description

logger saves a message in the console log; the message consists of the string

operand on the command line. Some options of logger may be in effect by default;

if they are on by default, they cannot be disabled.

The –u and –i options are in effect by default, so all messages from logger are

prefixed by process ID and user login user name.

If there is no message specified on the command line, the standard input is read;

each line of standard input is treated as a log message, and, thus, all terminal input

will be logged as a message. To stop all subsequent input from being processed by

logger, enter the designated escape character, such as ¢, followed by a captial C,

for example: ¢C.

If –f filename is specified, the file is read instead of the standard input.

Options

–f filename

Reads log messages from the file filename rather than from the standard

input.

–I Adds the parent process ID (PPID) of logger to the message.

–i Adds the process ID (PID) of logger to the message. This option is in effect

by default, so all messages from logger are prefixed by the PID.

–s Overrides any destination options and causes logging to the standard error

output.

–T Adds a time stamp (%x %X format, per date) to the message. This time

stamp is always in the POSIX locale, no matter the locale of the message.

–u Adds the login name of the controlling terminal to the message. This option

is in effect by default, so all messages from logger are prefixed by the login

name.

Note: The following options work on z/OS. However, because they are

system-specific, they may or may not actually work on another system.

–d destination

Must be a list of numbers, separated by spaces, tabs, or commas, in the

range of 1 to 128, and represents a bit in the routing code number (that is,

ROUTCDE=) in the WTO macro. The default destination value is 0 (no bits

set in the routing code number).

 If you use d1, the message goes to the system console.

–p priority

Must be a list of numbers, separated by spaces, tabs, or commas, in the

localedef

358 z/OS V1R9.0 UNIX System Services Command Reference

range of 1 to 16 and represents a bit in the message descriptor code (that

is, DESC=) in the WTO macro (WTO == write to operator). The default

priority value is 0 (that is, no bits set).

–t tag Adds tag to the start of the message.

–a tag2

Adds tag2 in front of all the options and the message.

 For more information on the destination and priority options, refer to z/OS MVS JCL

Reference.

Examples

1. If you issue:

logger -d1 This is a message.

You will see:

+WELLIE4: 2097152017: This is a message.

2. If you issue:

logger -dl -a TheTag A message.

You will see:

+TheTag: WELLIE4: 213076449: A message.

Localization

logger uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

>0 An error occurred

Messages

Possible error messages include:

-f filename invalid if message given

Both a filename and message was specified; only one is allowed.

file filename: system error

The file specified by –f filename could not be opened.

Formatted log message too long -- limit LINE_MAX (number)

The log message specified was longer than the limit specified by

LINE_MAX.

Unknown option option

You specified an incorrect option to logger.

logger

Chapter 2. Shell command descriptions 359

Portability

POSIX.2, X/Open Portability Guide.

All the options are extensions of the POSIX standard.

logname — Return a user’s login name

Format

logname

Description

logname displays the login name of the person who issued the command. It

obtains this through the getlogin() function defined in the POSIX.1. standard. The

login name is displayed as all uppercase letters, regardless of how it was entered.

Environment Variables

logname uses the following environment variable:

LOGNAME

Contains your user name.

Localization

logname uses the following localization environment variables:

v LANG

v LC_ALL

v LC_TYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 logname could not determine the login name

Portability

POSIX.2, X/Open Portability Guide, UNIX System V.

Related Information

env, id

lp — Send a file to a printer

Format

lp [–cmsw] [–d dest] [–n number] [–o printer-option] [–t title] [file ...]

logger

360 z/OS V1R9.0 UNIX System Services Command Reference

Description

lp prints one or more input files on a printer. If you do not specify any files on the

command line, or if you specify a filename of – (dash), lp reads and prints the

standard input. The files are printed in the same order that they are specified on the

command line.

Note: If you are using the z/OS Infoprint Server Feature, your system automatically

uses that version of the lp command. For more information about the z/OS

Infoprint Server commands, see z/OS Infoprint Server User’s Guide.

Options

–c Immediately copies the files to be printed. This ensures that the version of

the file that exists when the print request is made is the version printed.

–d dest

Specifies dest as the output device. –d takes precedence over the LPDEST

environment variable, which in turn takes precedence over the PRINTER

environment variable.

 dest is a comma-separated list of arguments that is passed to JES. The first

item must be the “destination_name”. The destination name can take the

form NODE.USER. The second item must be the “class”. The third item

must be the “forms”. Not all items must be specified, but the items must be

specified in the proper order. The definition of “destination_name”, “class”,

and “forms” is defined by JES.

 For more information on the dest option, see z/OS MVS JCL Reference.

–m This option is not implemented.

–n number

Prints number copies of each input file (the default is 1 copy).

–o printer-option

This option is not implemented.

–s This option is not implemented.

–t This option is not implemented.

–w This option is not implemented.

Examples

1. To send a previously formatted file to a JES printer:

lp filename

You can specify more than one filename with the command.

2. The following prints the file temp.prt using the default printer destination and

specifying class c (where c is the locally designated class for confidential

information):

lp –d ,c temp.prt

lp –d,c temp.prt

The parameters on the -d option are positional, so if you omit a destination, you

must still include the comma.

lp

Chapter 2. Shell command descriptions 361

Environment Variables

lp uses the following environment variables:

LPDEST

Names the output device. This variable takes precedence over PRINTER.

PRINTER

Names the output device if LPDEST is not defined.

Localization

lp uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

>0 An error occurred

Portability

POSIX.2, X/Open Portability Guide.

The –m, –o, –s, –t, and –w options are extensions to the POSIX standard.

lpstat — Show status of print queues (stub command)

Format

lpstat [–drst] [–a [list]] [–c [list]] [–o [list]] [–p [list]] [–u [list]] [–v] [list] [queue_id ...]

Description

lpstat shows the status of print queue or queues, specified by queue_id. If no

queue_id is given, lpstat lists information for all of the printers on the system.

lpstat is recognized, but its functions are not supported.

If you are using the z/OS Print Server Feature, your system automatically uses that

version of the lpstat command. For more information about the z/OS Print Server

commands, see z/OS Infoprint Server User’s Guide.

ls — List file and directory names and attributes

Format

ls [–AabCcdEFfgHikLlmMnopqRrstuWx1] [pathname ...]

File Tag Specific Option:

ls [–T]

lp

362 z/OS V1R9.0 UNIX System Services Command Reference

Description

ls lists files and directories. If the pathname is a file, ls displays information on the

file according to the requested options. If it is a directory, ls displays information on

the files and subdirectories therein. You can get information on a directory itself

using the –d option.

If you do not specify any options, ls displays only the filenames. When ls sends

output to a pipe or a file, it writes one name per line; when it sends output to the

terminal, it uses the –C (multicolumn) format.

Note: Codesets which are aliases of each other exist which may cause the test to

fail, since the file inquiry operator may return an alias of the codeset you are

testing.

Options

ls displays at least the filename; you can request more information with the

following options:

–A Lists all entries including those starting with periods (.); but excluding any .

or .. entries.

–a Lists all entries including those starting with a period (.).

–b Displays nonprintable characters as octal bytes with the form \ooo.

–C Puts output into columns, sorted vertically; this is the default output format

to the terminal.

–c Uses the time of the last change of the file’s attributes for sorting (–t) or

displaying (–l) .

–d Does not display the contents of named directories, but information on the

directories themselves.

–D Displays from directories.

–E Displays extended attributes for regular files:

a Program runs APF-authorized if linked AC=1

p Program is considered program-controlled

s Program is enabled to run in a shared address space

l Program is loaded from the shared library region

— Attribute not set

See “Long Output Format” on page 365.

–F Puts a / after each directory name, a * after every executable file, a | after

every FIFO file, a @ after every symbolic link, and a = after every socket. It

also puts an & character after an external link name.

–f Forces the pathname argument to be a directory; turns off sorting. ls gives

the ordered list of filenames in a directory file. The directory file is read and

the filenames are listed in the same order as they are returned. The

contents of a directory file are shown.

–g Same as –l except that it does not display owner.

 –g turns on the Long Output Format. See “Long Output Format” on page

365 for details.

ls

Chapter 2. Shell command descriptions 363

–H Displays file formats for regular files:

–––– not specified

bin binary data

nl new line

cr carriage return

lf line feed

crlf carriage return followed by line feed

lfcr line feed followed by carriage return

crnl carriage return followed by new line

–H turns on the Long Output Format. See “Long Output Format” on page

365 for details.

–i Displays file serial (inode) numbers along with filenames.

–k Uses 1024 bytes for block size.

–L Follows symbolic links.

–l Displays permissions, links, owner, group, size, time, name. See “Long

Output Format” on page 365 for details.

–M Displays the Multilevel Security seclabel of the file, as in this example:

> ls -M has_seclabel no_seclabel

SECLABEL has_seclabel

 no_seclabel

ls –M does not turn on the –l option. ls –M can be used with other options.

See “Long Output Format” on page 365 for details.

–m Displays names in a single line, with commas separating names.

–n Displays UID number and GID number.

–o Same as –l except that it does not display group.

 –o turns on the Long Output Format. See “Long Output Format” on page

365 for details.

–p Puts / after directory names.

–q Displays nonprintable characters as ?.

–R Lists subdirectories recursively.

–r Sorts in reverse of usual order; you can combine this with other options that

sort the list.

–s Displays size in blocks, after the file serial (inode) number, but before other

information. The block size is 512 bytes unless the –k option is used.

–t Sorts by time. By default, this option sorts the output by the modification

times of files. You can change this with the –c and –u options.

–u Uses the last access time for sorting (–t) or displaying (–l) .

–W Enables the audit bits to be displayed (see “chaudit” for information on audit

bits). This option turns on the –l option.

 These bits are printed in a 6-character field directly after the field displaying

the file permission bits. These 6 characters are really two groups of 3 bits

each. The first group of 3 describes the user-requested audit information.

The second group of 3 describes the auditor-requested audit information.

Each 3 characters displayed are the read, write, and execute (or search)

audit options. Each character indicates the audit option as:

ls

364 z/OS V1R9.0 UNIX System Services Command Reference

s (Audit successful audit attempts)

f (Audit failed access attempts)

a (Audit all accesses)

– (No audit)

 –W turns on the Long Output Format. See “Long Output Format” for details.

–x Puts output into sorted columns, with output going across the rows.

–1 Forces output to be one entry per line.

Note: When you specify options that are mutually exclusive (for example, –c and

–u), the option that appears last on the command line is used.

File Tag Specific Option

–T Display file tag information associated with the file. The format of this output

will be similar to the output from chtag –p. See “Options” on page 133 for

an explanation of the –p option on chtag.

 An example output:

> ls -T file

t IBM-1047 T=on file1

ls –T does not turn on the –l option. ls –T can be used with other options.

See “Long Output Format” for details.

Long Output Format

The output from ls –l summarizes all the most important information about the file

on a single line. If the specified pathname is a directory, ls displays information on

every file in that directory (one file per line). It precedes this list with a status line

that indicates the total number of file system blocks occupied by files in the

directory (in 512-byte chunks or 1024-bytes if –k option is used). Here is a sample

of the output along with an explanation:

total 11

drwxr-xr-x 3 ROOT SYS1 0 Mar 12 19:32 tmp

drwxrwxrwx 4 ROOT SYS1 0 Mar 12 19:32 usr

drwxr-xr-x 2 ROOT SYS1 0 Mar 12 19:32 bin

-rwxr--r-- 1 ROOT SYS1 572 Mar 12 19:32 foo

-rwxr--r-- 1 ROOT SYS1 640 Mar 12 19:33 abc

If –T is specified, file tag information is displayed first on the line.

The first character identifies the file type:

– Regular file

b Block special file (not supported for z/OS UNIX System Services)

c Character special file

d Directory

e External link

l Symbolic link

p FIFO

s Socket file type

 The next 9 characters are in three groups of 3; they describe the permissions on

the file. The first group of 3 describes owner permissions; the second describes

group permissions; the third describes other (or “world”) permissions. Characters

that may appear are:

ls

Chapter 2. Shell command descriptions 365

r Permission to read the file

w Permission to write on the file

x Permission to execute the file

The following characters appear only in the execute permission (x) position of the

output.

S Same as s, except that the execute bit is turned off.

s If in owner permissions section, the set-user-ID bit is on; if in group

permissions section, the set-group-ID bit is on.

T Same as t, except that the execute bit is turned off.

t The sticky bit is on.

The following character appears after the permissions if the file contains extended

ACL entries:

+

Example:

ls -l file

-rwxrwxrw-+ WELLIE SYS 167 Jan 11 09:54 file

Use getfacl to display the extended ACL entries. You can set permissions with

either chmod or setfacl.

After the permissions are set, ls displays the following (using the preceding

example), in order:

v The number of links to the file.

v The name of the owner of the file or directory.

v The name of the group that owns the file or directory.

v The size of the file, expressed in bytes. For character special files, it displays the

major and minor device types.

v For a file, the date and time the file was last changed; for a directory, when it

was created. The –c and –u options can change which time value is used. If the

date is more than 6 months old or if the date is in the future, the year is shown

instead of the time.

v The name of the file or directory.

Note: When files owned by user ID 0 (UID=0) are transferred from any UNIX-type

system across an NFS connection to another UNIX-type system, the UID

changes to –2 (UID = –2). Because –2 is not a valid UID on a z/OS System,

ls displays a –2 in place of the user name.

If ls –E is issued, an additional four characters follow the original 10 characters:

total 11

-rwxr-xr-x -ps- 1 ROOT SYS1 101 Mar 12 19:32 her

-rwxrwxrwx a-s- 1 ROOT SYS1 654 Mar 12 19:32 test

-rwxr-xr-x a-- 1 ROOT SYS1 40 Mar 12 19:32 temp

-rwxr--r-- ap-l 1 ROOT SYS1 572 Mar 12 19:32 foo

-rwxr--r-- --sl 1 ROOT SYS1 640 Mar 12 19:33 abc

If ls –H is issued, an additional four characters follow the original 10 characters:

ls

366 z/OS V1R9.0 UNIX System Services Command Reference

total 32

-rwxr-xr-x ---- 1 ROOT SYS1 0 Mar 26 08:47 tmp

-drwxr-xr-x 2 ROOT SYS1 8192 Mar 26 08:50 usr

-rwxr--r-- cr 1 ROOT SYS1 40 Mar 26 08:55 abc

If ls –E is used in conjunction with –H, then the four characters will follow the four

characters normally associated with ls –E:

ls -EH

-rwxr-xr-x ap-l bin 1 ROOT SYS1 101 Mar 12 19:21 foo

If ls –W is issued, an additional 6 characters, in two groups of 3, follow the original

10 characters. The first group of 3 describes the user-requested audit information;

the second group describes auditor-requested audit information.

total 11

drwxr-xr-x fff--- 3 ROOT SYS1 0 Mar 12 19:32 tmp

drwxrwxrwx fff--- 4 ROOT SYS1 0 Mar 12 19:32 usr

drwxr-xr-x fff--- 2 ROOT SYS1 0 Mar 12 19:32 bin

-rwxr--r-- fff--- 1 ROOT SYS1 572 Mar 12 19:32 foo

-rwxr--r-- fff--- 1 ROOT SYS1 640 Mar 12 19:33 abc

Usage Note

To display information about a directory from a symbolic link to the directory, either

add a trailing slash to the symbolic link name, or use the -L option. For example, if

the /etc directory has been converted into a symbolic link, issuing an ls on /etc

without a trailing slash will give you the following information:

> ls -l /etc

lrwxrwxrwx 1 BPXROOT BIN 12 Oct 18 19:46 /etc -> $SYSNAME/etc

However, if you add the trailing slash, the following information about /etc will be

displayed:

> ls /etc/

 IBM cmx init.options profile utmpx

NetQ csh.cshrc ioepdcf rc yylex.c

Printsrv csh.login ldap recover yyparse.c

TextTools dce log security zoneinfo

booksrv dfs magic socks.conf

bpe imoisinf mailx.rc startup.mk

The same information is displayed when the -L option is used:

ls -L /etc

 IBM cmx init.options profile utmpx

NetQ csh.cshrc ioepdcf rc yylex.c

Printsrv csh.login ldap recover yyparse.c

TextTools dce log security zoneinfo

booksrv dfs magic socks.conf

bpe imoisinf mailx.rc startup.mk

Environment Variables

ls uses the following environment variables:

COLUMNS

Contains the terminal width in columns. ls uses this value to determine the

number of output columns to write using the –C option.

TZ Contains the time zone to be used when displaying date and time strings.

ls

Chapter 2. Shell command descriptions 367

Localization

ls uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_TIME

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Out of memory

v Inability to find a file’s information

v Too many directories

v File or directory not found

v Specified on the command line
2 Incorrect command-line option

Messages

Possible error messages include:

File or directory name is not found

The requested file or directory does not exist.

Cannot allocate memory for sorting

To sort its output, ls needs to allocate memory; this message says that

there was not enough memory for the sorting operation.

Too many directory entries in dir

This message appears only when ls runs out of dynamically allocated

memory.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –A, –b, –E, –f, –g, –L, –m, –n, –o, –p, –s, –W, and –x options are extensions

of the POSIX standard.

Related Information

Appendix I explains how to set the local time zone with the TZ environment

variable.

ls-f, sh, tcsh

mail — Read and send mail messages

Format

 mail [–e | –p] [–qr] [–f file...]

 mail [–t] name...

ls

368 z/OS V1R9.0 UNIX System Services Command Reference

Note: The mail utility is fully supported for compatibility with older UNIX systems.

However, it is recommended that the mailx utility be used instead because it

may provide greater functionality and is considered the standard for portable

UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description

mail lets you read mail sent to you and sends mail to other users. It has two modes

of operation, one for reading mail and one for sending mail. If you start mail without

any arguments, it checks for mail to be read and then presents the messages in

read mode. If you start it with an argument or arguments, it assumes you are

sending a message to the address named as the argument and enters send mode.

The text of the message is taken from standard input until mail encounters either

EOF or a line consisting of only a single dot (.).

For example, to read mail, enter:

mail

To send a mail message to the users Chris and Lee, enter:

mail chris lee

Options

The –t option is used only when sending mail; the others only when reading mail.

–e Tests for the existence of mail and exits. If there is mail in the system

mailbox, the return status is successful.

–f Reads mail from file instead of the system mailbox. This option is often

used to read mail saved in other files.

–p Prints all mail to standard output without querying.

–q Quits the mail session after an interrupt signal; normally, an interrupt ends

only the message being written.

–r Saves messages in first-in, first-out order, the reverse of the default.

Normally, the most recently received message is written first.

–t Lists the recipients at the beginning of the message (default).

Reading Mail

When you start mail without arguments, mail checks your system mailbox for mail.

If there is no mail, mail exits with a return code of 1; if there is waiting mail, mail

displays the first message. (If you specify –p on the command line, it displays all

messages.)

Commands within mail control how messages are handled. The following

commands are available:

d Deletes the current message.

m[name...]

Sends the current message to the specified user. If a user is not specified,

the mail is sent to you.

p Prints the message on the screen again.

q Quits mail, storing any undeleted messages in the file $HOME/mbox.

s[file] Saves the message in the specified file. If a file is not specified, mail saves

the message in mbox in your home directory.

mail

Chapter 2. Shell command descriptions 369

w[file] Saves the message (same as s), but without header lines.

x Exits mail without changing the mailbox file.

ENTER (or newline)

Displays the next message.

!command

Runs command using the shell.

+ Displays the next message (same as ENTER or newline).

— Displays the previous message.

* Displays a summary of internal commands.

Because the commands are read from standard input, you can create mail

command files and use input redirection to have mail execute them.

Sending Mail

To send mail, start mail with a list of addresses as arguments. Enter the text of the

message, and end the message with either EOF or with a single dot (.) on a line

followed by a <newline>.

The –t option inserts at the beginning of the message a list of the addresses; a

pathname beginning with a slash (/) is recognized as a valid address (assuming you

have the correct permissions).

If the address is not valid or recognized, or if the message is interrupted (see the

–q option), mail stores the message in the file dead.letter in the current directory. If

it can’t create dead.letter in the current directory, it creates the file in your home

directory. If dead.letter already exists, the new contents overwrite the old.

The mail program modifies the message text slightly; because lines beginning with

From (including the trailing space) are used to separate files in the mailbox, mail

changes any lines in the message that begin with From to read >From.

Example

To send the file how2mail to user Chris, enter:

mail chris < how2mail

Usage notes

1. Wherever the POSIX standard doesn’t define the behavior of mail, this

implementation resembles mailx.

2. mail doesn’t require a delivery path or mechanism to the destination, though for

most uses, this is preferable.

Environment Variables

mail uses the following environment variables:

HOME Specifies your home directory; used to locate the mbox and dead.letter

files.

TZ Specifies the time zone to be used in date and time strings.

mail

370 z/OS V1R9.0 UNIX System Services Command Reference

Localization

mail uses the following localization environment variables:

v LC_CTYPE

v LC_MESSAGES

v LC_TIME

v NLSPATH

See Appendix F for more information.

The ability of mail to handle doublebyte characters (or even 8-bit ASCII depends on

the underlying mail transport mechanism. You should restrict all messages to the

POSIX portable character set. To send messages containing doublebyte characters

or even binary files, encode them first with uuencode.

Files

mail uses the following files:

dead.letter

The most recently canceled message.

mbox The default file for saving read mail, stored in the directory specified by

HOME.

Exit Values

0 The session was successfully completed; if reading, there was mail.

1 There was no mail, or the session could not be started.

2 An error occurred after starting the session, or you supplied an invalid

option, resulting in a usage message.

Portability

POSIX.2

Because this utility is due to be withdrawn from POSIX, you may want to use mailx

for portable applications. The ability to write directly to a file is an extension to

POSIX.

Limits

Any individual line is limited to LINE_MAX bytes; of course, transport mechanisms

between systems may impose shorter limits.

Related Information

mailx, uudecode, uuencode

Appendix I also explains how to set the local time zone with the TZ environment

variable.

mailx — Send or receive electronic mail

Format

 mailx [–efHiNn] [–u user] [filename]

 mailx [–FinU] [–h number] [–r address] [–s subject] user ...

mail

Chapter 2. Shell command descriptions 371

|

Description

mailx helps you read electronic mail messages. It can also send messages to

users on your system, but it has no built-in facilities for sending messages to other

systems.

The command line:

mailx [options] user user user ...

sends a mail message to the given users. If you do not specify any users on the

command line, mailx lets you read incoming mail interactively. For more

information, see sendmail.

In a doublebyte locale, aliases, variables, and addresses can contain doublebyte

characters.

This description of mailx is divided into several sections:

v Options

v General overview

v Command-mode subcommands

v Input-mode subcommands

v Startup files

v Example

v Environment variables

v Files

v Exit values

v Portability

v Related Information

Options

You can use the following options when reading messages:

–e Checks to see if you have any messages waiting to be read. With this

option, nothing is displayed. If you have waiting messages, mailx exits with

a successful status return; otherwise, mailx exits with a failure return.

–f filename

Looks for messages in the specified file instead of in your current mailbox.

If you do not specify filename, mailx reads messages from $HOME/mbox.

–H Displays only the header summary of a message.

–N Does not display the header summary of messages.

–u user

Looks for messages in the system mailbox of the specified user. This works

only if you have read permission on the user’s system mailbox.

You can use the following options only when sending messages:

–F Records your message in a file with the same name as the first user

specified on the command line. This option overrides the record variable, if

it has been set.

–h number

Indicates how many “hops” a message has already made from one

machine to another (in a network of machines). This option is not intended

for most users; network mail software uses the option to prevent infinite

mailx

372 z/OS V1R9.0 UNIX System Services Command Reference

loops (the same message cycling through a sequence of machines without

ever getting to its intended destination).

–r address

Passes the given address to network mail software. If this option is present,

it disables all input mode commands. Again, this option is not intended for

most users.

–s subject

Uses the given subject string in the Subject heading line of the message. If

the subject contains spaces or tab characters, the string should be

enclosed in double quotes or single quotes. If you specify this option on the

command line, mailx does not prompt you to enter a subject line when you

type in the text of the message. The subject accepts at most

LINE_MAX-10(2038) bytes. Any subjects longer than that will be truncated

at 2038.

–U Converts the address from UNIX-to-UNIX Copy Program (UUCP) style to

Internet Protocol standards. This option overrides the effect of the conv

variable.

 This option is not supported.

You can use these options for both sending and reading messages:

–i Ignores interrupts (for example, from pressing <Break> or <Ctrl-c>).

–n Does not initialize your mailx session from the system’s /etc/mailx.rc file.

General Overview

This section describes the default behavior of mailx.

The simplest command to send a message is:

mailx address address address ...

where each address names someone who is to receive the message. The simplest

kind of address is the login name of someone else who uses your shell.

You can also send messages as input to commands. To do this, use an address

that consists of a pipe symbol (|) followed by a command line that invokes the

appropriate command; enclose this whole address in single quotes. For example:

mailx ROBIN ’|cat >save’

mails a message to ROBIN and also copies the message into a file called save.

After you type in the command to send a message, mailx asks you to enter the

subject of the message (a brief description of what the message is about), and then

lets you type in the text of the message. This brief description can be up to 256

characters long. Your message can consist of any number of lines, and may include

blank lines. When you finish entering the message, type a line consisting only of a

tilde (~), followed by a period (.); then press the enter key. This tells mailx that the

message is ready to be sent.

mailx puts the completed message into a file called the recipient’s system mailbox.

The message stays in the system mailbox until the recipient asks to read the

message. At that point, the message is obtained from the system mailbox and

displayed on the recipient’s workstation. The message is then saved in the

recipient’s personal mailbox. Since this is usually a file named mbox in the

mailx

Chapter 2. Shell command descriptions 373

|
|
|
|
|
|
|

recipient’s home directory, we use the name mbox to represent the personal

mailbox and mailbox for a system mailbox.

The simplest way to read incoming messages is to type the command mailx (with

no addresses on the command line). This starts an interactive session in which

mailx lets you read your mail and perform other operations. For example, you can

display new messages, delete old ones, reply to messages, or forward them to

someone else, and so on. When you are performing operations in this way, you are

in command mode. When you are typing in the text of a message, you are in input

mode.

A message consists of a sequence of header lines, followed by the body of the

message. The header lines tell who sent the message, the time and date that the

message was sent, the subject of the message, and so on. mailx automatically

creates header lines. Some of the common header lines are:

Cc: name name ...

Stands for “carbon copies”. This indicates that copies of this message are

to be sent to the specified recipients. The names of these recipients appear

in the header lines of everyone receiving the message.

Bcc: name name ...

Stands for “blind carbon copies”. This is similar to Cc:, but the names of

people receiving carbon copies do not appear in the header lines of the

message. Recipients do not know that these people received a copy of the

message.

Subject: text

Gives the subject of the message.

To: name name ...

Gives the names of people who were sent the message directly.

All messages are in one of the following states:

deleted

You used a delete, dp, or dt command to delete the message. When mailx

quits, messages in this state are deleted.

new The message is in the system mailbox and you have not yet read it or

otherwise changed its state. When mailx quits, messages in this state are

kept in your system mailbox.

preserved

You used a preserve command on the message. When mailx quits,

messages in this state are kept in their current locations.

read You used one of the following commands on the message:

 ~F copy Print type

 ~f mbox print undelete

 ~M next top

 ~m pipe Type

or you used delete , dp, or dt on the preceding message and the autoprint

variable was set. When mailx quits and you are in your system mailbox,

read messages are kept in your personal mailbox—unless the hold

variable is set, in which case, read messages are kept in your system

mailbox. If you are in your personal or a secondary mailbox when mailx

quits, read messages are kept in their current location.

saved You used a save or write command on the message. If the current mailbox

mailx

374 z/OS V1R9.0 UNIX System Services Command Reference

|
|

||

is the system mailbox and the variable keepsave was set, messages in the

state saved are saved to the mbox. If the current mailbox is the system

mailbox and you used a quit or file command to exit the current mailbox,

messages in the state saved are deleted from the current mailbox.

unread

You have run more than one mailx session with the message in the system

mailbox and you have not read it or otherwise changed its state. When

mailx quits, messages in this state are kept in your system mailbox.

Command-Mode Subcommands

The standard format of a command-mode subcommand is:

[subcommand][refs][arguments]

If no subcommand is specified, the default subcommand depends on the setting

of the _UNIX03 variable:

 If the variable _UNIX03=YES is set, then n[ext] is assumed.

 If the variable _UNIX03 is unset or is not set to YES, then p[rint] is assumed.

The refs argument indicates the messages to which you want to apply the

subcommand. mailx numbers incoming messages sequentially as they are

received. The easiest way to refer to a message is to give its number. For example,

the subcommand:

p 3

displays message number 3. At any point in a mailx session, there is one message

that is considered the current message. This is the message you most recently did

something with (for example, the one you most recently read). If you omit the refs

argument in a subcommand that uses refs, the subcommand works with the current

message.

You can also use special notations as the refs value:

refs Meaning

n Message number n

n-m Messages n through m

. The current message

^ The first undeleted message (or first deleted message for undelete)

$ The last message

+ Next message

− Previous message

* All messages

user All messages from the given user

/string

All messages with string in the subject line (the case of characters in

string is ignored)

:d All deleted messages

:n All new messages

:o All old messages

:r All messages that have already been read

:u All unread messages

Several refs arguments may be specified for the same subcommand, separated by

spaces. For example:

p alice lewis

mailx

Chapter 2. Shell command descriptions 375

|
|
|
|

|

|

|
|

|

|

||

displays all messages from alice plus all messages from lewis.

The arguments allowed at the end of a command-mode subcommand depend on

the subcommand itself. If a subcommand allows a filename as an argument, you

can use the usual filename generation characters in the filename (see sh).

Filenames, where expected, are subjected to the following transformation, in

sequence:

v If the filename begins with an unquoted plus sign, and the folder variable is

defined, the plus sign will be replaced by the value of the folder variable followed

by a slash. If the folder variable is unset or set to null, the filename will be

unchanged.

v Shell word expansions will be applied to the filename. If more than one

pathname results from this expansion and the command is expecting one file, the

multiple pathnames will be combined into one argument.

The following list shows the subcommands recognized in command mode. In every

subcommand name, some characters are enclosed in square brackets. These

characters are optional. For example, the p[rint] command may be given as p, pr,

pri, prin or print.

a[lias] [alias [name ...]]

Sets up an address alias. If you enter a subcommand to send mail to the

given alias, the messages are sent to the given list of names. For example,

you might enter the subcommand:

alias joe JSMITH

From this point onward, you can address messages to joe and they are

sent to jsmith. You may also set up an alias for several people, as in:

alias choir SOPRANO ALTO TENOR BASS

After you have done this, you can send messages to choir and they are

sent to the names that follow choir in the command.

 Alias substitution only takes place when alias is used as the whole mail

address. Alias substitution doesn’t take place when replying to a message

that has an alias match in the addresses.

 If you use only one argument, alias lists the value of that alias. For

example, alias joe would display jsmith. Entering the alias subcommand

without any arguments displays a list of the currently defined aliases.

Note: Aliases entered interactively remain in effect only until the end of the

current interactive session. To make an alias permanent, include the

alias subcommand in your startup file (see “Startup Files” on page

384). See also group.

alt[ernates] name

Lists a set of alternate names for your own login name. This is useful for

people who login under several different names. When you reply to a

message, mailx usually sends your reply to the author of the message and

all the recipients as well; however, it does not send the message to any of

your alternate login names. You don’t have to worry about sending mail to

yourself.

 Specifying alternates without names displays your list of currently defined

alternate names.

mailx

376 z/OS V1R9.0 UNIX System Services Command Reference

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|

|
|

|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

cd directory

Makes directory your new working directory. If no directory is specified, cd

goes to your HOME directory.

ch[dir] directory

Is the same as cd.

c[opy] [refs] [filename]

Copies the messages referred to by refs into the given file. The filename

must be specified. If the file does not already exist, it is created.

 If no refs are specified, the current message is saved. If no filename is

specified, your mbox is saved.

 This operation does not mark the message as saved; if it was previously

unread, it is still regarded as an unread message. Thus, the original

message remains in your system mailbox. See also save.

C[opy] [refs]

Is similar to the copy command, except that the messages referred to are

saved in a file the name of which is derived from the author of the first

message referred to. The name of the file is the author’s name, stripped of

any network addressing. If the folder variable is set, the file is saved to the

specified directory. The copied messages are not marked as “saved”. If refs

is not specified, the current message is copied.

d[elete] [refs]

Deletes the specified messages from your system mailbox. If refs is not

specified, the current message is deleted. After a delete operation, the

current message is set to the message after the last message deleted.

Deleted messages are not thrown away until you end your session with the

current mailbox (see quit and file). Until then, they can be undeleted (see

undelete).

di[scard] [header...]

Does not display the given header fields when displaying a message. For

example:

discard References

tells mailx not to display the References line at the beginning of any mail

message. These header lines are retained when the message is saved;

they are just not shown when the message is displayed. See also ignore

and retain.

dp [refs]

Deletes the specified messages and then displays the message after the

last message deleted. If there is no subsequent message, mailx displays its

command prompt.

dt [refs]

Is the same as the dp subcommand.

ec[ho] string ...

Echoes the given strings (like the echo subcommand).

e[dit] [refs]

Lets you edit the messages specified by refs. The messages are stored in a

temporary file and an editor is invoked to let you edit the file. The default

editor is ed, but you can change this using the EDITOR environment

variable.

mailx

Chapter 2. Shell command descriptions 377

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

ex[it] Quits mailx without changing the system mailbox. Contrast this with quit,

which ordinarily removes from the system mailbox those messages you’ve

read, saved, or deleted.

fi[le] [filename]

Quits the system mailbox (as if a q[uit] subcommand were run) and then

reads in the specified file as the new mailbox to examine. If no filename is

specified, the default is your current mailbox.

 Several special strings can be used in place of filename:

% Your system mailbox.

%user The system mailbox for user

The previous file

& Your mbox (personal mailbox)

+file The named file in the folder directory

fold[er] [filename]

Is the same as the file subcommand.

folders

Displays the names of the files in the directory given by the folder variable.

See “Environment Variables” on page 385.

F[ollowup] [refs]

Replies to the first message given in refs; mailx sends this reply to the

authors of every message given in refs. The Subject line is taken from the

first message in refs. Your reply is automatically saved in a file which

derives its name from the author of the message to which you are replying.

 If the variable _UNIX03=YES is set, then the command overrides the

record variable if record is set.

 If the variable _UNIX03 is unset or is not set to YES, then the command

does not override the record variable.

To create your reply, mailx puts you into input mode, where you can use all

of the input mode commands.

fo[llowup] [ref]

Replies to the specified message; if no message ref is given, you reply to

the current message. Your reply is automatically saved in a file which

derives its name from the author of the message to which you are replying.

This overrides the record environment variable if record is set.

 To create your reply, mailx puts you into input mode, where you can use all

of the input mode commands.

f[rom] [refs]

Displays the header summary for the specified messages. If refs is not

given, the current message is used.

g[roup] [alias [name ...]]

Is the same as the alias command.

h[eaders] [ref]

Displays the headers of a screenful of messages surrounding the message

given by ref. The number of lines in a screen is given by the screen

variable. If no ref is specified, the current message doesn’t change;

otherwise the current message is changed to the message specified by ref.

hel[p] Displays a summary of the command-mode subcommands.

ho[ld] [refs]

Retains the specified messages in your system mailbox. For example, you

mailx

378 z/OS V1R9.0 UNIX System Services Command Reference

||
|
|

|
|
|
|

|
||
||
||
||
||

|
|

|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|

||

|
|

might decide to hold a message if you read it, but decide not to act upon it

immediately. If refs is not specified, the current message is held. If any of

the specified messages have been marked as deleted, the hold

subcommand overrides that and still retains the messages. Subsequent

delete, dp, and dt commands during the same mailx session can delete

files marked for retention. See also preserve and the variables hold and

keepsave.

i[f] code mailx subcommands | [el[se] mailx subcommands] | [en[dif]]

Is primarily intended for use in startup files. The code must be the character

r or s. If it is r, the first set of mailx subcommands are executed if mailx is

in receive mode, and the second set if mailx is in send mode. If code is s,

the opposite is true. The else part is optional. See “Startup Files” on page

384.

ig[nore] [header ...]

Is the same as the discard subcommand.

l[ist] Displays the names of all command-mode subcommands.

m[ail] address ...

Sends a message to the specified recipients. mailx goes into input mode to

let you enter the text of the message.

mb[ox] [refs]

Indicates that the given messages are to be saved in your mbox (personal

mailbox) when mailx quits normally (that is, through the quit command as

opposed to exit).

n[ext] [refs]

Goes to the next message in the mailbox that appears in the list of refs. For

example:

n user

goes to the next message from the specified user.

pi[pe] [[refs] command]

Pipes the messages given by refs through the specified shell command.

These messages are considered read. If refs is not specified, the current

message is used. If no command is specified, mailx uses the command

specified by the cmd variable. See “Environment Variables” on page 385. If

the page variable has a value, a form feed character is sent into the pipe

after every message.

 The subcommand | [refs] [command] is equivalent to pipe.

pre[serve] [refs]

Is the same as the hold subcommand.

P[rint] [refs]

Displays the specified messages on the screen. If refs is not specified, the

current message is displayed. All header fields are displayed; the discard,

ignore and retain subcommands do not affect Print. If the crt variable is

set to an integer, messages with more lines than that integer are

″paginated″ using the command specified by the PAGER variable.

p[rint] [refs]

Displays the specified messages on the screen. If refs is not specified, the

current message is displayed. Header fields specified by discard, ignore

and retain subcommands affect print. If the crt variable is set to an integer,

mailx

Chapter 2. Shell command descriptions 379

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

||

|
|
|

|
|
|
|

|
|
|

|

|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

|
|
|
|

messages with more lines than that integer are “paginated” using the

command specified by the PAGER variable. For more information, see

“Environment Variables” on page 385.

q[uit] Ends a mailx session. This is the usual method to leave mailx. Messages

that have been read but not saved or deleted are stored in your mbox

(personal mailbox). Messages that are still unread are retained in your

system mailbox. Messages that have been deleted or explicitly saved in

other files are discarded. Typing the end-of-file character has the same

effect.

R[eply] [refs]

Sends a reply to the authors of each of the messages specified by refs. If

refs is not specified, the current message is used. The Subject line of the

reply message is taken from the first message in refs. If the record

environment variable is set to a filename, your reply message is appended

to the end of that file.

 Normally, you use Reply if you just want to send your reply to the author of

a message, and reply if you want to send your reply to the author and all

recipients. If set, the flipr environment variable reverses the meanings of

the R and r commands. See “Environment Variables” on page 385.

r[eply] [ref]

Sends a reply to the author of a specific message, and all other recipients

of the message. If ref is not specified, mailx replies to the current message.

If the record environment variable is set to a filename, your reply message

is appended to the end of that file.

R[espond] [refs]

Is the same as the Reply subcommand.

r[espond] [ref]

Is the same as the reply subcommand.

ret[ain] [header ...]

Is the opposite of the discard subcommand. It tells mailx to display the

given header fields when displaying a message. The comparison of header

fields is not case sensitive. You can use retain to override existing discard

and ignore commands. If you do not specify any header fields, retain

displays a list of currently retained header fields.

S[ave] [refs]

Saves the specified messages in a file the name of which is taken from the

author of the first message (the filename is the author’s name, without any

attached network addressing). If the folder variable is set, the file is saved

to the specified directory.

s[ave] [refs][filename]

Saves the specified messages in the given file. If refs is not given, the

current message is added to the mbox. (The value of the append variable

determines whether the message is added to the beginning or the end of

the mbox). The file is created if it does not already exist. If you do not

specify filename, mailx saves the messages in mbox (your personal

mailbox). A message that has been saved with save is normally deleted

from mailbox when mailx ends (see quit); but see the variables hold and

keepsave.

se[t] name

Defines a variable with the given name and assigns it a null value. If you

omit name, set displays a list of all defined variables and their values.

mailx

380 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|

||
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

se[t] name=value

Defines a variable with the given name and assigns it the given value,

which may be a string or a number.

se[t] noname

Is the same as the unset name subcommand.

sh[ell] Invokes the shell given by the SHELL environment variable.

si[ze] [refs]

Displays the size in bytes of each of the specified messages. If no refs are

specified, the current message is used.

so[urce] file

Reads the specified text file, executes its contents as command-mode

subcommands, and then returns to read more commands from the original

source.

to[p] [refs]

Displays the first few lines of each of the specified messages. If refs is not

specified, the current message is used. If the toplines variable has a

numeric value, that many lines are displayed from each message;

otherwise, five lines are displayed from each message.

tou[ch] [refs]

“Touches” the specified messages, making them appear to have been read.

This means that when you quit mailx, the messages are saved in your

mbox (personal mailbox) if they are not deleted or explicitly saved in

another file. If refs is not specified, the current message is touched.

T[ype] [refs]

Is the same as the Print subcommand.

t[ype] [refs]

Is the same as the print command.

una[lias] [alias[name ...]]

Deletes specified alias names.

u[ndelete] [refs]

Restores previously deleted messages. When messages are deleted, they

are not discarded immediately; they are just marked for deletion and are

deleted when mailx ends. Until mailx ends, you can use undelete to

restore the specified messages. You cannot undelete messages deleted in

previous sessions. If you do not specify refs, this command restores the

first deleted (but not yet undeleted) message following the current message;

if no such message exists, it restores the last deleted (but not yet

undeleted) message preceding the current message. If the autoprint

variable is set, the last restored message is displayed. This is the only

subcommand that lets you give a ref to a message that has been deleted.

U[nread] [refs]

Marks the specified messages as unread.

uns[et] name ...

Discards the specified variables.

ve[rsion]

Displays version information about mailx.

v[isual] [refs]

Edits the specified messages with a screen editor. If refs is not specified,

the current message is edited. The messages are saved in a temporary file

mailx

Chapter 2. Shell command descriptions 381

|
|
|

|
|

||

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

and the screen editor is invoked to edit that file. The editor used is given by

the VISUAL variable. See “Environment Variables” on page 385.

w[rite] [refs] filename

Writes the specified messages into the given file. If refs is not specified, the

current message is written. write is the same as save, except that it does

not write out the header lines and the blank line at the end of the message.

x[it] Is the same as the exit command.

z[+|-] Scrolls the header display forward (if z or z+ is specified) or backward (if z-

is specified) one screenful.

! command

Executes the given shell command. For example:

!lc

lists all files in the current directory. The shell that will be used to run the

command is given by the SHELL environment variable. See “Environment

Variables” on page 385.

#comment

Specifies that mailx should ignore everything from the # to the end of the

line. This is useful for putting comments into startup files.

? Is the same as the help command (it displays a summary of the

command-mode subcommands).

= Displays the current message number.

Input-Mode Subcommands

You can use input-mode subcommands when entering the text of a message. You

must type mode subcommands at the beginning of an input line; you cannot type

them in the middle of a line. By default, each input-mode subcommand begins with

the tilde (~) character, called the escape character. You can use the escape

variable to change the escape character, but in the documentation that follows, we

always use tilde.

~. Marks the end of input in a mail message.

~? Displays a summary of the input-mode subcommands.

~A Inserts the autograph string at this point in the message. This autograph

string is given by the Sign variable.

~a Is similar to ~A, except that it uses the variable sign.

~b name ...

Adds the specified names to the blind carbon copy list.

~c name ...

Adds the specified names to the carbon copy list.

~d Reads in the dead.letter file.

~e Invokes an editor on the message that you have composed. The editor

variable determines the editor that is invoked.

~F [refs]

Forwards the given messages. The text of the messages is inserted at this

point in the message you are composing. The message headers are also

inserted with all header fields regardless of the discard, ignore, and retain

mailx

382 z/OS V1R9.0 UNIX System Services Command Reference

|
|

|
|
|
|

||

||
|

|
|

|

|
|
|

|
|
|

||
|

||

|

subcommands. This is valid only when you entered mailx in command

mode and then went into input mode to compose a message.

~f [refs]

Is similar to ~F except that the header fields included are determined by the

discard, ignore, and retain subcommands.

~h Prompts you to enter the following header lines:

Subject Cc Bcc To

For some of these, mailx displays an initial value for the header. You can

edit this initial value as if you had just typed it in yourself, using backspaces

and line deletes.

~i name

Inserts the value of the named variable followed by a newline at this point

in the message.

~M [refs]

Inserts the text of the specified messages at this point in the message. If

refs is not specified, the current message is used. Messages inserted in this

way have each line prefixed with the value of the indentprefix variable. The

message headers are also inserted with all header fields included

regardless of the discard, ignore, and retain subcommands. This is valid

only when you entered mailx in command mode and then went into input

mode to reply to a message.

~m [refs]

Is similar to ~M, except that the header fields are determined by the

discard, ignore, and retain subcommands.

~p Displays the message being composed.

~q Quits input mode as if you had interrupted the message. If you have

already composed part of a message, the partial message is saved in the

dead.letter file; the description of the dead environment variable has more

information..

~r filename

Reads in the contents of the specified file and adds that text at this point in

the message.

~s text

Sets the Subject line to the given text.

~t address address ...

Adds the given addresses to the To: list (people who will receive the

message).

~v Invokes a screen (visual) editor on the message that you have composed.

The VISUAL variable determines the editor that is invoked.

~w file Writes the current text of your message to the specified file. The header

lines for the message are not written.

~x Quits in the same way as ~q, except that the message is not saved in the

dead.letter file.

~< filename

Is the same as the ~r command.

mailx

Chapter 2. Shell command descriptions 383

|

|

|

~< !command

Runs the given shell command and adds the standard output of that

command at this point in the message. For example, your message might

contain:

 My program is giving me this odd output:

 ~< !prog

 What do you think is causing it?

~: mail_command

Runs the given command-mode mail_command. This is valid only when you

entered mailx in command mode and then went into input mode to

compose a message.

~_ mail_command

Is the same as the ~: command.

~! command

Runs the given shell command. For example, you can use:

>~! ls

to get a list of files in the working directory. The shell that is invoked to run

the command is given by the SHELL environment variable. If the bang

variable is set, mailx replaces each unescaped exclamation mark (!) in

command with the command run by the previous command or ~! command

escape.

~ command

Pipes the current message through the specified shell command. If the

command ends with a successful exit status, the output of the command

replaces the text of the current message. For example:

 ~|fmt

fills and justifies the lines of your message and replaces the message with

the formatted message. ~| uses the shell given by the SHELL environment

variable to run command.

Startup Files

When you run mailx in command mode, mailx does the following:

v Sets all variables to their default values. mailx processes command-line options,

using them to override any corresponding default values.

v Imports appropriate external environment variables, using them to override any

corresponding default values.

v Reads commands from the system startup file, /etc/mailx.rc. This sets up

variable values and definitions that should be common to all users. If you do not

want mailx to read the system startup file, use the –n option on the mailx

command line.

v After reading and processing the system startup file, mailx does the same with a

personal startup file, which is MAILRC by default. This is a file in your HOME

directory. The name of the file is .mailrc.

Startup files typically set up display options and define aliases. However, any

command is valid in a startup file except for the following:

 Copy

 edit

 followup

 Followup

mailx

384 z/OS V1R9.0 UNIX System Services Command Reference

|

hold

 mail

 preserve

 reply

 Reply

 respond

 Respond

 shell

 visual

 !

If a line in a startup file contains an error or an incorrect command, the rest of the

startup file is ignored. mailx ignores blank lines in a startup file.

Example

The following example composes and sends a message to several users. Items

shown in italics are output by mailx itself.

mailx JEAN

Subject: Greetings

This is just a short note to say hello.

 ~c JUAN JOHN JOHANN

 ~.

On the first line, the message is just addressed to jean. The ~c line adds more

people who will receive copies of the message.

Environment Variables

A large number of variables are used to control the behavior of mailx. These

environment variables are divided into two classes: those that always come from

the external environment, and those that may be set up in either the external

environment or within a mailx session.

The following variables always come from the external environment; they can be

changed inside a mailx session, except where marked.

DEAD

Gives the name of a file that can be used as the dead.letter file. Partial

messages are saved in this file if an interrupt or error occurs during creation

of the message or delivery. By default, the name of this file is

$HOME/dead.letter.

EDITOR

Gives a command, possibly with options, that is run when using the

command mode edit or the input mode ~e. The default is ed (see “ed —

Use the ed line-oriented text editor” on page 247 for more information on

ed).

HOME Gives the name of your home directory. This cannot be changed inside

mailx .

LISTER

Gives a command, possibly with options, that mailx invokes when

displaying the content of the folder directory for the folders subcommand.

If this variable is null or unset, mailx uses ls. By default, this variable is

unset.

LOGNAME

Gives your login name.

mailx

Chapter 2. Shell command descriptions 385

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

MAIL Gives the pathname of the user’s mailbox file for purposes of incoming mail

notification.

MAILDIR

Gives the name of the directory where system mailboxes are stored. If this

is not set, the default is /usr/mail. The actual name of a user’s system

mailbox is derived in a system-dependent way by combining MAILDIR and

the user’s login name. For mailx to work properly, the MAILDIR directory

must exist.

MAILRC

Gives the name of your startup file. This cannot be changed inside mailx.

By default, MAILRC has the value $HOME/.mailrc. For more information

about startup files, see “Startup Files” on page 384.

MBOX Gives the name of your mbox (personal mailbox) file. Messages that have

been read but not saved elsewhere are saved here when you run quit (but

not when you run exit). The default is $HOME/mbox.

PAGER

Gives a command, possibly including options. mailx sends display output

through this command if the output is longer than the screen length given

by crt. The default value is more (see “more — Display files on a

page-by-page basis” on page 429 for more information on more).

SHELL

Gives a command, possibly with options. mailx assumes that this command

is a command interpreter. mailx invokes this command interpreter

whenever it is asked to run a system command (for example, through the !

command-mode command). The default is sh (see “sh — Invoke a shell” on

page 549 for more information on sh).

TERM Contains the name of the terminal type. This cannot be changed inside

mailx.

TZ This variable may determine the time zone used to calculate date and time

strings written in mailx. This cannot be changed inside mailx .

_UNIX03

For more information about the affect of _UNIX03 on this command, see

Appendix N, “UNIX shell commands changed for UNIX03,” on page 943.

VISUAL

Gives a command, possibly with options, that mailx invokes when using the

command-mode visual subcommand or the input mode ~v subcommand.

The default is vi (see “vi — Use the display-oriented interactive text editor”

on page 758 for more information on vi).

The HOME and LOGNAME variables must be set before you enter mailx.

Otherwise, mailx will not work properly. The TZ variables can only be set before

you enter mailx. If not set or set to null, a default time zone (″UTC0″) will be used.

These variables are usually set during shell login. (You can login with TSO/E

OMVS, telnet, rlogin, or ssh.) If you do not log in, you must set the variables in

some other way, using the commands:

export LOGNAME=name

export HOME=directory

The remaining variables can be set in the external environment or in the course of

a mailx session. You can set or change the value of a variable with the set

subcommand; you can discard a variable with the unset subcommand. You may

mailx

386 z/OS V1R9.0 UNIX System Services Command Reference

||
|
|

|
|
|
|
|

|
|
|
|
|
|

||
|

||
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

find it convenient to create a startup file that sets these variables according to your

preferences; this eliminates the need to set variables each time you enter mailx.

Many of the following variables represent on-off options. If you set the variable itself

(to any value), the option is turned on. To turn the option off, you can unset the

variable, or set a variable consisting of no followed by the name of the original

variable. For example, setting autoprint turns the autoprint option on, and setting

noautoprint turns it off.

allnet Assumes that network addresses with the same login component refer to

the same person. Network addresses typically consist of several

components, giving information that lets a mail server identify a machine on

the network, a route to that machine, and the login name of a user on that

machine. mailx assumes that the login name is the last component. For

example:

print name

displays all messages that originated from the same login name, regardless

of the rest of the network address. The default is noallnet, where different

addresses are assumed to be different users, even if the login name

components are the same.

append

Appends messages to the end of the mbox file (your personal mailbox)

after termination. The default is noappend; messages are placed at the

beginning of the mbox file instead of the end.

ask Prompts you for a Subject: line when composing a message (if you have

not already specified one with the –s option). This option is on by default; to

turn it off, set noask. ask is the same as asksub. noask is the same as

noasksub.

askbcc

Prompts you for a Bcc: list when composing a message. The default is

noaskbcc; you are not prompted.

askcc Prompts you for a Cc: list when composing a message. The default is

noaskcc; you are not prompted.

asksub

Prompts you for a Subject: line when composing a message (if you have

not already specified one with the –s option). This option is turned on by

default; to turn it off, set noasksub. asksub is the same as ask. noasksub

is the same as noask.

autoprint

Automatically displays the last message deleted with the delete

subcommand or the last message undeleted with undelete. The default is

noautoprint; you are not shown messages that you delete or undelete.

bang Records shell commands run inside the mailx session (for example,

through the ~! input-mode command). Then, if you issue a shell command

and the shell command contains a ! character, mailx replaces that

character with the command line for the previous shell command. The

default is nobang, in which case a ! in a shell command line is not treated

specially.

cmd Contains a command, possibly with options. This specifies a default

command line to be used for the command-mode pipe subcommand. For

example:

mailx

Chapter 2. Shell command descriptions 387

|
|
|

set cmd="cat"

pipes messages through cat when the pipe subcommand is invoked. The

default is nocmd.

crt Contains an integer number. If a message has more than this number of

lines, the message is piped through the command given by the PAGER

variable, whenever the message is displayed. crt is not set; the default is

nocrt.

debug Enables verbose diagnostics for debugging. Messages are not delivered.

the default is nodebug.

dot Accepts a line consisting only of a dot (.) to indicate the end of a message

in input mode. Thus . is equivalent to ~.. The default is nodot. If ignoreeof

is set, mailx ignores a setting of nodot; the period is the only way to end

input mode.

escape

Gives the character used to begin input-mode subcommands. The default is

the tilde (~). If this variable is unset, tilde is used as the escaping character.

If this variable is set to null, mailx disables command escaping.

flipr Reverses the meanings of the R and r subcommands. The default is

noflipr. See also Replyall.

folder Contains the name of a directory in which mailx saves mail files. This lets

you specify a standard directory for saving mail files. Whenever you specify

a filename for a mailx command, putting a plus sign (+) in front of the name

specifies that the file is to be accessed in the folder directory.

 If the value of folder begins with a slash, it is taken as an absolute

pathname; otherwise, mailx assumes that the directory is directly under

your HOME directory. The default is nofolder. If you want to use + in

filenames that appear on the mailx command line itself (as opposed to

commands in a mailx session), you must make folder an exported shell

environment variable.

header

Displays a summary of message headers at the beginning of a mailx

command-mode session. This is the default.

hold Keeps all messages in your system mailbox instead of saving them in your

personal mbox. The default is nohold.

ignore

Ignores interrupts received while composing a message. The default is

noignore.

ignoreeof

Ignores end-of-file markers found while entering a message. The message

can be ended by “.” or ~. on a line by itself. The default is noignoreeof.

indent Contains a string that mailx uses as a prefix to each line in messages that

~m and ~M insert. The default is one tab character.

indentprefix

As with indent, contains a string that mailx uses as a prefix to each line in

messages that ~m and ~M insert. The default is one tab character. If both

indent and indentprefix are set, indentprefix takes precedence.

keep Does not remove your system mailbox if the mailbox contains no

mailx

388 z/OS V1R9.0 UNIX System Services Command Reference

|

|
|

||
|

|
|
|

|
|
|
|
|
|

messages. The mailbox is truncated to zero length—that is, it is merely

emptied, although it still exists. If the default nokeep is in effect, empty

mailboxes are removed.

keepsave

Keeps messages in your system mailbox even if they have been saved in

other files. The default, nokeepsave, deletes messages from the system

mailbox if they have been saved elsewhere.

mailserv

Identifies the mail server being used for remote mail.

metoo When replying to a message with your login name in the recipient list,

sends a reply to all other recipients, the author, and you. If nometoo is set,

you are not to be sent the reply. The default is nometoo.

onehop

Attempts to send replies directly to the recipients instead of going through

the original author’s machine. When you reply to a message, your reply is

sent to the author and to all recipients of the message. On a network, mailx

normally specifies the recipient addresses so that all the replies go to the

original author’s machine first, and then on to the other recipients. The

default is noonehop.

outfolder

Causes files used to record outgoing messages (see the description of

record) to be located in the directory given by folder unless folder contains

an absolute pathname.

 The default is nooutfolder.

page Tells the pipe subcommand to insert a form-feed character after each

message that it sends through the pipe. The default is nopage.

prompt

Contains a string that mailx displays to prompt for output in command

mode. The default is a question mark followed by a space (?).

quiet Does not display the opening message and version number when mailx

begins a session. The default is noquiet.

record

Contains a filename where every message you send is to be recorded. If

record is not an absolute pathname and the outfolder variable has not

been set, the file is located in the current directory. If the outfolder variable

is set, the file is located in your folder directory. The default is norecord.

replyall

Reverses the senses of the reply and Reply subcommands (so that reply

replies only to the author of a message, and Reply replies to the author

and all other recipients). See also flipr.

save Saves messages in your dead.letter file if they are interrupted while being

composed. The name of your dead.letter file is given by the dead variable.

Setting nosave disables this automatic save feature. The default is save.

screen

Gives the number of headers that are to be displayed by the headers and z

subcommands. If screen is not specified, the current window size shall be

used to determine the number of headers displayed.

sendmail

Contains a command, possibly with options, that mailx invokes to send

mailx

Chapter 2. Shell command descriptions 389

|
|
|
|
|
|

|
|
|

mail. The default is /usr/lib/tsmail. It can be any command that takes

addresses on the command line and message contents on standard input.

sendwait

When sending a message through a network, mailx waits for the mail

server to finish before returning to your session. Normally, it just submits the

message to the server and then returns immediately. The default is

nosendwait.

showto

When displaying a header summary, displays the recipient’s name instead

of the author’s for messages where you are the author. The default is

noshowto.

sign Contains a string that is inserted into a message when you use the input

mode ~a subcommand. mailx interprets \n and \t in this string as the

newline and tab characters, respectively. The default is nosign.

Sign Contains a string that is inserted into a message when you use the input

mode ~A subcommand. The default is noSign.

toplines

Gives the number of header lines that the top subcommand is to display.

The default is 5.

Files

mailx uses the following files:

/etc/mailx.rc

Systemwide startup file.

$MAILRC

Personal startup file. By default, MAILRC has the value $HOME/.mailrc.

$HOME/mbox

Default location to save read messages. You can choose a different file by

assigning the filename to the environment variable MBOX.

$MAILDIR

Directory containing system mailboxes. By default, this is /usr/mail. The

system programmer must create the MAILDIR directory if it does not

already exist. See z/OS UNIX System Services Planning for information on

creating the MAILDIR directory.

$HOME/dead.letter

Default location to save partial letters.

Localization

mailx uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_TIME

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

mailx

390 z/OS V1R9.0 UNIX System Services Command Reference

Exit Values

0

v Successfully sent. (However, this does not guarantee that the mail was

successfully received.)

v 0 is returned if -e is specified and mail was found.

1 Returned if –e is specified and mail was not found or an error occurred.

Also returned to indicate failure due to any of the following:

v There is no mail to read.

v Inability to create temporary file name or temporary file.

v Receipt of user interrupt while message was being composed.

v Inability to determine the user’s identity.

2 Failure due to any of the following:

v Missing number after –h

v Missing address after –r

v Missing subject after –s

v Missing user after –u

v Incorrect command-line option

v Use of interactive options when not using command interactively

Portability

POSIX.2, X/Open Portability Guide, UNIX System V.

UNIX System V has a compatible mailx utility, whereas Berkeley Software

Distribution (BSD) has a similar utility, known as Mail.

The –F, –r, and –U options; the Copy, echo, followup, Followup, Save, Unread,

and version subcommands; and the allnet, conv, mailserv, onehop, replyall,

sendmail, and sendwait variables are extensions of the POSIX standard.

Related Information

echo, ed, sh, vi

make — Maintain program-generated and interdependent files

Format

 make [–EeinpqrstuVvx] [–k|–S] [–c dir] [–f file] ...

 [macro definition ...] [–D macro definition ...] [target ...]

Description

make helps you manage projects containing a set of interdependent files, such as a

program with many source and object files, or a document built from source files,

macro files, and so on. make keeps all such files up to date with one another. If

one file changes, make updates all the other files that depend on the changed file.

Note: This implementation of make features the .POSIX special target to provide

maximum portability. When you specify this target, make processes the

makefile as specified in the POSIX standard. For details, see the description

of .POSIX in “Special Target Directives” on page 404.

In a doublebyte locale, environment variable values, here documents, and the

command line may all contain environment values.

mailx

Chapter 2. Shell command descriptions 391

|
|

|

|
|
|
|
|
|

Options

–c dir Attempts to change into the specified directory when make starts up. If

make cannot change to the directory, an error message is printed. This is

useful for recursive makefiles when building in a different directory.

–D macro definition

Define macro on the command line before reading any makefile. Use the

same form as a normal macro definition (macro=string). If you use this

option, make assigns the value to the macro before reading the makefile;

any definition of the same macro contained in the makefile supersedes this

definition.

Note: make uses any macros defined in this way before reading any

makefile, including the startup file. This allows you to define a startup

file by providing a value for MAKESTARTUP on the command line:

make –D MAKESTARTUP=$HOME/project/startup.mk

–E Suppresses reading of the environment. If you do not specify either –E or

–e, make reads the environment before reading the makefile.

–e Reads the environment after reading the makefile. If neither –E nor –e are

specified, make reads the environment before reading the makefile, except

for the SHELL environment variable, which you must explicitly export. This

option does not affect the value of MAKEFLAGS.

–f file Uses file as the source for the makefile description. make ignores the

makefiles specified as prerequisites to the .MAKEFILES target. If you specify

a minus sign (−) in place of file, make reads the standard input. (In other

words, make expects you to enter the makefile from the terminal or to

redirect it from a file.) You can use more than one –f option.

–i Tells make to ignore all errors and continue making other targets. This is

equivalent to the .IGNORE attribute or macro.

–k Makes all independent targets, even if an error occurs. Ordinarily, make

stops after a command returns a nonzero status. Specifying –k tells make

to ignore the error and continue to make other targets, as long as they are

not related to the target that received the error. make does not attempt to

update anything that depends on the target that was being made when the

error occurred.

–n Displays the commands that make would execute to update the chosen

targets, but does not actually execute any recipe lines unless they have a

plus sign (+) command prefix. make displays recipe lines with an at sign

(@) command prefix on standard output (stdout). For more information

about recipe lines, see z/OS UNIX System Services Programming Tools.

 With group recipes, make displays the commands it uses to update a given

target, but it also executes the commands.

Note: z/OS make supports group recipes, but traditional implementations

of make do not. A group recipe signifies a collection of command

lines fed as a unit to the command interpreter. By contrast, make

executes commands in a normal recipe one by one. For more

information about group recipes, see z/OS UNIX System Services

Programming Tools.

 If make finds the string $ (MAKE) in a recipe line, it expands it, adds –n to

the MAKEFLAGS, and then executes the recipe line. This enables you to see

make

392 z/OS V1R9.0 UNIX System Services Command Reference

what happens when recursive calls are made to make. The output correctly

shows line breaks in recipes that are divided into several lines of text using

the \<newline> sequence.

–p Prints the makefile after it has been processed to include macro and target

definitions. This display is in human-readable form useful for debugging, but

you cannot use it as input to make.

–q Checks whether the target is up to date. If it is up to date, make exits with

a status of 0; otherwise, it exits with a status of 1 (typically interpreted as an

error by other software). No commands are run when –q is specified.

–r Does not read the startup file. Various control macros and default rules will

not be defined.

–S Ends make if an error occurs during operations to bring a target up to date

(opposite of –k). This is the default.

–s Specifies that recipe commands, warning messages, or touch messages

(see the –t option) not be displayed. This is equivalent to the .SILENT

attribute or macro.

–t Touches the target to mark them as up-to-date, but only executes

commands to change a target if the target has a plus sign (+) command

prefix. make does not touch up-to-date targets or targets that have

prerequisites but not recipes. make displays a message for each touched

target file indicating the filename.

–u Forces an unconditional update: make behaves as if all the prerequisites of

the given target are out of date.

–V Prints the version number of make and a list of built-in rules.

–v Causes make to display a detailed account of its progress. This includes

what files it reads, the definition and redefinition of each macro, metarule

and suffix rule searches, and other information.

–x Exports all macro definitions to the environment. This happens just before

make begins making targets (but after it has read the entire makefile).

Targets

A target is normally a file that you want to ensure is up to date with the files on

which it is dependent (the prerequisites). For example, you may want to check to

see if a is based on the most recent version of the corresponding source code. If it

is not, then have the source code recompiled to get an up-to-date version. In this

case, the compiled program file is the target and the corresponding source files are

prerequisites (that is, the files on which a target is dependent).

make updates all targets that are specified on the command line. If you do not

specify any target, make updates the targets in the first rule of the makefile. A

target is out of date if it is older than any of its prerequisites (based on modification

times) or if it does not exist. To update a target, make first recursively ensures that

all the target’s prerequisites are up to date, processing them in the order in which

they appear in the rule. If the target itself is out of date, make then runs the recipe

associated with the target. If the target has no associated recipe, make considers it

up to date.

make also supports another form of targets, known as special targets, described in

“Special Target Directives” on page 404.

make

Chapter 2. Shell command descriptions 393

Makefiles

A makefile is a text file that describes the dependencies between various files. It

normally contains a list of targets and identifies the prerequisites on which each

depends. It also contains a series of instructions, called recipes, which describe the

actions to be taken if a given target is out of date with its prerequisites.

By default, if you do not specify the –f option, make looks for a file in your current

directory named makefile. If it does not find this file, it searches your current

directory for a file named Makefile. If make finds either file, it uses this file as your

makefile.

You can change the default makefiles with the .MAKEFILES special target. This target

is already specified in the startup.mk file. See “Special Target Directives” on page

404 for more information.

Macro Definitions

Macro definitions can appear on the command line or in makefiles. Macro

definitions on the command line overrule definitions in makefiles; makefile

definitions never overrule command-line definitions. Macro definitions on the

command line may not have any white space between the macro name and the =

character.

Macro definitions may take several forms.

macro = string

is the usual form. If string contains macro references, make does not expand them

when the macro is defined, but when the macro itself is expanded.

macro := string

expands macros inside string before assigning a value to macro.

macro += string

adds string to the previous value of macro.

You can use any amount of white space on both sides of macro operators. make

defines the name macro to have the value string and replaces it with that value

whenever it is used as $(macro) or ${macro} within the makefile. It is possible to

specify a $(macro_name) or ${macro_name} macro expansion, where

macro_name contains more $(....) or ${...} macro expansions itself.

Normally, make does not include white space at the beginning and end of string in

the definition of macro; however, it never strips white space from macros imported

from the environment.

If you want to include white space in a macro definition specified on the make

command line, you must enclose the definition in quotes.

make resolves macro definitions in the following order:

1. Macro definitions in the built-in rules

2. Macro definitions on the command line associated with the –D option

3. Macro definitions in the startup file

4. Contents of the environment

5. Macro definitions in the makefiles (in the order they appear)

6. Macro definitions on the command line without the –D option

make

394 z/OS V1R9.0 UNIX System Services Command Reference

Note: If you specify the –e options, make reads the makefiles before reading the

contents of the environment. If you specify the –E option, make does not

read the contents of the environment.

If a macro is already defined when make encounters a new definition for it, the new

definition replaces the old one. For example, a macro definition for name on the

command line overrides a definition for name in the makefile. You can use the –v

option to display macro assignments, as make performs them.

Macro Modifiers

make supports macro expansions of the form:

$(macro_name:modifier_list:modifier_list:...)

Possible modifiers are:

^"string″

Prefix tokens

+"string″

Suffix tokens

b File portion of all pathnames, without suffix

d Directory portion of all pathnames

f File portion of all pathnames, including suffix

l All characters mapped to lowercase

s/pat/string/

Simple pattern substitution (you can use any character to separate the

pattern from the substitution text)

suffix=string

Suffix replacement

t"separator″

Tokenization with given separator

u All characters mapped to uppercase

You can specify macro modifiers in either uppercase or lowercase. For example, the

macro assignment:

test = D1/D2/d3/a.out f.out d1/k.out

produces the following expansion:

$(test:d) → D1/D2/d3 . d1

$(test:b) → a f k

$(test:f) → a.out f.out k.out

${test:db} → D1/D2/d3/a f d1/k

${test:s/out/in} → D1/D2/d3/a.in f.in d1/k.in

$(test:f:t"+") → a.out+f.out+k.out

$(test:t"+") → D1/D2/d3/a.out+f.out+d1/k.out

$(test:u) → D1/D2/D3/A.OUT F.OUT D1/K.OUT

$(test:l) → d1/d2/d3/a.out f.out d1/k.out

$(test:^"/rd/") → /rd/D1/D2/d3/a.out /rd/f.out /rd/d1/k.out

$(test:+".Z") → D1/D2/d3/a.out.Z f.out.Z d1/k.out.Z

Runtime Macros

Runtime macros can take on different values for each target.

$@ The full target name. When building a normal target, this macro evaluates

make

Chapter 2. Shell command descriptions 395

to the full name of the target. When building a library, it expands to the

name of the archive library. For example, if the target is:

mylib(member)

$@ expands to:

mylib

$% The full target name. When building a normal target, this macro evaluates

to the full name of the target. When building a library, it expands to the

name of the archive member. For example, if the target is:

mylib(member)

$% expands to:

member

$& The list of all prerequisites.

$? The list of all prerequisites that are newer than the target.

$^ The list of all prerequisites taken from the list specified on the rule line of

the recipe where the $^ appears.

$< In inference rules, it evaluates to the single prerequisite that caused the

execution of the rule. In normal rules it evaluates the same as $?.

$> The name of the library if the current target is a library member.

$* The target name with no suffix ($(%:db)) or the value of the stem in a

metarule.

The constructs $$@, $$%, $$>, and $$* can appear in a prerequisite list as dynamic

prerequisites. $$@ stands for the target currently being made. For example:

fred : $$@.c

fred : fred.c

are equivalent. The construct can be modified, as in:

fred.o : $$(@:b).c

The runtime macros can be modified by the letters D and F to indicate only the

directory portion of the target name or only the file portion of the target name. (The

working directory is represented by a dot.) If define.h is the only prerequisite that is

newer than the target, the macros $?D and $?F expand to dot (.) and to define.h.

If you are building a library, $$% stands for the name of the archive member being

made. If you are building a normal target, $$% stands for the name of the target

currently being made.

$$* stands for the name of the current target being made, but with no suffix.

If you are building a library, $$> stands for the name of the archive library being

made. If you are not building a library, $$> is not valid.

Usage Note

Comments begin with the pound (#) character and extend to the end of the line.

make discards all comment text.

make

396 z/OS V1R9.0 UNIX System Services Command Reference

Makefile Contents

Inside makefiles, you can split long lines over several lines of text. To do this, put a

backslash (\) at the very end of the line. You can use this technique to extend

comments as well as recipe lines and macro definitions, for example.

If a rule or macro definition must contain a # character, use \#; otherwise, make

mistakes the # for the beginning of a comment. Also, if a macro definition must

contain a single $ character, use $$.

Filenames that contain a colon must always be enclosed in quotes, as in:

"a:target" : "a:prereq"

Rules

The general format of a rule is:

targets [attributes] ruleop [prerequisites]

[;recipe]

{<tab> recipe}

where the items enclosed in square brackets are optional. (This is just a

documentation convention; you do not actually enter the square brackets.) The

parts of the rule are described as follows:

targets

One or more target names.

attributes

A list, possibly empty, of attributes to apply to the list of targets.

ruleop An operator token, usually a colon (:), that separates the target names from

the prerequisite names and may also affect the processing of the specified

targets.

prerequisites

A list of zero or more names on which the specified targets depend.

recipe A command to execute to update targets. May follow on the same line as

the prerequisites, separated from them by a semicolon. If such a recipe is

present, make takes it as the first in the list of recipe lines defining how to

make the named targets. Additional recipe lines may follow the first line of

the rule. Each subsequent recipe line must begin with a tab character.

The possible rule operators are listed as follows:

targets : prereqs

Is a simple rule definition. For explicit targets, at most one simple rule may

have a recipe, in contrast with the :: rule operator, whose description

follows.

targets :! prereqs

Executes the recipe for the associated targets once for each recently

changed prerequisite. In simple rules, the recipe is executed only once, for

all recently changed prerequisites at the same time. The $< macro expands

to the current recently changed prerequisites if it appears in rules with this

rule operator.

targets :^ prereqs

Inserts the specified prerequisites before any other prerequisites already

associated with the specified targets.

make

Chapter 2. Shell command descriptions 397

targets :– prereqs

Clears the previous list of prerequisites before adding the new

prerequisites.

targets :: prereqs

If no prerequisites are specified, the targets are always remade. Otherwise

it is used for multiple rules applying to the same targets. Each rule can

specify a different set of prerequisites with a different recipe for updating the

target. Each rule is treated independently; the target is remade for each rule

with recently changed prerequisites, using the corresponding recipe.

targets :| prereqs

Can only be used in metarules. It tells make to treat each metadependency

as an independent rule. For example:

%$0 :| archive/%.c rcs/%.c /srcarc/RCS/%period.c

recipe...

is equivalent to

%$0 : archive/$.c

 recipe:

%$0 : rcs/%.c

 recipe:

%$0 : /srcarc/rcs/%.c

 recipe:

Circular Dependencies

There are two types of circular dependencies: within-rule and between-rule.

A within-rule circular dependency occurs when the target’s name is included in the

list of prerequisites for that target. For example,

c.o : a.o b.o c.o

is a within-rule circular dependency. make detects a within-rule circular dependency

when it is parsing the makefile to build the dependency tree.

A between-rule circular dependency occurs when you have two targets, each of

which includes the other’s name in its prerequisite list. For example,

a.o : b:o

b:o : a.o

is a between-rules circular dependency. make detects a between-rule circular

dependency when it is processing the dependency tree built during the parse

phase.

Normally make only detects circular dependencies for those targets actually being

built. When a circular dependency is encountered, make issues a warning

message, removes the offending prerequisite from the list, and continues parsing

the makefile. You can use the .CYCLECHECK special target to alter. make’s treatment

of circular dependencies. See also “Special Target Directives” on page 404, which

describes special targets.)

Recipes

You can use a target that has prerequisites but no recipes to add the given

prerequisites to that target’s list of prerequisites.

make

398 z/OS V1R9.0 UNIX System Services Command Reference

You can preface any recipe line with a command prefix immediately after the tab

character –, @, + or all three). The method of entering tab characters using an ISPF

editor is discussed in z/OS UNIX System Services User’s Guide.

 – indicates that make is to ignore nonzero exit values when it runs this recipe

line.

 @ indicates that make is not to display the recipe line before running it.

 + tells make to always run this line, even when –n, –p, or –t is specified.

Group recipes begin with [in the first non-white-space position of a line, and end

with] in the first non-white-space position of a line. Recipe lines in a group recipe

need not have a leading tab. make executes a group recipe by feeding it as a

single unit to a shell. If you immediately follow the [at the beginning of a group

recipe with one of –, @ or +, they apply to the entire group in the same way that they

apply to single recipe lines.

Inference Rules

With inference rules you can specify general rules for building files rather than

creating a specific rule for each target.

make provides two forms of inference rules: suffix rules and metarules. It includes

suffix rules to ensure compatibility with older makefiles. Metarules, however, provide

a more general mechanism for specifying make’s default behavior. They provide a

superset of the functionality of suffix rules.

make searches all metarules before using suffix rules.

make uses the inference rules to infer how it can bring a target up to date. A list of

inference rules defines the commands to be run. The default startup.mk file

contains a set of inference rules for the most common targets. You can specify

additional rules in the makefile.

When make finds no explicit target rule to update a target, it checks the inference

rules. If make finds an applicable inference rule with an out-of-date prerequisite, it

runs on that rule’s recipe. See “Special Target Directives” on page 404, which

describes the .DEFAULT special target).

Metarules

Metarules have one target with a single percent symbol that matches an arbitrary

string called the stem; The % in a dependency stands for the stem.

The inference rule to update a target matching pattern p1%s1, where p1 and s1 are

prefix and suffix strings of the target, having a prerequisite p2%s2, where % is the

stem from the target, is specified as a rule:

p1%s1 : p2%s2 ; recipe....

Either the prefix or suffix string may be empty.

Transitive Closure

Metarules provide a mechanism that allows several metarules to chain together to

eventually create the target.

This is called transitive closure. For example, if you have metarules:

%.o : %.c

 ... rule body....

make

Chapter 2. Shell command descriptions 399

and:

%.c : %.y

 ... rule body ...

c When you specify:

make file.o

make uses the first metarule to look for file.c. If it can’t find an explicit rule to build

file.c, it again looks through the metarules and finds the rule that tells it to look for

file.y.

make allows each metarule to be applied only once when performing transitive

closure to avoid a situation where it loops forever. (For example, if you have the

rule:

% : %.c

 ... rule body ...

the command:

make file

causes make to look for file.c. If the metarules were not restricted and file.c did not

exist, then make would look for file.c.c, and then file.c.c.c, and so on. Because

each metarule is applied only once, this can’t happen.)

Transitive closure is computed once for each metarule head the first time the

pattern matches a target. When transitive closure is computed, all the computed

rules are added to the rule set for that metarule head. For example, if you have the

rules:

% : %.o

 recipe 1...

%.o : %c

 recipe 2...

and you are making file, this target matches successfully against % causing

transitive closure to be computed for %. As a result of this computation, a new rule

is created:

% : %.c

 recipe 2...

 recipe from .REMOVE target for %.o, if not .PRECIOUS

 recipe 1...

which is executed if file.o doesn’t exist. When the computation for the rule head

has been done, it is marked as transitive closure computed. Since all possible new

rules have been added to the rule set the first time the computation is done, it is not

necessary to do it again: Nothing new is added. The term transitive closure is

adapted from the mathematical set theory.

Note: In set theory, if you have a set composed of pairs (a,b) and (b,c), then the

set would be transitively closed if (a,c) is also in the set.

The best way to understand how this works is to experiment with little make files

with the –v flag specified. This shows you in detail what rules are being searched,

when transitive closure is calculated, and what rules are added.

make

400 z/OS V1R9.0 UNIX System Services Command Reference

Order of Rule Generation

Since transitive closure allows make to generate new rules, it is important to

understand the order in which this is done:

1. make searches for explicit rules in the order in which they appear, so explicit

rules always take precedence.

2. make reads metarules in the order in which they appear in the makefile. The

first rule that appears in the makefile is the first one checked.

3. New explicit metarules (as distinct from metarules generated by transitive

closure) replace old ones. In other words, if your makefile contains an explicit

rule like this one, it replaces the default rule in startup.mk:

%$O : %.c

 rule1

If you use the –v option, make prints a warning when it replaces a metarule.

4. When transitive closure is calculated, the new metarules generated are added

to the end of the list of possible metarules. Thus, make always finds the explicit

rules first, so they take precedence over generated rules. You can use the –v

option to see what rules make generates and the order in which they appear.

5. make performs two passes through the rules. On the first pass it tries to find a

match with an explicit rule in the makefile; if this does not succeed, make

performs a second pass to find a match with an existing file.

Suffix Rules

make treats targets that begin with a period and contain no slashes or percent

signs as suffix rules. If there is only one period in the target, it is a single suffix

inference rule. Targets with two periods are double-suffix inference rules. Suffix

rules do not have prerequisites but do have commands associated with them.

When make finds no explicit rule to update a target, it checks the suffix of the

target (.s1) to be built against the suffix rules. make examines a prerequisite based

on the basename of the target with the second suffix (.s2) appended, and if the

target is out of date with respect to this prerequisite, make runs the recipe for that

inference rule.

Metarules take precedence over suffix rules.

If the target to be built does not contain a suffix and there is no rule for the target,

make checks the single suffix inference rules. The single suffix inference rules

define how to build a target if make finds a rule with one of the single suffixes

appended. A rule with one suffix .s2 defines how to build target from target.s2.

make treats the other suffix (.s1) as null.

For a suffix rule to work, the component suffixes must appear in the prerequisite list

of the .SUFFIXES special target. You can turn off suffix rules by placing the following

in your makefile:

.SUFFIXES:

This clears the prerequisites of the .SUFFIXES target, which prevents suffix rules

from being enacted. The order that the suffixes appear in the .SUFFIXES rule

determines the order in which make checks the suffix rules.

The search algorithm used for suffix rules depends on whether the .POSIX special

target is specified. When .POSIX is specified, the following steps describe the

search algorithm for suffix rules:

make

Chapter 2. Shell command descriptions 401

1. Extract the suffix from the target. If that target does not have a suffix, go to step

6.

2. Is it in the .SUFFIXES list? If not, quit the search.

3. If it is in the .SUFFIXES list, look for a double suffix rule that matches the target

suffix.

4. If there is a match, extract the base name of the file, add on the second suffix,

and determine if the resulting file exists. If the resulting file does not exist, keep

searching the double suffix rules.

If the resulting file does exist, use the recipe for this rule.

5. If a successful match is not made, the inference has failed.

6. If the target did not have a suffix, check the single suffix rules in the order that

the suffixes are specified in the .SUFFIXES target.

7. For each single suffix rule, add the suffix to the target name and determine if

the resulting filename exists.

8. If the filename exists, execute the recipe associated with that suffix rule. If the

filename doesn’t exist, continue trying the rest of the single suffix rules. If a

successful match is not made, the inference has failed.

When the .POSIX special target is not specified, make handles suffix rules in the

same manner as traditional implementations of make. The following steps describe

the search algorithm for suffix rules in this situation.

 1. Extract the suffix from the target. If that target does not have a suffix, go to

step 8.

 2. Is it in the .SUFFIXES list? If not, then quit the search.

 3. If it is in the .SUFFIXES list, look for a double suffix rule that matches the target

suffix.

 4. If you find one, then extract the base name of the file, add on the second suffix

and see if the resulting file exists. If it does, go to step 7. If not, continue with

step 5.

 5. Is there an inference rule for the resulting file? If yes, run the recipe associated

with that rule (which should describe how to make the file exist) and go to step

7.

 6. Search for the next double-suffix rule that matches the target suffix and return

to step 4. If the double-suffix rules are exhausted, then the inference has

failed.

 7. Use the recipe for the target rule.

 8. If the target did not have a suffix, then check the single-suffix rules in the order

that the suffixes are specified in the .SUFFIXES target.

 9. For each single-suffix rule, add the suffix to the target name and see if the

resulting filename exists.

10. If the file exists, then run the recipe associated with that suffix rule. If it doesn’t

exist, continue trying the rest of the single-suffix rules.

11. If a successful match is not made, then the inference has failed.

make also provides a special feature in the suffix rule mechanism for archive library

handling. If you specify a suffix rule of the form:

.suf.a:

 recipe

the rule matches any target having the LIBRARY attribute set, regardless of what the

actual suffix was. For example, if your makefile contains the rules:

make

402 z/OS V1R9.0 UNIX System Services Command Reference

.SUFFIXES: .a .c

 echo adding $< to library $@

then if mem$0 exists, then the following command:

make "mylib(mem.o)"

causes:

adding mem.o to library mylib

to be printed.

Attributes

make defines several target attributes. Attributes can be assigned to a single target,

a group of targets, or to all targets in the makefile. Attributes affect what make does

when it needs to update a target. You can associate attributes with targets by

specifying a rule of the form:

attribute_list : targets

This assigns the attributes in attribute_list to the given targets. If you do not specify

any targets, the attributes apply to every target in the makefile. You can also put

attributes inside a normal rule, as in:

targets attribute_list : prerequisites

The recognized attributes are:

.EPILOG

Insert shell epilog code when running a group recipe associated with any

target having this attribute set.

.IGNORE

Ignore an error when trying to make any target with this attribute set.

.LIBRARY

Target is a library.

.PRECIOUS

Do not remove this target under any circumstances. Any automatically

inferred prerequisite inherits this attribute.

.PROLOG

Insert shell prolog code when running a group recipe associated with any

target having this attribute set.

.SETDIR

Change the working directory to a specified directory when making

associated targets. The syntax of this attribute is .SETDIR=path, where path

is the pathname of desired working directory. If path contains any :

characters, the entire attribute string must be quoted, not just the

pathname.

.SILENT

Do not echo the recipe lines when making any target with this attribute set,

and do not issue any warnings. You can use any attribute with any target,

including special targets.

make

Chapter 2. Shell command descriptions 403

Special Target Directives

Special target directives are called targets because they appear in the target

position of rules; however, they are really keywords, not targets. The rules they

appear in are really directives that control the behavior of make.

The special target must be the only target in a special rule; you cannot list other

normal or special targets.

Some special targets are affected by some attributes. Any special target can be

given any attribute, but often the combination is meaningless and the attribute has

no effect.

.BRACEEXPAND

This target may have no prerequisites and no recipes associated with it. If

set, the target enables the outdated brace expansion feature used in older

versions of make. Older makes would expand a construct of the following

form, beginning with each token in the token list:

string1{token_list}string2

Older makes would append string1 to the front of each token in the list, and

string2 to the end of each token in the list. A more productive means for

achieving the same result with modern versions of make relies on macro

expansion with prefix and suffix modifiers:

$ (TOKEN_BASE:^"prefix:+"suffix")

The double quotes are required. Brace expansion is an outdated feature

available in past versions of make.

 .CYCLECHECK

This special target cannot have any prerequisites or recipes associated with

it. If set, it determines how make treaters circular dependencies (see

“Circular Dependencies” on page 398).

 You can specify one of five attributes with this target. If you specify more

than one attribute, an error message results. The five attributes are:

.SILENT

make remains silent about any within-rule and between-rule circular

dependencies, removes the offending dependency from the list of

prerequisites, and continues.

.WARNTARG

make issues warnings for named targets with circular

dependencies. If the name of the dependency is the same as the

named target, it is removed from the list of prerequisites and make

continues. This is the default behavior if .CYCLECHECK is not

specified or is specified with no attributes.

.WARNALL

make issues warnings for all within-rule circular dependencies

regardless of whether the target is being built or not and for all

between-rule circular dependencies for the named targets. The

offending dependency is removed from the list of prerequisites and

make continues.

.FATALTARG

make treats all circular dependencies for named targets as fatal

errors. It issues an error message and exits.

make

404 z/OS V1R9.0 UNIX System Services Command Reference

.FATALALL

make treats all within-rule circular dependencies as fatal errors

regardless of whether the target is being built or not. It also treats

all between-rule circular dependencies for named targets as fatal

errors. make issues an error message and exits.

For example, to set the circular dependency check to make’s default, use

the rule:

.CYCLECHECK .WARNTARG:

.DEFAULT

This target has no prerequisites, but it does have a recipe. If make can

apply no other rule to produce a target, it uses this rule if it has been

defined.

.ERROR make runs the recipe associated with this target whenever it detects an

error condition.

.EXPORT

All prerequisites associated with this target that correspond to macro names

are exported to the environment at the point in the makefile at which this

target appears.

.GROUPEPILOG

make adds the recipe associated with this target after any group recipe for

a target that has the .EPILOG attribute.

.GROUPPROLOG

make adds the recipe associated with this target after any group recipe for

a target that has the .PROLOG attribute.

.IMPORT

make searches in the environment for prerequisite names specified for this

target and defines them as macros with their value taken from the

environment. If the prerequisite .EVERYTHING is given, make reads in the

entire environment (see –e and –E options).

.INCLUDE

make reads one or more additional makefiles (specified in the prerequisite

list), as if their contents had been inserted at this point. If the prerequisite

list contains more than one file, make reads them in order from left to right.

 make uses the following rules to search for extra makefiles:

v If a relative filename is enclosed in quotes, or is not enclosed with angle

brackets (< and >), make looks in the current directory. If the file isn’t

present, make then looks for it in each directory specified by the

.INCLUDEDIRS special target.

v If a relative name is enclosed with angle brackets (< and >), make make

only searches in directories specified by the .INCLUDEDIRS special

v If an absolute pathname is given, make looks for that file and ignores the

list associated with the .INCLUDEDIRS special target.

.INCLUDEDIRS

The list of prerequisites specified for this target defines the set of directories

to search when including a makefile.

.MAKEFILES

The list of prerequisites is the set of files to try to read as the user makefile.

These files are made in the order they are specified (from left to right) until

one is found to be up to date. This is the file that is used.

make

Chapter 2. Shell command descriptions 405

.NOAUTODEPEND

Disables the autodependency feature when building libraries. When this

special target is used, only library members that have been explicitly given

as dependents are considered prerequisites.

.POSIX make processes the makefile as specified in the POSIX.2 draft standard.

This target may have no prerequisite and no recipes associated with it. This

special target must appear before the first non-comment line in the

makefile. If this special target is present, the following facilities are disabled:

v All recipe lines are run by the shell, one shell per line, regardless of the

setting of SHELLMETAS.

v Metarule inferencing is disabled.

v Conditionals are disabled.

v Dynamic prerequisites are disabled.

v Group recipes are disabled.

v Disables brace expansion (set with the .BRACEEXPAND special target).

v make does not check for the string $ (MAKE) when run with the –n

options specified.

.REMOVE

make uses the recipe of this target to remove any intermediate files that it

creates if an error is encountered before the final target is created. This

.REMOVE target only deletes files that satisfy all of the following criteria:

v The file didn’t exist when make began running.

v The file is named as an intermediate target, produced by invoking a

metarule that was produced by transitive closure.

v The file is not explicitly named in the makefile.

v The generated target doesn’t have the .PRECIOUS attribute.

v The file is a prerequisite of a rule that is actually used.

.SOURCE

The prerequisite list of this target defines a set of directories to check when

trying to locate a target filename. make defaults to creating target files in

the same directory that it finds the source file.

.SOURCE.x

Same as .SOURCE, except that make searches the .SOURCE.x list first when

trying to locate a file matching a target with a name that ends in the suffix

.x.

.SUFFIXES

mk appends the prerequisite list of this target to the set of suffixes used

when trying to infer a prerequisite for making a target using suffix rules. If

you specify no prerequisites, make clears the list of suffixes, effectively

disabling suffix rules from that point on.

A name of the form library(member) indicates a member of a library. The library

portion is a target with the .LIBRARY attribute, and the member portion is a

prerequisite of the library target.

A name of the form library((entry)) indicates the library module that contains the

given entry point. Once again, the library portion is a target with the .LIBRARY

attribute. make regards the library member that contains the entry point entry as a

prerequisite of the library target.

make

406 z/OS V1R9.0 UNIX System Services Command Reference

Control Macros

make defines a number of control macros that control make’s behavior. When there

are several ways of doing the same thing, control macros are usually the best. A

control macro that has the same function as a special target or attribute also has

the same name.

Macros that are said to be defined internally are automatically created by make and

can be used with the usual $(name) construct. For example, $(PWD) can be used to

obtain the current directory name.

Recognized control macros are:

DIRSEPSTR

Contains the characters used to separate parts in a pathname and can be

set by the user. make uses the first character in this string to build

pathnames when necessary.

.EPILOG

If assigned a nonnull value, the .EPILOG attribute is given to every target.

GROUPFLAGS

Specifies option flags to pass to GROUPSHELL when make invokes it to run a

group recipe.

GROUPSHELL

Gives the pathname of the command interpreter (shell) that make calls to

process group recipes.

GROUPSUFFIX

Specifies a string for make to use as a suffix when creating group recipe

files to be run by the command interpreter.

.IGNORE

If this is assigned a nonnull value, make assigns the .IGNORE attribute to

every target.

INCDEPTH

This is the current depth of makefile inclusion. It is set internally.

MAKE This is set by the startup file and can be changed by the user. The standard

startup file defines it as:

$(MAKECMD) $(MFLAGS)

The MAKE macro is not used by make itself, but the string $(MAKE) is

recognized when using the –n option for single-line recipes.

MAKECMD

This is the name with which make was invoked.

MAKEDIR

This is the full pathname of the initial directory in which make began

execution.

MAKEFLAGS

The MAKEFLAGS macro contains all the options (flags) and macros specified

in the MAKEFLAGS environment variable plus all of the options and

macros specified on the command line, with the following exceptions.

v Specifying –c, –f, or –p in the environment variable results in an error

v These same options specified on the command line do not appear in the

MAKEFLAGS macro.

make

Chapter 2. Shell command descriptions 407

Options in the MAKEFLAGS environment variable may have optional

leading dashes and spaces separating the options. These are stripped out

when the MAKEFLAGS macro is constructed.

Note: make always reads the MAKEFLAGS environment variable before

reading the makefile. The –E and –e options do not affect this.

MAKESTARTUP

This has the default value:

/etc/startup.mk

To change this value, you can set the MAKESTARTUP environment

variable before running make. You can also specify a value for this control

macro on the command line if you use the –D option:

make –DMAKESTARTUP=$HOME/project/startup.mk

Since make processes command-line macros after reading the startup file,

setting this macro on the command line does not have the desired effect.

MFLAGS This is the same as MAKEFLAGS, except that it includes the leading switch

character.

NULL This is permanently defined to be the null string.

.PRECIOUS

If this is assigned a nonnull value, make assigns the .PRECIOUS attribute to

every target.

.PROLOG

If this is assigned a nonnull value, make assigns the .PROLOG attribute to

every target.

PWD This is the full pathname of the working directory in which make is

executing.

SHELL Specifies the full pathname of the command interpreter that make calls to

process single-line recipes, when necessary. make passes recipe lines to

this shell only if they contain one or more of the characters given in

SHELLMETAS; otherwise, it runs them directly. By default, the value of the

SHELL environment variable does not affect the value of this macro;

however, you can use the .IMPORT special target to assign the environment

variable’s value to this macro. You can also use the .EXPORT special target

to assign this macro’s value to the SHELL environment variable.

SHELLFLAGS

Specifies option flags to pass to the shell when invoking it to runs a

single-line recipe.

SHELLMETAS

Specifies a list of metacharacters that can appear in single recipe lines. If

make finds any metacharacter, it invokes the recipe using the shell

specified by SHELL; otherwise, it runs the recipe without the shell.

.SILENT

If this is assigned a nonnull value, make assigns the .SILENT attribute to

every target.

make

408 z/OS V1R9.0 UNIX System Services Command Reference

Making Libraries

A library is a file containing a collection of object files. To make a library, you specify

it as a target with the .LIBRARY attribute and list its prerequisites. The prerequisites

should be the object members that are to go into the library.

make tries to handle the old library construct format in a sensible way. When it

finds lib(member), it declares the lib portion as a target with the .LIBRARY attribute

and the member portion as a prerequisite of the lib target. To make the library

properly, old makefile scripts using this format must name the lib as a target and

must try to bring it up to date. The same thing happens for any target of the form

lib((entry)). These targets have an additional feature in that the entry target has the

.SYMBOL attribute set automatically.

Conditionals

You specify the conditional expression as follows:

.IF expression

... if text ...

.ELSE

... else text ...

.END

or:

.IF expression

... if text ...

.ELSIF expression2

... elsif text ...

.ELSE

... else text ...

.END

The .ELSE or .ELSIF portion is optional, and you can nest the conditionals (that is,

the text may contain another conditional). The .IF, .ELSE, .ELSIF, and .END

conditionals must start in the first column of the line. expression or expression2 can

have one of three forms:

string

is true if the given string is nonnull,

string == string

is true if the two strings are equal, and:

string != string

is true if the two strings are not equal. Typically, one or both strings contain macros,

which make expands before making comparisons. make also discards white space

at the start and end of the text portion before the comparison. This means that a

macro that expands to nothing but white space is considered a null value for the

purpose of the comparison. If a macro expression needs to be compared with a null

string, compare it to the value of the macro $(NULL).

The text enclosed in the conditional construct must have the same format that it

would have outside the conditional. In particular, make assumes that anything that

starts with a tab inside the conditional is a recipe line. This means that you cannot

use tabs to indent text inside the conditional (except, of course, for recipe lines,

which always begin with tabs).

make

Chapter 2. Shell command descriptions 409

Files

make uses the following file:

/etc/startup.mk

The default startup file containing default rules.

Environment Variables

make uses the following environment variables:

MAKEFLAGS

Contains a series of make options that are used as the default options for

any make command. You can specify the options with or without leading

minus signs (−) and blanks between them. It can also include macro

definitions of the form usually found on the command line.

MAKESTARTUP

Contains the pathname of the make stamp file. By default, make uses the

file /etc/startup.mk as its startup file. To use a different file, set this

environment variable before running make.

SHELL

Contains a name of a command interpreter. To assign this value to the

SHELL control macro, use the .IMPORT special target. You can also use the

.EXPORT special target to assign the value of the SHELL macro to the

environment variable.

Localization

make uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

If a command in a recipe line fails (exits with a nonzero status), make returns the

exit status of that command. Because most commands use exit status values

between 0 and 10, make uses exit status values below 10 only for failures that do

not run recipe lines.

0 Successful completion

1 Returned if you specified –q and file is not up to date

2 Failure due to any of the following:

v Unknown command-line option

v Missing argument to option, such as no file name for –f.

126 Recipe command was not executable.

127 Recipe command was not found.

129–254

make was interrupted by a signal; the error code is the signal number

ORed with 128. For example, SIGINT is frequently signal 1; the return code

from make is 128|1, or 129.

make

410 z/OS V1R9.0 UNIX System Services Command Reference

255 Failure due to any of the following:

v Macro cannot be redefined

v Macro variables not assigned with :=

v Special target cannot be a prerequisite

v Too many makefiles specified

v Configuration file not found

v No makefile present

v Missing .END for .IF

v No target

v Inability to return to directory

v Too many open files

v Open failed

v File not found

v Inability to change directory

v No more memory

v Line too long

v Circular macro detected

v Unterminated pattern string

v Unterminated replacement string

v Token separator string not quoted

v Unterminated separator string

v Expansion too long

v Suffix too long

v Unmatched quote

v .IF .ELSE ... END nesting too deep

v .ELSE without .IF

v Unmatched .END

v Inference rules resulting in circular dependency

v No macro name

v Write error on temp file

v Target not found, and cannot be made

v Inability to make NAME

v <+ diversion unterminated

v <+ diversion cannot be nested

v <+ missing before +>

v Incomplete rule recipe group detected

v Inability to mix single and group recipe lines

v Unmatched] found

v Macro or rule definition expected but not found

v Name too long

v Inability to determine working directory

v Only one NAME attribute allowed in rule line

v Multiple targets not allowed in % rules

v Special target must appear alone

v Duplicate entry in target list

v Syntax error in % rule, missing % target

v Duplicate entry in prerequisite list

v Missing targets or attributes in rule

v Multiply defined recipe for target

v Empty recipe for special target

v Imported macro NAME not found in environment

v No .INCLUDE files specified

v Include file NAME, not found

v NAME ignored on special target

v Attributes possibly ignored

v Inability to find member defining SYMBOL((NAME))

make

Chapter 2. Shell command descriptions 411

v Incorrect library format

v Inability to touch library member

v SHELL macro not defined

v Too many arguments

v Inability to export NAME

v Inability to open file

v Circular dependency detected

v Inability to stat /

v Inability to stat .

v Inability to open ..

v Read error in ..

v Metarule too long: "rule"

Limits

1. The length of a single makefile script line cannot exceed 32768 characters.

2. The length of an argument string cannot exceed 32768 characters.

3. The length of a macro name gets truncated after 256 characters.

Usage notes

1. When the .SETDIR special target is used, make checks the file attributes of

targets and prerequisites on every pass through a rule. This can significantly

increase the number of system accesses.

2. In a doublebyte environment, any character interpreted by make can be a

doublebyte character, including those in macro definitions and targets.

3. In a doublebyte locale, if make encounters an incorrect doublebyte sequence, it

ends with an error message.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The following features of make are enhancements to POSIX.2:

v The options: –cdir, –D macro definition, –E, –u, –V, –v, and –x.

v The –n option has enhanced functionality not covered by the standard; for more

information, see the –n option and the POSIX special target for make.

v The runtime macros: $&, $^ , $>.

v The dynamic prerequisites: $$%, $$>, $$*, $$@.

v All macro expansions.

v Macro assignments of the following form:

macroname := stringassigned

macroname += stringassigned

v Brace expansion.

v Backslash continuation.

v The quoting mechanism, as in the following example:

"a:target" : "a:prerequisite"

v All rule operators except the colon (:).

v Conditionals.

v Metarules.

v All make attributes except .IGNORE, .PRECIOUS, .SILENT (referred to in POSIX.2

as special targets).

make

412 z/OS V1R9.0 UNIX System Services Command Reference

v All make special targets except .DEFAULT, .POSIX, .SUFFIXES (referred to in

POSIX.2 as special targets).

v All make macros except SHELL (referred to in POSIX.2 as control macros).

Related Information

c89, cc, c++, makedepend

S. I. Feldman, “Make—Program for Maintaining Computer Programs,”

Software—Practice and Experience 9 (no. 4, April 1979):225–65 [Bell Labs, Murray

Hill, NJ]

makedepend — Generate source dependency information

Format

 makedepend [–S directory] [–W m,option[,option]...]... sourcefile [(sourcefiles)]...

 makedepend [–S directory]

 makedepend [–W m,a]

 makedepend [–W m,c89 | –W m,cc]

 makedepend [–W m,file(MakeFile) | –W m,f(MakeFile)]

 makedepend [–W m,list(FileName) | –W m,lis (FileName)]

 makedepend [–W m,o(ObjSuffix)]

 makedepend [–W m,p(ObjPrefix)]

 makedepend [–W m,s(String)]

 makedepend [–W m,showinc | –W m,show]

 makedepend [–W m,type(c|C(t1,t2,...)) | –W m,t(c|C(t1,t2,...))]

 makedepend [–W m,V(OSVvRr) | –W m,V(zOSVvRr)]

 makedepend [–W m,w(Width)]

For z/OS UNIX makedepend [c89|cc|c++options]:

 makedepend [+−]

 makedepend [–D name[=value]]

 makedepend [–Idir1[,dir2]...]

 makedepend [–0, –O (–1), –2, –3]

 makedepend [–Uname]

 makedepend [–Wphase,option[,option]...]

Description

The makedepend tool is used to analyze source files and determine source

dependencies. makedepend calls files, which are directly or indirectly included by a

source file, ″dependencies.″ If the makedepend W m,-list option is specified, this

tool produces a listing file with the following topics:

v The list of compiler options and variables applied to all C source

v The list of compiler options and variables applied to all C++ source

v The list of makedepend options applied

v The list of include and source search paths

v Messages

v Message summary, and

v Statistics (in other words, total number of source files processed, number of

ignored sources files, and so forth).

make

Chapter 2. Shell command descriptions 413

Options

–S directory

Specifies the directory or directories where you can locate the source files.

The default location for source files is the current directory, ″./″.

–W m,a

Instructs makedepend to append the source dependencies to the end of

the makefile rather than replacing any existing ones. If –W m,a is not

specified, then makedepend will erase any source dependencies after the

marker line and write the new determined source dependencies instead. If

there are no existing makefiles, then this option is ignored.

–W m,c89 | –W m,cc

Instructs makedepend to use either the c89 or the cc compiler mode for

the c source files. The c89 mode is the default. The c89/cc mode is

overridden if the c++ [+−] option, described below, is specified.

–W m,file(MakeFile) | –W m,f(MakeFile)

Specifies the name of the makefile to which makedepend writes the

determined source dependencies. If this option is specified on the

makedepend command line, then the string value of the MakeFile is used

as the name for the makefile. Otherwise, makedepend will search in the

current directory for a file named ″makefile″. If no ″makefile″ exists, then

makedepend searches for a file named ″Makefile″. If no ″Makefile″ exists,

then makedepend creates a new file with the name ″makefile″ in the

current directory and writes the default marker string (see –W m, s(String)

below) at the beginning of the new file. If file (./) is specified, the option is

ignored silently.

–W m,list(FileName) | –W m,lis (FileName)

Instructs makedepend to generate a listing file with the specified FileName

name. The name depend.1st is the default file name if FileName is not

specified with the –W m,list option. If –W m,list(./) is specified, the default

listing filename (depend.lst) is used. If the –W m,list option is not specified,

listings are not generated.

–W m,o(ObjSuffix)

Specifies a suffix (file name extension) for the object file names in the

source file dependencies. If the environment variable {_OSUFFIX} is

defined, then its value will be the default. If it is not defined, the default

suffix is o.

–W m,p(ObjPrefix)

Prefixes object file names in the source dependencies with a path name.

The default object file name prefix is an empty string.

–W m,s(String)

Specifies a new string literal to be used as a marker in the output makefile.

All source dependencies are placed after that marker. The default marker

string value is ″# DO NOT DELETE THIS LINE, makedepend depends on

it.″ If the –W m,s(String) is specified on the makedepend command line,

then the marker line and anything after it will be erased from the output

makefile, the new marker string literal will be written instead, and the newly

determined source dependencies will be written after the new marker line. If

both –W m,a and –W m,s(String) are specified on the makedepend

command line, then –W m,s(String) will be ignored if a makefile already

exists.

makedepend

414 z/OS V1R9.0 UNIX System Services Command Reference

–W m,showinc | –W m,show

Instructs makedepend to report on the include files for each source file. The

include files are reported in the includes topic of the listing file. If the –W

m,showinc option is specified, the list option is automatically turned on. If

the –W m,showinc option is not specified, the include file list will not be

reported.

–W m,type(c|C(t1,t2,...)) | –W m,t(c|C(t1,t2,...))

Instructs makedepend to treat source files with any filename type that

belong to the set {t1,t2,...} as either c source files if the c is used with the

type, or as C++ source files if the C is used. Default types are as follows:

v Any source file with a filename extension of c will be treated as a c

source file. If the –W m,type(c(t1,t2,...)) option is specified on the

makedepend command line, then any source file with a filename

extension that belongs to the set {c, t1, t2,...} will be treated as a c file.

Notice that the types {t1,t2,...} that are specified with the –W m,type

option are added to the default c filename extension type.

v Any source file with a filename extension of C, cpp, or cxx will be treated

as a C++ source file. If the –W m,type(C(t1,t2,...)) option is specified on

the makedepend command line, then any source file with a filename

extension that belongs to the set {C, CPP, cpp, CXX, cxx, t1, t2,...} is

treated as a C++ file. Notice that the types {t1,t2,...} that are specified

with the –W m,type option are added to the default {C,CPP,cpp,CXX,cxx}

filename extension types.

v If both –W m,type(c(...)) and –W m,type(C(...)) options are specified on

the makedepend command line with conflicting filename types, then

whichever option is specified last becomes the overriding value, including

the default file types. For example, when both –W m,type(c(t1,t2)) and

–W m,type(C(c,t1,t3) are specified, only files with extension t2 will be

treated as c files and files with extensions {c, C, cpp, Cpp, cxx, CXX, t1,

t3} will be treated as C++ files. When –W m,type(c(cpp,t1,t2)) and –W

m,type(C(t1,t2)) options are specified, files with extensions {c, cpp} will

be treated as c source files and files with extensions {C, CPP, cxx, CXX,

t1, t2} will be treated as C++ source files.

For C source files, if the environment variables {_CSUFFIX} and/or

{_CSUFFIX_HOST} are defined, the variable value updates the default

value. The default C source file extension is c.

 For C++ source file, if the environment variables {_CXXSUFFIX} and/or

{_CXXSUFFIX_HOST} are defined, its value updates the default value. The

default C++ source file extensions are {C, CPP, cpp, CXX, cxx}. For

example, if {_CXXSUFFIX} is defined as {cdd} and the default C++ source

file extensions are {C, CPP, cpp, CXX, cxx}, then the resulting set would be

{C, CPP, cpp, CXX, cxx, cdd}.

–W m,V(OSVvRr) | –W m,V(zOSVvRr)

Specifies the compiler version that will be used, where v and r represent

the compiler’s version and release respectively. The default version is the

current C/C++ compiler version if {_CVERSION} is not defined. If

{_CVERSION} is defined, then its value is used as the default compiler

version. This option is used to set the _COMPILER_VER_ macro.

–W m,w(Width)

Sets the maximum line width of the output source dependencies lines. The

default value is 78.

makedepend

Chapter 2. Shell command descriptions 415

The following options correspond to the z/OS UNIX c89,cc,c++ compiler options.

For more information about these options and their corresponding usage notes, see

c89 — Compiler invocation using host environment variables.

–+ Specifies that all source files are to be recognized as C++ source files. All

file.s, file.o, and file.a files will continue to be recognized as assembler

source, object, and archive files respectively. However, any C file.c or file.i

files will be processed as corresponding C++ file.C or file.i files, and any

other file suffix which would otherwise be unrecognized will be processed

as a file.C file.

–D name[=value]

Defines a C or C++ macro for use in compilation. If only name is provided,

a value of 1 is used for the macro it specifies. For information about macros

that c89/cc/c++ automatically define, see Usage Note 2. Also see Usage

Note 3.

–Idir1[,dir2]...

Note: The –I option is an uppercase i, not a lowercase L.
–I specifies the directories to be used during compilation in searching for

include files (also called header files).

 Absolute pathnames specified on #include directives are searched exactly

as specified. The directories specified using the –I option or from the usual

places are not searched.

 If absolute pathnames are not specified on #include directives, then the

search order is as follows:

1. Include files enclosed in double quotes (") are first searched for in the

directory of the file containing the #include directive. Include files

enclosed in angle-brackets (< >) skip this initial search.

2. The include files are then searched for in all directories specified by the

–I option, in the order specified.

3. Finally, the include files are searched for in the usual places. (See

Usage Note 1 for a description of the usual places.)

You can specify an MVS data set name as an include file search directory.

Also, MVS data set names can explicitly be specified on #include

directives. You can indicate both by specifying a leading double slash (//).

For example, to include the include file DEF that is a member of the MVS

PDS ABC.HDRS, code your C or C++ source as follows:

#include <//’abc.hdrs(def)’>

MVS data set include files are handled according to z/OS XL C/C++

compiler conversion rules (see Usage Note 1).. When specifying an

#include directive with a leading double slash (in a format other than

#include<//’dsname’> and #include<//dd:ddname>), the specified name is

paired only with MVS data set names specified on the –I option. That is,

when you explicitly specify an MVS data set name, any hierarchical file

system (HFS) directory names specified on the –I option are ignored.

–0, –O (–1), –2, –3

Specifies the level of compiler optimization (including inlining) to be used.

The level –1 (number one) is equivalent to –O (letter capital O). The level

–3 gives the highest level of optimization. The default is –0 (level zero), no

optimization and no inlining, when not using IPA (Interprocedural Analysis).

makedepend

416 z/OS V1R9.0 UNIX System Services Command Reference

–Uname

Undefines a C or C++ macro specified with name. This option affects only

macros defined by the –D option, including those automatically specified by

c89/cc/c++. For information about macros that c89/cc/c++ automatically

define, see Usage Note 2. Also see Usage Note 3.

–Wphase,option[,option]...

Specifies options to be passed to the steps associated with the compile,

assemble, or link-editing phases of c89/cc/c++. The valid phase codes are:

0 Specifies the compile phase (used for both non-IPA and IPA

compilation).

c Same as phase code 0.

I Enables IPA (Interprocedural Analysis) optimization.

Note: I is an uppercase i, not a lowercase L.

Unlike other phase codes, the IPA phase code I does not require

that any additional options be specified, but it does allow them. In

order to pass IPA suboptions, specify those suboptions using the

IPA phase code. For example, to specify that an IPA compile should

save source line number information, without writing a listing file,

specify:

c89 -W I,list file.c

To specify that an IPA link-edit should write the map file to stdout,

specify:

c89 -W I,map file.o

Note: c89/cc/c++ options other than the ones listed will be ignored by

makedepend.

Any compiler option can be passed to makedepend through the –W option. For

further information on the compiler options, refer to the z/OS XL C/C++ User’s

Guide.

Examples

1. makedepend file1.c file2.c

Imagine you are compiling two files, file1.c and file2.c, and each includes the

header file header.h. The header.h file includes the files def1.h and def2.h.

When you run the command makedepend file1.c file2.c, makedepend parses

file1.c and consequently, header.h, and then def1.h and def2.h. It then decides

that the dependencies for this file are:

v file1.o: header.h def1.h def2.h

v file2.o: header.h def1.h def2.h

2. Imagine you are compiling a file, file1.c, and it includes the header file header.h.

The header.h file includes the files def1.h and def2.h. When you run the

command makedepend file1.c, makedepend parses file1.c and consequently,

header.h, and then def1.h and def2.h. It then decides that the dependencies for

this file are:

file1.o: header.h def1.h def2.h

makedepend

Chapter 2. Shell command descriptions 417

Environment variables

makedepend uses the following environment variables. For a full description of

these variables, see the Environment Variables topic of c89 — Compiler invocation

using host environment variables.

{_ACCEPTABLE_RC}

Used by c89/cc/c++ to determine the maximum allowed return

code (result) of any step (compile, assemble, IPA link, prelink, or

link-edit). If the result is between zero and this value (inclusive),

then it is treated internally by makedepend exactly as if it were a

zero result. The default value is 4.

{_CLASSLIB_PREFIX}

Provides a prefix for the data sets used during the compilation and

execution phases. For makedepend, the focus is the

{_CLASSLIB_PREFIX}.SCLBH.+ data set that contains the z/OS

C/C++ Class Library include files.

{_CSUFFIX} Used by c89/cc/c++ to recognize a C source file. The default value

is c.

{_CSUFFIX_HOST}

Used by c89/cc/c++ to recognize a C source file. The default value

is C.

{_CXXSUFFIX}

Used by c++ to recognize a C++ source file. The default is C. This

variable is only supported by the c++ command.

{_CXXSUFFIX_HOST}

Used by c++ to recognize a C++ source data set. The default is

CXX. This variable is only supported by the c++ command.

{_CSYSLIB} Used for system library data set concatenation, which resolves

#include directives during compilation.

{_INCDIRS} Provides directories used by c89/cc/c++ as a default place to

search for include files during compilation (after searching

{_INCDIRS} and before searching {_CSYSLIB}).

{_INCLIBS} The directories used by c89/cc/c++ as a default place to search for

include files during compilation (after searching {_INCDIRS} and

before searching {_INCLIBS} and {_CSYSLIB}).

{_OSUFFIX} Provides a suffix by which c89/cc/c++ recognizes an object file.

{_CVERSION} The version of the C/C++ compiler to be invoked by c89/cc/c++.

The setting of this variable allows c89/cc/c++ to control which

C/C++ compiler program is invoked. It also sets default values for

other environment variables. The format of this variable is the same

as the result of the Language Environment C/C++ Run-Time Library

function _librel(). The default value is the result of the C/C++

Run-Time library _librel() function. Actual variable names are:

_C89_CVERSION, _CC_CVERSION, _CXX_CVERSION

{NO_CMDOPTS}

Controls how the compiler processes the default options set by c89.

Setting this variable to 1 reverts the compiler to the behavior that

was available prior to z/OS V1R5, when the compiler was unable to

distinguish between the c89 defaults and the user-specified options.

Setting this variable to 0 (zero) results in the default behavior where

makedepend

418 z/OS V1R9.0 UNIX System Services Command Reference

the compiler is now able to recognize c89 defaults.The default

value is: 0 (zero). Actual variable names are:

_C89_NO_CMDOPTS, _CC_NO_CMDOPTS,

_CXX_NO_CMDOPTS

Localization

makedepend uses the LC_ALL localization environment variable, which specifies

the locale to be used to override any values for locale categories specified by

LANG or certain LC_ variables.

See Appendix F, “Localization” for more information.

Usage notes

1. MVS data sets may be used as the usual place to resolve C and C++ #include

directives during compilation.

Such data sets are installed with Language Environment. When it is allocated,

searching for these include files can be specified on the –I option as

//DD:SYSLIB. (See the description of environment variable {_CSYSLIB} for

information.

When include files are MVS PDS members, z/OS C/C++ uses conversion rules

to transform the include (header) file name on a #include preprocessor directive

into a member name. If the "//'dataset_prefix.+'" syntax is not used for the MVS

data set which is being searched for the include file, then this transformation

strips any directory name on the #include directive, and then takes the first 8 or

fewer characters up to the first dot (.).

If the "//'dataset_prefix.+'" syntax is used for the MVS data set which is being

searched for the include file, then this transformation uses any directory name

on the #include directive, and the characters following the first dot (.), and

substitutes the "+" of the data set being searched with these qualifiers.

In both cases the data set name and member name are converted to uppercase

and underscores (_) are changed to at signs (@).

If the include (header) files provided by Language Environment are installed into

the hierarchical file system in the default location (in accordance with the

{_INCDIRS} environment variable), then the compiler will use those files to

resolve #include directives during compilation. c89/cc/c++ by default searches

the directory /usr/include as the usual place, just before searching the data

sets just described. See the description of environment variables {_CSYSLIB},

{_INCDIRS}, and {_INCLIBS} for information on customizing the default

directories to search.

2. Feature test macros control which symbols are made visible in a source file

(typically a header file). c89/cc/c++ automatically defines the following feature

test macros along with the errno macro, according to whether or not cc was

invoked.

v Other than cc

 –D "errno=(*__errno())"

 –D _OPEN_DEFAULT=1

v cc

 –D "errno=(*__errno())"

 –D _OPEN_DEFAULT=0

 –D _NO_PROTO=1

c89/cc/c++add these macro definitions only after processing the command

string. Therefore, you can override these macros by specifying –D or –U options

for them on the command string.

makedepend

Chapter 2. Shell command descriptions 419

3. For options that have option-arguments, the meaning of multiple specifications

of the options is as follows:

–D All specifications are used. If the same name is specified on more than

one –D option, only the first definition is used.

–I All specifications are used. If the same directory is specified on more

than one –I option, the directory is searched only the first time.

–U All specifications are used. The name is not defined, regardless of the

position of this option relative to any –D option specifying the same

name.

–W All specifications are used. All options specified for a phase are passed

to it, as if they were concatenated together in the order specified.

Exit values

0 Successful completion

4 Warning error detected

Related information

c89, cc, c++, make

man — Display sections of the online reference manual

Format

 man [–wx] [–M path] [section] entry ...

 man –k [–M path] keyword ...

Description

man displays help information about a shell command or searches for help files

having the specified keywords associated with them.

Options

–k Searches a precomputed database of syntax lines for information on

keywords.

–M path

Searches the directories indicated by path for help files. If –M is not

specified, man uses the path specified in the MANPATH environment

variable if set; otherwise man searches /usr/man/%L. The value of the

LANG environment variable is substituted for %L in this directory and in the

directories specified by MANPATH. All help files are found by searching

similarly structured file trees rooted at one or more places. See “Files” on

page 422 for a description of what files and directories man should find in

each directory that it searches.

–w Displays only the filename of the file containing the help file.

–x Displays what files man is searching to find the help file. –x also displays

any errors man encounters in extracting man pages from online book files.

section

Is a number (0–9) representing a section of the online help. When you

makedepend

420 z/OS V1R9.0 UNIX System Services Command Reference

|

specify a section number, man searches only that section for entry, instead

of searching all sections. The online help available for z/OS UNIX contains

one section:

1 Commands

 To find a given entry, man checks each directory in MANPATH for a file with a

specific name. For each section number requested, man searches MANPATH for

the following files in this order:

1. catn/entry.n in each directory in MANPATH

2. entry.n in /var/man/LANG (the man ″cache″)

3. mann/*.book in each directory in MANPATH

4. mann/entry.n in each directory in MANPATH

If no section number is specified then man searches all sections in order from 1 to

9, then 0. The first entry found by man is the one displayed.

If output is to the terminal, then man invokes a pager command to filter and display

the manual pages. If MANPAGER is defined, it is used. If not, then if PAGER is

defined, it is used; otherwise, man defaults to using the command:

pg –e –p '(Page %d)'

If you are running in a doublebyte locale, set MANPAGER or PAGER to invoke a

command which supports doublebyte characters, such as the more command. pg

does not support doublebyte characters.

Examples

To find out which utilities do comparisons, issue:

man –k compare

You can use the man command to view manual descriptions of TSO/E commands.

To do this, you must prefix all commands with tso. For example, to view a

description of the MOUNT command, you would enter:

man tsomount

You can also use the man command to view manual descriptions of commands that

support subcommands. To do this, you must prefix all subcommands with the name

of the command. For example, to view a description of the dbx alias subcommand,

you would enter:

man dbxalias

The same applies for the pdbx subcommands. For example, enter:

man pdbxcont

to display information on the cont subcommand.

To view an online manual description for the tcsh ls-F built-in command, you must

type ls-F without the dash. So, to see the man page you would issue:

man lsF

To view an online manual description for the tcsh @ (at) built-in command, you

must type at with tcsh in front of it. So, to see the man page you would issue:

man tcshat

man

Chapter 2. Shell command descriptions 421

|
|
|

Environment Variables

man uses the following environment variables:

MANPATH

Contains a list of paths to search for man pages.

MANPAGER, PAGER

Contains an output filtering command for use when displaying man pages

on a terminal.

 If you are running in a doublebyte locale, verify this variable is set to a

command which supports doublebyte characters, such as the more

command.

TMPDIR

Identifies the directory where temporary files reside.

Localization

man uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Files

man uses the following files:

/usr/man/%L/man¬0–9|/*.book

BookManager® book files containing man pages.

/var/man/%L/entry.¬0–9|/*.bookname

Cached man pages extracted from book files.

/usr/man/%L/cat¬0–9|/ * .¬0–9|

Subdirectories containing formatted help files.

/usr/man/%L/whatis

Database used by –k option.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Unknown command-line option

v Missing path after an –M option

v No information available on the desired subject

v Unable to create a child process to format man page

v Child process returned with nonzero exit status

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The elements of the environment variable MANPATH are separated by colons.

man

422 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|

The –M option, the –x option, the –w option, the MANPAGER environment variable,

the default pager, and the ability to specify section on the command line are all

extensions to the POSIX standard.

Related Information

help, more

mesg — Allow or refuse messages

Format

mesg [y] [n]

Description

mesg determines whether other users can send messages to your terminal with

talk, write, or similar utilities.

Options

y Specifies that other people can send you messages.

n Specifies that other people cannot send you messages.

Examples

1. To let other people send you messages, issue:

mesg y

2. To tell the system not to let other people send you messages, issue:

mesg n

3. To display the current setting without changing it, issue:

mesg

The terminal is determined by the first of standard input, output, or error which is

directed to a terminal.

Localization

mesg uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Receiving messages is currently allowed

1 Receiving messages is not currently allowed

2 Failure due to any of the following:

v Unknown command-line option

v Unknown argument

v An error accessing the terminal

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

man

Chapter 2. Shell command descriptions 423

Related Information

talk, write

mkcatdefs — Preprocess a message source file

Format

mkcatdefs [–h] MsgFile [SourceFile ...]

Description

mkcatdefs preprocesses a message source file for input to the gencat utility.

SourceFile is a message file (usually with a .msf extension) containing symbolic

identifiers. mkcatdefs produces two outputs:

v MsgFile.h, which contains statements that equate your symbolic identifiers with

set numbers and message numbers that mkcatdefs assigns. You must include

this header file in your application in order to refer to the messages.

v Message source data, with numbers instead of symbolic identifiers, is sent to

standard output. This output is suitable as input to the gencat utility. You should

either save standard output to a file using redirection, or pipe the output of

mkcatdefs to the gencat utility.

Options

–h Suppresses the generation of a MsgFile.h file. This flag must be the first

argument to mkcatdefs

Extended Description

The format of SourceFile is defined as follows: The fields of a message source line

must begin in column 1 and are separated by a single blank character. Any other

blank characters are considered as part of the subsequent field.

$quote

See gencat.

$set symbolic_name

The symbolic_name denotes the set identifier that will be used in an

application program to reference this set of messages. This name can be

up to 255 characters long and can contain any alphanumeric character and

the underscore character, but must begin with a non-numeric character. Any

string following the set identifier is treated as a comment.

$ comment

See gencat.

Symbolic_Name message_text

The Symbolic_Name denotes a message identifier that will be used in an

application program to reference this message. This name can be up to 255

characters long and can contain any alphanumeric character and the

underscore character, but must begin with a non-numeric character. There

must be a single blank character separating the symbolic_name from the

message_text. If no quote character is defined, then any blank characters

after the separating blank character are considered part of the message

text. See gencat for more information on how to specify message_text.

mesg

424 z/OS V1R9.0 UNIX System Services Command Reference

Examples

To process the comp1.msf and comp2.msf message source files and put the

output into the comp.msg file, enter:

mkcatdefs comp comp1.msf comp2.msf >comp.msg

The source message file looks similar to the following:

$ This is the message source file for COMP1

$

$quote " Use double quotation marks to delimit message text

$set MSFAC1 Message set for component comp1

$

SYM_FORM "Symbolic identifiers can only contain alphanumeric \

characters or the _ (underscore character)\n"

SYM_LEN "Symbolic identifiers cannot be more than 65 characters long\n"

5 "You can mix symbolic identifiers and numbers\n"

The generated comp.h file looks similar to the following:

#ifdef _H_COMP_MSG

#include <limits.h>

#include <nl_types.h>

/*

 Time stamp: 1994 137 19:09 UTC

*/

/* The following was generated from comp1.msf. */

/* definitions for set MSFAC1 */

/* The following was generated from comp2.msf. */

/* definitions for set MSFAC2 */

#endif

mkcatdef creates the comp.msg message catalog source file for gencat with

numbers assigned to the symbolic identifiers:

$timestamp 1994 137 19:09 UTC

$quote " Use double quotation marks to delimit message text

$delset 1

$set 1

1 "Symbolic identifiers can only contain alphanumeric \

characters or the _ (underscore character)\n"

2 "Symbolic identifiers cannot be more than 65 characters long\n"

5 "You can mix symbolic identifiers and numbers\n"

The assigned message numbers are noncontiguous because the source file

contained a specific number. mkcatdefs always assigns the previous number plus

1 to a symbolic identifier.

Note: mkcatdefs inserts a $delset command before a $set command in the output

message source file. This means you cannot add, delete, or replace single

messages in an existing catalog when piping to the gencat utility. You must

enter all messages in the set.

mkdir — Make a directory

Format

mkdir [–p] [–m mode] directory ...

mkcatdefs

Chapter 2. Shell command descriptions 425

Description

The mkdir command creates a new directory for each named directory argument.

The mode for a directory created by mkdir is determined by taking the initial mode

setting of 777 (a=rwx) or the value of –m if specified and applying the umask to it.

Options

–m mode

Lets you specify permissions for the directories. The mode argument can

have the same value as the mode for chmod; see chmod for more details.

 You can also set the sticky bit on for directories. For more information, see

chmod. The umask value is applied to the mode value to determine the

new directory’s actual mode setting.

Note: A superuser or the file owner can use a chmod command or chmod()

function to change two options for an executable file. The options

are set in two file mode bits:

v Set-user-ID (S_ISUID) with the setuid option

v Set-group-ID (S_ISGID) with the setgid option

If one or both of these bits are on, the effective UID, effective GID,

or both, plus the saved UID, saved GID, or both, for the process

running the program are changed to the owning UID, GID, or both,

for the file. This change temporarily gives the process running the

program access to data the file owner or group can access.

In a new file, both bits are set off. Also, if the owning UID or GID of a

file is changed or if the file is written in, the bits are turned off. In

shell scripts, these bits are ignored.

If the RACF profile named FILE.GROUPOWNER.SETGID exists in

the UNIXPRIV class, then the set-group-ID bit for a directory

determines how the group owner is initialized for new objects

created within the directory:

v If the set-gid bit is on, then the owning GID is set to that of the

directory.

v If the set-gid bit is off, then the owning GID is set to the effective

GID of the process.

–p Creates intermediate directory components that don’t already exist. For

example, if one of the directory arguments is dir/subdir/subsub and

subdir doesn’t already exist, mkdir creates it. Such intermediate directories

are created with mode bits determined in the following way: Take a default

mode setting of 777 (a=rwx), apply the process’s umask setting to it, and

then turn on the user write and user execute permissions (u+wx). The –m

mode specification on the command line is not used for computing the

mode of intermediate directories.

Localization

mkdir uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

mkdir

426 z/OS V1R9.0 UNIX System Services Command Reference

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Missing mode after –m

v Incorrect mode

v Incorrect command-line option

v Missing directory name

v Inability to create the directory

Messages

Possible error messages include:

Path not found

The preceding structure (parent directory) of the named directory does not

exist.

Access denied

The requested directory already exists or is otherwise inaccessible.

Cannot create directory

Some other error occurred during creation of the directory.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

rm, rmdir, umask

mkfifo — Make a FIFO special file

Format

mkfifo [–m mode] file [–p]

Description

mkfifo creates one or more FIFO special files with the given names.

Options

–m mode

Lets you specify file permissions for the files. The mode argument can have

the same value as the mode argument for chmod; see chmod for more

details.

–p Creates intermediate directory components that do not already exist. For

example, if one of the file arguments is dir/subdir/file and if subdir does

not exist already, this option creates it. Such intermediate directories are

created with mode bits determined in the following way: Take a default

mode setting 777 (a=rwx), apply the umask setting of the process to it, and

then turn on user read, write, and user execute permissions (u+rwx).

mkdir

Chapter 2. Shell command descriptions 427

The –m mode specification on the command line is not used for computing

the mode of intermediate directories. The resulting mode settings permit the

file owner to access the new files without concern for any umask setting

that may be in place.

Localization

mkfifo uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v A missing mode after –m

v An incorrect mode:

v An incorrect command-line option

v A missing filename

v Inability to create the desired file

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –p option is an extension of the POSIX standard.

Related Information

chmod, create, mkdir

mknod — Make a FIFO or character special file

Format

 mknod pathname [b c] major minor

 mknod pathname p

Description

mknod creates a FIFO special file or a character special file with the given

pathname. It is located in the directory /usr/sbin.

Operands

b Indicates block special files. b is accepted for compatibility with other UNIX

implementations.

 Restriction: Block special files are not supported on z/OS.

c Indicates character special files (for example, terminals and other devices).

c can only be used by a superuser.

mkfifo

428 z/OS V1R9.0 UNIX System Services Command Reference

|

|

||
|

|

|
|

major minor

major gives the major device type; minor, the minor device type. You can

specify device types in decimal, hexadecimal, or octal.

 mknod differentiates between octal and decimal as follows:

v Any number that starts with 0 but not 0x is octal.

v Any number that starts with 0x is hexadecimal.

v Any number that does not start with 0x or 0 is decimal.

 For additional information on assigning major and minor numbers, see z/OS

UNIX System Services Planning.

p Creates a FIFO special file (that is, a named pipe).

Localization

mknod uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to create the desired file

v Incorrect major or minor number
2 Failure due to any of the following:

v Too few command-line arguments

v A missing major or minor device number

Portability

UNIX systems. Within POSIX, mknod has been superseded by mkfifo for pipes.

The POSIX family of standards has not yet designed an alternative to mknod for

special files.

Related Information

mkfifo

more — Display files on a page-by-page basis

Format

 more [–ceiSsU] [–A|–u] [–n number] [–P prompt] [–p command] [–t tag] [file ...]

 more [–ceiSsU] [–A|–u] [–n number] [–P prompt] [–t tag] [+command] [file ...]

Description

more displays files one page at a time. It obtains the number of lines per page from

the environment or from the –n option. If standard output (stdout) is not a terminal

device, the number of lines per page is infinite.

more displays the files specified by file ... (that is, a list of filenames) one at a time.

When more finishes displaying one file, it begins displaying the next one in the list.

If you give – as one of the filenames, more reads the standard input at that point in

the sequence.

mknod

Chapter 2. Shell command descriptions 429

more allows paging forwards and backwards (if possible) and searching for strings.

Options

–A Displays all characters, including unprintable ones. Usually, unprintable

characters are displayed in a format which is printable, such as octal.

However, with –A, the actual glyph (graphical character) is displayed. Also,

by using this option, ANSI escape sequences for display modes are

processed. This option cannot be used with –u.

Note: The character in the top left corner of the screen is always displayed

in normal mode.

–c Displays one page at a time starting at the top of the screen, and clears the

screen before displaying a new file. more may ignore this option if the

terminal doesn’t support such operations.

–e Exits immediately after displaying the last line of the last file. Usually, if

stdout is a terminal device, more stops after displaying the last line of the

last file and prompts for a new command. If the command that displays text

causes more to reach the end of the file again, more exits.

–i Ignores case during searches.

–n number

Specifies the number of lines per page. This overrides any values obtained

from the environment. Use this option when you need to override the

curses screen length or LINES setting to work with your terminal. This

option will give incorrect results if used while in the OMVS shell (or another

dumb terminal) and specifying number to be something other than the

current number of screen lines.

–P string

Sets the prompt that appears at end of each page of text to string. The

default prompt is [filename]. more usually displays the prompt in standout

mode.

–p command

Initially executes the more command on each file. If it executes

successfully and command is a positioning command such as a line

number or a regular expression search, more displays the resulting page;

otherwise more displays the first page of the file. If both the –t and –p

options are specified, the –t option is processed first.

+command

Initially executes the more command on each file. If it executes

successfully and command is a positioning command such as a line

number or a regular expression search, more displays the resulting page;

otherwise more displays the first page of the file. If both the –t and –p

options are specified, the –t option is processed first.

–S Displays the prompt in normal mode rather than standout (reverse video)

mode.

–s Replaces consecutive empty lines with a single empty line.

–t tag Searches for the named tag and displays the page of text containing it. See

ctags for more information.

–U Allows more to refresh the display screen for each new line.

–u Displays all backspaces as ^H.

more

430 z/OS V1R9.0 UNIX System Services Command Reference

Usually characterbackspace_(underscore) displays character as underlined

and characterbackspacecharacter

Interactive Commands

more also supports the following interactive commands.

 [n]b

[n]Ctrl-B

[n]PgUp

Moves backward n lines, with a default of one page. If n is more than the

page size, more displays only the final page.

[n]d

[n]Ctrl-D

Scrolls forward n lines, with a default of one half of the page size. If you

specify n, it becomes the new default for subsequent d and u commands.

[n]f

[n]Ctrl-F

[n]PgDn

Moves forward n lines, with a default of one page. At end-of-file, more

continues with the next file in the list, or exits if the current file is the last

one in the list.

[n]G Goes to the nth line in the file. If you do not specify n, more advances to

the end of the file.

[n]g Goes to the nth line in the file, with the default being the first line of the file.

h Displays a summary of interactive commands.

[n]j

[n]SPACE

[n]ENTER

[n]↓

Scrolls forward n lines, with a default of one line for j, ENTER and ↓, and a

default of one page for SPACE. This command displays the entire n lines

even if n is more than the page size. At end-of-file, these commands cause

more to begin displaying the next file in the list, or to exit if the current file is

the last one in the list.

[n]k

[n]↑

Scrolls backward n lines, with a default of one line. This command displays

the entire n lines even if n is more than the page size.

mletter Marks the current position with the lowercase letter. When you view a new

file, all previous marks are lost.

[n]N Repeats the previous search, but in the opposite direction. If you specify n,

more repeats the search n times.

[n]n Repeats the previous search. If you specify n, more repeats the search n

times. For example if there are eight occurrences of pattern in the file and

/pattern found the second occurrence then a follow-up command of 5n finds

and sets the current position to the 7th occurrence of pattern.

q

 :q

ZZ

Exits more.

R Refreshes the screen and discards any buffered input.

r

Ctrl-L

Refreshes the screen.

[n]s Skips forward n lines (with a default of one line) and displays one page

beginning at that point. If n would cause less than one page to be displayed,

more displays the last page in the file.

[n]u

[n]Ctrl-U

Scrolls backward n lines, with a default of one half of the page size. If you

specify n, it becomes the new default for subsequent d and u commands.

v Invokes an editor to edit the current file. more uses the editor named by the

environment variable EDITOR. The default editor is vi.

'letter Returns to the position marked with letter.

'' Returns to the position from which you last issued a movement command of

greater than one page or the beginning of the file if you have issued no

such commands.

Note: '' indicates two single quotes, not one double quote.

[n]/[!]pattern Searches forward in the file for the nth line containing pattern. n defaults to

one if not specified. If pattern is the null regular expression (/) more uses

the previous pattern. If the character ! precedes pattern, more searches for

lines that do not contain pattern.

more

Chapter 2. Shell command descriptions 431

[n]?[!]pattern Searches backward in the file for the nth line containing pattern. The search

begins at the line immediately before the top line displayed. n defaults to

one if not specified. If pattern is the null regular expression (?), more uses

the previous pattern. If the character ! precedes pattern, more searches for

lines that do not contain pattern.

:e [filename]newline Stops viewing the current file and views filename instead. If you do not

specify filename, more returns to the beginning of the current file. If

filename is #, more returns to the last file viewed before the current one.

[n]:n Views the next file from the list given on the command line. If you specify n,

more views the nth next file from the list.

[n]:p Views the previous file from the list given in the command line. If you

specify n, more views the nth previous file from the list.

:t tagname Goes to tagname.

:w filename Writes the contents of the current file to the file filename.

!<shell command> Escape to shell and execute shell command.

= Displays, where possible, the name of the file currently being viewed, its

number (relative to the total number of files specified in the command line),

the current line number, the current byte number, the total bytes to display

and what percentage of the file has been displayed.

Ctrl-G Displays, where possible, the name of the file currently being viewed, its

number (relative to the total number of files specified in the command line),

the current line number, the current byte number, the total bytes to display

and what percentage of the file has been displayed.

Home Goes to the first line in the file.

End Goes to the last line in the file.

Environment Variables

more uses the following environment variables:

COLUMNS

Contains the maximum number of columns to display on one line.

EDITOR

Contains the name of the editor that the v command invokes.

LINES Contains the number of lines in a page. This value takes precedence over

value from TERM. However, the –n value takes precedence over the LINES

value.

MORE Contains a list of options as they would appear on the command line. This

variable takes preference over the TERM and LINES variables.

TERM Contains the name of the terminal type.

Usage Note

more is designed for raw-mode terminals. It can be used with 3270 (dumb)

terminals with certain restrictions. Line-mode terminals require a user to press Enter

to allow the keys typed to be processed. However, the Enter key has a special

meaning to more. Specifically, it causes more to scroll down a single line.

Therefore, when attempting to use more while in line-mode, each time a user

presses ″Enter″ to process any command, this causes the screen to scroll down a

single line at a time.

Localization

more uses the following localization environment variables:

v LANG

v LC_ALL

more

432 z/OS V1R9.0 UNIX System Services Command Reference

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

>0 Failure due to any of the following:

v filename not a text file

v –n option too large

v Syntax error in regular expression

v Inability to create a file

v Inability to open input file

v Insufficient memory

v Incorrect command

v Inability to access the terminal

v Missing string after -p option

Portability

POSIX.2 User Portability Extension, UNIX systems.

The –A, –P, and –S options and the :w and ! commands are extensions of the

POSIX standard. The Home, End, PgDn, PgUp, ↓, and ↑ commands are

extensions to traditional implementations of more, available only on terminal types

which support these keys.

Related Information

cat, vi

mount — Logically mount a file system

Format

mount [–t fstype] [–rv] [–a yes|include,sysname1,... sysnameN

|exclude,|no|unmount] [–o fsoptions] [–d destsys] [–s nosecurity|nosetuid] –f

fsname pathname[-wn]

mount –q [–d destsys][–v] pathname

File Tag Specific Option:

mount [–c ccsid,text|notext]

Description

The mount shell command, located in /usr/sbin, is used to mount a file system or

list all mounts over a file system.

Note: A mount user must have UID(0) or at least have READ access to the

SUPERUSER.FILESYS.MOUNT resource found in the UNIXPRIV class.

more

Chapter 2. Shell command descriptions 433

Options

–a

yes|include,sysname1,...,sysnameN|exclude,sysname1,...,sysnameN|no|unmount

The -a option specifies the AUTOMOVE attribute of the file system in a

sysplex environment where systems are exploiting the shared file system

capability.

 –a yes allows the system to automatically move logical ownership for a

specified file system as needed. This is the default.

 –a no prevents ownership movement in some situations.

 –a unmount unmounts the file system in some situations.

 –a include,sysname1,...,sysnameN specifies a list of systems, in priority

order, to which the file system's ownership can be moved. include can

be abbreviated to i.

 –a exclude,sysname1,...,sysnameN specifies a list of systems, in

priority order, to which the file system's ownership cannot be moved.

exclude can be abbreviated to e.

See z/OS UNIX System Services Planning for details about the behavior of

the AUTOMOVE options.

–d destsys

Specifies the name of the system in a shared file system environment that

will be the logical owner of the mount. Note, if –q is specified, the mount

–q output will only list mounts that are owned by destsys.

–f fsname

Names the file system to be mounted. All file system names must be

unique. File system names are case sensitive. However, if the file system

type is HFS, fsname will be translated to uppercase. The file system name

has a maximum length of 44 characters, any additional characters will be

truncated. Options –q and –f are mutually exclusive, but one must be

specified.

-wn Specifies the amount of time the mount will wait in seconds for async

mounts to complete. If n is specified as a 0 the wait will be indefinite. This

option flag is tolerated on any form of the mount command and is ignored if

not appropriate (no wait needs to be done).

–o fsoptions

Specifies an option string to be passed to the file system type. NFS, for

example, uses this to identify the remote server and the object on that

server. The format and content are specified by the physical file system that

is to perform the logical mount. You can specify lowercase or uppercase

characters. Enclose the string in single quotes.

 Refer to the following for the appropriate file system-specific options to

specify for fsoptions:

v For HFS-specific options, see Managing hierarchical file system data

sets, in z/OS DFSMSdfp Advanced Services.

v For zFS-specific options, see Mount, inz/OS Distributed File Service

System z File System Administration.

v For NFS-specific options, see Mount processing parameters, in z/OS

Network File System Guide and Reference.

v For TFS-specific options, see Mounting the TFS, inz/OS UNIX System

Services Planning.

mount

434 z/OS V1R9.0 UNIX System Services Command Reference

–q Prints a list of pathnames for the mountpoints of file systems mounted over

a another file system, including that system. Options –q and –f are mutually

exclusive, but one must be specified. If –v is not specified, only pathnames

for mountpoints are printed. Note that the output of mount –q can be used

by the unmount utility as input. See “Examples.”

–r Specifies mounting a file system read-only.

–s nosecurity|nosetuid

Specifies that a file system is unsecured. Setuid, setgid, APF and program

controlled attributes are ignored when you use nosetuid. To additionally

disable authorization checking, use nosecurity. Minimum unique

abbreviations can be used for the option arguments.

Note: When a file system is mounted with the NOSECURITY option

enabled, any new files or directories that are created will be

assigned an owner of UID 0, no matter what UID issued the request.

–t fstype

Identifies the file system type. fstype may be entered in mixed case but will

be treated as upper case. If this option is not specified, the default is –t

HFS.

–v Verbose output. Includes additional information, if available, on output. If –v

is specified on the mount command and the mount fails, the file system

name that had the mount failure will be included in the failure information.

pathname specifies the pathname for the mountpoint.

File tag specific option

–c ccsid,text|notext

Specifies the file tag that will be implicitely set for untagged files in

the mounted file system.

ccsid Identifies the coded character set identifier to be

implicitly set for the untagged file. ccsid is specified

as a decimal value from 0 to 65535. However,

when text is specified, the value must be between 0

and 65535. Other than this, the value is not

checked as being valid and the corresponding code

page is not checked as being installed.

 For more information on file tagging, see z/OS

UNIX System Services Planning.

text Specifies that each untagged file is implicitly

marked as containing pure text data that can be

converted.

notext Specifies that none of the untagged files in the file

system are automatically converted during file

reading and writing.

Examples

1. The output of mount –q can be used for the input of unmount. For example:

mount -q /ict/hfsfir

can be used as input:

unmount $(mount -q /ict/hfsdir)

mount

Chapter 2. Shell command descriptions 435

2. To mount an HFS file system over /u/wjs with a sync interval of 120 seconds:

mount -f omvs.hfs.user.wjs -o ’SYNC(120)’ /u/wjs

3. To display a list of pathnames for all mountpoints under /u:

mount -q /u

Usage notes

1. Systems exploiting shared file system will have I/O to an OMVS couple data

set. Because of these I/O operations to the CDS, each mount request requires

additional system overhead. You will need to consider the affect that this will

have on your recovery time if a large number of mounts are required on any

system participating in shared file system.

2. The –a unmount is not available to automounted file systems.

3. The –a no specification will only be accepted on z/OS V1R3 systems and later.

File system recovery and mount

File system recovery in a shared file system environment takes into consideration

file system specifications such as –a yes|no|unmount and whether or not the file

system is mounted read-only or read/write.

Generally, when an owning system fails, ownership over its –a yes mounted file

system is moved to another system and the file is usable. However, if a file system

is mounted read/write and the owning system fails, then all file system operations

for files in that file system will fail. This is because data integrity is lost when the file

system owner fails. All files should be closed (BPX1CLO) and reopened

(BPX1OPN) when the file system is recovered. (The BPX1CLO and BPX1OPN

callable services are discussed in z/OS UNIX System Services Programming:

Assembler Callable Services Reference.)

For file systems that are mounted read-only, specific I/O operations that were in

progress at the time the file system owner failed may need to be submitted again.

Otherwise, the file system is usable.

In some situations, even though a file system is mounted with the –a yes option,

ownership of the file system may not be immediately moved to another system.

This may occur, for example, when a physical I/O path from another system to the

volume where the file system resides is not available. As a result, the file system

becomes ″unowned″ (the system will issue message BPXF213E when this occurs).

This is true if the file system is mounted either read/write or read-only. The file

system still exists in the file system hierarchy so that any dependent file systems

that are owned by another system are still usable.

However, all file operations for the unowned file system will fail until a new owner is

established. The shared file system support will continue to attempt recovery of –a

yes mounted file systems on all systems in the sysplex that are enabled for shared

file system. Should a subsequent recovery attempt succeed, the file system

transitions from the unowned to the active state.

Applications using files in unowned file systems will need to close (BPX1CLO)

those files and re-open (BPX1OPN) them after the file system is recovered.

File systems that are mounted with the –a no option will become unowned when

the file system owner exits the sysplex. The file system will remain unowned until

mount

436 z/OS V1R9.0 UNIX System Services Command Reference

the original owning system restarts or until the unowned file system is unmounted.

Note that since the file system still exists in the file system hierarchy, the file system

mount point is still in use.

An unowned file system is a mounted file system that does not have an owner. The

file system still exists in the file system hierarchy. As such, you can recover or

unmount an unowned file system.

File systems associated with a ’never move’ PFS will be unmounted during dead

system recovery. For example, TFS is a ’never move’ PFS and will be unmounted,

as well as any file systems mounted on it, when the owning system leaves the

sysplex.

As stated in “Usage notes” on page 436, –a unmount is not available to

automounted file systems. However, during dead system recovery processing for an

automounted file system (whose owner is the dead system), the file system will be

unmounted if it is not being referenced by any other system in the sysplex.

For more information on mounts and the AUTOMOVE and NOAUTOMOVE

parameters, see “mount — Logically mount a file system” on page 433.

Exit values

0 Successful completion

Related information

chmount, unmount

mv — Rename or move a file or directory

Format

 mv [–fiMUv] [–F format|B|T|X] [–P params] [-W seqparms=params] [–Z] [[–O u

| c=codeset] file1 file2

 mv [–ACfiMUv] [–F format|B|T|X] [–S suffix] [–Z] [–O u | c=codeset] file ...

directory

 mv –Rr [–fi] [–Z] [–O u | c=codeset] directory1 directory2

Description

mv renames files or moves them to a different directory. If you specify multiple files,

the target (that is, the last path name on the command line) must be a directory. mv

moves the files into that directory and gives them names that match the final

components of the source path names. When you specify a single source file and

the target is not a directory, mv moves the source to the new name, by a simple

rename if possible.

You can also use mv to move files to and from MVS data sets. If you specify more

than one file to be moved, the target (last path name on command line) must be

either a directory or a partitioned data set. If the target is an MVS partitioned data

set, the source cannot be a UNIX directory.

mv does not support the moving to or from GDGs. To use those MVS data sets,

user must specify the real data set name.

mount

Chapter 2. Shell command descriptions 437

|

|
|

When moving records, the string ″ \n″ is moved the same way as the string ″\n″:

both are read back as ″\n″, where ″\n″ indicates that z/OS C++ will write a record

containing a single blank to the file (the default behavior of z/OS C/C++). All other

blanks in your output are read back as blanks, and any empty (zero-length) records

are ignored on input. However, if the environment variable _EDC_ZERO_RECLEN

is set to Y before calling cp, an empty record is treated as a single newline and is

not ignored. Also, if _EDC_ZERO_RECLEN is set to Y, a single newline is written to

the file as an empty record, and a single blank will be represented by ″ \n″.

A file can be moved by any user who has write permission to the directory

containing the file, unless that directory has its sticky bit turned on. If the file is in a

directory whose sticky bit is turned on, only the file owner or a superuser can move

the file.

You can move:

v One file to another file in the working directory

v One file to a new file on another directory

v A set of directories and files to another place in your file system

v A UNIX file to an MVS data set

v An MVS data set to a file system

v An MVS data set to an MVS data set

Options

–A Specifies that all suffixes (from the first period till the end of the target) be

truncated. –A has precedence over –M and –C options. –S will be turned

off if –A is the last option specified.

–B Specifies that the data to be moved contains binary data. When you specify

–B, mv operates without any consideration for <newline> characters or

special characteristics of DBCS data (this type of behavior is typical when

moving across a UNIX system). –B is mutually exclusive with –F, –X, and

–T, i.e., you will get an error if you specify more than one of these options.

–C Specifies truncating the filenames to 8 characters to meet the restriction in

the MVS data set member.

–F format

Specifies if a file is binary or text and for text files, specifies the end-of-line

delimiter. Also sets the file format to format only if the source is an MVS

data set and the target is a UNIX file. Only cp sets the file format for UNIX

to UNIX operations. For text files, when moving from UNIX to MVS, the

end-of-line delimiter will be stripped. When moving from MVS to UNIX, the

end-of-line delimiter will be added (Code page IBM-1047 will be used to

check for end-of-line delimiters).

 –F is mutually exclusive with –B, –X, –p, and –T. If you specify one of

these options with –F, you will get an error. If –F is specified more than

once, the last –F specified will be used.

 For format you can specify:

not not specified

bin binary data

Or the following text data delimiters:

nl newline

cr carriage return

lf line feed

crlf carriage return followed by line feed

mv

438 z/OS V1R9.0 UNIX System Services Command Reference

lfcr line feed followed by carriage return

crnl carriage return followed by new line

–f Does not ask if you want to overwrite an existing UNIX destination file; it

automatically behaves as if you answered yes. If you specify both –f and –i,

mv uses the option that appears last on the command line.

–i When moving to a UNIX target, always prompts before overwriting an

existing file, but does not overwrite the file if you do not have permission. If

you specify both –f and –i, mv uses the option that appears last on the

command line.

–M Specifies that some characters of the filename are translated when moving

between a UNIX file and a data set member. Characters are translated as

follows:

v _ (underscore) in UNIX is translated to @ in MVS DS members and vice

versa.

v . (period) in UNIX is translated to # in MVS DS members and vice versa.

v – (dash) in UNIX is translated to $ in MVS DS members and vice versa.

–P params

Specifies the parameters needed to create a sequential data set if one does

not already exist. You can specify the RECFM, LRECL, BLKSIZE, and

SPACE in the format that the fopen() function uses.

 SPACE=(units,(primary,secondary) where the following values are

supported for units:

v Any positive integer indicating BLKSIZE

v CYL (mixed case)

v TRK (mixed case)

Example:

SPACE=(500,(100,500)) units, primary, secondary

SPACE=(500,100) units and primary only

For information on how to specify these parameters, see z/OS XL C/C++

Programming Guide.

Notes:

1. The fopen() argument LRECL specifies the length, in bytes, for

fixed-length records and the maximum length for variable-length

records.

2. BLKSIZE specifies the maximum length, in bytes, of a physical block of

records.

3. RECFM refers to the record format of a data set and SPACE indicates

the space attributes for MVS data sets.

–R (UNIX to UNIX only)

Moves a directory and all its contents (files, subdirectories, files in

subdirectories, and so on). For example:

mv –R dir1 dir2

moves the entire contents of dir1 to dir2/dir1. mv creates any directories

that it needs.

–r (UNIX to UNIX only)

Is identical to –R.

–S d=suffix|a=suffix

v d=suffix

mv

Chapter 2. Shell command descriptions 439

Removes the specifed suffix from a file.

v a=suffix

Appends the specified suffix to a file.

–S has precedence over –M and –C. It also turns off the –A option (if –S is

the last specified option).

–T Specifies that the data to be moved contains text data. See “Usage notes”

on page 447 for details on how to treat text data. This option looks for

IBM-1047 end-of-line delimiters, and is mutually exclusive with –F, –X, and

–B, i.e., you will get an error if you specify more than one of these options.

Note: –T is ignored when moving across UNIX file systems.

–U Keeps filenames in uppercase when moving from MVS data set members

to UNIX files. The default is to make filenames lowercase.

–v Verbose

-W seqparms=params

Specifies the parameters needed to create a sequential data set if one does

not already exist. You can specify the RECFM, LRECL, BLKSIZE, and

SPACE in the format that the fopen() function uses.

 SPACE=(units,(primary,secondary) where the following values are

supported for units:

v Any positive integer indicating BLKSIZE

v CYL (mixed case)

v TRK (mixed case)

For example:

SPACE=(500,(100,500)) units, primary, secondary

SPACE=(500,100) units and primary only

For information on how to specify these parameters, see z/OS XL C/C++

Programming Guide.

Note: The fopen() arguments: LRECL specifies the length, in bytes, for

fixed-length records and the maximum length for variable-length

records. BLKSIZE specifies the maximum length, in bytes, of a

physical block of records. RECFM refers to the record format of a

data set and SPACE indicates the space attributes for MVS data

sets.

This option is the same as -P params.

–X Specifies that the data to be moved is an executable. Cannot be used in

conjunction with –F, –X, or –B.

-Z Specifies that error messages are not to be displayed when setting ACLs

on the target. The return code will be zero. mv will try to preserve the

ACLs, if possible. The ACLs are not preserved if a file system does not

support ACLs, or if you are moving files to MVS

Note: If you do not specify –F|B|T or X, mv will first check the format of the MVS

data set indicated and then try to determine the type of file.

Automatic conversion and file tag specific options

–Z Suppresses failure when setting the file tag by default or on empty

mv

440 z/OS V1R9.0 UNIX System Services Command Reference

untagged files. For a description of the default behavior, see

“Automatic conversion and file tagging behavior for mv.”

–O u | c=codeset

Allow automatic conversion on source and target files.

–O u If the target exists and is not empty or already

tagged, mv will not change the target’s tag in order

for the target to be a candidate for automatic

conversion.

 For new targets and existing, untagged, empty files,

this option has no effect and mv behaves the same

as the default. For a description of the default

behavior, see “Automatic conversion and file

tagging behavior for mv.”

 When using mv to move from a UNIX file to an

MVS data set, if the source is a tagged text file,

then it may be a candidate for automatic

conversion.

 When using mv to move executables from or to

MVS, automatic conversion is disabled for both

source and target.

–O c=codeset For a detailed description of the behavior of this

option on mv, see “Automatic conversion and file

tagging behavior for mv.” To prevent the corruption

of text files, mv will fail if it cannot set the tag to

text or codeset.

Attention: If automatic conversion is not set

properly or the source is not tagged properly, the

target may end up with a tag codeset which does

not match the file content.

Automatic conversion and file tagging behavior for mv

The following tables describe the behavior of file tagging and automatic conversion

for various source and target scenarios depending on whether the –O option is

specified on the mv command.

mv

Chapter 2. Shell command descriptions 441

Table 16. Automatic conversion and file tagging behavior: Moving UNIX files to UNIX files

Default (without -O option)

With -O u option

With -O

c=codeset option

If the target file

system supports

setting file

tags...

If the target file

system does not

support setting

file tags (e.g.

NFS)...

File tagging Target file is

tagged the same

as the source file.

v An existing

target’s tag is

unchanged.

v A new target is

created with a

tag according

to the file

system’s

attributes

(MOUNT parm

can specify

TAG).

Target’s tag is

unchanged.

Note: The source

or target file is a

candidate for

automatic

conversion when

its txtflag is

tagged TEXT.

Target’s txtflag is

set to TEXT and

its codeset is set

to codeset.

Automatic

conversion

Disabled for

source and target

files

Allowed for source and target files

 Table 17. Automatic conversion and file tagging behavior: Moving MVS data sets to UNIX

files

Default (without -O option)

With -O u option

With -O

c=codeset option

If the target file

system supports

setting file

tags...

If the target file

system does not

support setting

file tags (e.g.

NFS)...

If the SOURCE is text:

File tagging Target is set to

UNTAG

v An existing

target’s tag is

unchanged.

v A new target is

created with a

tag according

to the file

system’s

attributes

(MOUNT parm

can specify

TAG).

Target’s tag is

unchanged

Target’s txtflag is

set to TEXT and

its codeset is set

to codeset.

Automatic

conversion

Disabled for

target file

Allowed for target file

Note: The target file is a candidate for automatic

conversion when its txtflag is tagged TEXT.

If the SOURCE is binary or executable:

File tagging Target is set to UNTAG Target’s tag is

unchanged

Target’s txtflag is

set to BINARY

and its codeset is

set to codeset.

mv

442 z/OS V1R9.0 UNIX System Services Command Reference

Table 17. Automatic conversion and file tagging behavior: Moving MVS data sets to UNIX

files (continued)

Default (without -O option)

With -O u option

With -O

c=codeset option

If the target file

system supports

setting file

tags...

If the target file

system does not

support setting

file tags (e.g.

NFS)...

Automatic

conversion

Disabled for target file

 Table 18. Automatic conversion and file tagging behavior: Moving UNIX files to MVS data

sets

Default (without -O

option) With -O u option

With -O c=codeset

option

If the SOURCE is text or binary:

File tagging Not applicable for target data set

Automatic

conversion

Disabled for source file Allowed for source file

Note: The source file

is a candidate for

automatic conversion

when its txtflag is

tagged TEXT.

Disabled for source file

If the SOURCE is executable:

File tagging Not applicable for target data set

Automatic

conversion

Disabled for source file

Limits and Requirements

General Requirements

1. To specify an MVS data set name, precede the name with double slashes (//).

For example, to specify the fully qualified data set names ’turbo.gammalib’ and

’turbo.gammalib(pgm1)’, you write:

"//’turbo.gammalib’"

"//’turbo.gammalib(pgm1)’"

The same goes for data set names that are not fully qualified:

//turbo

2. For PDS (partitioned data set) or PDSE (partitioned data set extended), to avoid

parsing by the shell, the name should be quoted or minimally, the parenthesis

should be escaped. For example, to specify ’turbo(pgm1)’, you can use quotes:

"//turbo(pgm1)"

or escape the parenthesis:

//turbo\(pgm1\)

As indicated, a fully qualified name must be single-quoted (as is done within

TSO). To prevent the single quotes from being interpreted by the shell, they

must be escaped or the name must be placed within regular quotation marks.

See the ’turbo.gammalib’ examples.

mv

Chapter 2. Shell command descriptions 443

3. If you specify a UNIX file as source and the MVS data set (target) does not

exist, a sequential data set will be created. If the partitioned data set exists, the

UNIX file will be moved to the partitioned data set member.

4. If source is an MVS data set and target is a UNIX directory, the UNIX directory

must exist.

5. You cannot have a UNIX directory, partitioned data set, or sequential data set

as source if the target is a partitioned data set.

6. To move all members from a partitioned data set, you may specify the

partitioned data set as source and a UNIX directory as target.

MVS data set naming limitations

v Data set names may only contain uppercase alphabetic characters (A-Z).

Lowercase characters will be converted to uppercase during any moves to MVS

data sets.

v Data set names can contain numeric characters 0–9 and special characters @,

#, and $.

v Data set names cannot begin with a numeric character.

v A data set member name cannot be more than 8 characters. If a filename is

longer than 8 characters or uses characters that are not allowed in an MVS data

set name, the file is not moved. You may use the –C option to truncate names to

8 characters.

Limitations: UNIX to MVS data set

1. If you specify a sequential MVS data set that is in undefined record format, the

file is moved as binary.

2. If you specify a PDSE that is in undefined record format, the first file

successfully moved determines in what format files will be moved. Note that

PDSE does not allow mixture. So if the first successfully moved file is an

executable, the PDSE will have program objects only and all other files will fail.

On the other hand, if the first file is data, then all files are moved as binary.

3. If you specify a PDS that is in undefined record format, UNIX executables are

saved as PDS load modules. All other files are moved as binary.

4. If you specify an MVS data set that is either in variable length or fixed record

length and you have not set the file format, text files are moved as text, binaries

as binary, and executables as binary. (IBM-1047 end-of-line delimiters are

detected in the data)

5. If you set the file format, the set value is used to determine if data is binary or

text.

Limitations: MVS data set to UNIX

1. If an UNIX file does not exist, one is created using 666 mode value, whether the

data to be copied is binary or text:

666 mode value: owner(rw-) group(rw-) other(rw-)

If the data to be copied is a shell script or executable residing in a PDS or

PDSE with undefined record format, the UNIX file is created using 777 mode

value:

777 mode value: owner(rwx) group(rwx) other(rwx)

2. If a UNIX file exists and the file format is set, mv moves the file as that format.

Otherwise,

v load modules (PDS) are stored as UNIX executables and program objects

(PDSE) are moved since they are the same as executables;

mv

444 z/OS V1R9.0 UNIX System Services Command Reference

v data within data sets of undefined record format are moved as binary if the

data is not a program object or load module;

v and data found within data sets of fixed length or variable record length are

moved as text. (IBM-1047 end-of-line delimiters are detected in the data)

Limitations: MVS to MVS

1. Options –A, –C, –f, and –S are ignored.

2. If target and source are in undefined record format (and neither is a sequential

data set), mv will attempt to move the data as a load module. If that fails, then

mv will move the data as binary.

3. If target and source are in undefined record format and either is a sequential

data set, mv moves the data as binary.

4. If the source has a fixed or variable record length and the target is in undefined

record format, mv moves the data as binary.

5. If the source is in undefined record format and the target has a fixed or variable

record length, mv moves the data as binary.

6. If both source and target are in fixed or variable record length, mv moves the

data as text.

Limitations: Moving executables into a PDS

1. A PDS may not store load modules that incorporate program management

features.

2. c89, by default, produces objects using the highest level of program

management.

3. If you plan on moving a load module to a PDS, you may use a pre-linker which

produces output compatible with linkage editor. Linkage editor generated output

can always be stored in a PDS.

The following table is a quick reference for determining the correct use of options

with mv.

 Table 19. mv Format: File to File and File ... (multiple files) to Directory

Source/Target Options Allowed Options Ignored Options Failed

UNIX File/UNIX File Ffi ABCMPSTUX

UNIX File/Sequential Data

Set

BFiPT ACfMSU X

UNIX File/PDS or PDSE

Member

BFiTX ACfMPSU

Sequential Data Set/UNIX

File

BFfiTU ACMPS X

Sequential Data

Set/Sequential Data Set

BFiPT ACfMSU X

Sequential Data Set/PDS

or PDSE Member

BFiT ACfMPSU X

PDS or PDSE

Member/UNIX File

BFfiTUX ACMPS

PDS or PDSE

Member/Sequential Data

Set

BFiPT ACfMSU X

mv

Chapter 2. Shell command descriptions 445

Table 19. mv Format: File to File and File ... (multiple files) to Directory (continued)

Source/Target Options Allowed Options Ignored Options Failed

PDS or PDSE

Member/PDS or PDSE

Member

BFiTX ACfMPSU

UNIX File/UNIX Directory Fi ABCFMPSTUX

PDSE or PDSE

Member/UNIX Directory

BFfiMSTUX ACP

UNIX File/Partitioned Data

Set

ABCFiMSTX fPU

PDS or PDSE

Member/PartitionedData

Set

BFiTX ACfMPSU

UNIX Directory/UNIX

Directory

fi ABCFMPSTUX

Partitioned Data Set/UNIX

Directory

ABCFfiMSTUX P

The tables that follow indicate the kind of moves allowed using mv.

 Table 20. mv Format: File to File

Source Target Allowed

UNIX File, Sequential Data

Set, or Partitioned Data Set

Member

UNIX File, Sequential Data

Set, or Partitioned Data Set

Member

Yes

UNIX Directory (dir) UNIX Directory (dir2 exists) YES (NOTE: Results will be

found in dir2/dir1/ ..).

UNIX Directory (dir) UNIX Directory (dir2 does not

exist)

YES (NOTE: Results will be

found in dir2/...).

Partitioned Data Set UNIX Directory (dir) NOTE:

results in each member of

data set are moved to dir.

Yes

UNIX Directory Partitioned Data Set No

Partitioned Data Set Partitioned Data Set No

UNIX File, UNIX Directory, or

Partitioned Data Set Member

UNIX Directory Yes

Partitioned Data Set Member Partitioned Data Set (must

exist)

Yes

 Table 21. mv Format: File... (multiple files) to Directory

Source Target Allowed

Any combination of UNIX File

and/or Partitioned Data Set

Member

UNIX Directory or Partitioned

Data Set

Yes

Any combination of UNIX

Directory, Partitioned Data

Set, Sequential Data Set

Partitioned Data Set No

Sequential Data Set UNIX Directory No

mv

446 z/OS V1R9.0 UNIX System Services Command Reference

Table 21. mv Format: File... (multiple files) to Directory (continued)

Source Target Allowed

Any combination of UNIX

Directory, UNIX File,

Partitioned Data Set,

Partitioned Data Set Member

UNIX Directory Yes

Usage notes

UNIX to MVS

 1. To move from UNIX to a partitioned data set, you must allocate the data set

before doing the mv.

 2. If an MVS data set does not exist, mv will allocate a new sequential data set

of variable record format.

 3. For text files, all <newline> characters are stripped during the move. Each line

in the file ending with a <newline> character is moved into a record of the

MVS data set. If text file format is specified or already exists for the source file,

that file format will be used for end-of-line delimiter instead of <newline>. Note

that mv looks for IBM-1047 end-of-line delimiters in data.

You cannot move a text file to an MVS data set that has an undefined record

format:

v For an MVS data set in fixed record format, any line moved longer than the

record size will cause mv to fail with a displayed error message and error

code. If the line is shorter than the record size, the record is padded with

blanks.

v For an MVS data set in variable record format: Any line moved longer than

the largest record size will cause mv to fail with a displayed error message

and error code. Record length is set to the length of the line.

 4. For binary files, all moved data is preserved:

v For an MVS data set in fixed record format, data is cut into chunks of size

equal to the record length. Each chunk is put into one record. The last

record is padded with blanks.

v For an MVS data set in variable record format, data is cut into chunks of

size equal to the largest record length. Each chunk is put into one record.

The length of the last record is equal to length of the data left.

v For an MVS data set in undefined record format, data is cut into chunks of

size equal to the block size. Each chunk is put into one record. The length

of the last record is equal to the length of the data left.

 5. For load modules, the partitioned data set specified must be in undefined

record format otherwise the executable will not be moved.

 6. If more than one filename is the same, the file is overwritten on each

subsequent move.

 7. If a UNIX filename contains characters that are not allowed in an MVS data

set, it will not be moved. If the UNIX filename has more than 8 characters, it

can not be moved to an MVS data set member. (See the –ACMS options for

converting filenames)

 8. You are not allowed to move files into data sets with spanned records.

 9. PDSE cannot have a mixture of program objects and data members. PDS

allows mixing, but it is not recommended.

10. Special files such as character special, external links, and fifo will not be

moved to an MVS data set.

mv

Chapter 2. Shell command descriptions 447

11. If a file is a symbolic link, mv will move the resolved file, not the link itself.

12. UNIX file attributes are lost when moving to MVS. If you wish to preserve file

attributes, you should use the pax utility.

MVS to UNIX

1. If the target UNIX file exists, the new data overwrites the existing data. The

mode of the file is unchanged (except the S_ISUID and S_ISGID bits are turned

off).

2. If the specified UNIX file does not exist, it will be created using a 666 mode

value whether the data is binary or text (this is subject to umask). If the data to

be moved is a shell script or executable, the UNIX file will be created with a 777

mode value (also subject to umask).

3. When you move MVS data sets to UNIX text files, a <newline> character is

appended to the end of each record. If trailing blanks exist in the record, the

<newline> character is appended after the trailing blanks. If the file format

option is specified or the target file has the file format set, that file format is

used as the end-of-line delimiter instead of <newline>.

4. When you move MVS data sets to UNIX binary files, the <newline> character is

not appended to the record.

5. You cannot use mv to move data sets with spanned record lengths.

6. Due to an XL C/C++ Run-Time restriction, when moving a file from a file system

to an MVS sequential data set with the same name and case, you need to

prefix the file in the file system with ″./″. For example:

mv ./SMPL.DATA "//’’SMPL.DATA’’"

Examples

1. To specify –P params for a non-existing sequential target:

mv -P "RECFM=U,space=(500,100)" file "//’turbo.gammalib’"

This mv command is equivalent to:

 mv -W "seqparms=’RECFM=U,space=(500,100)’" file "//’turbo.gammalib’"

2. To move file f1 to a fully qualified sequential data set ’turbo.gammalib’ and

treat it as a binary:

mv -F bin f1 "//’turbo.gammalib’"

3. To move all members from a fully qualified PDS ’turbo.gammalib’ to an existing

UNIX directory dir:

mv "//turbo.gammalib’" dir

4. To drop .c suffixes before moving all files in UNIX directory dir to an existing

PDS ’turbo.gammalib’:

mv -S d=.c dir/* "//’turbo.gammalib’"

Environment Variable

mv uses the following environment variable when moving records to or from MVS

data sets:

_EDC_ZERO_RECLEN

If set to Y before calling mv, an empty record is treated as a single newline

and is not ignored. Also, a single newline is written to the file as an empty

record, and a single blank will be represented by ” \n”. If you do not set this

environment variable when moving records, then the string ” \n” is moved

the same way as the string ”\n”: both are read and written as ”\n”, where

”\n” indicates that z/OS C/C++ will write a record containing a single blank

mv

448 z/OS V1R9.0 UNIX System Services Command Reference

to the file (the default behavior of z/OS C/C++). All other blanks in the

output are read back as blanks, and any empty (zero-length) records are

ignored on input.

Localization

mv uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v The argument had a trailing / but was not a directory

v Inability to find file

v Inability to open input file for reading

v Inability to create or open output file for output

v Read error on an input file

v Write error on an output file

v Input and output files identical

v Inability to unlink input file

v Inability to rename input file

v Irrecoverable error when using the –r option, such as:

– Inability to access a file

– Inability to read a directory

– Inability to remove a directory

– Inability to create a directory

– A target that is not a directory

– Source and destination directories identical

2 Failure due to any of the following:

v Incorrect command-line option

v Too few arguments on the command line

v A target that should be a directory but isn’t

v No space left on target device

v Out of memory to hold the data to be moved

v Inability to create a directory to hold a target file

Messages

Possible error messages include:

cannot allocate target string

mv has no space to hold the name of the target file. Try to free some

memory to give mv more space.

filename?

You are attempting to move a file, but there is already a file with the target

mv

Chapter 2. Shell command descriptions 449

name and the file is read-only. If you really want to write over the existing

file, type y and press <Enter>. If you do not want to write over the existing

file, type n and press <Enter>.

source name and target name are identical

The source and the target are actually the same file (for example, because

of links). In this case, mv does nothing.

unreadable directory name

mv cannot read the specified directory—for example, because you do not

have appropriate permissions.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –R and –r options are extensions of the POSIX standard.

Related Information

cp, cpio, rm

newgrp — Change to a new group

Format

 newgrp [–l] [group]

 newgrp [–] [group]

tcsh shell: newgrp [-] group

Description

newgrp lets you change to a new group. You stay logged in and your working

directory does not change, but access permissions are calculated according to your

new real and effective group IDs. If an error occurs, your session may be ended,

and you must log in again.

After the group IDs are changed, a new shell is initialized within the existing

process, effectively overlaying the current shell from which newgrp was invoked.

The new shell is determined from the initial program value of the OMVS segment of

your user profile.

newgrp does not change the value of exported shell variables, and all others are

either set to their default or are unset.

If you did not specify any arguments on the command line, newgrp changes to the

default group specified for your user ID in the system user database. It also sets

the list of supplementary groups to that set in the systems group database.

If you specify a group, newgrp changes your real and effective group ID to that

group. You are permitted to change to that group only if you are a member of that

group, as specified in the system group database.

group can be a group name from the security facility group database, or it can be a

numeric group ID. If a numeric group exists as a group name in the group data

base, the group ID number associated with that group is used.

mv

450 z/OS V1R9.0 UNIX System Services Command Reference

On systems where the supplementary group list also contains the new effective

group ID or where the previous effective group ID was actually in the

supplementary group list:

v If the supplementary group list also contains the new effective group ID, newgrp

changes the effective group ID.

v If the supplementary group list does not contain the new effective group ID,

newgrp adds it to the list (if there is room).

On systems where the supplementary group list does not normally contain the

effective group ID or where the old effective group ID was not in the supplementary

group list:

v If the supplementary group list contains the new effective group ID, newgrp

removes it from the list.

v If the supplementary group list does not contain the old effective group ID,

newgrp adds it to the list (if there is room).

newgrp in the tcsh shell

newgrp in the tcsh shell, as in the z/OS shell, allows you to change to a new

group.

Options

–l Starts the new shell session as a login session. This implies that it can run

any shell profile code.

– Is the obsolescent version of –l.

Localization

newgrp uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Usage notes

newgrp is not supported from an address space running multiple processes

because it would cause all processes in the address space to have their security

environment changed unexpectedly. If you are using the OMVS interface, you must

be using the NOSHAREAS parameter before you issue the newgrp command.

Also, if you are running in an environment with the _BPX_SHAREAS environment

variable set to YES, you must unset it and start a new shell before issuing newgrp.

For example:

unset _BPX_SHAREAS; sh

Exit Values

If newgrp succeeds, its exit status is that of the shell. Otherwise, the exit status is:

>0 Failure because newgrp could not obtain the proper user or group

information or because it could not run the shell, and it ends the current

shell.

newgrp

Chapter 2. Shell command descriptions 451

Portability

POSIX.2 User Portability Extension, UNIX systems.

Related Information

export, fc, sh, tcsh

nice — Run a command at a different priority

Format

nice [–n number] command-line nice [–number] command-line

tcsh shell: nice [+number] [command]

Description

nice runs a command at a different priority than usual. Normally, nice lowers the

current priority by 10.

The command-line must invoke a single utility command, without using compound

commands, pipelines, command substitution, and other special structures.

nice in the tcsh shell

In the tcsh shell, nice sets the scheduling priority for the tcsh shell to number, or,

without number, to 4. With command, nice runs command at the appropriate

priority. The greater the number, the less cpu the process gets. The super-user may

specify negative priority by using:

nice -number ...

command is always executed in a sub-shell, and the restrictions placed on

commands in simple if statements apply. See “tcsh — Invoke a C shell” on page

626.

Options

–n number

Lowers the current priority by number. On systems supporting higher

priorities, a user with appropriate privileges can use nice to increase priority

by specifying a negative value for number. For example,

nice –n –3 command

runs the command with an increased priority of 3.

–number

Is an obsolescent version of –n number.

Localization

nice uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

newgrp

452 z/OS V1R9.0 UNIX System Services Command Reference

Exit Values

If nice invokes the command-line, it exits with the exit status returned by

command-line; otherwise its exit status is one of the following:

1-125 An error occurred in the nice utility.

126 nice could not invoke command-line.

127 nice could not find the utility specified in command-line.

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information

nohup, renice, tcsh

nl — Number lines in a file

Format

nl [–btype] [–dxy] [–ftype] [–htype] [–in] [–ln] [–nfmt] [–p] [–ssep] [–v[n]] [–w[n]] [file]

Description

nl is a filter that numbers lines in a single file. If you do not specify file on the

command line, the standard input is used.

The input is displayed as a stream of text lines, possibly divided into logical pages

by separators. In turn, each page consists of a header, body, or footer, in that

order. Any missing part is assumed to be empty. Using the default page delimiter

character of \ and :, lines consisting entirely of the following combinations are

logical page part delimiters and are not numbered.

Input Line

Starts

\:\:\: Page header

\:\: Page body

\: Page footer

Options

–btype

Specifies the numbering type for each page body. The numbering type is

one of the following:

a Numbers all lines

n Does not number any lines

pregexp

Numbers only those lines that contain the basic regular expression

regexp. For more information about regexp, see Appendix C.

t Numbers only those lines that are not empty. An empty line consists

of only a newline character.

The default body numbering type is t.

–dxy Changes the default delimiter characters (\ and :) to characters x and y. If

only x is specified, only the first delimiter character is changed.

nice

Chapter 2. Shell command descriptions 453

–ftype Specifies the page footer numbering type (see the –b option). The default

type is n.

–htype

Specifies the page header numbering type (see the –b option). The default

type is n. (The lines are not numbered.)

–in Sets the line increment to n rather than the default value of l.

–ln When the page numbering type is (all), blank lines are treated specially.

Every nth consecutive blank line is numbered. If you do not specify this

option, n defaults to 1 and every blank line is numbered.

–nfmt Specifies the line numbering format, which must be one of the following:

n Right-aligned line number, padded to width (see –w) on the left with

spaces (the default format).

rz Right-aligned line number, padded on left with zeroes.

ln Left-aligned line number, padded on right with spaces.

–p Specifies continuous page numbering across page boundaries. By default,

nl restarts numbering (as in the next option) at each new page.

–ssep The string sep is printed to separate the line number from the text of the

line being numbered. When this option is not specified, this separator is a

single tab character.

–vn Starts numbering for each new page at n. If you do not specify this option,

page numbering starts at 1.

–wn Sets the width of the line number in the output to n. If you do not specify n,

the default is 6.

Example

The following command numbers every second consecutive blank line, using page

delimiters of ~!:

nl –l2 –ha –ba –fa –n rz –v10 –i10 –d~! file

Localization

nl uses the following localization environment variable:

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Messages

0 Successful completion

1 Failure due to any of the following:

v Incorrect command-line argument

v More than one file name was specified

v Unable to open the file

v Incorrect regular expression in –b, –f, –h

v Incorrect numbering type

v Badly formed number in a command-line option

Portability

POSIX.2, X/Open Portability Guide.

nl

454 z/OS V1R9.0 UNIX System Services Command Reference

Related Information

awk, pr

For more information about regexp, see Appendix C.

nm — Display symbol table of object, library, or executable files

Format

nm [–AaefgMnoPprsuv] [–t format] file ...

Description

nm displays the symbol table associated with an object, archive library of objects,

or executable files.

By default, nm lists the symbols in file in alphabetical order by name and provides

the following information on each:

v File or object name (if you specified –A)

v Symbol name

v Symbol type. Not all of these symbol types are available on all systems. For

instance, not all systems support the ability to determine different segment

information.

A Absolute symbol, global

a Absolute symbol, local

B Uninitialized data (bss), global

b Uninitialized data (bss), local

D Initialized data (bbs), global

d Initialized data (bbs), local

F Filename

l Line number entry (see the –a option)

N No defined type, global. This is an unspecified type, compared to the

undefined type U.

n No defined type, local. This is an unspecified type, compared to the

undefined type U.

S Section symbol, global

s Section symbol, local

T Text symbol, global

t Text symbol, local (static)

U Undefined symbol

v Symbol value

v Symbol size, if applicable

Options

–A Prefixes each line with the filename or archive member.

–a Displays all symbols, including line number entries on systems that support

them.

–e Displays only global (external) and static symbols.

–f Displays full output. This is the default because output is not suppressed.

–g Displays only global symbols.

nl

Chapter 2. Shell command descriptions 455

-M Inserts three columns in the output before each symbol name. The format

of the these columns is as follows:

 rmode amode compiler_options

The rmode and amode column will display one of the following:

 24 24 bit mode

 31 31 bit mode

 64 64 bit mode

 ANY ANY mode

 MIN MIN mode

 --- Undetermined or not/applicable

The compiler options field will show a character for each compiler option

determined to be in effect or a dash if none are in affect:

I Symbol is compiled with IPA. Note, IPA will not be seen when

running nm against an executable because that information is no

longer available.

X Symbol is compiled with XPLINK.

–n Is equivalent to –v.

–o Displays output in octal (same as –t o).

–P Displays output in a portable POSIX-compliant format, with blanks

separating the output fields.

v If you specified –A and file is not a library, the format is:

file: name type value size.

v If you specified –A and file is a library, the format is:

file [object_file] : name type value size

where object_file is the object file in the library that contains the symbol

being described.

v If you did not specify –A, the format is:

name type value size

v If you did not specify the –t option, nm displays value and size in

hexadecimal.

v If you did not specify –A and the command line contains more than one

file, or file is a library, nm displays a line preceding the list of symbols for

each specified file or each object file in a specified library. If file is a

library, this line has the following format:

file[object_file]:

If file is not a library, the format is:

file:

–p Does not sort output.

–r Reverses sort order.

–s Includes symbol size for each symbol.

–t format

Defines the numeric value formatting base. The format is one of d, o, or x,

for decimal, octal, or hexadecimal, respectively. If this option is not used,

numbers are displayed in decimal.

–u Displays only undefined symbols.

nm

456 z/OS V1R9.0 UNIX System Services Command Reference

–v Sorts output by value.

–x Displays information in hexadecimal (same as –t x).

Localization

nm uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLECT

v LC_CTYPE

v LC_MESSAGES

v LC_TIME

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Invalid command-line option

v Missing filename

v Unknown symbol table type

v Invalid library file

v End-of-file found in library

v Bad record in the library

v Out of memory

If a file does not contain a symbol table, nm displays a warning and goes to

the next file, but this is not considered an error.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –a, –e, –f, –n, –o, –p, –r, –s, and –x options are not part of the POSIX

standard.

The –a, –n, –p, –r, –s, and –t d, options are not part of the X/Open standard.

Related Information

ar, size, strip

nohup — Start a process that is immune to hangups

Format

nohup command-line

tcsh shell: nohup command

Description

nohup invokes a utility program using the given command-line. The utility runs

normally; however, it ignores the SIGHUP signal.

nm

Chapter 2. Shell command descriptions 457

If the standard output is a terminal, nohup appends the utility’s output to a file

named nohup.out in the working directory. This file is created if it doesn’t already

exist; if it can’t be created in the working directory, it is created in your home

directory.

If the standard error stream is a terminal, nohup redirects the utility’s error output to

the same file as the standard output.

nohup simply runs a program from an executable file. command-line cannot contain

such special shell constructs as compound commands or pipelines; however, you

can use nohup to invoke a version of the shell to run such a command line, as in:

nohup sh –c 'command*'

where command can contain such constructs.

nohup in the tcsh shell

With command, nohup runs command such that it will ignore hangup signals.

Commands may set their own response to hangups, overriding nohup. Without an

argument (allowed only in a shell script), nohup causes the tcsh shell to ignore

hangups for the remainder of the script. See “tcsh — Invoke a C shell” on page

626.

Localization

nohup uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

126 nohup found the utility program but could not invoke it.

127 An error occurred before nohup invoked the utility, or nohup could not find

the utility program.

Otherwise, the exit status is the exit status of the utility program that is invoked.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

exec, hup, nice, sh, tcsh

obrowse — Browse an z/OS UNIX file

Format

obrowse -r xx [file...]

nohup

458 z/OS V1R9.0 UNIX System Services Command Reference

Description

obrowse enables you to browse a file in the hierarchical file system (HFS). This

command uses the TSO/E OBROWSE command and must be run in the

foreground. The 3270 passthrough mode is used to invoke the TSO/E OBROWSE

command under OMVS.

You can specify any number of files; the TSO/E OBROWSE command is invoked

once for each file. If you do not specify a filename, the main entry panel is

displayed. From that panel, you can enter the directory name and filename of an

existing file you want to browse. If you are browsing fixed-length records, you must

also indicate the record length.

The filename can be absolute or relative. Avoid using single quotes or parentheses

within the filename.

Option

-r xx

Sets the record length to be browsed for fixed length text files. xx is length. If -r

xx is specified, the file will be processed as fixed length records. This lets you

convert a variable length file to fixed length for viewing.

Usage notes

1. You cannot use obrowse if you used rlogin or telnet to access the shell.

2. obrowse passes the effective UID of its process to the TSO session. If the

EUID does not match the EUID of the TSO process, the OBROWSE TSO

command will attempt to set the effective UID of the TSO process to that of the

shell command prior to loading the file.

Exit Values

0 The TSO/E OBROWSE command was invoked once for each file specified.

1 Failure because obrowse could not access at least one file because single

quotes or parentheses were used in the filename.

2 Failure because obrowse was not able to set 3270 passthrough mode.

od — Dump a file in a specified format

Format

od [–v] [–A addr_fmt] [–j num [bkm]] [–N num] [–t type_string] [file ...]

od [–bcDdhOoSsXx] [file] [[+]offset[.][b]]

Automatic Conversion and File Tag Specific Option:

od [–T]

Description

od (octal dump) dumps a file to the standard output in a format specified by

command-line options. The default format is octal words. You can use combinations

obrowse

Chapter 2. Shell command descriptions 459

|

of options to generate multiple formats with the requested representation of each

byte vertically aligned. The file seek address (in octal) precedes each line of new

data.

od recognizes two syntaxes. The first one conforms to POSIX. If you choose the

first form, od displays files from the list file one at a time. If no file appears on the

command line, od reads the standard input.

For a summary of the UNIX03 changes to this command, see Appendix N, “UNIX

shell commands changed for UNIX03,” on page 943.

Options

The first form of od accepts the following options:

–v Displays all lines. Normally, od does not display multiple lines that differ

only in the address. It displays the first line with a single * under it. to show

that any subsequent lines are the same.

–A addr_fmt

Specifies the format that od uses to display the address field. addr_fmt can

be d (decimal), o (octal), x (hexadecimal), or n (do not display address).

The default is –A o.

–j num

Skips num bytes from the beginning of the file. If you precede num with 0X

or 0x, od interprets it as hexadecimal. If you precede it with 0, od interprets

it as octal; otherwise, od assumes it is decimal. You can also append b, k,

or m to num to indicate 512-byte blocks, kilobytes, or megabytes instead of

bytes. If num is hexadecimal, any appended b will be considered to be the

final hexadecimal digit rather than 512-byte block.

 Be careful with this option when working with doublebyte characters. If byte

num+1 (the starting byte, after skipping num bytes) is not the first byte of a

character, od proceeds as though it is, resulting in a misinterpretation of

that and subsequent characters. This misinterpretation continues until od

encounters a <newline>. Then it is once again synchronized with the first

byte of a doublebyte character.

–N num

Processes a maximum of num bytes. Be careful with this option when

working with doublebyte characters. If od is processing a doublebyte

character when it encounters the numth byte and this byte is not the last

byte of the character, od displays ??? instead of the character.

–t type_string

Specifies the output format. type_string can contain the following format

characters:

a Named characters from the ISO 646 character set. Data is

interpreted as if it was coded in the ISO 646 character set.

c Characters. od displays nonprintable characters as backslash

sequences and displays printable doublebyte characters properly.

 A printable doublebyte character is displayed in the first byte

position, and the remaining positions to the end of the character

display ** to indicate the doublebyte character. Nonprintable

doublebyte characters are displayed using a 3-digit octal number to

represent each byte.

od

460 z/OS V1R9.0 UNIX System Services Command Reference

|
|

|
|
|
|
|
|

|
|
|
|
|
|

Also, incorrect doublebyte sequences are displayed with ??? for

each incorrect byte.

d Signed decimal. A one-digit number may follow d telling od how

many bytes to use. This must correspond to the size of a char (1

byte character), a short (2 byte short), an int (4 byte integer), a long

(4 byte long, which is currently the same as integer on z/OS), or a

long long (8 byte integer). The default size is the size of an int. A

symbolic size character can follow d, rather than the number of

bytes. These have the following meaning:

C Corresponds to number of bytes in a char

S Corresponds to number of bytes in a short int

I Corresponds to the number of bytes in an int

L Corresponds to the number of bytes in a long int

LL Corresponds to the number of bytes in a long long int

f Hexadecimal Floating-point. A one-digit number can follow f, telling

od how many bytes to use. This must correspond to the size of a

float, double, or long double. The default size is the size of a

double. A symbolic size character can follow f, rather than the

number of bytes. These have the following meaning:

F Corresponds to size of float

D Corresponds to size of double

L Corresponds to size of long double

F IEEE Binary Floating-point. A one-digit number can follow F, telling

od how many bytes to use. This must correspond to the size of a

float, double, or long double. The default size is the size of a

double. A symbolic size character can follow F, rather than the

number of bytes. These have the following meaning:

F Corresponds to size of float

D Corresponds to size of double

L Corresponds to size of long double

o Octal. A one-digit number can follow o, telling od how many bytes

to use. This must correspond to the size of a char (1 byte

character), a short (2 byte short), an int (4 byte integer), a long (4

byte long, which is currently the same as integer on z/OS), or a

long long (8 byte integer). The default size is the size of an int. A

symbolic size character can follow o, rather than the number of

bytes. These have the following meaning:

C Corresponds to number of bytes in a char

S Corresponds to number of bytes in a short int

I Corresponds to the number of bytes in an int

L Corresponds to the number of bytes in a long int

LL Corresponds to the number of bytes in a long long int

u Unsigned decimal. A one-digit number can follow u, telling od how

many bytes to use. This must correspond to the size of a char (1

byte character), a short (2 byte short), an int (4 byte integer), a long

(4 byte long, which is currently the same as integer on z/OS), or a

long long (8 byte integer). The default size is the size of an int. A

symbolic size character can follow u, rather than the number of

bytes. These have the following meaning:

C Corresponds to number of bytes in a char

S Corresponds to number of bytes in a short int

I Corresponds to the number of bytes in an int

L Corresponds to the number of bytes in a long int

od

Chapter 2. Shell command descriptions 461

LL Corresponds to the number of bytes in a long long int

x Hexadecimal. A one-digit number can follow x, telling od how many

bytes to use. This must correspond to the size of a char (1 byte

character), a short (2 byte short), an int (4 byte integer), a long (4

byte long, which is currently the same as integer on z/OS), or a

long long (8 byte integer). The default size is the size of an int. A

symbolic size character can follow x, rather than the number of

bytes. These have the following meaning:

C Corresponds to number of bytes in a char

S Corresponds to number of bytes in a short int

I Corresponds to the number of bytes in an int

L Corresponds to the number of bytes in a long int

LL Corresponds to the number of bytes in a long long int

Multiple format characters can appear in one type_string and multiple –t

options can appear on the command line. If there is no –t option, the

default is –t oS.

Note: –t a is mutually exclusive with the file tag specific option, –T.

The second form of od is the historical (Berkeley Software Distribution)

implementation of the command. If you use this form, you can specify only a single

input file. If you do not give a file argument, od reads the standard input. You can

supply an offset, but you must precede it with a plus sign (+) to distinguish it from a

filename if no file is given. Giving an offset causes a seek to a position in the file

where output begins. If the offset ends in a period (.), od considers it to be

decimal; otherwise, od considers it octal. If you follow the offset with a b, od

multiplies it by the block size of 512 bytes. The format of the offset determines the

format of the address; that is, if it is interpreted as decimal, the addresses are

displayed in decimal.

Note: The od command does not work on a file whose filename starts with either a

digit or a plus (+) sign, unless the –A, –N, –j, or –t options are used.

The second form of od accepts the following options:

–b Bytes in octal

–c Bytes as characters

–D Unsigned decimal longs (4 bytes)

–d Unsigned decimal words (2 bytes)

–h Bytes in hexadecimal

–O Unsigned octal longs

–o Unsigned octal words

–S Signed decimal longs

–s Signed decimal words

–X Unsigned hexadecimal longs

–x Unsigned hexadecimal words

File Tag Specific Option

–T Enables automatic conversion (autoconversion) for tagged files. This option

is mutually exclusive with –t a.

 For more information about autoconversion and file tagging, see z/OS UNIX System

Services Planning.

od

462 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|

Localization

od uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_NUMERIC

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to open the input file

v Badly formed offset

v Seek or read error on the input file
2 Failure due to any of the following:

v Incorrect command-line argument

v The wrong number of command-line arguments

v Incorrect format character

v Incorrect size modifier for format character

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The options to operate on longs (–OSXD) and the hex byte (–h) are extensions to

the POSIX standard.

Related Information

dd

oedit — Edit files in a z/OS UNIX file system

Format

oedit [–r xx] [file...]

Description

oedit enables you to edit a file in the z/OS UNIX file system. This command uses

the TSO/E OEDIT command and must be run in the foreground. The 3270

passthrough mode is used to invoke the TSO/E OEDIT command under OMVS.

You can specify any number of files; the TSO/E OEDIT command is invoked once

for each file. If you do not specify a filename, the Edit Entry panel is displayed.

From that panel, you can enter the directory name and filename of an existing file,

or you can specify a directory name and filename for a new file. The Edit Entry

panel also lets you specify an edit profile and an initial edit macro.

The filename can be absolute or relative. Avoid using single quotes or parentheses

within the filename. Avoid using spaces or single quotes within path names.

od

Chapter 2. Shell command descriptions 463

Option

–r xx Set the record length to be edited for fixed length text files. xx is the record

length.

 If –r xx is specified, the file will be processed as variable length but loaded

into the editor as fixed length records and saved as fixed length records.

This lets you convert a variable length file to fixed length. If any lines are

longer than the specified record length, the edit session will not load the file

and will issue the customary message that a line is too long.

Usage notes

1. oedit attempts to load the file into a VB255 session. If this is an ISPF that

supports wide edit (such as ISPF 4.1) and any line exceeds 235 characters, the

width for the new session is the length of the longest line plus 25% to allow for

some expansion.

2. The COPY command cannot copy in files that have records wider than the edit

session.

3. oedit attempts to open an existing file as read/write. If this fails, it will attempt

opening the file read-only to allow the user to view the file. Changes made in

this mode cannot be saved to the file. If changes are made, the edit session

must be ended using the ISPF CANCEL primary command. However, you can

use the ISPF CREATE and REPLACE primary commands to save all or part of

the changed file to another file before you CANCEL the edit session.

4. oedit passes the effective UID of its process to the TSO session. If the EUID

does not match the EUID of the TSO process, the OEDIT TSO command will

attempt to set the effective UID of the TSO process to that of the shell

command prior to loading the file.

5. You cannot use oedit if you used rlogin or telnet to access the z/OS shell.

6. The TSO region size must be large enough to hold the size of the file to be

edited.

7. Two ISPF variables are available to edit macros:

v HFSCWD this variable contains the path name for the directory in which the

file being edited resides.

v HFSNAME this variable contains the name of the file being edited.

Environment Variable

BPXWPERM

Specifies the default open permissions used by oedit. Permissions are

specified in octal format. No validation is done on the supplied permissions

and the number will be used as the file mode on an open() call. If the file

already exists the permissions are not changed. If the environment variable

is not set, oedit will work as before using 0700 as the default permissions.

Exit Values

0 The TSO/E OEDIT command was invoked for each file specified.

1 Failure because oedit could not access at lease one file because single

quotes or parentheses were used in the filename.

2 Failure because oedit could not set 3270 passthrough mode.

oedit

464 z/OS V1R9.0 UNIX System Services Command Reference

pack — Compress files by Huffman coding

Format

pack [[–][–B] [–f] [–o file] file] ...

Note: The pack utility is fully supported for compatibility with older UNIX systems.

However, it is recommended that the compress utility be used instead

because it may provide greater functionality and is considered the standard

for portable UNIX applications as defined by POSIX.2 IEEE standard

1003.2-1992.

Description

pack compresses files using a Huffman minimal redundancy code on a byte basis.

Each file is compressed in place; the resulting file has a .z extension appended to

the file name, but keeps the same owner and permissions. For example, abc is

compressed into abc.z. The times of last access and last modification are also

preserved.

Packed files can be identified by file and uncompressed by unpack (which unpacks

the file in place) or pcat (which unpacks to the standard output).

Normally pack reports the degree of compression achieved in each file (the report

is printed on stdout). This number can be negative for small files with little

redundancy if the –f option is used.

pack does not pack files if:

v The file appears to have already been packed.

v The filename is too long (an error will occur if .z is appended).

v The file has links or is a directory

v The packed file would be larger than the existing file (this includes empty files).

v The destination file already exists, or there is an error in processing.

Options

– Displays more detail on size, overhead and entropy (information rate). If this

option is used several times on the command line it acts as a toggle,

inverting the detailed-report flag at each mention.

–f Forces compression when it normally would not occur. Without this option,

pack does not compress a file if its size is not reduced by compression, the

file is already compressed, or the file has more than one link.

–o file Specifies a different output file so that compressed output is written to file

rather than overwriting the original input file. Several input and output files

may be specified. For example,

pack –o out1 in1 –o out2 in2

packs file in1 into out1 and file in2 into out2. The input files are not

changed.

File Tag Specific Options

–B Disable autoconversion of tagged files.

pack

Chapter 2. Shell command descriptions 465

Localization

pack uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 An error occurred related to manipulating (opening, closing, renaming) the

file, or a single file could not be packed properly.

n Indicates that n files could not be packed properly. For example, if three out

of six files could not be packed properly, the exit status is 3.

file: no saving

The file is too small or uniform to benefit from packing. The file can still be

packed using the –f option.

file: already packed

The file appears to be a packed file. It can still be packed by specifying the

–f option.

file: has links

The file has more than one link. You can override it with the –f option.

file: directory

pack cannot modify directories.

file: empty

The file is empty.

file: can’t pack in place

The file is too large to pack in place. You must specify an output file using

the –o option.

Interrupt

If you press BREAK while pack is running, it does not stop immediately; if it

did, it would leave you with a corrupted file. Thus pack just displays this

message to show that the BREAK has been received and it will stop as soon

as it is safe to do so.

Other messages, such as those about inaccessibility of files, are self-explanatory.

The exit status is the number of file arguments that could not be processed.

Portability

X/Open Portability Guide, UNIX System V.

The –o option is an extension of the POSIX standard.

Related Information

file, pcat, unpack

pack

466 z/OS V1R9.0 UNIX System Services Command Reference

passwd — Change user passwords

Format

passwd [–u userid]

Description

passwd changes the login password for the user ID specified. If userid is omitted,

the login name associated with the current terminal is used. You are prompted for

the new password, which may be truncated to the length defined as the maximum

length for the passwords.

Users can change the password for another user if they know the user ID and

current password.

Examples

1. To change your password, issue:

passwd

You will be prompted for the old password and the new password.

2. To change the password for user ID Steve, issue:

passwd -u steve

You will be prompted for the old password and the new password.

Exit Values

0 The password was changed.

1 Failure due to any of the following:

v The user specified does not exist.

v The current password is incorrect.

v The new password does not meet the installation-exit requirements.

2 The new password was not entered the same way twice.

3 The password is too long.

4 Error obtaining user login name.

paste — Merge corresponding or subsequent lines of a file

Format

paste [–s] [–d list] file ...

Description

paste concatenates lines of all the specified input files onto the standard output. If

you specify – (dash) instead of a file, paste uses the standard input. Normally, an

output line consists of the corresponding lines from all the input files. paste

replaces the newline character at the end of each input line (except the one from

the last file on the command line) with a tab character, or characters specified by

the –d option.

passwd

Chapter 2. Shell command descriptions 467

Options

–d list Specifies a list of characters to be used one at a time instead of the tab

character to replace the newline at the end of input lines. In a doublebyte

locale, list can contain doublebyte characters. paste uses list circularly;

when it exhausts the characters in list, it returns to the first character in the

list. If you also specify the –s option, paste returns to the first character of

list after processing each file. Otherwise, it returns to the first character after

each line of output.

 list can contain any of the following standard C escapes such as \n, \t, \r,

\b, \\, and \0, where \0 indicates that no separator is to be used.

–s Concatenates all lines from each input file together on the single output

line. If the –s option is not specified and the end of the file is detected on

any (but not all) of the input files, paste behaves as though empty lines

have been read from those files.

Examples

The command:

ls | paste –s –d’\t\t\n’

displays the output of ls in three tab separated columns.

If file A contains:

a

b

c

and file X contains:

x

y

z

then the command:

paste A X

produces:

a x

b y

c z

and the command:

paste –s A X

produces:

a b c

x y z

Localization

paste uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

paste

468 z/OS V1R9.0 UNIX System Services Command Reference

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Missing input files

v Too many files specified

v Inability to open a file
2 Unknown command-line option

Messages

Possible error messages include:

Too many files at name

You specified more files than paste can handle. The name given in the

error message is the name of the first file that paste could not open. The

number of files that paste can open depends on the number of files that

other processes have open.

Portability

POSIX.2, X/Open Portability Guide, UNIX System V.

Related Information

cut

patch — Change a file using diff output

Format

 patch [–bceflNnRsv] [–B prefix] [–D symbol] [–d dir] [–F n]

 [–i patchfile] [–o outfile] [–p n] [–r rejectfile] [file]

Description

patch reads a patchfile that contains output from diff describing changes from an

old text file to a new text file. patch then applies those changes to another text file.

Typically, you use patch if you are keeping parallel versions of a file. When you

make a set of changes to one file, you can use patch to incorporate those same

changes in other versions of the file.

Options

–B prefix

Saves a copy of the original file in a backup file. The backup filename is the

name of the original file preceded by the string prefix. If there is already a

file with this name, patch overwrites it. When applying more than one patch

to the same file, patch copies only the original for the first patch. When you

also specify –o outfile, patch does not create prefixfile, but if outfile already

exists, it creates prefixoutfile.

–b Saves a copy of the original file in a backup file. The backup filename is the

name of the original file plus the suffix orig. If there is already a file with

that name, patch overwrites it. When applying more than one patch to the

paste

Chapter 2. Shell command descriptions 469

same file, patch only creates file orig. When you also specify –o outfile,

patch does not create file-.orig, but if outfile already exists, it creates

outfile.orig.

–c Interprets the patchfile as a context diff file (the output of diff when –c or

–C is specified). You cannot use this option with –e or –n.

–D symbol

Marks changes with the C preprocessor construct:

#ifdef symbol

 ...

#endif

When you compile the resulting (patched) file, you get the original file if

symbol is not defined, and the changed file if symbol is defined.

–d dir Changes the current directory to dir before processing the patch.

–e Interprets the patchfile as an ed script (the output of diff when –e is

specified). You cannot use this option with –c or –n.

–F n Specifies the number of lines of a context diff to ignore when searching for

a place to install a patch.

–f Forces processing without requesting additional information from the user.

–i patchfile

Reads the patchfile information from the file patchfile . If you do not specify

patchfile, patch reads the information from the standard input.

–l Matches any sequences of blanks in the patchfile to any sequence of

blanks in the input file. In other words, patch considers two lines equivalent

if the only difference between the two is their spacing.

–N Ignores any patches that have already been applied. By default, patch

rejects already-applied patches.

–n Interprets the patchfile as normal diff output. You cannot use this option

with –c or –e.

–o outfile

Writes patched output to outfile instead of to the original file. When you

specify more than one patch to a single file, patch applies the patches to

intermediate versions of the file created by previous patches, resulting in

multiple, concatenated versions of the file being written to outfile.

–p n Deletes n components from the beginning of all pathnames found in the

patch file. If a pathname is an absolute pathname (that is, starts with a

slash), patch treats the leading slash as the first component of the path,

and patch –p 1 deletes the leading slash. Specifying –p 0 tells patch to

use the full pathnames given in the patchfile. If you do not specify this

option, patch only uses the basename (the final path component).

–R Reverses the sense of the patch script. In other words, patch behaves as if

the patch script shows the changes that make the new version into the old

version. You cannot use –R if the patchfile is in ed script format.

 With –R, patch attempts to reverse each change recorded in the script

before applying the change. patch saves rejected differences in reversed

format (which means that you can check the rejections to see if patch

made the reversals correctly).

patch

470 z/OS V1R9.0 UNIX System Services Command Reference

–r rejectfile

Records rejects in the file rejectfile, instead of the default reject file name.

Reject files are discussed later in this section.

–s Tells patch to remain silent until an error occurs. Normally, patch writes

information on the results of the patching process to standard error (stderr).

–v Displays the version number of patch and then exits.

If you do not specify either the –b or –B option, patch attempts to change the

original file directly. If you do not specify –c, –e, or –n, patch looks at the format of

the diff output and tries to determine which type of output the patch file contains.

If you do not specify a file to be patched and the patchfile is not in context format,

patch prompts you for the name of the file you want to patch.

If the patchfile is in context format, patch tries to determine the filename on its own.

The first two lines of a context patch file give the names of the old and new files

that diff compared. If only one of the files exists, patch patches that file; if neither

exists or both do, patch checks for a line starting with a string Index: before asking

you for the name of the file to patch. If both files exist but one of them is empty, the

empty file will automatically be patched.

After patch has determined the file to patch, it checks for a source control system

(SCCS) subdirectory in the current directory; if one exists, it tries to obtain an

editable version of that file by performing the source code control system (SCCS)

command get –e. If patch cannot determine the file to patch, it prompts you for the

name of the file to use.

With a context format patchfile, patch can recognize when line numbers given in

the patchfile do not match line numbers in the file being patched. Thus, it can patch

a file with line counts that do not match the old file that was used by diff. To do

this, it takes these steps:

1. For each section to be changed, patch starts with the line number found in the

patch file, plus or minus any adjustment that must be made for the previous

section.

2. If the line at this location does not match the line in the patch file, patch scans

forward and backward for a line that does match. If it finds a matching line,

patch proceeds to make the required changes. patch also remembers the

adjustment it had to make to find the matching line, and uses this adjustment in

the next section to be changed.

3. If patch cannot find a line matching the one in the patch file, it tries to find the

line using the lines given as context. It ignores the first and last two lines of the

context and goes searching again. If it finds a match this time, it makes the

change and remembers the adjustment.

4. If a search ignoring the first and last lines of the context fails, patch searches

one more time, ignoring the first two and last two lines of the context. If it finds

a match, it makes the changes and remembers the adjustment.

5. If patch still cannot find a match, it writes the unmatching portion to the reject

file. It then tries to process the next section of changes. Thus, the reject file

contains the sections that patch is not able to change. Line numbers on

sections in the reject file may be different than those in the patchfile, because

patch adjusts them using the adjustment that patch calculated for preceding

sections.

patch

Chapter 2. Shell command descriptions 471

To some extent, patch tries the same process if the patch file is in normal format

rather than context format. Because the patch file does not contain the context

information, patch has less to work with and probably creates more rejects. patch

always writes the rejectfile in context format, regardless of the format of the

patchfile.

By default, the reject file has the same name as the original file, plus the suffix

.rej. You can use –r to specify a different reject file on the command line. If the

reject file already exists, patch overwrites it.

If you do not specify –R, patch starts out with the assumption that the patch file

could be normal or reversed. Therefore if the first change is rejected, patch tries

the reverse change to see if that one works. If the reverse change is also rejected,

patch continues with other changes in the file, trying both forward changes and

reverses until one of them works. If the one that works is a forward change, patch

attempts only forward changes for the rest of the file. If the one that works is a

reverse change, patch issues a message to this effect and ask if it should treat all

the changes as reverse ones. However, if the –R option is specified on the

command line, it is assumed to hold for all changes in the patch file.

The patch file can contain output from several diff comparisons. patch treats each

collection of changes as a separate patch file, and with each, patch may prompt

you for the name of the file you want to patch.

Localization

patch uses the following localization variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_TIME

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 There were one or more rejects

>1 An error occurred

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The –B, –F, –f, –s, and –v options are not extensions to the POSIX standard.

Related Information

diff, ed

pathchk — Check a pathname

Format

pathchk [–p] pathname ...

patch

472 z/OS V1R9.0 UNIX System Services Command Reference

Description

pathchk checks one or more pathnames (specified by pathname) for validity and

portability (based on the underlying file system). A pathname is valid if you can use

it to create or access a file without causing a syntax error. A pathname is portable if

the file system does not truncate the name when it tries to use it. pathchk writes an

error message indicating the error detected and the erroneous pathname if any

pathname:

v Is longer than PATH_MAX bytes

v Contains a component longer than NAME_MAX bytes

v Contains any component in a directory that is not searchable

v Contains any character in any component that is not valid

Options

–p Instead of using the previous criteria, writes an error message if pathname:

v Is longer than _POSIX_PATH_MAX bytes

v Contains any component longer than _POSIX_NAME_MAX bytes

v Contains any character in any component that is not in the portable

filename character set

Localization

pathchk uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 All pathnames passed the check

1 An error occurred

2 Unknown command-line option

Portability

POSIX.2, X/Open Portability Guide.

pax — Interchange portable archives

Format

v pax [–cdEnvz][-H|-L][–f archive] [–o type] [–s substitute] ... [pattern ...]

v pax –r [–cdEiknquvz] [-H|-L] [–f archive] [–o options ...] [–p string ...] [–s

substitute ...] [–V volpat] [pattern ...]

v pax –w [–dEituvXz] [-H|-L] [-W seqparms=parms] [–b blocksize] [[–a] [–f

archive]] [–o options ...] [–ssubstitute ...] [–V volpat] [–x format] [pathname ...]

v pax –r –w [–CdDEiklLMntuvX] [-H|-L][–o options ...] [–p string ...] [–s substitute

...] [pathname ...] directory

pathchk

Chapter 2. Shell command descriptions 473

|

|

|
|

|
|

|
|

Note

APAR OW52499 (OS/390 R6 - z/OS R4) changed the pax default behavior for

extended USTAR attributes. Before the APAR is applied, -o saveext is the

default and extended USTAR attributes are saved. After the APAR is applied,

-o noext is the default and extended USTAR attributes are NOT saved. The

APAR also introduces an environment variable (_OS390_USTAR=Y) which

makes pax save the extended USTAR attributes as long as -o noext is not

used. For more information on extended USTAR attributes, see “z/OS

extended USTAR support” on page 498.

The pax Interchange Format (-x pax), which is a standard UNIX format, stores

all file attributes that extended USTAR (-o saveeext) or os390 format (-x

os390) do and additionally can save and restore file attributes which cannot

be handled by any other format such as: files greater than 8 GB in size, uid

and gid values greater than 2097151 and z/OS specific attributes like user

audit and auditor audit flags and file format. The pax Interchange Format is

supported on z/OS release 8 and later. pax Interchange Format archives can

be extracted on older systems; however, there will be loss of information for

archived files which have attributes which cannot be stored in USTAR format.

When creating archives that may be extracted on older z/OS systems it is

recommended that USTAR (default), extended USTAR(-o saveext) or os390

(-x os390) format be used. When creating archives that will be extracted on

z/OS release 8 systems and later, the pax format (-x pax) is the

recommended format. See the -x pax option for more information about

preserving extended attributes with pax format.

 File Tag Specific Options:

v pax –o fromfiletag

v pax –o setfiletag

Description

pax reads, writes, copies, and lists archive files. An archive file is a single file

containing one or more files and/or directories. Archive files can be HFS files or

MVS data sets. A file stored inside an archive is called a component file; similarly, a

directory stored inside an archive is called a component directory.

Rule: MVS data sets cannot be specified for component files.

Included with each component file and directory is recorded information such as

owner and group name, permission bits, file attributes, and modification time.

You can therefore use a single archive file to transfer a directory structure from one

machine to another, or to back up or restore groups of files and directories.

Archives created by pax are interchangeable with those created with the tar utility.

Both utilities can read and create archives in the default format of the other (USTAR

for pax and TAR for tar, os390 for both). Additionally, OS390 formatted archives

created by pax are interchangeable with those OS390 formatted archives created

by the tar utility. Archives are generally named with suffixes such as .pax or .tar (or

pax.Z and tar.Z for compressed files), but this is not required.

pax

474 z/OS V1R9.0 UNIX System Services Command Reference

As shown in Format, pax performs one of the four archive functions based on the

usage of the –r and –w options: list, read, write, or copy:

list If you do not specify –r or –w, you are in list mode. In this mode, pax uses

the standard output to display the table of contents of an existing archive

file. The –v (verbose) and –E options can be used to show the file attributes

(to include file tags and ACLs) and extended attributes of each component.

By default, pax displays all component files and directories contained in the

archive. One or more patterns may be used to display information on

specific components.

read If you specify –r but not –w, you are in read mode. In this mode, pax reads

an archive file as input and extracts components from the archive. By

default, pax selects all components. Patterns may also be used to identify

specific components to extract. If the archive contains several components

with the same name, pax extracts each of them with later components

overwriting files created by earlier components with the same name. The

–k, –n, or –u options can be used to control the extraction of files when

multiple files with the same name exist in the archive or on the file system.

pax can read input archives in cpio, tar, and OS390 format.

 When extracted, if a component does not have a fully qualified pathname

beginning with the root (/) directory, its path is assumed to be relative to the

current working directory. The –s or –i options can be used to dynamically

change the pathnames of extracted components. Ownership, permissions,

file attributes (such as file tags and ACLs), and extended attributes of the

extracted files are discussed under the –p option.

write If you specify –w but not –r, you are in write mode. In this mode, pax

creates an archive file that contains the specified pathnames as

components. If a pathname is a directory, pax writes to the archive file all

the files and subdirectories in that directory. If you do not specify any

pathname, pax reads the standard input to get a list of pathnames to

select; the input should give one pathname per line.

 The –d, –X, and –L options can be used to restrict pathnames to the

current directory or device, or to follow symbolic links.

 The –a (with -w) option can be used to append to an existing archive.

copy If you specify both –r and –w, you are in copy mode. In this mode, pax

reads the specified pathnames and copies them to the target directory. In

this case, the given directory must already exist and you must be able to

write to that directory. If a pathname is a directory, pax copies all the files

and subdirectories in that directory as well as the directory itself. If you do

not specify any pathname, pax reads the standard input to get a list of

pathnames to copy; the input should give one pathname per line. copy is

only carried out in the pax (-x pax) format.

The name of the archive file can be specified with the –f archive option. If –f is not

used, pax will read from standard input for the list and read (–r) functions and will

write to standard output for the write (–w) function.

pax can read input archives in cpio, tar, and os390 format. It can also write these

formats; see the –x option.

pax

Chapter 2. Shell command descriptions 475

Patterns

Command-line patterns are similar to the wildcard constructs described in the sh

command. You can use them to select specific components when reading or listing

an archive.

Slash characters in a pathname must be explicitly matched by using one or more

slashes in the pattern; it cannot be matched by the asterisk (*) or question mark (?)

special characters or by a bracket expression. For example, the pattern "*.c" will

only match files in the archive with name that are not preceded by a slash. The

pattern "*/*.c" will match files in the archive preceded by a single slash.

Tip: Patterns should be quoted to prevent the shell from first expanding them. For

example, if the pattern *.h is not quoted, the shell will first resolve it into the list of

files in the current directory ending with .h. If there are none, the shell will replace

*.h with an empty list and pax will then list every component in the archive

because no pattern is specified. If one or more .h files are returned by the shell,

pax will list only those components in the archive matching the .h files found in the

current directory.

pax does not support patterns when writing or copying — however, wildcards can

be used in specifying the pathname with the write or copy function because the

shell will first expand them before passing the results to pax.

The –c option can be used to select files that do not match the pattern.

Options

The following options can appear on pax command lines. Some of them are

appropriate to only some forms of the command, as shown in “Format” on page

473.

–a Appends specified files or directories to the end of the contents of an

existing archive. If the archive does not already exist, pax creates it.

 Restriction: The following types of archives cannot be appended:

v Compressed archives

v Archives residing in MVS partitioned data sets

v Archives in OS390 format cannot be appended to archives in non-OS390

format

v Archives in non-OS390 format cannot be appended to archives in OS390

format

–b blocksize

Specifies the block size in an output operation. Each output operation writes

blocksize bytes, where blocksize is an integer appropriate to the output

device. If b follows the blocksize number, the block size is the given number

of 512-byte blocks. If k follows the blocksize number, the block size is the

given number of 1024-byte blocks. The default blocksize is 10k for tar

archives, 5k for cpio archives. The block size must be at least 512 bytes for

reading.

–C Causes pax to continue after encountering an error on the source file

system. pax will print an error message and return a nonzero value after

the command ends. Errors on the target file system (such as out of space

or write errors) will still cause the pax command to end as it always has.

 Restriction: The –C option is only for pax copy mode.

pax

476 z/OS V1R9.0 UNIX System Services Command Reference

–c Selects all those files that do not match any of the patterns given on the

command line; this is the opposite of the usual behavior. If a pattern is not

given, then no files will match.

–D Files will not be created sparse in the target directory tree. Sparse files are

those which do not use real disk storage for pages of file data that contain

only zeros. This saves on disk space. When those files are opened and

read, the file system returns zeros for those portions of the files that do not

have real disk storage. The default for pax is to copy all files as sparse,

whether or not the original file was sparse, if sparse files are supported on

the target file system.

 Restriction: The –D option is only for pax copy mode.

–d Does not traverse directories. A pattern matching a directory extracts only

the directory itself. When creating an archive, a directory name stores only

the directory itself.

–E Same as verbose (–v) output, but additionally displays extended attributes.

See “Output” on page 490 for more information. –o E is equivalent to pax

–E.

–f archive

Lets you specify the name of the archive file instead of using the standard

input for list mode, read mode (–r operations), and the standard output for

write mode (–w). The archive file you specify may be an MVS data set. For

more information, see Appendix K, “Specifying MVS data set names in the

shell environment,” on page 935.

 Tip: Avoid writing to an archive which is in the directory tree or the set of

files being archived. Doing so causes pax to write the archive to itself and

results in unpredictable results during the write or later during a read.

-H Follows symbolic links specified on the command line only. When you

specify this option pax copies the file pointed to by a symbolic link to an

archive. The exception is if a symbolic link on the command line points to

another symbolic link. A chain of symbolic links shall be followed to the end.

Symbolic links encountered during tree traversal are not followed - the

symbolic link itself is archived. The default behavior shall be to archive the

symbolic link itself.

 Rule: Specifying more than one of the mutually exclusive options -H and -L

shall not be considered an error and the last option specified shall

determine the behavior of the utility.

–i Lets you rename files as pax works. With extractions, pax displays the

name of the component it is about to extract and gives you the chance to

specify a name for the extracted file. With write operations, pax displays the

name of the file or directory it is about to record in the archive, and lets you

specify a different name to be assigned to the component. If you enter . as

the name, pax processes the file or directory with no change to the name.

If you just press <Enter>, pax skips the file (doesn’t extract or archive it).

pax ends if you enter end–of-file.

 If you also specify –s, pax makes the given substitution before displaying

the name of the component.

–k Prevents the overwriting of existing files.

–L Follows symbolic links. When you specify this option, pax copies the file to

which a symbolic link points to the archive. Normally, only the symbolic link

is copied.

pax

Chapter 2. Shell command descriptions 477

Rule: Specifying more than one of the mutually exclusive options -H and -L

shall not be considered an error and the last option specified shall

determine the behavior of the utility.

–l Is applicable only when you are in copy mode—that is, when you are using

the –rw format to copy files to another directory. If you specify –l, pax

creates links to the original files whenever possible, rather than copying

them.

–M Creates empty directories within the target directory tree for each active

mount point encountered within the source directory tree. pax identifies

mount points by checking if a subdirectory in the source tree is on the same

device as the parent current directory. This behavior is like the current pax

-X option (write out only those files and directories that are on the same

device as their parent directory) except instead of skipping the subdirectory

entirely a corresponding empty directory is created in the target directory

tree. Any contents in the subdirectory on the source directory tree are

ignored.

 Restriction: The –M option is only for pax copy mode.

–n Treats the pattern arguments as ordinary path names. You can use this

option only when you specify –r but not –w. pax extracts only the first

component with a given pathname, even if the archive contains several

components with the same name. pax checks the given path names

against the archive before applying any renaming from the –i, or –s options.

pax writes an error message for each specified file that cannot be found in

the archive.

–o A Displays extended ACL (access control list) data.

 Tip: Specifying pax –o A does not automatically turn on the verbose table

of contents format. You must also specify –v to display the file permission

bit settings associated with the file.

 For more information on ACLs, see z/OS UNIX System Services Planning

and “ACL (access control list) pax support” on page 500.

–o options

Provides information for modifying the algorithm for writing and extracting

files.

 The following set of options controls the use of z/OS extended USTAR

support for the USTAR, OS390 format and pax format to preserve, restore,

and display z/OS specific information such as external links, extended

attributes, file tag information, ACLs, and other information (long link names,

for example) not otherwise supported by the USTAR format. The OS390

and pax format saves those z/OS specific attributes by default. For more

information on extended USTAR support, see “z/OS extended USTAR

support” on page 498.

Note: In addition to the below options, environment variable

_OS390_USTAR=Y may be used to turn on the z/OS extended

USTAR support for USTAR format.

–o keyword[[:]=value][,keyword[[:]=value], ...]

The value of options shall consist of one or more keywords or

keyword/value pairs of the form:

 –o keyword[[:]=value][,keyword[[:]=value], ...]

pax

478 z/OS V1R9.0 UNIX System Services Command Reference

Multiple keywords or keyword/value pairs specified to a single -o

option may be separated by a comma or a space unless the

environment variable _UNIX03=YES is used, then this must be a

comma separated list. Some keywords apply only to certain file

formats, as indicated with each description. Use of keywords that

are inapplicable to the file format being processed will be ignored

by pax.

 If _UNIX03=YES is not used then keywords can be preceded with

white space and the value field consists of zero or more characters;

within value, any literal comma must be preceded with a backslash

(\) and comma as the final character, or a comma followed solely by

white space as the final character, in options will be ignored.

 Multiple -o options can be specified. If keywords given to these

multiple -o options conflict, the keywords and values appearing later

in command-line sequences take precedence; earlier values are

ignored.

 to=codeset

 from=codeset

 These options are used to convert data from one code set to

another while reading or writing an archive. This is functionally

equivalent to using the iconv utility to convert each file before or

after archiving. This option has the format: where keyword is either

to or from and value is the name of a code set. Two common code

set names and their values are:

ISO8859-1 ASCII

IBM-1047 EBCDIC

For example, to convert from ASCII to EBCDIC, use:

-ofrom=ISO8859-1,to=IBM-1047

From EBCDIC to ASCII, use:

-ofrom=IBM-1047,to=ISO8859-1

For a more complete list of code sets, refer to z/OS XL C/C++

Programming Guide.

 Specifying an unknown keyword results in a warning message from

pax.

 You can omit either the to or from keyword. If you omit to, pax

assumes that you want to write (or read) a portable archive tape

and will convert the data to ISO/IEC 8859-1. If you omit from, pax

assumes that you are converting from the system–specific local

code set.

 If your input contains a character that is not valid in the source

code set, pax displays a warning and continues, leaving the

character untranslated. If the source code set contains a character

that is not in the destination code set, pax converts the character to

an underscore (_).

pax

Chapter 2. Shell command descriptions 479

If you do not specify –o, no code set conversion is done. When

making code set conversions, pax assumes that all files are text

files, since only text files are portable.

 The following keyword-value pairs are supported for the indicated

file formats:

delete=pattern

(Applicable only to the -x pax format.) When used in write

or copy mode, pax omits from extended header records

that it produces any keywords matching the string pattern.

When used in read or list mode, pax ignores any keywords

matching the string pattern in the extended header records.

For example:

-o delete=realtime.*

would suppress information related to the realtime

keyword. When multiple -o delete=pattern options are

specified, the patterns are additive; all keywords matching

the specified string patterns are omitted from extended

header records that pax produces. Matching shall be

performed using the pattern matching notation described in

Patterns Matching a Single Character and Patterns

Matching Multiple Characters.

exthdr.name=string

(Applicable only to the -x pax format.) This keyword allows

user control over the name that is written into the USTAR

header blocks for the extended header produced under the

circumstances described in pax Header Block. The name is

the contents of string, after the following character

substitutions have been made:

 Table 22. exthdr.name string values

string

Includes: Replaced by:

%d The directory name of the file, equivalent to the result of the

dirname utility on the translated pathname.

%f The filename of the file, equivalent to the result of the

basename utility on the translated pathname.

%p The process ID of the pax process.

%% A % character.

Any other % characters in string produce the character

itself. For instance %s shall print the character ’s’.

 If no -o exthdr.name=string is specified, pax uses the

following default value:

%d/PaxHeaders.%p/%f

globexthdr.name=string

(Applicable only to the -x pax format.) When used in write

or copy mode with the appropriate options, pax creates

global extended header records with USTAR header blocks

that will be treated as regular files by previous versions of

pax. This keyword allows user control over the name that is

pax

480 z/OS V1R9.0 UNIX System Services Command Reference

written into the USTAR header blocks for global extended

header records. The name is the contents of string, after

the following character substitutions have been made:

 Table 23. globexthdr.name string values

string

Includes: Replaced by:

%n An integer that represents the sequence number of the global

extended header record in the archive, starting at 1.

%p The process ID of the pax process.

%% A % character.

Any other % characters in string produce the character

itself. For instance %s shall print the character ’s’.

 If no -o globexthdr.name=string is specified, pax uses the

following default value:

$TMPDIR/GlobalHead.%p.%n

where $ TMPDIR represents the value of the TMPDIR

environment variable. If TMPDIR is not set, pax uses /tmp.

invalid=action

(Applicable only to the -x pax format.) This keyword allows

user control over the action pax takes upon encountering

values in an extended header record that, in read or copy

mode, are invalid in the destination hierarchy or, in list

mode, cannot be written in the codeset and current locale.

The following are values for the invalid keyword that are

recognized by pax:

v In read or copy mode, a filename or link name that

contains character encodings invalid in the destination

hierarchy. (For example, the name may contain

embedded NULLs.)

v In read or copy mode, a filename or link name that is

longer than the maximum allowed in the destination

hierarchy (for either a pathname component or the entire

pathname).

v In list mode, any character string value (filename, link

name, user name, and so on) that cannot be written in

the codeset and current locale.

The following mutually-exclusive values of the action

argument are supported:

bypass

In read or copy mode, pax bypasses the file,

causing no change to the destination hierarchy. In

list mode, pax writes all requested valid values for

the file, but will not write invalid values.

rename

In read or copy mode, pax acts as if the -i option

were in effect for each file with invalid filename or

link name values, allowing the user to provide a

pax

Chapter 2. Shell command descriptions 481

replacement name interactively. In list mode, pax

behaves identically to the bypass action.

UTF-8 When used in read, copy, or list mode and a

filename, link name, owner name, or any other field

in an extended header record cannot be translated

from the pax UTF-8 codeset format to the codeset

and current locale, pax uses the actual UTF-8

encoding for the name.

write In read or copy mode, pax writes the file,

translating the name, regardless of whether this

may overwrite an existing file with a valid name. In

list mode, pax behaves identically to the bypass

action.

 If no -o invalid= option is specified, pax acts as if

-o invalid= bypass were specified. Any overwriting

of existing files that may be allowed by the -o

invalid= actions is subject to permission (-p) and

modification time (-u) restrictions, and is

suppressed if the -k option is also specified.

linkdata

(Applicable only to the -x pax format.) In write

mode, pax writes the contents of a file to the

archive even when that file is merely a hard link to

a file whose contents have already been written to

the archive.

listopt=format

This keyword specifies the output format of the

table of contents produced when the -v option is

specified in list mode. To avoid ambiguity, the

listopt= format is the only or final keyword= value

pair in a -o option-argument; all characters in the

remainder of the option-argument are considered

part of the format string. When multiple -o listopt=

format options are specified, the format strings are

considered a single, concatenated string, evaluated

in command line order.

 To ensure proper data display be sure to use the

proper conversion specifier character for the field

being displayed for numeric data. For example, the

size field on z/OS systems is often a long data

type. Attempting to display the size field using a

conversion specifier for a smaller data type, for

example %d, will result in a zero being displayed

instead of the contents of the size field.

times (Applicable only to the -x pax format.) When used

in write or copy mode, pax includes atime and

mtime extended header records for each file.

If the -x pax format is specified, any of the keywords and

values defined in pax Extended Header keywords and

listed below, can be used in -o option-arguments, in either

of two modes:

pax

482 z/OS V1R9.0 UNIX System Services Command Reference

keyword=value

When used in write or copy mode, these

keyword-value pairs are written into the global

extended header records of the new archive. When

used in read or list mode, these keyword-value

pairs acts as if they were present in the global

extended header records of the archive being read.

In both cases the given value is applied to all files

that do not have a value assigned in their individual

extended header records for the specified keyword.

keyword:=value

When used in write or copy mode, these

keyword-value pairs are written into the extended

header records of each file in the new archive.

When used in read or list mode, these

keyword-value pairs act as if they were present in

the extended header records of each file in the

archive being read. In both cases the given value

overrides any value for the specified keyword found

in the global or file-specific extended header

records.

 For example:

pax -r -o "gname:=mygroup" <archive>

the group name is forced to a new value for all files

read from the archive.

–o saveext | noext

For USTAR and OS390 formatted archives, this option

controls whether extended USTAR support is enabled

(saveext) or disabled (noext). noext is the default behavior

for USTAR format when writing an archive. The saveext is

the default behavior for OS390 format when writing an

archive. The saveext is the default behavior when extracting

or listing files from the archive. It is also the default to save

extended attributes and external links. In order to list some

attributes like ACLs or file tags, -o A and -o T option must

be used. This option has no effect for non-USTAR. For

more information on extended USTAR support, see “z/OS

extended USTAR support” on page 498.

 Table 24. USTAR Defaults

Action USTAR Default

writing, copying -noext

extracting, listing -saveext

saveext

During archive writing, saveext causes pax to

preserve extended USTAR information. During

archive listing, saveext causes pax to display

extended USTAR information. During archive

reading, saveext enables pax to restore extended

USTAR information. To restore certain information,

the user must also have the appropriate privileges

pax

Chapter 2. Shell command descriptions 483

and have specified the corresponding options. For

example, in order to restore extended attributes,

-px must be specified and to restore ACLs -pA must

be specified. The external links and extended

attributes are saved by default for USTAR and

OS390 format. The file attributes requiring special

headers, such as long links, file tags, and ACLs,

need the -o saveext to be specified for USTAR

(OS390 uses -o saveext by default). The

environment variable _OS390_USTAR=Y may also

be used to turn on the support. For more

information on extended USTAR support, see “z/OS

extended USTAR support” on page 498.

noext When creating archives, do not preserve extended

USTAR information. When reading or listing an

archive, ignore any extended USTAR support (such

as extended attributes, long links, external links, file

tags, and ACLs) encoded within the archive. If an

archive contains z/OS special header files, these

will be displayed or restored (or both) as regular

files. Special header files are described in z/OS

Extended USTAR Support. are described in “z/OS

extended USTAR support” on page 498). pax (-x

pax) format does not recognize the noext option.

–o fromfiletag

See “File tag specific options” on page 488.

–o setfiletag

See “File tag specific options” on page 488.

–o type

–o type displays additional information when listing the contents of

an archive. Only one type may be specified per –o type option.

However, –L type may be specified mulitple times. The types that

can be displayed are:

o E Show extended attributes when displaying the archive table

of contents. Automatically turns on –v. This is synonymous

with the existing pax –E option.

–o T Displays file tag information. Similar to ls –T and chtag

output. Does not automatically turn on verbose (–v) in the

same way that ls –T does not automatically turn on its –l

(long listing) option. When used without –v, only the file tag

information and filenames are displayed.

 Example:

/tmp> pax -o T -f asciitagged.pax

m ISO8859-1 T=off text_am

t ISO8859-1 T=on text_at

- untagged T=off text_au

This option can be used with –v or –o E to display additional verbose

output.

 Example:

pax

484 z/OS V1R9.0 UNIX System Services Command Reference

/tmp> pax - T -vf asciitagged.pax

m ISO8859-1 T=off -rw-r--r-- 1 SteveS Kings 9 Apr 30 22:31 text_am

t ISO8859-1 T=on -rw r--r-- 1 SteveS Kings 9 Apr 30 22:31 text_at

- untagged T=off -rw-r--r-- 1 SteveS Kings 9 Apr 30 22:06 text_au

–p string

Specifies which file characteristics to restore. By default, pax will only

restore the access time (if it is stored in the archive) and modification time

of each component file, and the access permissions (mode) as modified by

the current umask, that is, they will only be restored entirely when the

umask is 000. Currently only pax format archives are capable of storing the

access time. Other archive formats use the modification time as the access

time. To store the access time in a pax format archive the user must specify

-o times when the archive is created or the user can manually specify a

value for a common access time for all the files in the archive with the -o

option used with the atime keyword on archive creation or extraction. The

file tag information, external links, and links whose target exceed 100

characters are also restored by default. Only file attributes that are available

in the archive being read can be restored. See the -x option, the -o

saveext|noext option, and the file format descriptions in Appendix H to

understand the limitations of the archive formats. string can consist of any

combination of the following characters:

A Restores ACL data.

a Does not preserve file access times.

e Preserves the user ID, group ID, file mode, access time,

modification time, extended attributes, and ACL entries. Prior to

z/OS 1.8, audit flags and file format (line end) attributes were not

restored because they are not available in any archive format. The

extended attributes are the apsl flags that are set by the extattr

command. Starting in z/OS 1.8, a pax format archive can be used

to store the audit flags and file format, and -p e will restore them

when available.

m Does not preserve file modification times.

o Preserves the user ID and group ID.

p Preserves the file mode: access permissions (without modification

by umask), set-user-ID bit, set-group-ID bit, and sticky bit.

 pax restores access permissions by default. If _UNIX03=YES

extracted files will have permissions of 0666 (modified by umask)

unless -p p or -p e are used.

W Preserve user-requested audit attributes and auditor-requested

audit attributes and the file format . The invoking user id must have

the AUDITOR attribute set in the system security product to

successfully set auditor-requested audit attributes.

x Preserves extended attributes. The extended attributes are the apsl

flags that are set by the extattr command.

If neither the e nor the o specification character is specified, or the user ID

and group ID are not preserved for any reason, pax shall not set the

set-user-ID and set-group-ID bits of the file mode.

–q For read mode only, pax assumes that all created files are text files and

extracts them to the local text file format. On systems with fixed length

records, this might mean appending blanks as padding.

pax

Chapter 2. Shell command descriptions 485

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

||

||
|
|
|
|
|
|
|

||

||

||
|

|
|
|

||
|
|
|

||
|

|
|
|

On UNIX and POSIX-compliant systems, pax removes all carriage return

characters (\r) and retains only the newline (\n) characters.

–r Reads an archive file from standard input.

–ssubstitute

Modifies pathnames using a substitution command substitute. This is similar

to the substitution command of the ed text editor. The full option has the

form:

–s#bregexp/string/[gp]

where bregexp is a basic regular expression and string is a string that pax

is to insert in place of matches for the regular expression. string can contain

an ampersand & (standing for the string matching bregexp), or \1, \2, and

so on (with the meanings defined in regexp), for subexpression matching.

 The # is used as the delimeter character separating bregexp and string. You

can use any non-null character instead. There cannot be any space

between -s and the delimeter character.

 Normally, –s replaces only the first match for bregexp. A g following the

string replaces all matches in the line.

 A p following the string prints all successful substitutions on the standard

error stream. pax displays a substitution in the format:

oldname >> newname

There may be more than one –s option on the command line. In this case,

pax tries the substitutions in the order given. pax stops trying to make

these substitutions as soon as it makes its first successful substitution. If

the null string replaces a filename, pax ignores that filename on both input

and output.

–t After reading files being archived, pax resets the access time to that prior

to pax’s access.

–u Compares component dates to dates of existing files with the same name.

When extracting components with –r (read mode), pax extracts a file only if

its modification date is more recent than the modification date on an

existing file of the same name. In other words, it doesn’t overwrite an

existing file if the existing file is newer than the one in the archive.

 Similarly, when copying files with –rw (copy mode), pax does not overwrite

an existing file if the existing file is newer than the one being copied.

 In a command that uses –w but not –r (write mode), –u checks to see if the

file being added has the same name as a file already in the archive. If so,

and if the file being added is newer than the one in the archive, pax leaves

the old file in the archive and appends the new one at the end. In this case,

–u automatically implies –a, which means that pax adds new files to the

end of the archive.

–V volpat

Provides automatic multivolume support. pax writes output to files the

names of which are formatted with volpat. It replaces any occurrence of # in

volpat with the current volume number. When you invoke pax with this

option, it asks for the first number in the archive set, and waits for you to

type the number and a carriage return before proceeding with the operation.

pax issues the same sort of message when a write error or read error

pax

486 z/OS V1R9.0 UNIX System Services Command Reference

occurs on the archive; the reasoning is that this kind of error means that

pax has reached the end of the volume and is to go on to a new one. An

interrupt at this point ends pax.

–v Lists pathnames on the standard error stream just before beginning to

process the files or directories, but after any –i, or –s options have had

their effect. In list mode (neither –r nor –w is specified), pax displays a

“verbose” table of contents; this verbose format shows information about

the components in the same format used by the ls command. See “Output”

on page 490 for more information.

-W seqparms=parms

Specifies the parameters needed to create a sequential data set if one does

not already exist. You can specify the RECFM, LRECL, BLKSIZE, and

SPACE in the format that fopen() function uses.

 SPACE=(units,(primary,secondary) where the following values are

supported for units:

v Any positive integer indicating BLKSIZE

v CYL (mixed case)

v TRK (mixed case)

Space may be specified as follows:

SPACE=(500,(100,500)) units, primary, secondary

SPACE=(500,100) units and primary only

Note: The fopen() arguments: LRECL specifies the length, in bytes, for

fixed-length records and the maximum length for variable-length

records. BLKSIZE specifies the maximum length, in bytes, of a

physical block of records. RECFM refers to the record format of a

data set and SPACE indicates the space attributes for MVS data

sets.
For example:

pax -W "seqparms=’RECFM=U,space=(500,100)’" -wf "//’target.dataset’" source

For information on how to specify these parameters, see z/OS XL C/C++

Programming Guide.

–w Writes files to the standard output in the specified archive format.

–X Writes out only those files that are on the same device as their parent

directory. However, it will not copy a directory currently used as a mount

point. The user must either unmount the file system from that mount point

or copy the directory manually.

–x format

Specifies a file format for an output archive. The format argument can be:

cpio Standing for the ASCII format used by the cpio command.

cpiob Standing for the binary format used by cpio.

os390 Standing for the OS390 format which has all the support for

saving/restoring extended USTAR support such as special headers,

external links, and long links. This format is only supported on z/OS

systems.

pax Standing for the pax Interchange Format which, like os390

format(-x os390) and extended USTAR(-o saveext), saves or

restores file attributes that cannot be stored in the USTAR header

format such as ACLs, external links, long link names, long path

names, file tags and extended attributes. Additionally the pax

Interchange Format can save/restore file attributes which cannot be

pax

Chapter 2. Shell command descriptions 487

|

handled by any other format such as: files greater than 8 GB in

size, uid and gid values greater than 2097151 and z/OS specific

attributes like user audit and auditor audit flags and file format. To

restore certain information, the user must also have the appropriate

privileges and have specified the corresponding options. See -p for

options for restoring file attributes.

 Rule: In copy mode pax shall behave as if it was using the pax

Interchange Format.

tar Standing for the old format of tar files.

ustar Standing for the USTAR format used by the tar command.

The default format is USTAR.

 Tip : In order to preserve information about extended attributes, external

links, and link names greater than 100 characters, USTAR format with

either _OS390_USTAR=Y environment variable or -o saveext option must

be used. It may also be saved using the -x os390 option for OS390 format.

The pax Interchange Format (-x pax) stores all file attributes that extended

USTAR (-o saveeext) or os390 format (-x os390) do and additionally can

save/restore file attributes which cannot be handled by any other format

such as: files greater than 8 GB in size, uid and gid values greater than

2097151 and z/OS specific attributes like user audit and auditor audit flags

and file format. Also the pax Interchange Format is a standard UNIX format.

The pax Interchange Format is supported on z/OS release 8 and later. pax

Interchange Format archives may be extracted on older systems however

there will be loss of information for archived files which have attributes

which cannot be stored in USTAR format. When creating archives that may

be extracted on older z/OS systems it is recommended that USTAR,

extended USTAR (-o saveext) or os390 format be used (-x pax). When

creating archives that will be extracted on z/OS release 8 systems and

later, the pax format (-x pax) is the recommended format. See the -x pax

or -o saveext option for more information about preserving extended

attributes.

–z For write or read mode, performs Lempel-Ziv compression. –z cannot be

used when appending (–a) to an existing archive.

 For writes, –z is functionally equivalent to creating a normal archive and

then compressing it using the compress utility.

 It is recommended that, when creating archive files using the –f option, the

archive name be suffixed with a .Z to identify it as a compressed file and to

facilitate it being processed by uncompress (if needed).

 For reads, –z is functionally equivalent to first uncompressing the archive

using the uncompress utility and then reading it. This option is not required

when reading a compressed archive. pax will automatically detect that the

archive is compressed. It may be useful, however, to use –z to confirm that

the archive is compressed (you will receive an error message if you specify

–z on an archive that is not compressed).

File tag specific options

–o fromfiletag

For use with –o from=,to=. Use of –o fromfiletag indicates that if a

component file has a CCSID assigned to it, use that CCSID as the

from= codeset, thereby, overriding the value specified on –o

from=,to=.

–o setfiletag For use with –o from=,to=. Using –o fromfiletag tags component

pax

488 z/OS V1R9.0 UNIX System Services Command Reference

||

files that are not already tagged. If a file is untagged (TXTFLAG =

OFF, CCSID = 0), then it will be automatically stored with TXTFLAG

= ON and with CCSID = to the target codeset. For files which are

already not untagged, –o setfiletag will not change the default

behavior. The target codeset and TXTFLAG values will be left as-is.

For example, a file tagged as mixed will have TXTFLAG = OFF and

CCSID ≠ 0. UNIX will not automatically force TXTFLAG = ON

because it does not want to override the user’s reason for making

the file mixed.

 When the currently supported –o from=,to= option is used to perform translation,

the default behavior for storing the file tag information on writes, reads and copies

will be as follows:

–w (write)

v For files that are not untagged (TXTFLAG = OFF and CCSID ≠

0), the CCSID preserved in the archive will be set to the CCSID

of the to=codeset argument. Files that are untagged (TXTFLAG

= OFF and CCSID = 0) will not have file tag information stored.

The –o setfiletag option can be used to force the tagging of files

which are not already tagged.

v When a file in the archive is tagged with a different CCSID than

the from=codeset, an error message will be generated. However,

pax will continue processing. Because this situation indicates a

probable corruption of data, upon completion, pax will issue a

nonzero return code. The –o fromfiletag option can be used to

avoid this situation. It causes pax to use the CCSID of the file

rather than the one specified on the –o from=,to= option.

–r (read)

v For files that are not untagged, the TXTFLAG value will be

restored to the value preserved in the archive (ON or OFF), but

the CCSID of the target file will be altered to the to=codeset

CCSID. For example, a file tagged as mixed will have TXTFLAG

= OFF and CCSID ≠ 0. UNIX will not automatically force

TXTFLAG = ON because it does not want to override the user’s

reason for making the file mixed.

The default behavior for files in the archive that are untagged will

not change, and the target file will also be set to untagged. The

–o setfiletag option can be used to force the tagging of files

which do not have filetag information associated with them in the

archive.

v If the target file already exists, its filetag information will be

ignored.

v When a file in the archive is tagged with a different CCSID than

the from=codeset, an error message will be generated. However,

pax will continue processing. Because this situation indicates a

probable corruption of data, upon completion, pax will issue a

non-zero return code. The –o fromfiletag option can be used to

avoid this situation. It causes pax to use the CCSID of the file

rather than the one specified on the –o from=,to= option.

–wr (copy)

v If the source files is not untagged, then the target file will have its

CCSID set to the CCSID of the to=codeset CCSID. In the event

the target already exists, then its TXTFLAG values are ignored;

pax

Chapter 2. Shell command descriptions 489

the source file is used to determine the TXTFLAG setting of the

target and will override whatever the TXTFLAG settings are of

the target.

v Like –r and –w, when the CCSID of the source file is different

from the from=codeset CCSID, a warning message will be

generated and upon completion, pax will issue a nonzero return

code. The –o fromfiletag option can be used to avoid this

situation. It causes pax to use the CCSID of the file rather than

the one specified on the –o from=,to= option.

Output

When the –v or –E option is used in list mode, pax produces a verbose table of

contents for the archive. The output for –v is similar to the output from the ls–l

command with the following exceptions:

v The notation:

pathname == linkname

indicates that linkname is a hard link of pathname.

v For symbolic and external links, pax output always shows a filesize of 0.

Refer to the description of ls for an explanation of ls –l.

The output from the –E option has the same format as –v and additionally displays

a column showing the extended attributes:

a Program runs APF-authorized if linked AC=1

p Program is considered program-controlled

s Program runs in a shared address space

l Program is loaded from the shared library region.

Note: l is a lower-case L, not an upper-case i.
– attribute not set

The format of the pax –E output is variable in length and will be extended as

necessary to display additional file characteristics that are not supported by pax –v

(ls –l).

Usage notes

1. On the z/OS system, superuser privileges or read access to the appropriate

FACILITY class resources are required to create character special files, restore

user and group names, and to set certain extended attributes (read access to

the corresponding FACILITY class resources).

2. The POSIX 1003.1 standard defines formats for pax, tar, and cpio archives that

limit the UIDs and GIDs that can be stored to the following maximum values:

 Table 25. Maximum values for UID and GIDs

Format Maximum UID and GID values

tar, USTAR 16777216

cpio 262143

Values larger than these will not be properly restored for tar and cpio formatted

archives. For USTAR formatted archives, because the user and group names

are also stored in the archive, the correct UID and GID will be restored only if

the name is defined on the target system.

pax

490 z/OS V1R9.0 UNIX System Services Command Reference

3. The POSIX 1003.1 standard defines formats for pax and tar archives that limit

the length of the target of a link file to 100 characters or less.

Note: In the case of a hard link, the target is the first occurrence of the hard

link which is archived. Subsequent hard links refer to the first instance.
Beginning with OS/390 Release 6, pax and tar provide extended USTAR

support that allows these links to be preserved when creating an archive and

restored when reading an archive. They may also be saved and restored using

the OS390 archive format. See “z/OS extended USTAR support” on page 498

for more information.

4. The POSIX 1003.1 standard defines formats for pax and tar archives that limit

the size of a file that can be stored in a pax and tar archive to less than 8

gigabytes in size. If a file being archived is 8 gigabytes or greater, an error

message is issued, and the file is skipped. The command continues, but will

end with a non-zero exit status.

5. When transferring archives between z/OS and other UNIX systems, note the

following:

a. File transfers (for example, using OPUT/OGET or ftp put/get) must be done

using binary or image format. This is true, even for archives consisting only

of text files.

b. You may need to convert text files from EBCDIC to ASCII (or some other

character set). The pax -o option can be used to convert text files while an

archive is being created or being restored. You can use the iconv utility to

convert files before they are stored in the archive or after restoring them

from an archive.

6. Automatic conversion on files with file tag information is disabled when:

v reading files during creation of an archive

v during writes while extracting files from an archive

That is, the settings of system and environment variables that turn automatic

conversion on and off will have no affect on pax’s reading and writing of files.

Extended header keywords

The following extended header keywords are applicable only in the -x pax format.

atime The file access time for the following files, equivalent to the value of the

st_atime member of the stat structure for a file.

charset

The name of the character set used to encode the data in the following

files. The entries in this table are defined to refer to known standards and

the charset value used to represent each:

 The encoding is included in an extended header for information only; when

pax is used as described, it does not translate the file data into any other

encoding. The BINARY entry indicates unencoded binary data.

 Table 26. Charset standards

<value> Formal Standard

ISO-IR 646 1990 ISO/IEC 646:1990

ISO-IR 8859 1 1998 ISO/IEC 8859-1:1998

ISO-IR 8859 2 1999 ISO/IEC 8859-2:1999

ISO-IR 8859 3 1999 ISO/IEC 8859-3:1999

ISO-IR 8859 4 1998 ISO/IEC 8859-4:1998

pax

Chapter 2. Shell command descriptions 491

Table 26. Charset standards (continued)

<value> Formal Standard

ISO-IR 8859 5 1999 ISO/IEC 8859-5:1999

ISO-IR 8859 6 1999 ISO/IEC 8859-6:1999

ISO-IR 8859 7 1987 ISO/IEC 8859-7:1987

ISO-IR 8859 8 1999 ISO/IEC 8859-8:1999

ISO-IR 8859 9 1999 ISO/IEC 8859-9:1999

ISO-IR 8859 10 1998 ISO/IEC 8859-10:1998

ISO-IR 8859 13 1998 ISO/IEC 8859-13:1998

ISO-IR 8859 14 1998 ISO/IEC 8859-14:1998

ISO-IR 8859 15 1999 ISO/IEC 8859-15:1999

ISO-IR 10646 2000 ISO/IEC 10646:2000

ISO-IR 10646 2000 UTF-8 ISO/IEC 10646, UTF-8 encoding

BINARY None

comment

A series of characters used as a comment. All characters in the value field

are ignored by pax.

gid The group ID of the group that owns the file, expressed as a decimal

number using digits from ISO/IEC 646. This record overrides the gid field in

the following header blocks. When used in write or copy mode, pax

includes a gid extended header record for each file whose group ID is

greater than 2097151 (octal 7777777).

gname

The group of the following files, formatted as a group name in the group

database. This record overrides the gid and gname fields in the following

header blocks, and any gid extended header record. When used in read,

copy, or list mode, pax translates the name from the UTF-8 encoding in the

header record to the character set appropriate for the group database on

the receiving system. If any of the UTF-8 characters cannot be translated,

and if the -o invalid=UTF-8 option is not specified, the results are

undefined as if -o invalid=bypass were specified. When used in write or

copy mode, pax includes a gname extended header record for each file

whose group name cannot be represented entirely with the letters and digits

of the portable character set.

linkpath

The pathname of a link being created to another file, of any type, previously

archived. This record overrides the linkname field in the following USTAR

header blocks.

 The following USTAR header block determines the type of link created,

whether hard or symbolic. In the latter case, the linkpath value is the

contents of the symbolic link. pax translates the name of the link (contents

of the symbolic link) from the UTF-8 encoding to the character set

appropriate for the local file system.

 When used in write or copy mode, pax includes a linkpath extended header

record for each link whose pathname cannot be represented entirely with

the members of the portable character set other than NULL.

mtime The file modification time of the following files, equivalent to the value of the

pax

492 z/OS V1R9.0 UNIX System Services Command Reference

st_mtime member of the stat structure for a file. This record overrides the

mtime field in the following header blocks. The modification time is restored

if the process has the appropriate privilege to do so.

path The pathname of the following files. This record overrides the name and

prefix fields in the following header blocks. pax translates the pathname of

the file from the UTF-8 encoding to the character set appropriate for the

local file system. When used in write or copy mode, pax includes a path

extended header record for each file whose pathname cannot be

represented entirely with the members of the portable character set other

than NULL.

realtime.any

The keywords prefixed by realtime. are reserved for future POSIX realtime

standardization. pax recognizes but silently ignores them.

security.any

The keywords prefixed by security. are reserved for future POSIX security

standardization. pax recognizes but silently ignores them.

size The size of the file in octets, expressed as a decimal number using digits

from ISO/IEC 646. This record overrides the size field in the following

header blocks. When used in write or copy mode, pax automatically

includes a size of extended header record for each file with a size value

greater than 8589934591 (octal 77777777777).

 As with other keywords, the user can manually set this value by using -o

size=value or -o size:=value. However, it is strongly recommended this not

be done. Creating a global or extended size record for the size extended

record keyword can cause failures or data corruption when used in read or

write mode. size extended records are ignored by pax in copy mode.

uid The user ID of the user that owns the file, expressed as a decimal number

using digits from ISO/IEC 646.. This record overrides the uid field in the

following header blocks. When used in write or copy mode, pax includes a

uid extended header record for each file whose owner ID is greater than

2097151 (octal 7777777).

uname

The owner of the following files, formatted as a user name in the user

database. This record overrides the uid and uname fields in the following

header blocks, and any uid extended header record. When used in read,

copy, or list mode, pax translates the name from the UTF-8 encoding in the

header record to the character set appropriate for the user database on the

receiving system. If any of the UTF-8 characters cannot be translated, and

if the -o invalid=UTF-8 option is not specified, the results are as if -o

invalid=bypass were specified. When used in write or copy mode, pax

includes a uname extended header record for each file whose user name

cannot be represented entirely with the letters and digits of the portable

character set.

ZOS.acls

The extended access control lists (extended ACLs) of the following files.

When used in write or copy mode, pax includes a ZOS.acls record for each

file which has extended ACLs set. values of the ZOS.acls keyword have the

following format

[d[efault]: | f[default]:]u[ser]:uid:perm

[d[efault]: | f[default]:]g[roup]:gid:perm

where:

pax

Chapter 2. Shell command descriptions 493

d[efault]

If specified, extended ACL refers to directory default ACL

f[default]

If specified, extended ACL refers to file default ACL

u[ser] Extended ACL refers to a particular numeric user id (UID) or user

name

g[roup]

Extended ACL refers to a particular numeric group id (GID) or group

name

uid User name or numeric user ID (UID)

gid Group name, or numeric group ID (GID)

perm Permissions specified either in absolute form (string rwx with - as a

placeholder or octal form

Syntax examples:

-o ZOS.acls=user:billy:r-x

-o ZOS.acls=g:cartoons:r

In the example below note that the multiple entries in the value are comma

separated but since these literal commas are in a -o value then they must

be preceded by a backslash since commas are used to delimit

keyword-value pairs regardless of whether or not the value is enclosed in

quotation marks.

-o

ZOS.acls=user:user1:r-x\,group:thegang:r--\,user:user2:r-x

\,d:user:user1:r-x\,d:group:thegang:r--\,d:user:user2:r-x

ZOS.taginfo

The value for the ZOS.taginfo keyword is composed of a text flag (txtflag)

and a codeset and allows the user to modify the taginfo associated with the

file. The txtflag indicates whether or not a file contains uniformly encoded or

non-uniformly encoded text data codeset. Values for txtflag are 0 (indicating

txtflag is OFF) or 1 (indicating txtflag is ON). If the txtflag is 1 (ON) it

indicates that the specified file contains pure (uniformly encoded) text data.

For files which contain binary, mixed or unknown data the txtflag is 0 (OFF).

 The codeset represents the coded character set in which text data is

encoded. The codeset can be used for uniformly encoded text files or files

that contain mixed text/binary data. can be a character code set name

known to the system, or the numeric coded character set identifier (CCSID)

(if a numeric codeset name exists, the CCSID associated with that name

will be used). When used in write or copy mode, pax includes a

ZOS.taginfo extended header record for each file for which txtflag is 1 (ON)

or the ccsid is not untagged.

 The shell command ″iconv -l″ will list supported codesets and their

corresponding CCSIDs. Values of the ZOS.txtflag keyword have the

following format:

0[ccsid]

1 ccsid

Syntax examples:

pax

494 z/OS V1R9.0 UNIX System Services Command Reference

-o ZOS.taginfo=0

-o ZOS.taginfo="1 819"

-o ZOS.taginfo="0 1208"

-o ZOS.taginfo="1 1047"

ZOS.useraudit

Indicates the user-requested audit attributes of the specified files or

directories. Audit attributes determine whether or not accesses to a file are

audited by the system authorization facility (SAF) interface. When used in

write or copy mode, pax includes a ZOS.useraudit record for each file

which the user-requested audit attributes are anything other than auditing

read, write and execute failures on the file.

 The value of the ZOS.useraudit keyword is a sequence of 3 characters

each of which may be one of the four characters below. The character in

the first position represents the audit properties for read operations on the

corresponding file, the second represents audit properties for write

operations on the corresponding file and the third character represents audit

properties for execute operations on the corresponding file.

- Do not audit

f Audit failures

s Audit successes

a Audit both successes and failures

Syntax examples:

-o ZOS.useraudit=ffa

-o ZOS.useraudit=ssa

-o ZOS.useraudit=sf-

ZOS.auditoraudit

Indicates the auditor-requested audit attributes of the specified files or

directories. Audit attributes determine whether or not accesses to a file are

audited by the system authorization facility (SAF) interface. When used in

write or copy mode, pax includes a ZOS.auditaudit record for each file

which the auditor-requested audit attributes are set on the file.

 The value of the ZOS.useraudit keyword is a sequence of 3 characters

each of which may be one of the four characters below. The character in

the first position represents the audit properties for read operations on the

corresponding file, the second represents audit properties for write

operations on the corresponding file and the third character represents audit

properties for execute operations on the corresponding file.

- Do not audit

f Audit failures

s Audit successes

a Audit both successes and failures

Syntax examples:

-o ZOS.auditoraudit=ffa

-o ZOS.auditoraudit=ssa

-o ZOS.auditoraudit=sf-

ZOS.filefmt

Specifies if a file is binary or text and for text files, specifies the end-of-line

delimiter. For format you can specify:

pax

Chapter 2. Shell command descriptions 495

not Not specified

bin Binary data

Or the following text data delimiters:

nl Newline

cr Carriage return

lf Line feed

crlf Carriage return followed by line feed

lfcr Line feed followed by carriage return

crnl Carriage return followed by new line

ZOS.extattr

The value of this keyword is a 4 character string which specifies the

extended attributes for files to allow executable files to be marked so they

run APF authorized, as a program controlled executable, or not in a shared

address space. The first character of the value specifies whether the

program runs APF authorized and is either ’a’ or ’-’. The second character

of the value specifies whether the program is considered program controlled

and is either ’p’ or ’-’. The third character of the value specifies whether the

program runs in a shared address space and is either ’s’ or ’-’. The fourth

character of the value specifies whether the program file will be loaded from

the shared library region and is either ’l’ or ’-’.

a Program runs APF authorized if linked AC=1

p Program is considered program controlled

s Program runs in a shared address space

1 Program file will be loaded from the shared library region

- Attribute not set

Syntax examples:

-o ZOS.extattr=apsl

-o ZOS.extattr=ap-l

-o ZOS.extattr=-p--

If the value field is zero length, it deletes any header block field, previously

entered extended header value, or global extended header value of the

same name.

 If a keyword in an extended header record (or in a -o option-argument)

overrides or deletes a corresponding field in the USTAR header block, pax

ignores the contents of that header block field.

Extended header keyword precedence

List Mode Format Specifications

In list mode with the -o listopt=format option, the format argument is applied for

each selected file. The pax utility appends a newline to the listopt output for each

selected file. The format argument is used as the format string with the following

exceptions:

pax

496 z/OS V1R9.0 UNIX System Services Command Reference

1. . A <space> character in the format string, in any context other than a flag of a

conversion specification, is treated as an ordinary character that is copied to

the output.

 2. In addition to the escape sequences \\,\a, \b, \f, \n, \r, \t, and \v, the escape

sequence \ddd, where ddd is a one-, two-, or three-digit octal number, is

written as a byte with the numeric value specified by the octal number.

 3. Output from the d or u conversion specifiers is not preceded or followed with s

not specified by the format operand.

 4. Output from the o conversion specifier is not preceded with zeros that are not

specified by the format operand.

 5. The sequence (keyword) can occur before a format conversion specifier. The

conversion argument is defined by the value of keyword. The following

keywords are supported:

Any of the Field Name entries in ustar Header Block and Octet-Oriented cpio

Archive Entry. The implementation supports the cpio keywords without the

leading c_ in addition to the form required by Values for cpio c_ mode Field.

Any keyword defined for the extended header in pax Extended Header.

Any keyword provided as an implementation-defined extension within the

extended header defined in pax Extended Header. For example, the sequence

″%(charset)s″ is the string value of the name of the character set in the

extended header.

To ensure proper data display be sure to use the proper conversion specifier

character for the field being displayed for numeric data. For example, the size

field on z/OS systems id often a long long data type. Attempting to display the

size field using a conversion specifier for a smaller data type, for example %d,

will result in a zero being displayed instead of the contents of the size field.

The result of the keyword conversion argument is the value from the applicable

header field or extended header, without any trailing NULs. All keyword values

used as conversion arguments are translated from the UTF -8 encoding to the

character set appropriate for the local file system, user database, and so on,

as applicable.

 6. . An additional conversion specifier character, T, is used to specify time

formats. The T conversion specifier character can be preceded by the

sequence (keyword=subformat), where subformat is a date format as defined

by date operands. The default keyword is mtime and the default subformat is:

 %b %e %H:%M %Y

 7. An additional conversion specifier character, M, is used to specify the file mode

string as defined in ls Standard Output. If (keyword) is omitted, the mode

keyword is used. For example, %.1M writes the single character corresponding

to the entry type field of the ls -l command.

 8. An additional conversion specifier character, D, is used to specify the device

for block or special files, if applicable, in an implementation-defined format the

major and minor devices for character special files, in the format

″devmajor,devminor″. If not applicable, and (keyword) is specified, then this

conversion is equivalent to %(keyword)u. If not applicable, and (keyword) is

omitted, then this conversion is equivalent to .

 9. An additional conversion specifier character, F, is used to specify a path name.

The F conversion character can be preceded by a sequence of

comma-separated keywords:

(keyword[,keyword] ...)

pax

Chapter 2. Shell command descriptions 497

The values for all the keywords that are non-null are concatenated, each

separated by a ’/’. The default is (path) if the keyword path is defined.

Otherwise, the default is (prefix,name).

10. An additional conversion specifier character, L, is used to specify a symbolic

link expansion. If the current file is a symbolic link, then %L expands to:"%s ->

%s", value of keyword, contents of link

Otherwise, the %L conversion specification is the equivalent of %F.

z/OS extended USTAR support

OS390 archive format stores all the extended USTAR attributes by default (-o

options do not apply). By default, the IBM z/OS implementation of pax and tar

provide extended support with the USTAR format to preserve and restore z/OS

specific file attributes and other information not otherwise supported due to

limitations with the USTAR format. The OS390 format also stores these by default.

Examples of these include:

v External links

v Extended file attributes (such as program-controlled and APF-authorized). The

extended attributes are the apsl flags that are set by the extattr command. Audit

flags and file format attributes are not stored.

This support is only provided for archives using the USTAR format. USTAR is the

default format for pax when creating an archive. For tar, the default format is the

original tar format. The -U option, however, can be used to cause tar to use

USTAR. When reading an archive, tar will automatically recognize the USTAR

format– no special option is required. (For more information about the USTAR

format, see ″tar -- Format of tar archives″ in Appendix H, “File Formats,” on page

911.)

The pax and tar commands also allow the storing/restoring of additional file

attributes using explicit options and/or environment variable. The following attributes

require special header support as explained below. OS390 format stores/restores

these by default. Examples of these additional attributes include:

v Links whose targets exceed 100 characters

v Access Control Lists (ACLs)

v File tag information

v Files with names longer than 255 characters

The extended USTAR support is provided by using two mechanisms: encoding the

information within the USTAR header record and through the creation of special

header files. (The same mechanism is used for the OS390 archive format.)

Encoding information within the USTAR header record

External link and extended attribute information is encoded within the standard

USTAR header in a manner which is compliant with POSIX standards and should

be tolerated by other non-z/OS versions of pax and tar. Because external links and

extended attributes are specific to z/OS, however, they cannot be restored on other

platforms.

Special header files

Hard links and symbolic links with targets greater than 100 characters cannot be

preserved within the standard USTAR format (for a hard link, the target is the first

occurrence of the hard link which is archived; subsequent hard links refer to the first

instance). In order to preserve links with targets greater than 100 characters,

special header files are created for each link and stored in the archive. The special

pax

498 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|

headers are stored when one of the following is used: -o saveext option,

environment variable _OS390_USTAR=Y, or -x os390 option (OS390 format).

Each special header file contains information used by z/OS pax and tar to restore

the link to it’s original state. Special header files are identified in the archive with

type ″S″ (see ″tar -- Format of tar archives″ in Appendix H, “File Formats,” on page

911 for more information about file types).

Each special header file in the archive will have the same name:

/tmp/OS390_USTAR_SUMMARY_timestamp where timestamp is the creation time

(represented in seconds since the epoch) of the first special header file. For

example:

/tmp/OS390_USTAR_SUMMARY_919026474

When a special header file is required to preserve a file and the _OS390_USTAR=Y

environment variable was used, an informative message along with a reason is

displayed indicating that a special header file was created. When -o saveext or -x

os390 for pax or -UX or -S for tar is used, the informational message is not

displayed.

When reading or listing an archive containing special header files and when using

the default extended USTAR support, pax and tar recognize type ″S″ files as

special header files and display or restore the file described by the special header

rather than the actual special header file. So, typically, the presence of special

header files is not known to the user.

When the archive is complete, if one or more special header files have been

created, then a final special header summary file is created and added to the

archive. This file is identified in the archive with type ″T″ and has the same name

as the special header files. This file summarizes, via script commands and

comments, the contents of all previously archived special header files. It’s primary

purpose is to provide help restoring files included via special header files to those

with versions of pax or tar that do not implement extended USTAR support.

So, to allow users of non-z/OS systems to read the special header summary file, it

is encoded in the ASCII ISO8859-1 codeset. To view the special header file in

EBCDIC code page IBM-1047, first convert the file using the iconv command. For

example:

 iconv -f ISO8859-1 -t IBM-1047 /tmp/OS390_USTAR_SUMMARY_919026474 >

summary_in _ebcdic

If extended USTAR support is disabled during reading or listing an archive by using

the pax -o noext or the tar -O option, or if the archive is processed by either an

earlier version of z/OS pax or tar that does not implement extended USTAR

support or a non-z/OS system version of pax or tar, then the special header files

will not be recognized and will be processed as unknown type regular files. During

extraction, because all files have the same name, each extracted special header file

will overlay the previous one with the special header summary file being the final

one restored.

For an example of the special header summary file, see “USTAR archive format”

on page 915.

File tags and the use of –o noext

Because special headers are required to store file tag information, the storing and

restoring of file tag information is disabled if the user specifies the –o noext option.

pax

Chapter 2. Shell command descriptions 499

The –o noext option is the default for writing an archive. To store information in the

special headers, the –o saveext or _OS390_USTAR=Y environment variable must

be used. When –o noext is used, each file is treated as if it were untagged. That is,

if –o noext is specified, the stored or extracted file will be set to untagged

regardless of its previous file tag setting.

–o noext disables all attributes stored with special headers, so this option cannot be

used to selectively disable the storing or restoring of text flag information. You will

have to use chtag to do that.

–o noext will have no affect on automatic conversion of files. If you use pax to

read, write or copy files, automatic conversion will be disabled whether –o noext is

specified or not.

For more information on automatic conversion and file tagging, see z/OS UNIX

System Services Planning.

ACL (access control list) pax support

Archive Writing or Creating

ACL data is stored in USTAR formatted archives using special headers when one of

the following is used: –o saveext option or _OS390_USTAR=Y environment

variable. OS390 format (-x os390 option) automatically stores all special header

information to include ACLs.

You can use pax –o noext to disable the creation of special headers. This prevents

pax from storing ACL data and other non-standard information such as file tag data

and long link names. However, there is no option to disable storing of ACL data

only.

Archive Reading or Restoring

By default, ACL data will not be restored when reading or restoring files from an

archive. However, you can use pax –p A to restore ACL data. You can also use

pax –p e (which restores all file attributes) to restore ACL data.

Archive Copying

If you need to preserve ACLs when copying files to an archive, you must use pax

–p A or pax –p e.

Archive Listing (Table of Contents)

For verbose output (pax –v), a + is added to the end of the file permission bits for

all files with extended ACL entries. For more information about access control lists,

see z/OS UNIX System Services Planning.

Examples

Archive Listing (Table of Contents):

If file2 and dir1 have extended ACL entries:

> pax -vf acldata.pax

-rwx------ 1 STIERT SHUT 294912 Nov 9 09:57 file1

-rwx------+ 1 STIERT SHUT 294912 Nov 9 09:57 file2

drwxr-xr-x+ 2 STIERT SHUT 8192 Mar 20 2000 dir1/

pax

500 z/OS V1R9.0 UNIX System Services Command Reference

Writing (creating) an archive:

1. The following creates an archive file named /tmp/files.pax from all the files in

the current working directory. The -v option is used to display each file as it is

being added:

pax -wvf /tmp/files.pax *

or

pax -wvf /tmp/files.pax .

The difference between these two forms is that in the latter example (using .),

names recorded in the archive will be preceded by a ″./″ which will include and

preserve the attributes of the current working directory and any hidden files in

the current working directory.

2. Either of these commands creates a compressed version of the archive created

in Example 1:

pax -wzvf /tmp/files.pax.Z *

or

pax -wzvf /tmp/files.pax.Z .

This is equivalent to the following two commands:

pax -wvf /tmp/files.pax *

compress /tmp/files.pax

3. The following creates an archive /tmp/dironly.pax containing only the files and

directory names in the current directories (it does not include the contents of

subdirectories):

pax -wdvf /tmp/dironly.pax. *

4. This example creates the archive /tmp/cfiles.pax containing all c files in the

current directory:

pax -wvf /tmp/cfiles.pax *.c

5. This example creates the archive /tmp/allcfiles.pax containing all c files in the

current directory and all subdirectories:

pax -wvf /tmp/allcfiles.pax $(find . -name "*.c")

6. This example creates the archive /tmp/ascii_src.pax using all .c and .h files in

the current directory converted into ASCII:

pax -wv -o to=ISO8859-1 -f /tmp/ascii_src.pax *.[ch]

7. The following creates the compressed archive /u/smith/oldfiles.pax.Z

containing all files on the system that have not been accessed within the last 10

days:

pax -wvzf /u/smith/oldfiles.pax.Z $(find / -type f -atime +10)

8. The following creates the archive /tmp/basename.pax containing all files in the

directory sub1 stored in the archive with ″sub1/″ removed from each component

name. Note that the pound character # is being used as the delimiter for the –s

option:

pax -wv -s#sub1/## -f /tmp/basename.pax sub1/*

Reading an archive:

1. This example extracts all the components of the archive source.pax. The –v

option is used to display each file or directory as it is extracted.

pax -rvf source.pax

2. To extract all files in source.pax and translate them from ASCII to EBCDIC:

pax

Chapter 2. Shell command descriptions 501

pax -ofrom=ISO8859-1,to=IBM-1047 -rf source.pax

3. To extract all files in the archive source.pax ending with .h:

pax -rf source.pax `pax -f source.pax | grep h$`

This example uses command substitution to first read the archive and generate

a list of all files in the archive that end with /.

4. This example extracts files into a directory that is different from the directory

they are stored in within the archive. Assume the names of all files stored in the

archive source.pax begin with the root directory (/). To extract them into

/newroot/, use the following command:

pax -rvf source.pax -s#/#/newroot/#

The –v option is used to show the names of the files as they are extracted and

is not required.

5. In the following examples, archive acldata.pax contains file1, file2, and dir1.

file1 has no ACL data, file2 has an access ACL, and dir1 has a file default ACL,

a directory default ACL and an access ACL. If you only specify option –f, your

output will be:

> pax -f acldata.pax

file1

file2

dir1

If you also specify –o A, ACL information will be displayed:

> pax -o A -f acldata.pax

file1

file2

user:WELLIE2:rw-

group:SYS1:rwx

dir1

Finally, if you add the verbose option, –v, you will see the file permission bit

settings that are associated with the file:

> pax -o A -vf acldata.pax

-rwx------ 1 STIERT SHUT 294912 Nov 9 09:57 file1

-rwx------+ 1 STIERT SHUT 294912 Nov 9 09:57 file2

user:WELLIE2:rw-

group:SYS1:rwx

drwxr-xr-x+ 2 STIERT SHUT 8192 Mar 20 2000 dir1/

user:RRAND:rwx

user:WELLIE2:rw-

group:SHUT:rwx

fdefault:user:RRAND:rwx

fdefault:group:SHUT:r-x

default:user:ANGIEH:rwx

default:group:SYS1:r--

Tip : Specifying pax -o A does not automatically turn on the verbose table of

contents format. You must also specify -v to display the file permission bit

settings associated with the file. To check if a file has an ACL when for example,

file2 and dir1 have ACLs :

> pax -vf acldata.pax

-rwx------ 1 STIERT SHUT 294912 Nov 9 09:57 file1

-rwx------+ 1 STIERT SHUT 294912 Nov 9 09:57 file2

drwxr-xr-x+ 2 STIERT SHUT 8192 Mar 20 2000 dir1/

For more information about access control lists, see z/OS UNIX System

Services Planning.

To store a file with an ACL using the OS390 archive format:

pax

502 z/OS V1R9.0 UNIX System Services Command Reference

> pax -o os390 -wf acldata.pax fileAcls

Files

/tmp/OS390_USTAR_SUMMARY_

timestamp is an z/OS extended USTAR special header file. See “z/OS

extended USTAR support” on page 498 for more information.

Environment variables

pax uses the following environment variable:

_UNIX03

For more information about the effect of _UNIX03 on this command, see

Appendix N, “UNIX shell commands changed for UNIX03,” on page 943.

Localization

pax uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_TIME

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit values

0 Successful completion

1 Failure due to any of the following:

v Incorrect option

v Incorrect command-line arguments

v Out of memory

v Compression error

v Failure on extraction

v Failure on creation

 If pax cannot extract a particular file when reading, or find a particular file when

writing, it generates an error message and continues to process other files but

returns a status of 1. If any other sort of error occurs, pax ends immediately without

attempting further processing.

If you see the following message after a write operation:

If you want to go on, type device/filename when ready

it indicates that your directory or device containing the archive file is full. To

continue, enter the name of a new directory; to end pax, type <Ctrl-C>.

If you see that message after a read operation, it means that pax could not find the

archive file you specified, or that it was damaged. In this case, type <Ctrl-C> to end

the operation and then restart pax with the correct archive name.

pax

Chapter 2. Shell command descriptions 503

|

|

|
|
|

Portability

POSIX.2, X/Open Portability Guide.

The –L, –q, –V, –E, –p x and –z options are extensions of the POSIX standard.

Related information

compress, cpio, ls, tar, uncompress

See Appendix C for more information about regexp.

See the cpio and pax file format descriptions in Appendix H, “File Formats,” on

page 911.

pcat — Unpack and display Huffman packed files

Format

pcat file ...

Note: The pcat utility is fully supported for compatibility with older UNIX systems.

However, it is recommended that the zcat utility be used instead because it

may provide greater functionality and is considered the standard for portable

UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description

pcat uncompresses files that were compressed by pack using a Huffman minimal

redundancy code. The uncompressed data is sent to the standard output. This is

handy for packed text files, but inappropriate for binary files, because the standard

output is treated as a text stream. Binary files can be decoded in place by unpack.

The names of compressed input files are expected to end in .z. If a specified input

file name does not end in this suffix, pcat automatically adds the .z. For example, if

the command line specifies file abc, pcat looks for abc.z.

Localization

pcat uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

n Indicates that n files could not be unpacked properly. For example, if three

out of six files could not be unpacked properly, the exit status is 3.

Related Information

cat, file, pack, unpack

pax

504 z/OS V1R9.0 UNIX System Services Command Reference

pg — Display files interactively

Format

pg [–cefnst] [–p prompt] [– screen] [+line] [+/pattern/] [file ...]

Note: The pg utility is fully supported for compatibility with older UNIX systems.

However, it is recommended that the more utility be used instead because it

may provide greater functionality and is considered the standard for portable

UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description

pg displays input files or piped output from another command, a screenful at a time.

If you do not specify any files, the standard input (stdin) is read. Any file named –

specifies the stdin.

“Commands” on page 506 lists commands that can be entered at page and file

breaks.

Options

–c Clears the screen before displaying each new window.

–e Eliminates the (EOF): prompt at the end of each file.

–f Does not fold lines. Usually, lines longer than the screen width, as given by

the environment variable COLUMNS are folded into multiple lines. This

option may be useful for files containing device-specific escape sequences.

–n Executes interactive commands immediately after receiving the command

character. This works for most commands. Usually, you must press <Enter>

for interactive commands.

–p string

Sets the prompt string that appears at the end of each screen of text to

string. The default prompt is a colon (:). If string contains the characters %d,

pg replaces those characters with the current page number as in [Page

%d].

–s Displays all interactive command prompts in standout mode (most often

reverse video) on the screen.

–t Does not save input in a temporary file. Usually, if any of the inputs is not

directly seekable (as is the case for a serial device or pipe), pg reads input

and saves it in a temporary file so that it can be reviewed. Because of this,

you cannot scan backwards when viewing such input. This option is also

recommended when reading a larger amount of data from a stream that

cannot be accommodated on disk.

–screen

Sets the number of lines displayed in each screen to n lines. If you do not

select this option, the number of lines displayed is one less than the

number of lines on the screen as given by the environment variable LINES.

“Commands” on page 506 discusses the w command.

+line Starts printing at line n of the first file. The default is to start printing at line

1.

+/pattern/

Starts printing at the line containing the first occurrence of the extended

regular expression pattern.

pg

Chapter 2. Shell command descriptions 505

This is described in Appendix C.

Commands

Depending on the options you specify, pg pauses between windows (screenfuls) of

text, at the end of each file and before starting any file after the first. At these

pauses, pg prompts you to enter a command. To read the file, type the command

ENTER (newline or Return) at each prompt.

An optional sign (+ or –) followed by an optional numeric address can precede the

following commands. Addresses work in multiples of screen displays: for example,

an address of +2 displays the second next screenful. Usually, an unsigned address

implies direct addressing (measured from the beginning of the file). A signed

address implies relative addressing in the file; a command beginning with a + scans

forward and one beginning with a – scans backward from the current position.

You can edit commands interactively with the standard erase and kill characters.

These are the interactive commands:

h Prints a summary of the interactive commands.

q, Q Exits immediately from pg.

!command

Executes the string command as if it were typed to the default command

interpreter (as in ed). Whether or not you specified the –n option, you must

end this command with a newline.

[[±]n] ENTER, [[±]n] SPACEBAR

Without a specified address, displays the next window of text. With an

address, displays the nth next window of text.

[[±]n]d, [[±]n]CRTL–D

Scrolls a half screen of text. The address is measured in half screenfuls

and defaults to the next half screen.

[[±]n]l With no address, displays the next line of the file. With an address, it

displays a screenful starting at the addressed line.

$ Displays the last screenful of text in the file.

<Ctrl-L>, .

Redisplays the current displayed window of text.

s file Saves the entire contents of the current file in file. Whether or not you

specified the –n option, you must end this command with a newline.

[n] n Displays the first screenful of the next file. The address (n) is actually the

nth next file, counting from the current file. If present, n must be unsigned.

[n] p Displays the first screenful of the previous file. The address (n) is actually

the nth previous file, counting from the current file. If present, n must be

unsigned.

[n] w Scrolls another window of text. The argument, n (which must be unsigned),

sets the window size to n and displays the next window of text.

[i]/pattern/[tmb]

Searches forward within the current file for the ith next occurrence of a line

matching the regular expression pattern (default i is 1, the next matching

pattern). The search starts right after the current window and continues to

the end of the file. Usually, the matching line is displayed at the top of the

pg

506 z/OS V1R9.0 UNIX System Services Command Reference

window, but this can be changed by an optional character at the end of the

search command. The letter t is the default and displays the line at the top

of the window, m displays it in the middle of the window, and b displays it in

the bottom of the window. When no letter is present, pg uses the last letter

entered (or .t if no letter has been entered). Whether or not you specified

the –n option, you must end this command with a newline.

[i]?pattern?[tmb], [i]^pattern^[tmb]

Is similar to the previous command, but searches backward instead of

forward. The search starts just before the current window.

Examples

The following interactive commands illustrate the flexibility of pg. Suppose you enter

the command:

pg –n *.c

and that there are a large number of source files in the current directory:

1 Redisplays the first screenful of the current file.

–4 Goes back 4 windows in the current file and displays a screenful of text.

p Displays the first screenful of the previous file.

10w Sets the screen size to 10 lines.

/Fred/m

Finds the first line containing

Fred

searching forward from the current position in the file, and displays a screen

with that line in the middle of the screen.

Localization

pg uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Unknown command-line option

v Insufficient memory

v Inability to create a temporary file

v Inability to access the terminal

v Missing string after a –p option

Files

pg uses the following file:

pg

Chapter 2. Shell command descriptions 507

$TMPDIR/pg*

Temporary files to allow backward reading. You can specify a different

temporary directory using the TMPDIR environment variable.

Environment Variables

pg uses the following environment variables:

COLUMNS

Contains the width of the screen in columns.

LINES Contains the number of lines on the screen.

TMPDIR

Contains the pathname of the directory where temporary files reside.

Portability

X/Open Portability Guide, UNIX System V.

This implementation does not handle doublebyte characters.

The –screen and –+line options are extensions to the XPG standard.

Related Information

alias, ed, head, more, sh, tail, vi

See Appendix C for more information about regexp.

pr — Format a file in paginated form and send it to standard output

Format

pr [–adFfprtW] [–n | –c n | –m] [–e [char][gap]] [–H header-fmt] [–h header]

[–i[char] . [gap]] [–l n] [–n[char] [n]] [–o n] [–s[char]] [–w n] [+n] [file ...]

Description

pr prints the specified files on standard output (stdout) in a paginated form. If you

do not specify any files or if you specify a filename of –, pr reads the standard

input. By default, pr formats the given files into single-column 66-line pages. Each

page has a five-line header. By default, the third line contains the file’s pathname,

the date it was last modified, and the current page number; the other lines are

blank. A five-line trailer consists of blank lines.

If you specify multiple columns, pr places its output in columns of equal width

separated by at least one space, truncating each line to fit in its column. Input lines

can be ordered down the columns or across the page on output; or different

columns can each represent different files.

Options

+n Starts printing with the nth page of each file; that is, skips the first n–1

pages. The default for n is 1.

–n Prints n columns of output. When you specify this option, pr behaves as

though you had also specified the –e and –i options. When you specify

both this option and –t, pr uses the minimum number of lines possible to

display the output. Do not specify this option with the –m option.

pg

508 z/OS V1R9.0 UNIX System Services Command Reference

–a Orders input lines across the page on output, instead of down. You should

use this option only with –n.

–c n Displays n columns of output. When you specify this option, pr behaves as

though you had also specified the –e and –i options. When you specify

both this option and –t, pr uses the minimum number of lines possible to

display the output. Do not specify this option with –m.

–d Produces double-spaced output.

–e[char][gap]

Expands each occurrence of the input tab character to a string of spaces so

that the following character has the next column position which is a positive

multiple of gap, plus 1. If you do not specify gap, or if it is zero, pr assumes

that gap has the value of 8. If you specify the nondigit character char, pr

treats it as the input tab character. Otherwise, pr uses the standard tab

character.

–F Uses form feeds to separate pages. pr normally separates pages by

sending a series of <newline> characters to fill the length of a page.

–f Uses form feeds to separate pages. When output is to a terminal, pr

sounds the bell and waits for you to type a carriage return before displaying

the text. pr normally separates pages by sending a series of <newline>

characters to fill the length of a page.

–H header_fmt

Lets you customize your header line by specifying a format with the string

header_fmt. pr recognizes the following special formatting commands:

%c Date and time

%F Current filename, or header string given by –h

%P Page number

%L Line number

%D Date

%T Time

%u Current user name

The default header format is equivalent to the option:

-H "%c %F Page %P"

–h header

Uses the header string instead of the filename on each succeeding page

header.

–i[char][gap]

Replaces white space with tabs on output. char, if given, is the output tab

character. The default is the tab character. pr sets tabs every gap positions;

the default for gap is 8. If this tab character differs from the input tab

character and the actual data contains this tab character, the result is liable

to be quite a mess.

–l n Sets the number of lines per page of output. The default is 66. The actual

number of lines printed per page is this number less 5 for the header and 5

for the trailer. If n is less than 10 (the number of lines needed for the

header and the trailer), pr displays neither the header nor the trailer.

–m Prints each file in its own column down the page. This overrides the –a

option, forcing the –n option to be the number of files given. When you also

specify the –n option, it gives line numbers for the first column only.

–n[char][n]

Numbers the lines of each file. Each number takes up n positions; the

pr

Chapter 2. Shell command descriptions 509

default for n is 5. The character char separates the number from the line;

this defaults to the tab character. If char is the same as the input tab

character, pr follows the number with the spaces needed to get to the next

tab stop. pr may in turn replace these spaces with the output tab character

if you specified the –i option. For multicolumn output, pr adds line numbers

to each column. The –m option gives the line number for the first column

only.

–o n Offsets each line of output by n character positions.

–p Pauses before the beginning of each page if output is to a terminal device.

pr sounds the bell and waits for a carriage return from the controlling

workstation (not the input files).

–r Suppresses error messages due to failures when opening files.

–s[char]

Prints each column at its correct length. The character char separates

columns. The default value for char is the tab character. This character is

never replaced by the output tab character. Normally pr pads each column

with spaces or truncates it to the exact column width. Unless the –w option

is also used, –s resets the page width to 512 column positions.

–t Does not print the headers and trailers, and quits after the last line of the

file—it does not display any extra lines.

–W Folds lines at the column width when you do not specify the –s option; pr

treats each separate part of the line as a separate line.

–w n Sets the width of the page to n column positions. If you do not specify this

option, the default page width is 72 (if you did not specify –s option) or 512

(if you did specify –s). This page width does not normally apply to

single-column output; however, single-column output with the –W option

does use this width.

Files

pr uses the following file:

/dev/tty

For prompting.

Environment Variables

pr uses the following environment variable:

TZ Contains the local time zone. pr uses this value when displaying times in

header lines.

Localization

pr uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_TIME

v NLSPATH

See Appendix F for more information.

pr

510 z/OS V1R9.0 UNIX System Services Command Reference

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Insufficient memory

v Insufficient line width

v Write error on stdout

2 Syntax error or unknown command-line option

Messages

Possible error messages include:

Missing header

You specified –h or –H but did not supply a header or header_fmt string.

Width is insufficient

The line is not wide enough to hold the given number of columns with the

given column width; or a column is not wide enough to hold the minimum

amount of data.

Portability

POSIX.2, X/Open Portability Guide.

The –c, –H, –p, and –W options are extensions of the POSIX standard.

In a doublebyte environment, remember that column positions are always based on

the width of characters. A doublebyte character may take up two columns of output

(called a thick character), but a singlebyte character will only take up one column of

output (called a thin character). Specify column widths according to the expected

thickness of characters.

For example, with a column width of 10, then ten thin characters or five thick

characters are displayed.

Related Information

cat, expand, fold, unexpand

Appendix I also explains how to set the local time zone with the TZ environment

variable.

print — Return arguments from the shell

Format

print [–npRrs] [–u[descriptor]] [argument ...]

Description

Calling print without options or with only the – option displays each argument to the

standard output using the same escape conventions as echo. In this case, print

and echo work the same way; see echo.

Options

The options accepted by print increase its utility beyond that of echo.

pr

Chapter 2. Shell command descriptions 511

–n Does not automatically add a new line to the end of the output.

–p Sends output to a coprocess.

–R Is similar to –r, except that print treats all subsequent options (except –n)

as arguments rather than as options.

–r Ignores escape conventions.

–s Appends the output to the command history file rather than sending it to

standard output.

–u[descriptor]

Redirects the output to the file corresponding to the single digit file

descriptor. The default file descriptor is 1.

Usage Note

print is a built-in shell command.

Localization

print uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Incorrect descriptor specified with –u

v Nonexistent coprocess
2 Failure due to an incorrect command-line option

Messages

Possible error messages include:

Cannot print on file descriptor ...

You tried to print on a file descriptor that was not opened for writing.

History not available

You specified the –s option to write into a history file, but you are not now

using a history file.

Portability

print is an extension to POSIX.2 and XPG.

Related Information

echo, fc, read, sh

print

512 z/OS V1R9.0 UNIX System Services Command Reference

printenv — Display the values of environment variables

Format

printenv [name]

tcsh shell: printenv [name]

Description

The printenv command displays the values of environment variables. If the name

argument is specified, only the value associated with name is printed. If it is not

specified, printenv displays the current environment variables, one name=value pair

per line.

If a name argument is specified but is not defined in the environment variable,

printenv returns exit status 1; otherwise it returns status 0.

printenv in the tcsh shell

In the tcsh shell, printenv prints the names and values of all environment variables

or, with name, the value of the environment variable named. See “tcsh — Invoke a

C shell” on page 626.

Options

There are no options.

Example

To find the current setting of the HOME environment variable, enter:

printenv HOME

Usage notes

1. Only one name argument can be specified.

2. printenv SOMENAME is equivalent to echo $SOMENAME for exported

variables.

3. printenv without any arguments is functionally equivalent to env without any

arguments.

Exit Values

0 Successful completion

1 Failure due to one of the following:

v More than one environment variable was specified

v An option was specified (printenv has no options)

Portability

printenv is compatible with the AIX printenv utility.

Related Information

env, tcsh

printenv

Chapter 2. Shell command descriptions 513

printf — Write formatted output

Format

printf format [argument ...]

Description

printf writes the argument operands to standard output, formatted according to the

format operand.

format is a format string composed of conversion specifications that convert and

add the next argument to the output. format can contain backslash-escape

sequences. These conversions are similar to those used by the ANSI C standard.

Conversion specifications have the form:

%[flag][width]

[precision][char]

where flag is one of the following:

− Left-justifies the field; default is right justification.

+ Always prefixes a signed value with a sign (+ or −).

space Reserves a character position at the start of the string for the minus sign

(for negative numbers) or a space (for positive numbers). If both space and

− appear as flags, the space flag is ignored.

Prefixes octal values with 0 and hexadecimal values with 0x or 0X. For

floating-point values, this causes the decimal point always to be displayed

even if no characters follow it.

0 Pads numeric values with leading zeros. If both 0 and − appear as flags,

the 0 flag is ignored.

width is the minimum field width of the output field. If the converted value is shorter

than the minimum width, printf pads it with spaces or zeros.

In a string, precision is the maximum number of bytes to be printed from the string;

in a number, the precision is the number of digits to be printed to right of the

decimal point in a floating-point value. width or precision can be specified as *, in

which case the value is read from the next argument, which must be an integer. For

example:

printf "%*.*d\n" 20 10 200

is equivalent to:

printf "%20.10d\n" 200

The conversion character char is one of the following:

b A string that may contain a backslash-escape sequence. Valid escape

sequences are described in

c Single character of an integer value; the first character of a string.

d Decimal integer.

e,E Floating point (scientific notation).

f,F Floating point.

g,G The shorter of e and f (suppresses nonsignificant zeros).

i Decimal integer.

o Unsigned octal integer.

printf

514 z/OS V1R9.0 UNIX System Services Command Reference

s String.

u Unsigned decimal integer.

x,X Unsigned hexadecimal integer.

When there are more arguments than positions in format, the format string is

applied again to the remaining arguments. When there are fewer arguments than

there are positions in the format string, printf fills the remaining positions with null

strings (character fields) or zeros (numeric fields).

Caution

The POSIX.2 printf facility (like the C language printf() on which it is based), does

not accommodate doublebyte characters gracefully when using %c conversion, or

either of %b or %s conversions with a specified precision. Use these features

cautiously when you have doublebyte characters in the character set.

In a doublebyte environment, normal backslash-escape characters are handled

correctly—printf shifts state as required—but octal and hexadecimal escape

characters do not change state. This is significant in a shift-lock environment. For

example, if an octal escape character contains the shift-in character, it is the user’s

responsibility to ensure that there is also a shift-out character. Further, an octal or

hexadecimal backslash escape character that comes immediately after a

doublebyte character may or may not be processed in the shifted state.

For more information on doublebyte character environments, see “Using the

doublebyte character set (DBCS)” on page 7.

Localization

printf uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_NUMERIC

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

>0 The number of failures due to any of the following:

v Missing format specifications

v Arguments supplied for a format string that does not accept them (that is,

that has no %s)

v Incorrect integer argument

v Incorrect floating-point argument

Portability

POSIX.2, X/Open Portability Guide, UNIX System V.

The %F format and the handling of * as a width or precision argument are

extensions of the POSIX standard.

printf

Chapter 2. Shell command descriptions 515

Related Information

echo, print

ps — Return the status of a process

Format

ps [–Aacdefjlm] [–G idlist] [–g grouplist] [–n name] [–o format] ... [–p proclist] [–s

idlist] [–t termlist] [–U|u uidlist]

Description

ps displays status information about processes, and optionally, the threads running

under each process.

By default, for each process associated with the user’s terminal, ps will display the

process id (PID), TTY, processor time used (TIME), and name of the command

(COMM).

The –a, –A, and –e options can be used to show information associated with all

available or accessible processes on the system. However, these options can only

show information for those processes the user has appropriate privileges to access.

The –g, –G, –p, –s, –t, –u, and –U options can be used to select specific

processes by process id, terminal id, and user name.

The –f, –j, and –l options can be used to display additional status fields using

predefined formats. The –o format option allows the user to select specific status

fields and to define the format in which these fields are displayed.

ps will display information for each thread associated with a process when the –m

and/or –o THREAD options are used. Output lines for thread information

immediately follow the output line for the parent process. Since the default behavior

of ps displays process status fields only, to provide meaningful thread output, the

–o option is used to specify thread specific status fields. There are some conditions,

such as when the process is in a terminating or zombie state, where thread data

cannot be captured. In these cases, a single thread output line will be displayed

showing a ? in the thread output fields.

Options

ps accepts several options. When a description says that ps lists “all processes”, it

means all the processes on the system, provided that you have appropriate

privileges.

The fields pcpu, nice, pri, addr, and wchan are unsupported and will always display

a dash.

–A Displays information on all available processes. You can specify –A, –a,

and –e in any combination; however, –a overrides both –A and –e.

–a Displays information on all processes associated with terminals. You can

specify –A, –a, and –e in any combination; however, –a overrides both –A

and –e.

–c Displays more detailed information about processes for the –f and –l

options. –c is accepted but not currently implemented.

–d Displays information for all processes except group leaders.

printf

516 z/OS V1R9.0 UNIX System Services Command Reference

–e Displays information on all accessible processes. You can specify –A, –a,

and –e in any combination; however, –a overrides both –A and –e.

–f Displays information as if the user specified:

–oruser=UID –opid,ppid,pcpu=C –ostime,tty=TTY –oatime,args=CMD

–G grouplist

Displays information on processes with real group ID numbers in grouplist.

Separate numbers in grouplist with either blanks or commas.

–g idlist

Displays information on processes with process ID numbers in idlist.

Separate the numbers in idlist with either blanks or commas.

–j Displays information as if the user specified:

-o pid,sid,pgid=PGRP -o tty=TTY -o atime,args

–l Displays information as if the user had specified:

–oflags,state,ruid=UID –opid,ppid,pcpu=C –opri,nice,addr,vsz=SZ

–owchan,tty=TTY –oatime,comm=CMD

–m Displays thread status information. Output lines for thread status

immediately follow the output line for the parent process. Process-only

status fields will contain dashes for thread output lines. Since the default

behavior of ps is to display process-only status fields, to provide meaningful

thread output, the –o option should be used to specify thread supported

status fields. If –o THREAD is used, –m is assumed.

–n name

Specifies the name of the executable file containing the kernel symbol

table. This option is currently not supported and is ignored.

–o format

Displays information according to the given format specifications. If –o is

not used, the default format is the same as specifying:

–o pid,tty=TTY –o atime,comm

See “Format Specifications” on page 518.

–p proclist

Displays information for processes with process ID numbers in proclist.

Separate numbers in proclist with either blanks or commas.

–s idlist

Displays information for processes with session ID numbers in idlist.

Separate the numbers in idlist with commas.

–t termlist

Displays information for processes with terminals in termlist. You denote

terminals in termlist with either the filename of the device (for example,

tty04). Or, if the filename begins with tty, you can simply specify the

characters following tty. For example, tty04 and 04 both denote the same

terminal. Terminals in termlist are separated by either blanks or commas.

–U userlist

Displays information for processes with user IDs in userlist. Items in userlist

can be user ID numbers or login names, and are separated by commas.

–u userlist

Displays information for processes with user IDs in userlist. Items in userlist

can be user ID numbers or login names, and are separated by commas.

ps

Chapter 2. Shell command descriptions 517

Format Specifications

Using the –o option, the user can define the status fields that will be displayed and

their column headings. If you do not specify the –o option, ps displays the

information as though you specified:

-o pid,tty=TTY -o atime,comm

The format specification is a list of status field names separated with blanks or

commas. However, if the list of names is separated by blanks, the list must be

contained in single quotes. Below you’ll find a list of status field names recognized

by ps.

Multiple –o format specifications can be provided and, in the case where

user-specified column headings are defined, these specifications may be necessary.

The first line of ps output contains column headings for each status field. Each

status field has a default heading which can be overridden by the user by specifying

=newheading after the status field. When a new heading is specified, it must be the

last field given on the –o option. To specify additional fields, it is necessary to use

additional –o statements.

For example, if you wish to display the process id (pid), real user name (ruser), and

command name (comm), but change the heading for the real user name from the

default of (RUSER) to WHO, use:

-o pid,ruser=WHO -o comm

An additional –o is required when comm is specified because the last argument must

be user-specified headings (in this case ruser=WHO).

If you specify = with no heading, ps displays that column without a heading. If none

of the columns have a heading, ps displays no heading line.

In a doublebyte locale, user-defined headings may contain multibyte (doublebyte)

characters.

The following list shows the names that ps recognizes. The list is separated into

three groups:

process only

These are fields which only display meaningful data for process output

lines. For thread output lines, a dash is shown in these fields.

thread only

These are fields which only display meaningful data for thread output lines.

For process output lines, a dash is shown in these fields.

processes and threads

These are fields that apply to both processes and threads. For example,

state is meaningful because both processes and threads have a state that

can be determined for them.

At the end of each description, we put the default column heading inside square

brackets.

Process Only

addr Displays the address of the process. This field is currently not supported

and will display a dash. [ADDR]

ps

518 z/OS V1R9.0 UNIX System Services Command Reference

args Displays the command that is running, with all its arguments. [COMMAND]

atime Displays the amount of processor time that the process has used since it

began running. Time is displayed in one of the following abbreviated

formats:

v days d hours

v hours h minutes

v minutes : seconds

depending on the amount of processor time used. [TIME]

attr Displays the process attributes. [ATTR]

 The following values may be displayed:

B Shutdown blocking process; will prevent the shutdown from

proceeding until it either de-registers as a blocking process or ends

P Permanent process; will survive across a shutdown

R Respawnable process; will be restarted when it ends

For more information see z/OS UNIX System Services Planning.

comm Displays the name of the command that is running without its arguments.

This string is padded on the right if necessary. [COMMAND]

etime Displays the amount of real time that has elapsed since the process began

running. ps shows the time in the form:

[dd-]hh:mm:ss

where dd is the number of days, hh is the number of hours, mm is the

number of minutes, and ss is the number of seconds. [ELAPSED]

gid Displays the effective group ID of the process. [EGID]

group Displays the effective group ID of the process, as a group name if possible

and as a decimal group ID if not. [GROUP]

jobname

Displays the z/OS jobname. [JOBNAME]

nice Displays the nice value (urgency) of the process as a decimal value. This

field is currently not supported and will display a dash. [NI]

pcpu Displays a percentage value giving the ratio of processor time used to

processor time available. This field is currently not supported and will

display a dash. [%CPU]

pgid Displays the process group ID as a decimal value. [PGID]

pid Displays the process ID as a decimal value. Decimal pids are reported with

default actions. [XPID]

ppid Displays the parent process ID as a decimal value. [PPID]

pri Displays the process priority. This field is currently not supported and will

display a dash. [PRI]

rgid Displays the real group ID of the process. [GID]

rgroup Displays the real group ID of the process, as a group name if possible and

as a decimal group ID if not. [RGROUP]

ruid Displays the real user ID of the process. [UID]

ps

Chapter 2. Shell command descriptions 519

ruser Displays the real user ID of the process, as a user name if possible and as

a decimal user ID otherwise. [RUSER]

sid Displays the session ID of the process. [SID]

stime Displays the start time of the process. [STIME]

thdcnt Displays the total number of threads. [THCNT]

time Displays the amount of processor time that the process has used since it

began running. ps displays this time in form similar to that used by etime.

[TIME]

tty Displays the name of the controlling terminal (if any). [TT]

uid Displays the effective user ID of the process. [EUID]

user Displays the effective user ID of the process, as a user name if possible

and as a decimal user ID otherwise. [USER]

vsz Displays the amount of (virtual) memory that the process is using, as a

decimal number of kilobytes. [VSZ]

vszlmt64

Displays the maximum amount of virtual storage above the 2–gigabyte bar

allowed for the current process[VSZLMT64].

 When displayed, each value will be followed by a multiplier indicating the

units represented:

 (space) No multiplier

 K Kilo

 M Mega

 G Giga

 T Tera

 P Peta

For example:

> ps -o comm,vsz64,vszlmt64

COMMAND VSZ64 VSZLMT64

/bin/sh 0 0

/loop_64 100 16383P

vsz64 Displays the virtual storage used above the 2–gigabyte bar[VSZ64].

 When displayed, each value will be followed by a multiplier indicating the

units represented:

 (space) No multiplier

 K Kilo

 M Mega

 G Giga

 T Tera

 P Peta

For example:

> ps -o comm,vsz64,vszlmt64

COMMAND VSZ64 VSZLMT64

/bin/sh 0 0

/loop_64 100 16383P

wchan Displays the channel upon which the process is waiting. This field is

currently not supported and will display a dash. [WCHAN]

ps

520 z/OS V1R9.0 UNIX System Services Command Reference

xasid Displays the address space id as a hexadecimal value (Note: a non-hex

asid is not supported). [ASID]

xpgid Displays the process group ID as a hexadecimal value. [XPGID]

xpid Displays the process ID as a hexadecimal value. [XPID]

xppid Displays the parent process ID as a hexadecimal value. [XPPID]

xsid Displays the session ID as a hexadecimal value. [XSID]

Thread Only:

lpid Displays the latch pid waited for. [lpid]

lsyscall

Displays the last five syscalls. This is a 20 character string consisting of five

four character syscalls with no delimiting characters between them. From

left-to-right the syscalls are ordered from most recent to oldest. In the

following example of lsyscall output, 1WAT is the most recent syscall:

1WAT1SPM1SPM1SPM1TSP. [LASTSYSC]

semnum Displays the semaphore number of the semaphore the thread is in a wait

state for. (Note: a semaphore number is only available when the thread is in

a semaphore wait state (state field value equals d), otherwise, a dash will

be displayed). [SNUM]

semval Displays the semaphore value of the semaphore the thread is in a wait

state for. (Note: a semaphore value is only available when the thread is in a

semaphore wait state (state field value equals D), otherwise, a dash will be

displayed). [SVAL]

sigmask

Displays the signal pending mask as a hexadecimal value. [SIGMASK]

syscall

Displays the current syscall (for example, 1frk for fork). [SYSC]

tagdata

Displays the tag assigned to the thread using pthread_tag_np(). If a tag

was not assigned, a dash will be displayed. [TAGDATA]

wtime Displays waiting time in one of the following abbreviated formats:

v days d hours

v hours h minutes

v minutes : seconds

depending on the amount of waiting time to display. [TIME]

xtcbaddr

Displays the tcb address as a hexadecimal value. A non-hex tcb address is

not supported. [TCBADDR]

xstid Displays the short thread id as a hexadecimal value. This is the low order

word (the sequential value) of the thread id. A non-hex short thread ID is

not supported. [STID]

xtid Displays thread id as a hexadecimal value. A non-hex thread ID is not

supported. [TID]

Processes and Threads:

flags Displays the state field values using a hexadecimal representation. flags is

ps

Chapter 2. Shell command descriptions 521

the four byte value determined when a bit is set to one for each

corresponding state that is active. Below is the state-to-state bit mapping for

the currently defined state values:

 Byte 0 1 2 3

 Bits 11111111 11111111 11111111 11010000

 -------- -------- -------- --------

state ABCDEFG JK NO RS UVWX YZ 1

For example, if a thread or process had a state field value of 1W, then the

following bits would be set:

 Byte 0 1 2 3

 Bits 00000000 00000000 00000010 00010000

 -------- -------- -------- --------

state

Which when represented as a hexadecimal value would be 210.[F]

state Displays the process state. [STATE] Various values can be printed in this

field:

1 A single task using assembler callable services.

A Message queue receive wait.

B Message queue send wait.

C Communication system kernel wait.

D Semaphore operation wait.

E Quiesce frozen.

F File system kernel wait.

G MVS Pause wait.

H One or more pthread created tasks (implies M as well).

I Swapped out.

J Pthread created.

K Other kernel wait (for example, pause or sigsuspend).

L Canceled, parent has performed wait, and still session or process

group leader.

M Multi-thread.

N Medium weight thread.

O Asynchronous thread.

P Ptrace kernel wait.

R Running (not kernel wait).

S Sleeping.

T Stopped.

U Initial process thread.

V Thread is detached.

W Waiting for a child (wait or waitpid function is running).

X Creating a new process (fork function is running).

Y MVS wait.

Z Canceled and parent has not performed wait (Z for zombie).

THREAD THREAD [THREAD] is a synonym for specifying the following fields:

-m -o ruser=UID -o pid,ppid,xstid,state=STATE -o atime,syscall,args=CMD

The following is an example of how this output will appear:
 UID PID PPID STID STATE TIME SYSC CMD

WELLIE8 67108867 15099496 - 1W 0:25 - sh -L

 - - - 00000002 W 0:17 1WAT -

WELLIE8 1073741830 67108867 - 1Y 0:00 - ./ps -o THREAD

 - - - 00000000 Y 0:00 1GTH -

ps

522 z/OS V1R9.0 UNIX System Services Command Reference

Environment Variables

ps uses the following environment variable:

COLUMNS

Contains the maximum number of columns to display on one line.

Localization

ps uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_TIME

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to the inability to open the process table

2 Failure due to any of the following:

v Unknown command-line option

v Missing format string after –o

v Missing lists after other options

v Too many arguments on the command line

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide.

The –c, –d, –e, –f, –g, –j, –l, –m, –n, –s, and –u options are extensions of the

POSIX standard.

Related Information

jobs, kill

pwd — Return the working directory name

Format

pwd

Description

pwd displays the absolute path name of the working directory to standard output.

If the current working directory is a symbolic link to another directory, the pathname

displayed depends on the setting of the shell’s logical flag. See set for more

information.

Usage Note

pwd is a built-in shell command and is also a separate utility.

ps

Chapter 2. Shell command descriptions 523

Localization

pwd uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Inability to determine the working directory

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

set, sh

r — Process a command history list

Format

r [old=new] [specifier]

Description

r is an alias for fc –s. Like fc –s, r reenters exactly one command without going

through an editor. If a command specifier is given, r selects the command to

reenter; otherwise, r uses the last command entered. To perform a simple

substitution on the command before reentry, use a parameter of the form old=new.

The string new replaces the first occurence of string old. r displays the (possibly

modified) command before reentering it.

See “fc — Process a command history list” on page 272 for more information.

Related Information

fc, history, sh

read — Read a line from standard input

Format

read [–prs] [–u[d]] [variable?prompt] [variable ...]

Description

When you call read without options, it reads one line from the standard input,

breaks the line into fields, and assigns the fields to each variable in order.

To determine where to break the line into fields, read uses the built-in variable IFS

(which stands for internal field separator). Encountering any of the characters in IFS

means the end of one field and the beginning of the next. The default value of IFS

is blank, tab, and newline.

pwd

524 z/OS V1R9.0 UNIX System Services Command Reference

In general, a single IFS character marks the end of one field and the beginning of

the next. For example, if IFS is colon (:), read considers the input a::b to have

three fields: a, an empty field, and b. However, if IFS contains blanks, tabs or

escaped newlines, read considers a sequence of multiple blanks, tabs, or escaped

newlines to be a single field separator. For example, "a b" has two fields, even

though there are several blanks between the a and b.

The nth variable in the command line is assigned the nth field. If there are more

input fields than there are variables, the last variable is assigned all the unassigned

fields. If there are more variables than fields, the extra variables are assigned the

null string ("").

The environment variable REPLY is assigned the input when no variables are

given. The exit status of read is 0, unless it encounters the end of the file.

Options

–p Receives input from a coprocess.

–r Treats input as raw data, ignoring escape conventions. For example, read

–r does not interpret a final backslash (\) as a line continuation character,

but as part of the input.

–s Adds input to the command history file as well as to the variables specified

with variable.

–u[d] Reads input from the single-digit file descriptor d, rather than from the

standard input. The default file descriptor is 0.

 When the first variable parameter has the form:

variable?prompt

it defines a prompt for input. If the shell is interactive, read sends the prompt to the

file descriptor d if it is open for write and is a terminal device. The default file

descriptor for the prompt is 2.

Examples

IFS=’:’

while read name junk junk1 junk2 junk3

do

 echo $name

done </samples/comics.lst

provides a list of comic names from the sample comics.lst file.

Environment Variables

read uses the following environment variables:

IFS Contains a string of characters to be used as internal field separators.

PS2 Contains the prompt string that an interactive shell uses when it reads a

line ending with a backslash and you did not specify the –r option, or if a

here-document is not terminated after you enter a newline.

REPLY

Contains the input (including separators) if you did not specify any

variables. The ability of omitting the variable from the command and using

the environment variable REPLY is an extension.

read

Chapter 2. Shell command descriptions 525

Localization

read uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Usage Note

read is a built-in shell command.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v End-of-file on input

v Incorrect variable

v Incorrect descriptor specified after –u

v Missing coprocess
2 Incorrect command-line argument

Messages

Possible error messages include:

Cannot read on file descriptor ...

You tried to read a file descriptor that was not opened for reading.

Portability

POSIX.2, X/Open Portability Guide.

The –p, –s, and –u options are extensions of the POSIX :epsc. standard.

Related Information

continue, fc, print, sh

readonly — Mark a variable as read-only

Format

readonly [–p] [name[=value] ...]

Description

readonly prevents subsequent changes in the value of any of the name arguments.

Parameters of the form:

name=value

assign value to name as well as marking name read-only. If readonly is called

without arguments, it lists, with appropriate quoting, the names you have set as

read-only in the following format:

Variable="value"

read

526 z/OS V1R9.0 UNIX System Services Command Reference

Options

–p Displays export name=value pairs that, when read by a shell, ensures the

read-only status and values of variables. The shell formats the output so it

is suitable for reentry to the shell as commands that achieve the same

attribute-setting results.

 Because it is not possible to change a read-only variable, you cannot

source the output unless you go to a new shell.

Usage Note

readonly is a special built-in shell command.

Localization

readonly uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 An attempt to give read-only status to a variable that is already read-only

2 Failure due to incorrect command-line argument

Portability

POSIX.2, X/Open Portability Guide.

The behavior given for calling readonly with no arguments is an extension of the

POSIX standard.

Related Information

alias, sh, typeset

renice — Change priorities of a running process

Format

 renice [–n increment] [–g|–p –u] ID ...

 renice priority [–p] pid ... [–g pgrp ...] [–p pid ...] [–u user ...]

 renice priority –g pgrp ... [–g pgrp ...] [–p pid ...] [–u user ...]

 renice priority –u user ... [–g pgrp ...] [–p pid ...] [–u user ...]

Description

renice changes the priority of one or more running processes. Normal users can

change only the priority of processes that have the same real or effective user ID

as the real or effective user ID of the process that calls renice. Privileged users can

set the priority of any process.

You can specify the new priority as a decimal integer, with higher values indicating

more urgent priority. The range of priorities is site-specific, and you may require

appropriate privileges for some priority values.

readonly

Chapter 2. Shell command descriptions 527

When you change the priority of a process group, the priority of all processes in

that group are changed.

If the string -- appears in the arguments, renice does not interpret it as the end of

command-line arguments. This is an exception to the usual POSIX syntax rules.

Options

–g Treats all following IDs (or just pgrps in the obsolescent versions) as

process group IDs.

–n increment

Adjusts the system scheduling priority of the specified processes by

increment. Positive increments lower the priority while negative increments

result in a higher priority.

Note: Negative increments may require appropriate privileges.

–p Treats all following IDs (or just pids in the obsolescent versions) as process

IDs.

–u Treats all following IDs (or just users in the obsolescent versions) as either

user names or numeric user IDs.

priority A number that indicates an absolute priority value (higher numbers reflect

higher priorities).

If no –p, –g, or –u option appears on the command line, renice assumes –p.

Localization

renice uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to one of the following:

v Incorrect command-line argument

v The wrong number of command-line arguments

v A priority that is outside the range

v An incorrect priority argument

v An incorrect ID argument

v Missing arguments following one of the options

2 Failure because the system does not recognize the ID in a –u option

Portability

POSIX.2 User Portability Extension, UNIX systems.

POSIX considers all but the first form of the renice command to be obsolescent.

renice

528 z/OS V1R9.0 UNIX System Services Command Reference

Related Information

nice

return — Return from a shell function or . (dot) script

Format

return [expression]

Description

return returns from a shell function or . (dot) script. The exit status is the value of

expression. The default value of expression is the exit status of the last command

run.

Usage Note

return is a special built-in shell command.

Localization

renice uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

The current function or script returns the value of expression. If no expression is

given, the exit status is the exit status of the last command run.

Portability

POSIX.2, X/Open Portability Guide.

Related Information

exit, sh

rlogind — Validate rlogin requests

Format

rlogind [–a] [–d] [–l] [–L] [–m] [–n]

Description

The rlogind program is the server for the remote login command rlogin commonly

found on UNIX systems. It validates the remote login request and verifies the

password of the target user. It starts an z/OS shell for the user and handles

translation between ASCII and EBCDIC code pages as data flows between the

workstation and the shell.

The rlogind program is given control via an execl() issued by the inetd daemon.

renice

Chapter 2. Shell command descriptions 529

Note

rlogind should always be invoked from inetd through the /etc/inetd.conf file.

It should not be invoked from the shell. inetd sets up certain files and sockets

needed by rlogind. Invoking rlogind directly gives unpredictable results.

Options

–a Specifies that the requester’s Internet address be checked against the local

gethostbyname() file. This option has no effect because the rlogin program

never uses the .rhosts file for authentication.

–d Specifies that the debugging option be enabled. Informational messages on

the rlogin process is written to the system log.

–l Specifies that the .rhosts file for authentication not be used. This option

has no effect because the rlogin program never uses the .rhosts file for

authentication.

–L Allows the calling of an ruserok exit that lives in /usr/sbin. A return code

zero will allow bypassing of password checking. The installation is

responsible for providing the ruserok exit.

Note: IBM does not recommend using this capability. Using this capability

may open security holes, allowing unauthorized users to access and

modify files and MVS data sets. Even with the most rigorous

checking in the ruserok exit, it is important to keep in mind the

well-known IP spoofing attacks that make it impossible to accurately

idenfity the remote user’s identity.

IBM recommends that the -L flag not be specified. IBM will not

accept APARS for security problems resulting from the use of this

facility.

When the -L flag is specified, /usr/sbin/ruserok is called, passing:

v the name of the progrem, /usr/sbin/ruserok

v ″hostname″ or ″hostname.domainname″ of the client

v a superuser flag, an integer set to 1 if the user wants to be superuser

v client user name, the username on the client system

v server user name, the username on this (server’s) system

If the ruserok program exits with a zero return value, the user is allowed to

login. Otherwise, normal password checking will be done.

Note: If the facility class is active, and the bpx.daemon is defined, then

both inetd’s and rlogind’s usernames must be permitted to

bpx.daemon and the ruserok program (as well as inetd and rlogind)

must be marked program controlled.

–m Specifies that multiprocessing support in the user’s address space be

enabled. Using the –m option uses fewer system resources and provides

faster performance for the end user.

 If you do not specify –m, each rlogin request causes two MVS address

spaces to be consumed. The first address space is the rlogind code, which

rlogind

530 z/OS V1R9.0 UNIX System Services Command Reference

provides the user connection to the socket, and the second is the user’s

shell. In this mode, all shell functions behave in a manner conformant to the

standards.

 If you specify –m, the rlogin process and the shell process share the same

address space using z/OS UNIX System Services support for multiple

processes in an address space. Using –m has the potential of doubling the

number of users supported via rlogin.

Note: If you issued rlogind with the –m option, the shell process cannot

execute a setuid program that replaces the shell. This causes

functions like newgrp to fail. In this situation, you may want to create

a secondary shell that runs in its own address space.

–n Specifies that the transport-level keep-alive messages be disabled. The

messages are enabled by default.

Usage notes

1. The rlogind program normally translates all error and warning messages to

ASCII and then sends them to the originating terminal.

However, when the C runtime library writes error messages, the rlogind

program cannot intercept them to translate the messages to ASCII. Therefore,

these messages are written to the file /tmp/rlogind.stderr or

/tmp/rlogind2.stderr.

These two files must be predefined in /tmp, and owned by the superuser (UID

0). The files should have permissions of rw–rw–rw or rw––w––w–. In addition,

the sticky bit must be set for the /tmp directory so that these files (and other

files in /tmp) cannot be removed except by the files’ owners or the superuser.

2. rlogind is not affected by the locale information specified in locale-related

environment variables.

Related Information

inetd

rm — Remove a directory entry

Format

rm [–fiRrv] file ...

Description

rm removes files (provided that it is a valid pathname). If you specify either . or ..

as the final component of the pathname for a file, rm displays an error message

and goes to the next file. If a file does not have write permission set, rm asks you if

you are sure you want to delete the file; type the yes expression defined in

LC_MESSAGES (the English expression is typically y or yes) if you really want it

deleted.

Restriction: A file can be removed by any user who has write permission to the

directory containing the file, unless that directory has its sticky bit turned on. If the

file is in a directory whose sticky bit is turned on, only the file owner, the owner of

the directory, or a superuser can remove the file.

rlogind

Chapter 2. Shell command descriptions 531

Tip: If you delete a file, remember that the space is not actually reclaimed until any

processes that have that file open either terminate or close that file. See the fuser

— List process IDs of processes with open files command to find out how to get

more information about what processes are accessing a particular file or directory.

Options

–f Deletes read-only files immediately without asking for confirmation. When

you specify this option and a file does not exist, rm does not display an

error message and does not modify the exit status. If you specify both –f

and –i, rm uses the option that appears last on the command line. If no

files are specified, rm –f will not issue an error.

–i Prompts you for confirmation before deleting each file. If you specify both –f

and –i, rm uses the option that appears last on the command line.

–R Recursively removes the entire directory structure if file is a directory.

–r Is equivalent to –R.

–v Displays a list of files that were removed.

Localization

rm uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to remove a file

v Attempt to remove directory without specifying –r or –R

v Inability to find file information when using –r or –R

v Inability to read directory when using –r or –R

2 Failure due to any of the following:

v Incorrect command-line option

v No file was specified

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

cp, mv, rmdir

rm

532 z/OS V1R9.0 UNIX System Services Command Reference

rmdir — Remove a directory

Format

rmdir [–p] directory ...

Description

rmdir removes each requested directory. Each directory must be empty for rmdir to

be successful.

Options

–p Removes all intermediate components. For example:

rmdir -p abc/def/ghi

is equivalent to:

rmdir abc/def/ghi

rmdir abc/def

rmdir abc

Localization

rmdir uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure because directory is not a directory, or because it still contains files

or subdirectories

2 Failure because of an incorrect command-line option, or no directory names

specified

Messages

Possible error messages include:

Nonempty directory

Files or other directories are found under the directory to be removed. Use

rm –r to remove the directory.

No such directory

The requested directory does not exist or is otherwise inaccessible.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

mkdir, rm

rmdir

Chapter 2. Shell command descriptions 533

runcat — Pipe output from mkcatdefs to gencat

Format

runcat CatalogName SourceFile [CatalogFile]

Description

runcat invokes the mkcatdefs command and pipes the message catalog source

data (the output from mkcatdefs) to the gencat utility.

The file specified by the SourceFile parameter contains the message text with your

symbolic identifiers. The mkcatdefs program uses the CatalogName parameter to

generate the name of the symbolic definition file by adding .h to the end of the

CatalogName value, and to generate the symbolic name for the catalog file by

adding MF_ to the beginning of the CatalogName value. The definition file must be

included in your application program. The symbolic name for the catalog file can be

used in the library functions (such as the catopen subroutine). SourceFile cannot

be stdin.

The CatalogFile parameter is the name of the catalog file created by the gencat

command. If you do not specify this parameter, the gencat command names the

catalog file by adding .cat to the end of the CatalogName value. This filename can

also be used in the catopen subroutine.

Examples

To generate a catalog named test.cat from the message source file test.msg,

enter:

runcat test test.msg

Related Information

dspcat, dspmsg, gencat, mkcatdefs

sed — Start the sed noninteractive stream editor

Format

 sed [–En] script [file ...]

 sed [–En] [–e script] [–f scriptfile] [file ...]

Description

The sed command applies a set of editing subcommands contained in script to

each argument input file.

If more than one file is specified, they are concatenated and treated as a single

large file. script is the arguments of all –e and –f options and the contents of all

scriptfiles. You can specify multiple –e and –f options; commands are added to

script in the order specified.

If you did not specify file, sed reads the standard input.

sed reads each input line into a special area known as the pattern buffer. Certain

subcommands [gGhHx] use a second area called the hold buffer. By default, after

each pass through the script, sed writes the final contents of the pattern buffer to

the standard output.

runcat

534 z/OS V1R9.0 UNIX System Services Command Reference

|

|

Options

–E Uses extended regular expressions. Normally, sed uses basic regular

expressions. For more information, see Appendix C.

–e script

Adds the editing subcommands script to the end of the script.

–f scriptfile

Adds the subcommands in the file scriptfile to the end of the script.

–n Suppresses all output except that generated by explicit subcommands in

the sed script [acilnpPr]

If you need only one script argument, you can omit the –e and use the first form of

the command.

sed subcommands are similar to those of the interactive text editor ed, except that

sed subcommands necessarily view the input text as a stream rather than as a

directly addressable file.

Each line of a sed script consists of one or more editing commands. The

commands can be preceded by either semicolons or blanks, or both. Each editing

command contains up to two addresses, a single letter command, and possible

command arguments. The last editing command is followed with a terminating

newline. The newline is optional in script strings typed on the command line.

[addr[,addr]] command [arguments]

Subcommands

sed subcommands necessarily view the input text as a stream rather than as a

directly addressable file. Script subcommands can begin with zero, one, or two

addresses, as in ed.

v Zero-address subcommands refer to every input line.

v One-address subcommands select only those lines matching that address.

v Two-address subcommands select those input line ranges starting with a match

on the first address up to an input line matching the second address, inclusive.

If the second address is a number less than or equal to the line number first

selected, only one line is selected.

Permissible addressing constructions are:

n The number n matches only the nth input line.

$ This address matches the last input line.

/regexp/

This address selects an input line matching the specified regular expression

regexp. If you do not want to use slash (/) characters around the regular

expression, use a different character (but not backslash or newline) and put

a backslash (\) before the first one. For example, if you want to use % to

enclose the regular expression, write \%regexp%.

 If an regexp is empty (that is, no pattern is specified) sed behaves as if the

last regexp used in the last command applied (either as an address or as

part of a substitute command) was specified.

A command can be preceded by a ’!’ character, in which case the command is

applied if the addresses do not select the pattern space. When the variable

sed

Chapter 2. Shell command descriptions 535

|

|
|
|
|
|

|

|
|
|

|

|

|
|

|
|

|
|
|
|
|

|
|
|

|
|

_UNIX03=YES is set, one or more ’!’ characters are allowed, and it is not allowed to

follow a ’!’ character with <blanks>s. When the variable _UNIX03 is unset or is not

set to YES, only one ’!’ character is allowed, and it is not allowed to follow a ’!’

character with <blanks>s.

The following sed subcommand summary shows the subcommands with the

maximum number of legitimate addresses. A subcommand can be given fewer than

the number of addresses specified, but not more.

aa\ Appends subsequent text lines from the script to the standard output. sed

writes the text after completing all other script operations for that line and

before reading the next record. Text lines are ended by the first line that

does not end with a backslash (\). sed does not treat the \ characters on

the end of lines as part of the text.

a,bb [label]

Branches to :label. If you omit label, sed branches to the end of the script.

a,bc\ Changes the addressed lines by deleting the contents of the pattern buffer

(input line) and sending subsequent text (similar to the a command) to the

standard output. When you specify two addresses, sed delays text output

until the final line in the range of addresses; otherwise, the behavior would

surprise many users. The rest of the script is skipped for each addressed

line except the last.

a,bd Deletes the contents of the pattern buffer (input line) and restarts the script

with the next input line.

a,bD Deletes the pattern buffer only up to and including the first newline. Then it

restarts the script from the beginning and applies it to the text left in the

pattern buffer.

a,bg Grabs a copy of the text in the hold buffer and places it in the pattern

buffer, overwriting the original contents.

a,bG Grabs a copy of the text in the hold buffer and appends it to the end of the

pattern buffer after appending a newline.

a,bh Holds a copy of the text in the pattern buffer by placing it in the hold buffer,

overwriting its original contents.

a,bH Holds a copy of the text in the pattern buffer by appending it to the end of

the hold buffer after appending a newline.

ai\ Inserts text. This subcommand is similar to the a subcommand, except that

its text is output immediately.

a,bl Lists the pattern buffer (input line) to the standard output so that

nonprintable characters are visible. The end-of-line is represented by $, and

the characters \\, \a, \b, \f, \r, \t, and \v are printed as escape sequences.

Each byte of a nonprintable doublebyte character appears as an escape

sequence or as a 3-digit octal number. This subcommand is analogous to

the l subcommand in ed.

 sed folds long lines to suit the output device, indicating the point of folding

with a backslash (\).

a,bn Prints the pattern space on standard output if the default printing of the

pattern space is not suppressed (because of the -n option). The next line of

input is then read, and the processing of the line continues from the

location of the n command in the script.

sed

536 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|
|

a,bN Appends the next line of input to the end of the pattern buffer, using a new

line to separate the appended material from the original. The current line

number changes.

a,bp Prints the text in the pattern buffer to the standard output. The –n option

does not disable this form of output. If you do not use –n, the pattern buffer

is printed twice.

a,bP Operates like the p subcommand, except that it prints the text in the pattern

buffer only up to and including the first newline character.

aq Quits sed, skipping the rest of the script and reading no more input lines.

ar file Reads text from file and writes it to the standard output before reading the

next input line. The timing of this operation is the same as for the a

subcommand. If file does not exist or cannot be read, sed treats it as an

empty file.

a,bs/reg/ sub/[gpn] [wfile]

Substitutes the new text string sub for text matching the regular expression,

reg. Normally, the s subcommand replaces only the first such matching

string in each input line. You can use any single printable character other

than space or newline instead of the slash (/) to delimit reg and sub. The

delimiter itself may appear as a literal character in reg or sub if you precede

it with a backslash (\). You can omit the trailing delimiter.

 If an ampersand (&) appears in sub, sed replaces it with the string

matching reg. For more information, see Appendix C. A \n in reg matches

an embedded newline in the pattern buffer (resulting, for example, from an

N subcommand). The subcommand can be followed by a combination of

the following:

n Substitutes only the nth occurrence of regexp.

g Replaces all non-overlapping occurrences of regexp rather than the

default first occurrence. If both g and n are specified, the last one

specified takes precedence.

p Executes the print (p) subcommand only if a successful substitution

occurs.

w file Writes the contents of the pattern buffer to the end of file, if a

substitution occurs. When the variable _UNIX03=YES is set, the file

must be preceded with one or more <blank>s. When the variable

_UNIX03 is unset or is not set to YES, zero <blank> separation

between w and file is allowed.

a,bt [label]

Branches to the indicated label if a successful substitution has occurred

since either reading the last input line or running the last t subcommand. If

you do not specify label, sed branches to the end of the script.

a,bw file

Writes the text in the pattern buffer to the end of file.

a,bx Exchanges the text in the hold buffer with that in the pattern buffer.

a,by/set1/set2/

Transliterates any input character occurring in set1 to the corresponding

element of set2. The sets must be the same length. You can use any

character other than backslash or newline instead of the slash to delimit the

strings.

sed

Chapter 2. Shell command descriptions 537

|
|
|

|
|
|
|
|

If the variable _UNIX03=YES is set and a backslash followed by an ’n’

appear in set1 or set2, the two characters are handled as a single newline

character. If the variable _UNIX03 is unset or is not set to YES, the two

characters are handled as a single character ’n’.

 If the delimiter is not ’n’, within set1 and set2, the delimiter itself can be

used as a literal character if it is preceded by a backslash. If a backslash

character is immediately followed by a backslash character in set1 or set2,

the two backslash characters are counted as a single literal backslash

character.

a,b{ Groups all commands until the next matching } subcommand, so that sed

runs the entire group only if the { subcommand is selected by its

address(es).

:label Designates a label, which can be the destination of a bor t subcommand.

Treats the script line as a comment unless it is the first line in the script.

Including the first line in a script as #n is equivalent to specifying –n on the

command line. An empty script line is also treated as a comment.

a= Writes the decimal value of the current line number to the standard output.

Example

This filter switches desserts in a menu:

sed ’s/cake\(ic\)*/cookies/g’

Environment Variable

sed uses the following environment variables:

COLUMNS

Contains the width of the screen in columns. If set, sed uses this value to

fold long lines on output. Otherwise, sed uses a default screen width of 80.

_UNIX03

For more information about the effect of _UNIX03 on this command, see

Appendix N, “UNIX shell commands changed for UNIX03,” on page 943.

Localization

sed uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Missing script

v Too many script arguments

v Too few arguments

sed

538 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|
|

|
|
|

v Unknown option

v Inability to open script file

v No noncomment subcommand

v Label not found in script

v Unknown subcommand

v Nesting ! subcommand not permitted

v No \ at end of subcommand

v End-of-file in subcommand

v No label in subcommand

v Badly formed filename

v Inability to open file

v Insufficient memory to compile subcommand

v Bad regular expression delimiter

v No remembered regular expression

v Regular expression error

v Insufficient memory for buffers

v y subcommand not followed by a printable character as separator

v The strings are not the same length

v Nonmatching { and } subcommands

v Garbage after command

v Too many addresses for command

v Newline or end-of-file found in pattern

v Input line too long

v Pattern space overflow during G subcommand

v Hold space overflow during H subcommand

v Inability to chain subcommand

Messages

The error messages are output only if h or H subcommands are used after sed

outputs ?. Possible error messages include:

badly formed filename for command command

The given subcommand required a filename, but its operand did not have

the syntax of a filename.

subcommand command needs a label

The specified subcommand required a label, but you did not supply one.

must have at least one (noncomment) command

The input to sed must contain at least one active subcommand (that is, a

subcommand that is not a comment).

No remembered regular expression

You issued a subcommand that tried to use a remembered regular

expression—for example, s//abc. However, there is no remembered regular

expression yet. To correct this, change the subcommand to use an explicit

regular expression.

Limits

sed allows a limit of 28000 lines per file. It does not allow the NUL character.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –E option is an extension of the POSIX standard and is unique to this version

of sed.

sed

Chapter 2. Shell command descriptions 539

|

Related Information

awk, diff, ed, grep, vi

See Appendix C for more information about regexp.

set — Set or unset command options and positional parameters

Format

set [±abCefhiKkLmnPpstuvx–] [±o[flag]] [±Aname][parameter ...]

tcsh shell:

1. set [-r]

2. set [-r] name ...

3. set [-r] name=word ...

4. set [-r] [-f|-l] name=(wordlist) ...

5. set name[index]=word ...

Description

Calling set without arguments displays the names and values of all shell variables,

sorted by name, in the following format:

Variable="value"

The quoting allows the output to be reinput to the shell using the built-in command

eval. Arguments of the form –option set each shell flag specified as an option.

Similarly, arguments of the form +option turn off each of the shell flags specified as

an option. (Contrary to what you might expect, – means on, and + means off.)

Note: All of the set options except ±A, –s, –, and –– are shell flags. Shell flags can

also be set on the sh command line at invocation.

set in the tcsh shell

tcsh shell: See format section to view the forms described below.

1. The first form of the command prints the value of all shell variables. Variables

which contain more than a single word print as a parenthesized word list.

Variables which are read-only will only be displayed by using the -r option. For

forms 2, 3 and 4, if -r is specified, the value is set to read-only.

2. The second form sets name to the null string.

3. The third form sets name to the single word.

4. The fourth form sets name to the list of words in wordlist. In all cases the value

is command and filename expanded. If -f or -l is specified, set only unique

words keeping their order. -f prefers the first occurrence of a word, and -l the

last.

5. The fifth form sets the index’th component of name to word; this component

must already exist.

These arguments can be repeated to set and/or make read-only multiple variables

in a single set command. However, variable expansion happens for all arguments

before any setting occurs. Also, ’=’ can be adjacent to both name and word or

separated from both by whitespace, but cannot be adjacent to only one or the other.

For example:

set -r name=word and set -r name = word

sed

540 z/OS V1R9.0 UNIX System Services Command Reference

are allowed, but

set -r name= word and set -r name =word

are not allowed.

See tcsh — Invoke a C shell.

Options

–a Sets all subsequently defined variables for export.

–b Notifies you when background jobs finish running.

–C Prevents the output redirection operator > from overwriting an existing file.

Use the alternate operator >| to force an overwrite.

–e Tells a noninteractive shell to execute the ERR trap and then exit. This flag

is disabled when reading profiles.

–f Disables pathname generation.

–h Makes all commands use tracked aliases.

 See page 558 for an explanation of tracked aliases.)

–i Makes the shell interactive.

–K Tells the shell to use Korn Shell compatible support of the ((expression))

syntax for arithmetic expressions and trap behavior within shell functions.

Korn Shell behavior may conflict with UNIX standard-conforming behavior.

For more details, see the let and trap command descriptions.

–k Allows assignment parameters anywhere on the command line and still

includes them in the environment of the command.

–L Makes the shell a login shell. Setting this flag is effective only at shell

invocation.

–m Runs each background job in a separate process group and reports on

each as they complete.

–n Tells a noninteractive shell to read commands but not run them.

–o flag

Sets a shell flag. If you do not specify flag, this option lists all shell flags

that are currently set. flag can be one of the following:

allexport

Is the same as the –a option.

errexit

Is the same as the –e option.

bgnice

Runs background jobs at a lower priority.

emacs

Specifies emacs- style inline editor for command entry. See shedit

for information about the emacsediting mode.

gmacs

Specifies gmacs- style inline editor for command entry. See shedit

for information about the gmacs editing mode.

set

Chapter 2. Shell command descriptions 541

ignoreeof

Tells the shell not to exit when an end-of-file character is entered.

interactive

Is the same as the –i option.

keyword

Is the same as the –k option.

korn Is the same as the –K option.

logical

Specifies that cd, pwd and the PWD variable use logical

pathnames in directories with symbolic links. If this flag is not set,

these built-ins and PWD use physical directory pathnames. For

example, assume /usr/spool is a symbolic link to /var/spool, and

that it is your current directory. If logical is not set, PWD has the

value /var/spool, and cd changes the current directory to /var. If

logical is set, PWD has the value /usr/spool and cd changes the

current directory to /usr.

login Is the same as the –L option of sh.

markdirs

Adds a trailing slash (/) to filename-generated directories.

monitor

Is the same as the –m option.

noclobber

Is the same as the –C option.

noexec

Is the same as the –n option.

noglob

Is the same as the –f option.

nolog Does not record function definitions in the history file.

notify Is the same as the –b option.

nounset

Is the same as the –u option.

pipecurrent

Is the same as the –P option.

privileged

Is the same as the –p option.

trackall

Is the same as the –h option.

verbose

Is the same as the –v option.

xtrace Is the same as the –x option.

vi Specifies vi- style inline editor. See shedit for information about the

viediting mode.

warnstopped

Tells the shell to issue a warning, but not to exit, when there are

stopped jobs.

set

542 z/OS V1R9.0 UNIX System Services Command Reference

–p Disables the processing of $HOME/.profile for a login shell and disables

the processing of the script specified by the ENV variable. If

/etc/suid_profile exists, sh runs it instead of the ENV script.

–P Runs the last command of a pipeline in the current shell environment.

–s Sorts the positional parameters.

–t Exits after reading and running one command.

–u Tells the shell to issue an error message if an unset parameter is used in a

substitution.

–v Prints shell input lines as they are read.

–x Prints commands and their arguments as they run.

 Other options:

– Turns off the –v and –x options. Also, parameters that follow this option do

not set shell flags, but are assigned to positional parameters (see sh).

–– Specifies that parameters following this option do not set shell flags, but are

assigned to positional parameters.

+A name

Assigns the parameter list specified on the command line to the array

elements of the variable name, starting at name[0]. For example, the

following command assigns the values ″a″, ″b″, ″c″ and ″d″ to the array

elements array[0-3]:

set +A array a b c d

echo ${array[*]}

a b c d

–A name

Unsets the variable name and then assigns the parameter list specified on

the command line to the array elements of the variable name starting at

name[0]. For example, if the variable array contains 4 elements, the

following command discards the previous values and assigns the values ″x″

and ″y″ to the array elements array[0-1]:

set -A array a y

echo ${array[*]}

x y

Usage notes

set is a special built-in shell command.

Localization

set uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to an incorrect command-line argument

2 Failure resulting in a usage message, usually due to a missing argument

set

Chapter 2. Shell command descriptions 543

Portability

POSIX.2, X/Open Portability Guide.

Several shell flags are extensions of the POSIX standard: bgnice, ignoreeof,

keyword, markdirs, monitor, noglob, nolog, privileged, and trackall are

extensions of the POSIX standard, along with the shell flags ±A, ±h, ±k, ±p, ±s,

and ±t.

Related Information

alias, eval, export, sh, shedit, tcsh, trap, typeset

setfacl — Set, remove, and change access control lists (ACLs)

Format

setfacl [–ahqv] -s entries [path ...]

setfacl [–ahqv] -S file [path ...

setfacl [–ahqv] -D type [...] [path ...]

setfacl [–ahqv] -m|M|x|X EntryOrFile [...] [path ...]

Description

setfacl sets (replaces), modifies, or removes the access control list (ACL). It also

updates and deletes ACL entries for each file and directory that was specified by

path. If path was not specified, then file and directory names are read from

standard input (stdin). In this case, the input should give one pathname per line.

If you specify stdin ("-") in place of a filename, you may not specify it for any of the

other options, nor may you read the target pathnames from stdin.

The maximum number of ACL entries for a file or directory is regulated by the

security product and the physical file system.

The first two forms (see ″Format″) allow you to set (replace) the entire ACL. The

third form allows you to delete an entire extended ACL. The fourth form of setfacl

allows you to delete, add or modify ACL entries. You can specify the m, M, x, and X

options on a single command line, but you can only specify each option once.

Rules:

1. To issue setfacl, you must either be the file owner or have superuser authority

(UID 0 or READ access to SUPERUSER.FILESYS.CHANGEPERMS in the

UNIXPRIV class).

2. When you are setting the access ACL, the ACL entries must consist of three

required base ACL entries that correspond to the file permission bits. The ACL

entries must also consist of zero or more extended ACL entries, which will allow

a greater level of granularity when controlling access. The permissions for base

entries must be in absolute form.

3. When you are updating ACL entries, you can specify zero or more base entries.

4. The three required base ACL entry types have the following format:

u[ser]::perm

g[roup]::perm

o[ther]::perm

They correspond to the owner, group and other fields of the file permission bits.

set

544 z/OS V1R9.0 UNIX System Services Command Reference

Extended ACL entries have the following format:

[d[efault]: | f[default]:]u[ser]:uid:[+|^]perm

[d[efault]: | f[default]:]g[roup]:gid:[+|^]perm

where:

d[efault] If specified, extended ACL refers to directory default ACL

f[default] If specified, extended ACL refers to file default ACL

u[ser] Extended ACL refers to a particular numeric user id (UID) or user

name

g[roup] Extended ACL refers to a particular numeric group id (GID) or group

name

uid User name or numeric user ID (UID)

gid Group name, or numeric group ID (GID)

perm Permissions specified either in absolute form (string rwx with - as a

placeholder or octal form), or in relative format (using the + or^

modifiers).

 Rule: For relative permission settings, only one of + or ^ is allowed

per ACL entry. When using relative permissions, you must have at

least one of r, w, or x. For example, +rw or ^rwx.

The first field of an ACL entry may specify the type of ACL (access, directory

default, or file default) that will be processed. If the type is not specified, the

operation applies only to the access ACL. If you are updating the ACL entries, you

can specify the base ACL entries; however, specifying the base ACL entries may

cause the file or directory’s permission bits to change if what is specified is different

than the current settings.

If the permissions are specified in relative format for an ACL entry that does not

currently exist, then the permissions will be assigned as though they were given in

absolute form. Any permissions that were not specified will default to no permission.

For instance, if an extended ACL entry is given as follows to be updated:

user:BILLYJC:+rw

and user entry BILLYJC does not currently exist, then the resulting entry will be:

user:BILLYJC:rw-

Similiarly, if you try to remove the permissions from an extended ACL entry that

does not exist, the resulting permissions will be:

That is, no permission.

For additional information about ACLs and ACL entries, see z/OS UNIX System

Services Planning.

Options

–a Abort setfacl processing if one of the following errors or warnings occurs:

1. During the attempt to change an ACL for a file or directory, setfacl

performs a stat(), and the stat() fails with a unique reason code.

setfacl

Chapter 2. Shell command descriptions 545

2. The user tried to change the file default ACL or directory default ACL for

a pathname that is not a directory.

3. An attempt to delete all extended ACL entries failed for the current

pathname.

4. An attempt to set or modify extended ACL entries failed for the current

pathname.

When you do not specify –a, the setfacl processing continues.

–D type

Deletes all extended ACL entries for the ACL of type. For an access ACL,

this leaves only the three required base entries intact. For a file default or

directory default ACL, the entire ACL for the specified type is deleted. You

can specify type as one of the following:

a Access ACL

d Directory default ACL

f File default ACL

e Every extended ACL for all ACL types that are applicable for the

current pathname

–h Do not follow symbolic links. Because ACLs are not associated with

symbolic links, nothing will happen if a symbolic link is encountered.

–m EntryOrFile

Modifies the ACL entries specified by EntryOrFile. EntryOrFile represents a

string of ACL entries typed directly on the command line. If an ACL entry

does not exist for a user or group specified in EntryOrFile, then it is

created. If an ACL entry already exists for a user or group that was

specified in EntryOrFile, then it is replaced.

 The specified entries must be unique for each ACL type and its associated

user or group combinations.

–M EntryOrFile

Modifies the ACL entries specified in EntryOrFile. EntryOrFile represents a

file containing ACL entries. If an ACL entry does not exist for a user or

group specified in EntryOrFile, then it is created. If an ACL entry already

exists for a user or group that was specified in EntryOrFile, then it is

replaced. If EntryOrFile is –, then entries are read from stdin.

 The specified entries must be unique for each ACL type and its associated

user or group combinations.

–q Quiet mode. setfacl will suppress all warning and error messages for the

following conditions:

1. During the attempt to change an ACL for a file or directory, setfacl

performs a stat(), and the stat() fails with a unique reason code.

2. The user tried to change the file default ACL or directory default ACL for

a pathname that is not a directory.

The condition that caused the warning or error will not affect the return

code.

–s entries

Sets (replaces) all ACLs with entries.

–S file Sets (replaces) all ACLs with the entries specified in file. If file is –, then

entries are read from stdin.

–v Verbose

setfacl

546 z/OS V1R9.0 UNIX System Services Command Reference

–x EntryOrFile

Deletes the extended ACL entries specified by EntryOrFile. EntryOrFile is a

string of ACL entries typed directly on the command line. If an ACL entry

does not exist for the user or group specified, then you will not get an error.

If the permissions field is provided in EntryOrFile, then it is ignored when

this option is processed. Users cannot delete the base ACL entries (file

owner, owning group, and others). If base ACL entries are specified with

this option, they are ignored. Deleting an extended ACL entry does not

necessarily have the same effect as removing all the permissions from an

entry.

–X EntryOrFile

Deletes the extended ACL entries specified by EntryOrFile. EntryOrFile is a

file containing ACL entries. If an ACL entry does not exist for the user or

group specified, then you will not get an error. If EntryOrFile is –, then

entries are read from stdin. If the permissions field is provided in

EntryOrFile, then it is ignored when this option is processed. Users cannot

delete the base ACL entries (file owner, owning group, and others). If base

ACL entries are specified with this option, they are ignored. Deleting an

extended ACL entry does not necessarily have the same effect as removing

all the permissions from an entry.

 When you use setfacl to add, change and delete ACL entries, all deletion

operations are performed first. In other words, deletion operations are processed

before any change or add operations.

Examples

1. To set (replace) the current access ACL for file foo, giving only user Billy read

and execute access:

setfacl -s user::rwx,group::---,other::---,user:billy:r-x foo

This may change the permission bits of the file.

2. To modify the current access ACL for file foo to contain an extended ACL entry

for group cartoons, giving that group read access:

setfacl -m group:cartoons:+r foo

3. To set (replace) the current access and directory default ACLs for directory

Haunted so that users user1 and user2 have read and search permissions,

while the group thegang has read permissions:

setfacl -s "u::rwx,g::---,o::---, \

 user:user1:r-x,group:thegang:r--,user:user2:r-x, \

 d:user:user1:r-x,d:group:thegang:r--,d:user:user2:r-x" Haunted

4. To copy the ACL from file foo such that the file bar will have the same ACL:

getfacl foo | setfacl -S - bar

5. To delete all of the extended ACL entries for user user3 for all files and

directories in the current directory:

setfacl -x user:user3,d:user:user3,f:user:user3 *

6. To delete all of the extended ACL entries for all files and directories in the

current working directory:

setfacl -D e *

7. To change a directory’s access ACL so that that user1 has read, write, and

execute access for all files in the Haunted directory:

setfacl -m user:user1:rwx Haunted

setfacl

Chapter 2. Shell command descriptions 547

8. RACF recommends placing ACLs on directories, rather than on each file in a

directory. To find and remove all of the extended ACL entries for user1 that are

associated with only the files in directory Haunted:

setfacl -x user:user1 $(find Haunted -type f -acl_user user1)

Even if the setfacl command is successful in removing access from user1,

user1 might still be able to obtain access to the files in directory Haunted based

on the file permission bits, assuming the user has search permission for

Haunted.

Localization

setfacl uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Success.

1 Failure due to any of the following:

v Incorrect command-line option.

v Too few arguments on the command line.

v An attempt was made to read from stdin in more than one place.

v An attempt was made to combine setfacl operations that are mutually

exclusive.
2 Failure due to any of the following:

v A specified pathname does not exist.

v An error occurred while attempting to read the entries file.

v An attempt was made to alter the file default ACL or directory default

ACL for a pathname that is not a directory.
3 Failure due to any of the following:

v Unable to delete all extended ACL entries from a pathname.

v Unable to set or modify ACL entries for a pathname.

v Improper syntax of ACL entries.

v An invalid ACL was specified.

v Unable to allocate enough memory.

v Unable to determine the PATH_MAX.

v Unable to open the entries file for reading.

v The entries file is empty.

Portability

An approved POSIX standard does not exist for setfacl.

Related Information

chmod, find, getfacl, ls, filetest, pax, test

setfacl

548 z/OS V1R9.0 UNIX System Services Command Reference

sh — Invoke a shell

Format

 [r]sh [±abCefhiKkLmnPprtuvx] [±o option] [cmd_file [argument ...]]

 [r]sh –S [±abCefhiKkLmnPprtuvx] [±o option] [cmd_file [argument ...]]

 [r]sh –c cmdstring [±abCefhiKkLmnPprtuvx] [±o option] [cmd_name [argument

...]]

 [r]sh –s [±abCefhikLmnPprtuvx] [±o option] [argument ...]

Description

sh contains the following topics and subtopics:

v Options and invocation

v Options

v Command syntax

v Reserved-Word Commands

v Command execution

v Quoting

v Directory substitution

v Parameter substitution

v Arithmetic substitution

v Command substitution

v File descriptors and redirection

v Filename generation

v Variables

v Shell execution environments

v Built-in commands

v Examples

v Shell Variables

v Files

v Localization

v Exit Values

v Messages

Subtopics dealing with substitution and interpretation of input appear in the order in

which the shell performs those substitutions and interpretations.

Much of what the shell can do is provided through such built-in commands as cd

and alias.

Options and Invocation

The z/OS shell, based on the KornShell, is upward-compatible with the Bourne

shell.

Normally you invoke the shell by logging in. You can also invoke the shell by typing

an explicit sh command. Some people find it useful to copy the sh file into a file

named rsh. If you invoke the shell under the name rsh, the shell operates in

restricted mode. This mode is described in connection with –r.

If you invoke the shell with a name that begins with the – character, it is a login

shell. (You can also get a login shell if you invoke the shell with the –L option.) A

login shell begins by running the file /etc/profile.It then runs $HOME/.profile using

the . command (see dot). If HOME is not set, the shell searches the working

directory for:

.profile

sh

Chapter 2. Shell command descriptions 549

and runs this file with the . command if it exists. You do not get an error message if

any of these files cannot be found.

You can use these profile files to customize your session with sh. For example,

your profile files can set options, create aliases, or define functions and variables.

If there is at least one argument on the sh command line, sh takes the first

argument as the name of a shell script to run. (The exception to this is when –s is

used.) Any additional arguments are assigned to the positional parameters; usually,

these serve as arguments to the shell script. See “Parameter Substitution” on page

559 for information about positional parameters. Also see set for information about

changing these parameters.

If sh finds the ENV environment variable set when it begins running (after profile

processing), sh runs the file named by the expansion of the value of this variable.

Options

The shell accepts the following options on the command line:

–c cmdstring

Runs cmdstring as if it were an input line to the shell and then exits. This is

used by programs (for example, editors) that call the shell for a single

command. sh assigns arguments after cmdstring to the positional

parameters. If you specify cmd_name, special parameter 0 is set to this

string for use when running the commands in cmdstring.

–i Invokes an interactive shell, as opposed to running a script.With –i, the

shell catches and ignores keyboard interrupts. Without –i, an interrupt ends

the shell. For shells that read from the terminal, –i is the default.

–L Makes the shell a login shell, as described earlier. (A login shell is an

interactive shell.)

–r Invokes a restricted shell. (As noted earlier, you can also invoke a restricted

shell by usingthe name rsh). In a restricted shell, you cannot do the

following:

v Use the cd command

v Change the values of the variables ENV, PATH, or SHELL

v Use > or >> to redirect output; or specify command names containing /

These restrictions do not apply during execution of your profile files.

–s Reads commands from standard input (stdin) and assigns all arguments to

the positional parameters. Normally, if there is at least one argument to the

shell, the first such argument is the name of a file to be run.

–S Searches the directories in the environment variable PATH for a file

cmd_file that contains shell commands. The current working directory is not

searched before PATH.

If you do not give either the –c or –s option, but you do specify cmd_file, the shell

takes it as the name of a file that contains commands to be run. Special parameter

0 is set to this name.

If cmd_file contains a slash, the shell attempts to read that filename. If cmd_file

does not contain a slash, the following can occur:

v If –S is specified, the shell searches for the file in PATH. Only a file with

executable access permissions for the user will be found in the PATH search.

sh

550 z/OS V1R9.0 UNIX System Services Command Reference

v If –S is not specified, the shell searches for the file in the current working

directory, then in PATH. The file must have read access permitted for the user.

Executable access permission is not necessary.

In addition to these options, you can use any valid option to the set command

(including –o option) as a command-line option to sh. See set for details.

Command Syntax

The shell implements a sophisticated programming language that gives you

complete control over the execution and combination of individual commands.

When the shell scans its input, it always treats the following characters specially:

; & () < > | ’ \ "

space tab newline

If you want to use any of these characters inside an actual argument, you must

quote the argument (so that the shell does not use the special meanings of the

characters). See “Quoting” on page 558 for more information.

A simple command is a list of arguments separated by characters in the IFS

environment variable (the default value of IFS has blank, tabs, and newlines).

When a word is preceded by an unescaped pound sign (#), the remainder of the

line is treated as a comment, and the shell discards input up to but not including the

next newline. When a command starts with a defined alias, sh replaces the alias

with its definition (see alias).

A reserved-word command starts with a reserved word (for example, if, while, or

for). Reserved-word commands provide flow of control operations for the shell.

These are described in “Reserved-Word Commands” on page 552.

A command can be any of the following:

command:

 simple command

 reserved-word command

 (command)

 command |command

 command &&command

 command ||command

 command &command

 command &

 command |&

 command ;command

 command ;

 command<newline>

The following is the order of precedence of the preceding operators. The highest

priority operators are listed first, and operators on the same line have equal priority.

()

|

&& ||

& |& ; <newline>

The meaning of these operations is as follows:

(command)

Runs command in a child shell. The current shell invokes a second shell,

sh

Chapter 2. Shell command descriptions 551

and this second shell actually runs command. In this way, command runs in

a completely separate execution environment; it can change working

directories, change variables, open files, and so on without affecting the first

shell. The child shell’s environment begins as a copy of the current

environment, so the value of the ENV environment variable is not run when

achild shell starts.

| Creates a pipe between the two commands that the | operator

connects.The standard output is the first command becomes the standard

input of the second command. A series of commands connected by pipes is

called a pipeline.The exit status is that of the last command in the pipeline.

&& Is the logical AND operator. The shell runs the second command if and only

if the first command returns a true (zero) exit status.

|| This is the logical OR operator. The shell runs the second command if and

only if the first command returns a false (nonzero) exit status.

& Runs the command that precedes it asynchronously. The shell just starts

the command running and then immediately goes on take new input, before

the command finishes execution. On systems where asynchronous

execution is not possible, this operation is effectively equivalent to ;.

|& Runs the command that precedes it as a co-process.The command runs

asynchronously, as with the & operator, but the command’s standard input

and standard output are connected to the shell by pipes. The shell sends

input to command’s standard input with the print –p command, and reads

from command’s standard output with the read –p command. The

command should not buffer its output. Because of this and other limitations,

co-processes should be designed to be used as co-processes. On systems

where asynchronous execution is not possible, co-processes are not

supported.

; Is the sequential execution operator. The second command is run only after

the first command has completed.

newline

The unescaped newline is equivalent to the ; operator.

Reserved-Word Commands

The shell contains a rich set of reserved-word commands, which provide flow of

control and let you create compound commands. In the following list, a command

can also be a sequence of commands separated by newlines. Square brackets ([])

indicate optional portions of commands, and are included as part of the command

syntax except in the case of [[test_expr]], where square brackets are part of the

command.

! The exclamation point is the logical NOT command. When its operand is

false (nonzero), this command returns true (zero). When its operand is true

(zero), this command returns false (nonzero).

{command;}

Enclosing a command in braces is similar to the (command) construct,

except that the shell runs the command in the same environment rather

than under a child shell. { and } are reserved words to the shell. To make it

possible for the shell to recognize these symbols, you must put a blank or

newline after the {, and a semicolon or newline before the }.

sh

552 z/OS V1R9.0 UNIX System Services Command Reference

[[test_expr]]

The double-square-bracket command ([[test_expr]]) is a command that

returns an exit status indicating whether the test_expr (test expression) is

true or false.

 Word-splitting and wildcard expansion (filename expansion or globbing) are

not done within [[]]. This makes quoting less necessary than when you use

the test (or []) command. Alias expansion is also not done within [[]].

 The following primitives are used in ([[test_expr]]). Spaces or tabs are

required to separate operators from operands.

–a file True if file exists (–e is recommended to avoid confusion with the

test command syntax)

–Aa file

True if file has an extended access ACL entry.

–Ad file

True if file has a directory default ACL.

–Af file

True if file has a file default ACL.

–b file True if file is a block special file (block special files are not

supported in z/OS)

–B file

True if the file is tagged as binary (not text)

–c file True if file is a character special file

–d file True if file is a directory

–e file True if file exists

–Ea file

True if the file has the APF extended attribute

–El file

True if the file has the shared library extended attribute

–Ep file

True if the file has the program control extended attribute

–Es file

True if the file has the shared address space extended attribute

–f file True if file is an ordinary file

–g file True if the set-group-ID attribute of file is on

–G file

True if file group owner is the effective group id

–h file True if file is a symbolic link

–k file True if file has the ″sticky″ bit on

–L file True if file is a symbolic link

-Ma file

True if the file has any Multilevel Security seclabel

–n string

True if the length of the string is greater than zero

sh

Chapter 2. Shell command descriptions 553

–o option

True if shell option is on

–O file

True if file owner is the effective user id

–p file True if file is a FIFO (named pipe)

–r file True if file is readable (checks permission bits and access control)

–s file True if size of the file is nonzero

–S file True if file is a socket

–t fd True if the numeric file descriptor fd is open and associated with a

terminal

–T file True if the file is tagged as text

–u file True if the set-user-ID attribute of file is on

–w file

True if file is writable (checks permission bits and access control)

–x file True if file is executable (checks permission bits and access

control)

–z string

True if length of the string is zero

string True if string is not a null string

string = pattern

True if string matches pattern (== is recommended to avoid

confusion with the test command syntax)

string == pattern

True if string matches pattern. Quote pattern to treat it as a string.

See Patterns below.

string1 != pattern

True if string does not match patterns. See Patterns below.

string1 < string2

True if string1 comes before string2 in the collation order defined in

the current locale

string1 > string2

True if string1 comes after string2 in the collation order defined in

the current locale

exp1 –eq exp2

True if arithmetic expression exp1 and exp2 are equal

exp1 –ge exp2

True if arithmetic expression exp1 is greater than or equal to exp2

exp1 –gt exp2

True if arithmetic expression exp1 is greater than exp2

exp1 –le exp2

True if arithmetic expression exp1 is less than or equal to exp2

exp1 –lt exp2

True if arithmetic expression exp1 is less than exp2

sh

554 z/OS V1R9.0 UNIX System Services Command Reference

exp1 –ne exp2

True if arithmetic expression exp1 is not equal to exp2

file1 –nt file2

True if file1 is newer than file2

file1 –ot file2

True if file1 is older than file2

file1 –ef file2

True if file1 is a hard link or symbolic link to file2 (this is different

than the test command which only tests for hard links on z/OS)

file–CS codeset

True if the file is tagged with the codeset

file -Ml seclabel

True if the file has the multilevel security label seclabel. False if the

file does not have a seclabel that matches the specified seclabel.

(test_expr)

Grouping to override normal precedence; true if test_expr is true

! test_expr

Logical negation; true if test_expr is false

test_expr1 && test_expr2

Logical AND; true if both test_expr1 and test_expr2 are true

test_expr || test_expr2

Logical OR; true if either test_expr1 or test_expr2 is true

Patterns: Patterns tested in double-square-bracket conditions are

composed of special characters and regular characters. Patterns follow the

rules given in “Filename Generation” on page 566, except that the period (.)

and the slash (/) are not treated specially. Note that pattern matching is

similar to regular expression processing, but different in syntax.

case word in [(][pattern[|pattern] &...)command ;;] ... [(][pattern[| pattern] ...

)command ;;] ... esac

The case statement is similar to the switch statement of the C

programming language or the case statement of Pascal. If the given word

matches any one of the patterns separated by “or” bar (|) characters, sh

runs the corresponding command. The patterns should follow the rules

given in “Filename Generation” on page 566, except that the period (.) and

slash (/) are not treated specially. Patterns are matched in the order they

are given, so more inclusive patterns should be mentioned later. You must

use the double semicolon (;;) to delimit command and introduce the next

pattern.

for variable [in word ...] do command done

The for statement sets variable to each word argument in turn, and runs

the set of commands once for each setting of variable. If you omit the in

word part, sh sets variable to each positional parameter. You can divert the

flow of control within the loop with the break or continue statements.

function variable { command ... } ... variable() { command ... }

Either one of these forms defines a function named variable, the body of

which consists of the sequence of commands. You invoke a function just

like any other command; when you actually call the function, sh saves the

current positional parameters. The function’s command-line arguments then

replaces these parameters until the function finishes. sh also saves the

sh

Chapter 2. Shell command descriptions 555

current ERR and EXIT traps, as well as any flags manipulated by EXIT with

the set command; these are restored when the function finishes. The

function ends either by falling off the end of the code of the function body,

or by reaching a return statement. If the function uses typeset to declare

any variables in the function body, the variables are local to the function.

if command then command [elif command then command] ... [else command] fi

In the if statement, if the first (leftmost) command succeeds (returns a zero

exit status), sh runs the command following then. Otherwise, sh runs the

command (if any) following the elif (which is short for “else if”); if that

succeeds, sh runs the command following the next then. If neither case

succeeds, sh runs the command following the else (if any).

select variable [in word ...] do commands done

The select statement can handle menulike interactions with the user. Its

syntax is like the for statement. Each word is printed on the standard error

file, one per line, with an accompanying number. If you omit the “in word ...”

part, sh uses the positional parameters. sh then displays the value of the

variable PS3 to prompt the user to enter a numerical reply. If the reply is an

empty line, sh displays the menu again; otherwise, sh assigns the input line

to the variable REPLY, sets variable to the word selected, and then runs

the commands. sh does this over and over until the loop is ended by an

interrupt, an end-of-file, or an explicit break statement in the commands.

until command1 do command2 done

The until statement runs command1 and tests its exit status for success

(zero) or failure (nonzero). If command1 succeeds, the loop ends;

otherwise, sh runs command2 and then goes back to run and test

command1 again. break and continue commands in the commands can

affect the operation of the loop.

while command1 do command2 done

The while statement works similarly to the until statement. However, the

loop ends whenever command1 is unsuccessful (nonzero exit status).

Shell reserved words are recognized only when they are the unquoted first token of

a command. This lets you pass these reserved words as arguments to commands

run from the shell. The full list of reserved words is:

! done function while

[[elif if

{ else select

} esac then

case fi time

do for until

Command Execution

Before running a simple command,the shell processes the command line,

performing expansion, assignments, and redirection.

First, sh examines the command line and divides it into a series of tokens, which

are either operators or words. An operator is either a control operator, which is

described in “Command Syntax” on page 551. Or it can be a redirection operator,

described in “File Descriptors and Redirection” on page 564. A word is any token

that is not an operator.

Next, the shell expands words in the following order:

1. sh performs directory substitution.

sh

556 z/OS V1R9.0 UNIX System Services Command Reference

2. sh performs parameter substitution, command substitution, or arithmetic

substitution, as appropriate, in the order that the words appear on the command

line, expanding each word to a field (see the appropriate topics).

3. sh scans each field produced in step 2 for unquoted characters from the IFS

environment variable and further subdivides this field into one or more new

fields.

4. sh expands any aliases to their definitions.

5. sh performs pathname expansion on each unquoted field from step 3.

6. sh removes all quote mechanisms (\, ’, and ") that were present in the original

word unless they have themselves been quoted.

The shell considers the first field of the expanded result to be a command.

The expanded simple command can contain variable assignments and redirections.

Variable assignments affect the current execution environment. After expansion, the

shell handles all redirection constructs, and the command, if one was found, it

performs the redirection in a child shell environment (see “Shell Execution

Environments” on page 567).

When a simple command contains a command name, variable assignments in the

command affect only the execution of that command.

After the shell has expanded all appropriate arguments in a simple command, but

before it performs filename generation, it examines the command name (if the

command has one). sh first checks the names against currently defined aliases

(see the alias command) and functions (see function under “Reserved-Word

Commands” on page 552), and finally against the set of built-in commands:

commands that the shell can run directly without searching for program files. Built-in

commands are described in “Built-in Commands” on page 568.

The autoload command, an alias of typeset –fu, identifies functions which are not

yet defined. The first time an undefined function is called within the shell, the shell

will search directories in the FPATH shell variable for a file with the same name as

the function. If a matching file is found, it is assumed to contain the function

definition of the same name. The file is read and executed in the current shell

environment, storing the function in the shell’s memory for subsequent execution.

(Multiple function definitions may be contained in the same file. When the file is

processed by the shell, all the functions will be defined. Every function definition in

the file should be a link name to the file.)

If the command is a built-in or function, the shell executes it.

If the command name is not a function or a built-in command, the z/OS shell looks

for a program file or script file that contains an executable version of that command.

The shell uses the following procedure to locate the program file:

v If the command name typed to the shell has slash (/) characters in its name, the

command is taken to be a full pathname (absolute or relative). The shell tries to

execute the contents of that file.

v Otherwise, the shell performs a path search. To do this, the shell obtains the

value of the PATH environment variable. The value should be a list of directory

names. sh searches under each directory for a file, the name of which matches

the command name. If the FPATH shell variable is set, the shell will search the

PATH and FPATH directories. If a file with a name matching the command name

is found in the same directory in both PATH and FPATH, or if a matching file is

sh

Chapter 2. Shell command descriptions 557

found only in FPATH, this file will be read and executed in the current shell

environment (defining the functions contained in the file). The shell will then

execute the function matching the command name. This allows users to use

FPATH for locating functions without the need to identify every function with the

autoload command.

If FPATH is not set, or the command is not found in FPATH, the shell executes

the first matching file found in the PATH directories.

Command names can be marked as tracked aliases.The first time you run a

command with a tracked alias, the shell does a normal PATH search. If the search

is successful, the shell remembers the file that it finds. The next time you run a

command with the same name, sh immediately runs the file found on the last PATH

search; there is no new search. This speeds up the time that it takes the shell to

find the appropriate file.

The set –h command tells the shell that all commands should be treated as tracked

aliases. See alias and set for more information.

Quoting

To let you override the special meaning of certain words or special characters, the

shell provides several quoting mechanisms. In general, you can turn off the special

meaning of any character by putting a backslash (\) in front of the character. This is

called escaping the character.

For example, you can tell the shell to disregard the special meaning of the newline

character by putting a backslash at the very end of a line. The shell ignores the

escaped newline, and joins the next line of input to the end of the current line. In

this way, you can enter long lines in a convenient and readable fashion.

Escaping characters by putting a backslash in front of them is the most direct way

of telling the shell to disregard special meanings. However, it can be awkward and

confusing if you have several characters to escape.

As an alternative, you can put arguments in various types of quotes. Different quote

characters have different “strengths.” The single-quote characters are the strongest.

When you enclose a command-line argument in single-quote characters, the shell

disregards the special meanings of everything inside the single quotes. For

example:

 echo

’*’

Double-quote characters are weaker. Inside double quotes, the shell performs

command substitutions (see “Command Substitution” on page 563), parameter

substitutions (see “Parameter Substitution” on page 559) and arithmetic

substitutions (see “Arithmetic Substitution” on page 562). The shell does not

perform such substitutions when they appear inside single quotes. You can use the

backslash to escape another character when they appear inside double quotes, but

inside single quotes the shell ignores this special meaning.

The shell treats internal field separator characters (that is, characters in the value of

the IFS variable) literally inside quoted arguments, whether they’re quoted with

double quotes or single quotes. This means that a quoted argument is considered a

single entity, even if it contains IFS characters.

sh

558 z/OS V1R9.0 UNIX System Services Command Reference

Quoting can override the special meanings of reserved words and aliases. For

example, in:

"time" program

the quotes around time tell the shell not to interpret time as a shell reserved word.

Instead, sh does a normal command search for a command named time.

You must always quote the following characters if you want sh to interpret them

literally:

| & ; < > () $ ' " ` \

<space> <tab> <newline>

The following characters need to be quoted in certain contexts if they are to be

interpreted literally:

* ? [# % =

 ~

Directory Substitution

When a word begins with an unquoted tilde (~), sh tries to perform directory

substitution on the word.sh obtains all characters from the tilde (~) to the first slash

(/) and uses this as a user name. sh looks for this name in the user profile, the file

that contains information on all the system’s users. If sh finds a matching name, it

replaces ~name with the name of the user’s home directory, as given in the

matching RACF user profile entry.

For example, if you specify a filename as:

 ~jsmith/file

sh would look up jsmith’s home directory and put that directory name in place of

the ~jsmith construct.

If you specify a ~without an accompanying name, sh replaces the ~with the current

value of your HOME variable. For example:

echo ~

displays the name of your home directory. Similarly, sh replaces the construct ~+

with the value of the PWD variable (the name of the your working directory), and

replaces the tilde hyphen (~–) with the value of OLDPWD (the name of your

previous working directory). In variable assignments, tilde expansion is also

performed after colons (:).

Parameter Substitution

The shell uses three types of parameters: positional parameters, special

parameters, and variables. A positional parameter is represented with either a single

digit (except 0) or one or more digits in braces. For example, 7 and {15} are both

valid representations of positional parameters. Positional parameters are assigned

values from the command line when you invoke sh.

A special parameter is represented with one of the following characters:

* @ # ? ! - $ 0

The values to which special parameters expand are listed in the following

paragraphs.

sh

Chapter 2. Shell command descriptions 559

Variables are named parameters.For details on naming and declaring variables, see

“Variables” on page 567.

The simplest way to use a parameter in a command line is to enter a dollar sign ($)

followed by the name of the parameter. For example, if you enter the command:

echo $x

sh replaces $x with the value of the parameter x and then displays the results

(because echo displays its arguments). Other ways to expand parameters are

shown in the following paragraphs.

The following parameters are built in to the shell:

$1, $2, ... $9

Expands to the d positional parameter (where d is the single digit following

the $). If there is no such parameter, $d expands to a null string.

$0 Expands to the name of the shell, the shell script, or a value assigned when

you invoked the shell.

$# Expands to the number of positional parameters.

$@ Expands to the complete list of positional parameters. If $@ is quoted, the

result is separate arguments, each quoted. This means that:

"$@"

is equivalent to:

"$1" "$2" ...

$* Expands to the complete list of positional parameters. If $* is quoted, the

result is concatenated into a single argument, with parameters separated by

the first character of the value of IFS (see “Variables” on page 567). For

example, if the first character of IFS is a blank, then:

"$*"

is equivalent to:

"$1 $2 ..."

$– Expands to all options that are in effect from previous calls to the set

command and from options on the sh command line.

$? Expands to the exit status of the last command run.

$$ Expands to the process ID of the shell. If running in a child shell

environment (see “Shell Execution Environments” on page 567), it is the

process ID of the parent shell. Otherwise, it is the process ID of the current

shell.

$! Expands to the process number of the last asynchronous command.

These constructs are called parameters of the shell. They include the positional

parameters, but are not restricted to the positional parameters.

We have already mentioned that you can expand a parameter by putting a $ in front

of the parameter name. More sophisticated ways to expand parameters are:

${parameter}

Expands any parameter.

${number}

Expands to the positional parameter with the given number. (Remember

sh

560 z/OS V1R9.0 UNIX System Services Command Reference

that if you just enter $d to refer to the dth positional parameter, d can only

be a single digit; with brace brackets, number can be greater than 9.) Since

braces mark the beginning and end of the name, you can have a letter or

digit immediately following the expression.

${variable[arithmetic expression]}

Expands to the value of an element in an array named variable. The

arithmetic expression gives the subscript of the array. (See “Arithmetic

Substitution” on page 562.)

${variable [*]}

Expands to all the elements in the array variable, separated by the first

character of the value of $IFS.

${variable [@]$}

When unquoted, is the same as ${ variable[*]} When quoted as “${variable

[@]$} ,” it expands to all the elements in the array variable, with each

element quoted individually.

${#parameter}

Expands to the number of characters in the value of the given parameter.

${#} Expands to the number of positional parameters.

${# *} Expands to the number of positional parameters.

${#@} Expands to the number of positional parameters.

${#variable [*]}

Expands to the number of elements in the array named variable. Elements

that do not have assigned values do not count. For example, if you only

assign values to elements 0 and 4, the number of elements is 2. Elements 1

through 3 do not count.

${parameter:–word}

Expands to the value of parameter if it is defined and has a nonempty

value; otherwise, it expands word. This means that you can use word as a

default value if the parameter isn’t defined.

${parameter–word}

Is similar to the preceding construct, except that the parameter is expanded

if defined, even if the value is empty.

${variable:=word}

Expands word with parameter expansion and assigns the result to variable,

provided that variable is not defined or has an empty value. The result is

the expansion of variable, whether or not word was expanded.

${variable=word}

Is similar to the preceding construct, except that the variable must be

undefined (it cannot just be null) for word to be expanded.

${parameter:?word}

Expands to the value of parameter provided that it is defined and

non-empty. If parameter isn’t defined or is null, sh expands and displays

word as a message. If word is empty, sh displays a default message. After

a non-interactive shell has displayed a message, it ends.

${parameter?word}

Is similar to the preceding construct, except that sh displays word only if

parameter is undefined.

sh

Chapter 2. Shell command descriptions 561

${parameter:+word}

Expands to word, provided that parameter is defined and non-empty.

${parameter+word}

Expands to word, provided that parameter is defined.

${parameter#pattern}

Attempts to match pattern against the value of the specified parameter. The

pattern is the same as a case pattern. sh searches for the shortest prefix of

the value of parameter that matches pattern. If sh finds no match, the

previous construct expands to the value of parameter; otherwise, the

portion of the value that matched pattern is deleted from the expansion.

${parameter##pattern}

Is similar to the preceding construct, except that sh deletes the longest part

that matches pattern if it finds such a match.

${parameter%pattern}

Searches for the shortest suffix of the value of parameter matching pattern

and deletes the matching string from the expansion.

${parameter%%pattern}

Is similar to the preceding construct, except that sh deletes the longest part

that matches pattern if it finds such a match.

Arithmetic Substitution

Arithmetic substitution is available with the syntax:

$((arithmetic expression))

or:

$[arithmetic expression]

This sequence is replaced with the value of arithmetic expression. Arithmetic

expressions consist of expanded variables, numeric constants, and operators.

Numeric constants have the forms:

v A number that starts with 0x is hexadecimal

v A number that starts with 0 is octal

v A number that does not start with 0x or 0 is decimal

v base #number, where base is a decimal integer between 2 and 36 inclusive, and

number is any nonnegative number in the given base.

Undefined variables evaluate to zero.

The operators are listed in decreasing order of precedence in Table 27. Operators

sharing a heading have the same precedence. Evaluation within a precedence

group is from left to right, except for the assignment operator, which evaluates from

right to left.

 Table 27. Shell Operators (sh command)

Unary Operators

 − Unary minus

 ! Logical negation

 + ~ Identity, bitwise negation

Multiplicative Operators

 * / % Multiplication, division, remainder

sh

562 z/OS V1R9.0 UNIX System Services Command Reference

Table 27. Shell Operators (sh command) (continued)

Unary Operators

Additive Operators

 + − Addition, subtraction

Bitwise Shift Operators

 << >> Bitwise shift right, bitwise shift left

Relational Operators

 < > Less than, greater than

 <= >= Less than or equal, greater than or equal

 = = != Equal to, not equal to

Bitwise AND/OR Operators

 & AND

 ^ Exclusive OR

 | Inclusive OR

Logical AND/OR Operators

 && Logical AND

 || Logical OR

 ? : If-else

Assignment Operator

 = *= /= %=

 += −= <<=

 >>= &= ^= |=

Assignment

You do not need the $(()) syntax to enclose an arithmetic expression in these

situations:

v In assignment to an integer variable. (See typeset.)

v As an argument to the following built-in shell commands:

break exit return continue let shift

v When used as arguments in the test built-in shell command numeric

comparisons (–eq, –ge, –gt, –le, –lt, and –ne). See test.

Command Substitution

In command substitution, sh uses the expansion of the standard output of one

command in the command line for a second command. There are two syntaxes.

The first syntax (called backquoting)surrounds a command with grave accents `, as

in:

ls `cat list`

To process this command line, sh first runs the cat command and collects its

standard output. The shell then breaks this output into arguments and puts the

result into the command line of the ls command. The previous command therefore

lists the attributes of all files, the names of which are contained in the file list.

This syntax is easy to type, but is not useful if you want to put one command

substitution inside another (nesting command substitutions). A more useful syntax

is:

sh

Chapter 2. Shell command descriptions 563

$(command)

as in:

ed $(grep –f –l function $(find . –name ’*.c’))

This command uses find to search the current directory and its subdirectories to

find all files, the names of which end in .c. It then uses grep –f to search each such

file for those that contain the string function. Finally, it calls ed to edit each such

file.

There is a historical inconsistency in the backquoting syntax. A backslash (\) within

a backquoted command is interpreted differently depending on its context.

Backslashes are interpreted literally unless they precede a dollar sign ($), grave

accent (`), or another backslash (\). In these cases, the leading backslash

becomes an escape character to force the literal interpretation of the $, `, or \.

Consequently, the command:

echo ’\$x’

issued at system level produces the output:

\$x

whereas the same command nested in a backquoted syntax:

echo `echo ’\$x’`

produces the output:

$x

We recommend the $(command) syntax for command substitutions.

sh performs command substitutions as if a new copy of the shell is invoked to run

the command. This affects the behavior of $− (standing for the list of options passed

to the shell). If a command substitution contains $−, the expansion of $− does not

include the –i option, since the command is being run by a non-interactive shell.

File Descriptors and Redirection

The shell sometimes refers to files using file descriptors. A file descriptor is a

number in the range 0 to 9. It may have any number of digits. For example, the file

descriptors 001 and 01 are identical to file descriptor 1. Various operations (for

example, exec) can associate a file descriptor with a particular file.

Some file descriptors are set up at the time the shell starts up. These are the

standard input/output streams:

v Standard input (file descriptor 0)

v Standard output (file descriptor 1)

v Standard error (file descriptor 2)

Commands running under the shell can use these descriptors and streams too.

When a command runs under the shell, the streams are normally associated with

your terminal. However, you can redirect these file descriptors to associate them

with other files (so that I/O on the stream takes place on the associated file instead

of your terminal). In fact, the shell lets you redirect the I/O streams associated with

file descriptors 0 through 9, using the following command-line constructs.

sh

564 z/OS V1R9.0 UNIX System Services Command Reference

number<file

Uses file for input on the file descriptor, the number of which is number. If

you omit number, as in <file, the default is 0; this redirects the standard

input.

number>file

Uses file for output on the file descriptor, the number of which is number. If

you omit number, as in >file, the default is 1; this redirects the standard

output. The shell creates the file if it does not already exist. The redirection

fails if the file already exists and noclobber is set (see set).

number>|file

Is similar to number>file but if file already exists, the output written to the

file overwrites its current contents.

number< >file

Uses file for input and output with the file descriptor, the number of which is

number. This is most useful when the file is another terminal or modem line.

If you omit number, as in < >file, the default number is zero; this redirects

the standard input. Output written to the file overwrites the current contents

of the file (if any). The shell creates the file if it does not already exist.

number>>name

Is similar to number > file, except that output is appended to the current

contents of the file (if any).

number<<[−]name

Lets you specify input to a command from your terminal (or from the body

of a shell script). This notation is known as a here-document.The shell

reads from the standard input and feeds that as input to file descriptor

number until it finds a line that exactly matches the given name. If you omit

number, the default is the standard input. For example, to process the

command:

cat <<abc >out

the shell reads input from the terminal until you enter a line that consists of

the word abc. This input is passed as the standard input to the cat

command, which then copies the text to the file out.

 If any character of name is quoted or escaped, sh does not perform

substitutions on the input; instead, it performs variable and command

substitutions, respecting the usual quoting and escape conventions. If you

put − before name, sh deletes all leading tabs in the here-document.

number1<&number2

Makes the input file descriptor number1 a duplicate of file descriptor

number2. If you omit number1, the default is the standard input (file

descriptor 0). For example, <&4 makes the standard input a duplicate of file

descriptor 4. In this case, entering input on 4 has the same effect as

entering input on standard input (stdin).

number1>&number2

Makes the output file descriptor number2 a duplicate of file descriptor

number2. If you omit number2, the default is the standard output (file

descriptor 1). For example, >&2 makes the standard output a duplicate of

file descriptor 2 (the standard error). In this case, writing output on stdout

has the same effect as writing output on stderr.

sh

Chapter 2. Shell command descriptions 565

number<&−

Closes input descriptor number.If you omit number, it closes the standard

input.

number>&−

Closes output descriptor number. If you omit number, it closes the standard

output.

Normally, redirection applies only to the command where the redirection construct

appears; however, see exec.

The order of redirection specifications is significant, since an earlier redirection can

affect a later one. However, these specifications can be freely intermixed with other

command arguments. Since the shell takes care of the redirection, the redirection

constructs are not passed to the command itself.

Note: The shell performs the implicit redirections needed for pipelines before

performing any explicit redirections.

Filename Generation

The characters * ? [are called glob characters, or wildcardcharacters. If an

unquoted argument contains one or more glob characters, the shell processes the

argument for filename generation. The glob characters are part of glob patterns,

whichrepresent file and directory names. These patterns are similar to regular

expressions, but differ in syntax, since they are intended to match filenames and

words (not arbitrary strings). The special constructions that may appear in glob

patterns are:

? Matches exactly one character of a filename, except for the separator

character / and a . at the beginning of a filename. ? only matches an

actual filename character and does not match nonexistent characters at the

end of the filename. ? is analogous to the metacharacter . in regular

expressions.

* Matches zero or more characters in a filename, subject to the same

restrictions as ?. * is analogous to the regular expression .*.

[chars]

Defines a class of characters; the glob pattern matches any single

character in the class. A class can contain a range of characters by writing

the first character in the range, a dash −, and the last character. For

example, [A−Za−z], in the POSIX locale, stands for all the uppercase and

lowercase letters. If you want a literal − character (or other glob character)

in the class, use the backslash to escape the character, causing it to lose

it’s special meaning within the pattern expression. If the first character

inside the brackets is an exclamation mark (!), the pattern matches any

single character that is not in the class.

Some sample patterns are:

[!a-f]*.c

Matches all .c files beginning with something other than the letters from a

through f.

/???/?.?

Matches all files that are under the root directory in a directory with a

three-letter name, and that have a basename containing one character

followed by a . followed by another single character.

sh

566 z/OS V1R9.0 UNIX System Services Command Reference

/.[chyl]

Matches all .c, .h, .y, and .l files in a subdirectory of the working directory.

~mks/*.ksh

Matches all shell scripts in the home directory of user mks

(see “Directory Substitution” on page 559 for the use of ~).

If no files match the pattern, sh leaves the argument untouched. If the set option –f

or “–o noglob” is in effect, the shell does not perform filename generation.

 Attention: Doublebyte characters in a filename may cause problems. For

instance, if you use a doublebyte character in which one of the bytes is a . (dot) or

/ (slash), the file system treats this as part of the pathname.

Variables

The shell maintains variables and can expand them where they are used in

command lines; see “Parameter Substitution” on page 559 for details.

A variable name must begin with an uppercase or lowercase letter or an underscore

(_). Subsequent characters in the name, if any, can be uppercase or lowercase

letters, underscores, or digits 0 through 9. You can assign a value to a variable with:

variable=value

For integer variables (see “Options” on page 717 for details), the value may be

specified as an arithmetic expression. For the syntax of an arithmetic expression,

see “Arithmetic Substitution” on page 562.

You can implicitly declare a variable as an array by using a subscript expression

when assigning a value, as in:

variable[arithmetic expression]=value

You can use a subscripted array variable anywhere that the shell allows an ordinary

variable. For the syntax of an arithmetic expression, see “Arithmetic Substitution” on

page 562. Also see typeset, export, and readonly for details about the attributes

of shell variables, and how shell variables can be exported to child processes.

For a list of variables that the shell either sets or understands, see “Shell Variables”

on page 569.

Shell Execution Environments

A shell execution environment is the set of conditions affecting most commands run

within the shell. It consists of:

v Open files

v The working directory (see cd)

v The file creation mask (see umask)

v The traps currently set (see trap)

v The shell parameters (see set and export)

v The shell functions currently defined (see “Command Execution” on page 556)

v Options (see set)

A child shell environmentstarts as a duplicate of the shell environment, except that

traps caught by the shell are set to default values in the child shell. Since the child

sh

Chapter 2. Shell command descriptions 567

shell environment starts as a duplicate, the value of the ENV environment variable

is not run. Changes made to a child shell environment do not affect the shell

environment.

Command substitutions (such as $command), commands within parentheses (such

as (command)), and commands to be run asynchronously (such as command&)—all

run in child shell environments. Each command in a pipeline (such as “command |

command”) runs in a child shell environment, unless the pipecurrent shell option is

in effect. If pipecurrent is set on (with set -o pipecurrent or set -P), then the last

command of the pipeline is executed in the current shell environment.

Shell commands also run in a separate environment that does not affect the shell

environment, except for certain built-in commands (for example, cd and umask)

that explicitly alter the shell environment. The environment of a shell command is

set up by the shell to include the following:

v Open files, subject to redirection.

v Working directory (see cd).

v File creation mask (see umask).

v Traps; traps caught by the shell are set to default values and traps ignored by

the shell are ignored by the command.

v Variables defined inside the shell and having the export attribute.

Built-in Commands

This topic lists the commands that are built into the shell. Such commands are built

into the shell to increase performance of shell scripts or to access the shell’s

internal data structures and variables. These internal commands are designed to

have semantics indistinguishable from external commands.

 : cd exit let pwd test unset

. chmod export link r times wait

[chown false ln read trap whence

[[comm fc login readonly true writedown

alias command functions ls return type

autoload continue getopts mkdir rm typeset

basename cp history mv set ulimit

bg echo integer newgrp shift umask

break eval jobs print stop unalias

cat exec kill printf suspend unlink

POSIX.2 recognizes a subset of these commands as special built-ins. Syntax errors

in special built-in commands may cause a shell executing that command to

terminate, while syntax errors in regular built-in commands will not cause the shell

executing that command to terminate. If a special built-in command encountering a

syntax error does not terminate the shell, its exit value is nonzero.

Also, shell variable assignments included on shell command lines that invoke

special built-in commands remain in effect after the built-in command completes;

this is not the case with regular built-in commands or other utilities.

The special built-in commands are:

 : continue exit readonly shift unset

. eval export return trap

break exec set typeset

sh

568 z/OS V1R9.0 UNIX System Services Command Reference

As well as built-in commands, the shell has a set of predefined aliases:

 autoload functions history nohup stop

hash integer r suspend

See alias for details.

Examples

Software distributed over computer networks such as Usenet is often distributed in

a form known as a shell archive.In essence, a shell archive is a shell script

containing the data of one or more files, plus commands to reconstruct the data

files and check that the data was sent correctly. The following shows a sample shell

archive:

This is a shell archive.

It contains the one file "frag.ksh"

To extract contents, type

sh file

if [–f frag.ksh]

then echo frag.ksh exists: will not overwrite

else

 echo extracting frag.ksh

 sed ’s/^X//’ >frag.ksh <<_EOF_

X# This is frag.ksh

X# Not very interesting, really.

Xecho frag.ksh here!

EOF

 if ["`sum frag.ksh|awk ’{print $1}’`" != 52575]

 then echo frag.ksh damaged in transit

 fi

fi

The following is a simple script to produce as much of the Fibonacci sequence as

can be calculated in integers:

Print out Fibonacci sequence; start sequence

with first two positional parameters:

default 1 1

typeset –i x=${1:–1} y=${2:–1} z

while [x –gt 0] # until overflow

do

 echo $x

 let z=y+x x=y y=z

done

The following implements the basename command as a shell function:

basename command as shell function

function basename {

 case $# in

 1) ;;

 2) eval set \${1%$2} ;;

 *) echo Usage: $0 pathname ’[suffix] ’

 return 1 ;;

 esac

 echo ${1##*/}

 return 0

}

Shell Variables

You cannot use doublebyte characters for a shell variable name, but you can use

them for shell variable values. Doublebyte characters in filenames and path names

are treated as singlebyte characters.

sh

Chapter 2. Shell command descriptions 569

Note: Shell variables that are exported are called ″Environment Variables″, and are

made available in the environment of all commands run from the shell.

Table 28 contains a list of built-in shell variables and also includes

frequently-used environment variables. For more information on environment

variables used by the C-RTL, see the z/OS XL C/C++ Programming Guide. A

list of other environment variables can be found in z/OS UNIX System

Services Planning.

Table 28 lists frequently-used shell variables and their purposes.

 Table 28. Built-in Shell Variables (sh command)

Variable Purpose

_ (Underscore) For every command that is run as a child of the shell,

sh sets this variable to the full pathname of the executable file and

passes this value through the environment to that child process.

When processing the MAILPATH variable, this variable holds the

value of the corresponding mail file.

~ (Tilde) expands to value of the HOME directory.

_UNIX03 When _UNIX03 is set to YES, the utilities that have implemented

support for the UNIX03 specification will conform to the UNIX03

specification. This variable is only needed when the syntax or

behavior of UNIX03 conflicts with the existing implementation.

Rule: The value YES must be specified in uppercase.

CDPATH Contains a list of directories for the cd command to search.

Directory names are separated with colons. CDPATH works like the

PATH variable.

COLUMNS Used by several commands to define the width of the terminal

output device.

EDITOR Enables the corresponding editing mode (see set and shedit) when

using vi, emacs, or gmacs.

ENV Contains the path name of a setup script that contains commands

and aliases.

When you invoke sh as a login shell, the ENV script is run after the

login profiles (/etc/profile, $HOME/.profile), before the shell

accepts commands. For other sh invocations, the ENV script is run

before the shell accepts commands. It is typically used to define

shell options, functions and aliases.

sh performs parameter substitution on this value and uses the

results as the name of a setup script. This script is run in the

current shell environment. The ENV variable is usually set in your

.profile.

ERRNO Contains the system error number of the most recently failed

system call. The shell sets this variable only for errors that occur in

the current environment. Assigning a value of 0 to this variable

clears it.

FCEDIT Contains the name of the default editor for the fc command. If this

variable is not set, the default is the ed command.

sh

570 z/OS V1R9.0 UNIX System Services Command Reference

Table 28. Built-in Shell Variables (sh command) (continued)

Variable Purpose

FPATH Contains a list of directories that the system searches to find

executable functions. Directories in this list are separated with

colons. sh searches each directory in the order specified in the list

until it finds a matching function. If you want the shell to search the

working directory, put a dot (.) or a null string in the list of

directories (for example, to tell the shell to search the working

directory first, start the list with a colon or semicolon).

HISTFILE Contains the pathname of a file to be used as the history file. When

the shell starts, the value of this variable overrides the default

history file.

HISTSIZE Contains the maximum number of commands that the shell keeps

in the history file. If this variable contains a valid number when the

shell starts, it overrides the default of 127.

HOME Contains your home directory.This is also the default directory for

the cd command. The HOME variable is set automatically from the

RACF user profile when the user logs in.

IFS Contains a series of characters to be used as internal field

separatorcharacters. Any of these characters can separate

arguments in unquoted command substitutions such as `command`

or $(command), or in parameter substitutions. In addition, the shell

uses these characters to separate values put into variables with the

read command. Finally, the first character in the value of IFS

separates the positional parameters in $* expansion. By default,

IFS contains space, tab, and newline.

LANG Contains the default locale value.

LIBPATH Used to specify the directory to search for a DLL (Dynamic Link

Library) filename. If it is not set, the working directory is searched.

For more information, see dlload in z/OS XL C/C++ Run-Time

Library Reference.

LIBPATH can be updated by the _CEE_ENVFILE or

_CEE_ENVFILE_S environment variables. For more information on

_CEE_ENVFILE, see the z/OS XL C/C++ Programming Guide.

LINENO Contains the number of the line currently being run by a shell script

or within a function.

LINES Used by several commands to define the number of lines on the

terminal output device.

LOCPATH Tells the setlocale() function the name of the directory in the z/OS

UNIX file system from which to load locale object files. (localedef

produces locale object files by processing locale source files.)

LOGNAME Contains the user login name. This is set automatically from the

RACF user profile when the user logs in.

MAILCHECK Contains the number of seconds of elapsed time that must pass

before the system checks for mail; the default value is 600

seconds. When using the MAIL or MAILPATH variables, the shell

checks for mail before issuing a prompt.

sh

Chapter 2. Shell command descriptions 571

Table 28. Built-in Shell Variables (sh command) (continued)

Variable Purpose

MAILPATH Contains a list of mailbox files. This overrides the MAIL variable.

The mailbox list is separated by colons. If any name is followed by

?message or %message, sh displays the message if the

corresponding file has changed. sh performs parameter and

command substitution on message, and the variable _. (temporarily)

expands to the name of the mailbox file. If no ?message or %

message is present, the default message is you have mail in $_.

MANPATH Contains a list of paths to search for man pages.

MBOX Contains the pathname of your personal mailbox, usually

$HOME/mbox, used to store messages that have been read from

your system mailbox. This variable is usually set in your .profile.

NLSPATH Specifies where the message catalogs are to be found.

OLDPWD Contains the name of the directory you were previously working in.

The cd command sets this variable.

PATH Contains a list of directories that the system searches to find

executable commands. Directories in this list are separated with

colons. sh searches each directory in the order specified in the list

until it finds a matching executable. If you want the shell to search

the working directory, put a dot (.) or a null string in the list of

directories (for example, to tell the shell to search the working

directory first, start the list with a colon or semicolon).

PPID Contains the decimal value of the process ID of the parent of the

shell. If running in a child shell environment (see “Shell Execution

Environments” on page 567), the PPID value is the same as the

PPID value of the current shell.

PS1 Contains the primary prompt string used when the shell is

interactive.The default value is a dollar sign followed by a space

($). The shell expands parameters before the prompt is printed. A

single exclamation mark (!) in the prompt string is replaced by the

command number from the history list; see the fc command. For a

real exclamation mark in the prompt, use !!. This variable is usually

set in your .profile.

PS2 Contains the secondary prompt, or continuation prompt, used when

completing the input of such things as reserved-word commands,

quoted strings, and here documents. The default value of this

variable is a greater than sign followed by a space (>).

PS3 Contains the prompt string used in connection with the select

reserved word. The default value is a number sign followed by a

question mark and a space (#?).

PS4 Contains the prefix for traced commands with set -x. The default

value is a plus sign followed by a space (+).

PWD Contains the name of the working directory. When the shell starts,

the working directory name is assigned to PWD unless the variable

already has a value.

RANDOM Returns a random integer. Setting this variable sets a new seed for

the random number generator.

SECONDS Contains elapsed time. The value of this variable grows by 1 for

each elapsed second of real time. Any value assigned to this

variable sets the SECONDS counter to that value; initially the shell

sets the value to 0.

sh

572 z/OS V1R9.0 UNIX System Services Command Reference

Table 28. Built-in Shell Variables (sh command) (continued)

Variable Purpose

SHELL Contains the full pathname of the current shell. It is not set by the

shell, but is used by various other commands to invoke the shell.

This is set automatically from the RACF user profile when the user

logs in.

STEPLIB Identifies a STEPLIB variable to be used in building a process

image for running an executable file. A STEPLIB is a set of private

libraries used to store a new or test version of an application

program, such as a new version of a runtime library. STEPLIB can

be set to the values CURRENT or NONE or to a list of MVS data

set names.

If STEPLIB is not set, it defaults to CURRENT, which passes on

the TASKLIB, STEPLIB, or JOBLIB allocations that are part of the

invoker’s MVS program search order environment to the process

image created for an executable file.

IBM recommends that STEPLIB be set to NONE, which indicates

you do not want a STEPLIB environment for executable files. You

can specify up to 255 MVS data set names, separated by colons,

as a list of data sets used to build a STEPLIB variable. Refer to

z/OS UNIX System Services Planning for more information about

building a STEPLIB environment.

TMOUT Contains the number of seconds before user input times out. If user

input has not been received within this length of time, the shell

ends.

TMPDIR Is the pathname of the directory being used for temporary files. If it

is not set, the z/OS shell uses /tmp.

TZ Contains the system time zone value used for displaying date and

time. You can set the TZ variable in your $HOME/.profile file used

during shell startup.

The system administrator can also define a TZ default for all shell

users in the /etc/profile file. If you are not in the same time zone,

you can set TZ yourself.

The system administrator can also define TZ for the /etc/init

process in the /etc/init.options file.

VISUAL Overrides the EDITOR environment variable in setting vi, emacs,

or gmacs editing modes (see shedit).

Automatic Conversion Shell Variables

When the shell is redirecting stdin, stout, or stderr, it will default to no automatic

conversion of tagged files, and no tagging of files created by the redirection. The

following shell variables will override this behavior:

 Table 29. Shell Variables for Automatic Conversion (sh command)

Variable Purpose

_TAG_REDIR_IN=TXT Redirected stdin will override the file’s text flag (TXTFLAG),

treating it as if it were tagged as:

TXTFLAG = ON, CCSID = existing file tag CCSID

This has no effect if CCSID = 0.

sh

Chapter 2. Shell command descriptions 573

Table 29. Shell Variables for Automatic Conversion (sh command) (continued)

Variable Purpose

_TAG_REDIR_IN=BIN Redirected stdin will override the file’s TXTFLAG, treating it

as if it were tagged as:

TXTFLAG = OFF, CCSID = existing file tag CCSID

This effectively disables automatic conversion.

_TAG_REDIR_OUT=TXT Redirected stdout will be tagged as:

TXTFLAG = ON, CCSID = program CCSID at the time of

the first write (if not already tagged)

_TAG_REDIR_OUT=BIN Redirected stdout will be tagged as:

TXTFLAG = OFF, CCSID = program CCSID at the time of

the first write (if not already tagged)

_TAG_REDIR_ERR=TXT Redirected stderr will be tagged as:

TXTFLAG = ON, CCSID = program CCSID at the time of

the first write (if not already tagged)

_TAG_REDIR_ERR=BIN Redirected stderr will be tagged as:

TXTFLAG = OFF, CCSID = program CCSID at the time of

the first write (if not already tagged)

The automatic conversion shell variable can be specified for one command, or for

multiple commands within a shell session or shell script. If the variable is exported,

it will affect child shells, that is, nested shell scripts.

Note: Because the standard shell execution performs redirection before variable

assignment, the syntax for specifying the shell variable for one command is:

(_TAG_REDIR_OUT=TXT; command >file)

These variables can also be used in pipelined commands, to tag the stdout of each

command that is writing to a pipeline, and/or the stdin of each command reading

from a pipeline.

Files

sh_history

The default history storage file.

.profile

The user profile for login shell.

/etc/profile

The systemwide profile for login shells.

/tmp/sh*

Temporary files for here-documents, command substitution, history

re-execution, and so on. The default directory /tmp can be overridden by

setting the shell variable TMPDIR to the name of some other directory.

/etc/suid_profile

Used instead of the script specified by the ENV variable (and the

sh

574 z/OS V1R9.0 UNIX System Services Command Reference

$HOME/.profile for a login shell) under the privileged option or when the

real and effective UIDs are different, or the real and effective GIDs are

different.

Localization

sh uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

See Appendix F, “Localization,” on page 907 for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v The shell was invoked with an incorrect option.

v The shell was invoked to run a shell script and the command.

v A command syntax error.

v A redirection error.

v A variable expansion error.

 Otherwise, the exit status of the shell defaults to the exit status of the last command

run by the shell. This default can be overridden by explicit use of the exit or return

commands.The exit status of a pipeline is the exit status of the last command in the

pipeline.

Messages

Ambiguous redirection

A redirection construct expanded to more than one pathname.

Argument too long

Any single argument to a command is limited in length (see “Limits” on

page 577). Command and parameter substitution may exceed this limit.

Cannot restore privileged state

This message occurs only when the implementation of POSIX does not

support the saved IDs option (_POSIX_SAVED_IDS). The message is

generated if you tried to use a saved ID feature to return to a privileged

state.

File file already exists

You are attempting to redirect output into an existing file, but you have

turned on the noclobber option (see the set command). If you really want

to redirect output into an existing file, use the construct >|filename, or turn

off the option with:

set +o noclobber

File descriptor number already redirected

You attempted to redirect a file descriptor that was already being redirected

in the same command. You can redirect a file descriptor only once.

sh

Chapter 2. Shell command descriptions 575

Hangup

The shell received a hangupsignal. This signal typically arises when a

communication line is disconnected—for example, when a phone

connection is cut off.

In base#number: base must be in [2,36]

In a number of the form base#number, the value of the base was larger than

36 or less than 2. The only valid range for bases is from 2 through 36.

Invalid subscript

A shell array was indexed with a subscript that was outside the defined

bounds.

Illegal instruction

The shell received an illegal instruction signal. This signal typically occurs

when a process tries to execute something that is not a valid machine

instruction recognized by the hardware.

Misplaced subscript array name

The subscript for an array was missing or incorrect.

name is not an identifier

You attempted to use a non-alphanumeric name.

name: readonly variable

The given name is a read-only variable, and cannot be removed or

changed (see readonly).

name: no expansion of unset variable

The shell is operating with set –u, and you used an unset variable in a

substitution. For more information, see the set command.

No file descriptor available for redirection

When a file descriptor is redirected, the old value is remembered by the

shell by a duplication to yet another file descriptor. The total number of file

descriptors is limited by the system; hence, the shell may run out, even

though your command appears to be using far fewer than the maximum

number of descriptors.

Nested aliases

You have more than nine levels of aliases. For example:

alias a1=a2 a2=a3 a3=a4 ... a10=command

causes this error.

Pipe for coprocess

The shell cannot create a pipe for a coprocess. This may mean that your

session or the system as a whole has already set up its maximum number

of pipes.

...: restricted

If the shell has been invoked as a restricted shell, certain things are

disallowed—for example, the cd command, setting PATH, and output

redirection.

Temporary file error using here document

sh tried to create a temporary file holding the contents of a <<word

here-document. However, the temporary file could not be created. This may

indicate a lack of space on the disk where temporary files are created.

sh

576 z/OS V1R9.0 UNIX System Services Command Reference

Word after ... expanded to more than one argument

In a context where only one argument was expected, a construct expanded

to more than one argument.

Limits

The maximum length of an executable filename, including subdirectories and

extensions, is 1023 bytes.

Portability

POSIX.2, X/Open Portability Guide.

The construct $[arithmetic expression] is an extension of the POSIX standard.

Related Information

alias, break, cd, continue, dot, echo, eval, exec, exit, export, fc, getopts, let,

print, ps, pwd, read, readonly, return, set, shift, test, time, trap, true, typeset,

ulimit, unalias, unset, whence. shedit

Appendix I also explains how to set the local time zone with the TZ environment

variable.

shedit — Interactive command and history editing in the shell

Format

 set –o editmode

 EDITOR=editprog

 VISUAL= editprog

Usage notes

POSIX uses a number of keys for such things as erase and kill processing. By

default, the shell leaves command-line editing to POSIX, using these familiar editing

keys. However, these functions are not particularly powerful or friendly. As an

alternative, the shell has built-in facilities for interactive command editing and file

name generation that not only aid in composing new commands but also make it

easy for you to modify and re-execute previous commands. This capability is

distinct from that provided by the fc command, which passes previous command

lines to a separate program for editing. The built-in facilities mimic the emacs,

gmacs, or vi screen editors, and enable the following commands (see set and vi

for details).

set –o emacs

set –o gmacs

set –o vi

These facilities are also enabled (with the corresponding option set) by assigning a

value ending in vi to the environment variables EDITOR or VISUAL. (See sh.)

Unlike full-screen editors, shell editing uses a one-line window, extending from the

end of the prompt to the next-to-last column. Multiline history entries are displayed

with newlines represented as ^J.

The number of columns on the output device is obtained from the COLUMNS

environment variable if defined; otherwise, it is assumed to be 80.

sh

Chapter 2. Shell command descriptions 577

A command line that extends into the rightmost column can be scrolled horizontally.

If you try to move the cursor beyond the edge of the window, the line is scrolled to

approximately center the cursor in the window. The second last column displays a

character marking a scrollable line: < indicates extra data off the left, > indicates

extra data off the right, and * indicates extra data off both sides.

emacs/gmacs Editing Mode

When the emacs/gmacs editing mode has been enabled, ordinary printable

characters from the keyboard are entered in the command line and echoed. Various

control characters introduce command sequences for such things as moving the

cursor, scrolling through the command history, and modifying the current command.

The only difference between emacs and gmacs is in the handling of Ctrl-T. (See

the description of Ctrl-T on 579.)

The command sequences recognized are listed in functional groups. The notation

Meta– represents EscK, followed by the letter. The terminology is historical. Many

commands accept an optional preceding count which is entered in decimal as

Meta-digits, or as Ctrl-, which multiplies the current count (initially 1) by 4.

Cursor Movement

nCtrl-B

Moves the cursor back n characters.

nCtrl-F

Moves the cursor forward n characters.

Ctrl-A Moves the cursor to beginning of line.

Ctrl-E Moves the cursor to end of line.

nMeta–b

Moves the cursor back to the nth previous beginning of word (string of

alphanumerics).

nMeta–f

Moves the cursor forward to nth beginning of word.

Ctrl–]c

Moves the cursor forward to next character c on current line.

Meta–space

Sets mark at cursor position.

Ctrl-@

Sets mark at cursor position.

Ctrl-x Ctrl-X

Exchanges cursor position and mark.

Line Search

These commands display a different history line.

nCtrl-P

Selects the nth previous command line from history.

nCtrl-N

Selects the nth next command line from history.

Meta–<

Selects the earliest command line from history.

shedit

578 z/OS V1R9.0 UNIX System Services Command Reference

Meta–>

Selects the latest command line from history.

nCtrl-RstringEnter

Selects the nth previous command line matching string. If n is zero, then

select the next matching command after the current line.

Text Change

n erase

Deletes n characters to the left of the cursor. This is the erase character.

nBackspace

Deletes n characters to the left of the cursor.

nCtrl-H

Deletes n characters to the left of the cursor.

nCtrl-D

Deletes n characters to the right of the cursor. If the current line is empty,

the shell is ended.

nMeta–Ctrl-H

Deletes to the nth beginning of word before the cursor.

nMeta–h

Deletes to the nth beginning of word before the cursor.

nMeta-d

Deletes to the nth beginning of word after the cursor.

nCtrl-K

Deletes from the cursor to the end of line. If n is zero, then deletes from the

beginning of line to the cursor.

kill Deletes the entire current line. This is the line kill character.

Ctrl-G Deletes the entire current line.

Ctrl-W Deletes from cursor position to the mark (set with Meta-space or Ctrl-@.

Ctrl-T In emacs mode, transposes the current character with the previous

character and moves the cursor forward. If the cursor is at the end of the

line, or in gmacs mode, transposes the previous two characters.

Ctrl-Y Restores the last text deleted in emacs mode.

Ctrl-C Capitalizes character under cursor.

Ctrl-^ Capitalizes character under cursor.

Meta-c

Capitalizes word to right of cursor.

Meta-l Lowercases word to right of cursor.

Meta-u

Uppercases word to right of cursor.

nMeta-.

Inserts the nth word of the previous command. If n is not given or it is zero,

inserts the last word of the previous command.

nMeta-_

Inserts the nth word of the previous command. If n is not given or it is zero,

inserts the last word of the previous command.

shedit

Chapter 2. Shell command descriptions 579

Meta-* Replaces the current word with the list of files which would match that word

with an * appended.

Meta-Esc

Used to complete a pathname. If there is only one existing pathname that

matches as much as you’ve typed, the pathname is completed and a space

is added after the complete pathname. If there are several matching

pathnames, the shell expands what you’ve typed by adding all the

characters that are common to all matching pathnames.

Meta-=

Lists all pathnames matching the current word.

Miscellaneous

Ctrl-J Executes the current command line.

Ctrl-M Executes the current command line.

Ctrl-L Re-displays the current command line.

Ctrl-O Remembers the next command line, executes the current command line,

then selects the remembered line.

Ctrl-U Multiplies the count on the following command by 4 (for each Ctrl-U.

Ctrl-V Displays the version of the shell.

– Takes the next character literally. Thus, you can enter command and control

characters in a command line or search string.

eof Terminates the shell. This is the end-of-file character.

Ctrl-D Terminates the shell.

Meta–n

Enters a count for the following command.

vi Editing Mode

When the vi editing facilities have been enabled, the shell is initially in input mode

after each new prompt. Keyboard input is normally inserted at the current position in

the current command line; the exceptions are the following action keys.

erase Deletes the character to the left of the cursor. This is the erase character.

Backspace

Deletes the character to the left of the cursor.

eof Terminates the shell. This is the end-of-file character.

Ctrl-D Terminates the shell.

Ctrl-W Deletes the word (white-space delimited string) to the left of the cursor.

kill Deletes the current line. This is the line kill character.

Ctrl-X Deletes the current line.

Ctrl-J Deletes the current line.

Ctrl-M Deletes the current line.

Enter Executes the current line.

Esc Switches from input mode to command mode.

 If you press the Esc key, the shell enters command mode and keyboard

input is interpreted as commands to reposition the cursor, scroll through the

shedit

580 z/OS V1R9.0 UNIX System Services Command Reference

command history, delete or change text, or reenter input mode. In command

mode, input is not echoed; it is acted upon. Many commands take an

optional count, n, which is entered as a preceding decimal number (not

echoed); the command is executed that number of times. Except where

otherwise noted, n defaults to 1.

Ctrl-V Takes the next character literally; useful for entering any of these action

keys as text.

\ Escapes the following action key. If the next character is any action key

except Ctrl-J, Ctrl-M, or Enter, the – is erased and the escaped character

is entered literally. Otherwise, the – is entered and the next character is

treated normally.

Cursor Movement

These commands reposition the cursor in the command line.

nh Moves back n characters.

n1 Moves forward n characters.

0 Moves to the first character on the line.

^ Moves to the first nonblank character on the line.

$ Moves to the last character on the line.

nw Moves to the beginning of the nthe next word (string of alphanumerics, or of

nonblank nonalphanumerics).

nW Moves to the beginning of the nthe next fullword (string of nonblanks).

nb Moves to the nthe previous beginning of word.

nB Moves to the nthe previous beginning of fullword.

ne Moves to the nthe next end of word.

nE Moves to the nthe next end of fullword.

nfc Moves to the nthe next character c.

nFc Moves to the nthe previous character c.

ntc Moves to the character before the nthe next character c.

nTc Moves to the character after the nthe previous character c.

n; Repeats the previous f, F, t, or T command.

n, Repeats the previous f, F, t, or T command, but in the opposite direction.

Line Search

These commands change the current displayed command line.

nj Selects the nthe next command line from history.

n+ Selects the nthe next command line from history.

nk Selects the nthe previous command line from history.

n– Selects the nthe previous command line from history.

nG Selects the command with history number n, or the latest command if n is

omitted.

/stringEnter

Selects the first command line, searching backwards, that matches string. If

string is omitted, the previous search string is used.

shedit

Chapter 2. Shell command descriptions 581

?stringEnter

Selects the first command line, searching forwards, that matches string. If

string is omitted, the previous search string is used.

n Repeats the last string search (‘/’ or ‘?’) command.

N Repeats the last string search, but in the opposite direction.

Text Change

The following commands alter the text in the current command line. Some of these

commands operate on a text block, defined by an immediately following cursor

movement command. This is designated by m (for movement) in the text change

command. The text block extends from the current cursor position to the new

position determined by the movement command.

i Enters input mode, inserting text before the character under the cursor.

I Inserts before the first nonblank on line (^i).

a Moves the cursor forward one character and enter input mode, appending

text after the character originally under the cursor.

A Appends to end of line ($a).

ndm Deletes text block. If n is given, it is applied to the movement.

dd Deletes entire command line.

D Deletes from cursor to end of line (d$).

nx Deletes n characters to right of cursor (ndl).

nX Deletes n characters to left of cursor (ndh).

ncm Change text block; deletes block of text and enters input mode. If n is

given, it is applied to the movement.

cc Change entire command line.

s Change entire command line.

ns Change next n characters from cursor.

np Puts back, after the character under the cursor, n copies of the last block

deleted by a text change command.

nP Puts back, before the character under the cursor, n copies of the last block

deleted by a text change command.

rc Replaces the single character under the cursor with the character c, and

advances the cursor one position.

R Enters replace mode: a special case of input mode in which each character

entered overwrites that under the cursor, and advances the cursor one

position.

u Undoes the last text change to the current line. This is itself a text change

command, and so acts as a toggle for the last change.

U Undoes all changes to the current line.

n ~ Inverts the case of the next n characters, advancing the cursor over them.

n. Repeats the last text change command. If n is given, it overrides the count

originally given with the repeated command.

n_ Appends after the character under the cursor, the nthe argument from the

previous command line (default last), and enter input mode.

shedit

582 z/OS V1R9.0 UNIX System Services Command Reference

* Replaces the current word with the list of file names that matches the word

with an * appended. If there is no match, an audible alarm sounds and the

word is not changed. Otherwise, the cursor is positioned at the end of the

list and input mode is entered.

\ Used to complete a pathname. If there is only one existing pathname that

matches as much as you’ve typed, the pathname is completed and a space

is added after the complete pathname. If there are several matching

pathnames, the shell expands what you’ve typed by adding all the

characters that are common to all matching pathnames.

= Lists all pathnames matching the current word.

Miscellaneous

nym Yanks text block into the delete buffer. Does not alter the command line or

cursor position, but makes the text block available to subsequent put or p

commands. If n is given, it is applied to the movement.

yy Yanks the entire command line.

Y Equivalent to y$. Yanks the rest of the line.

Equivalent to I#Enter.

nv Executes fc –e ${VISUAL:–${EDITOR:–vi}} n. If n is omitted, the history

number of the current line is used.

Ctrl-L Redisplays the current line.

Ctrl-J Executes the current line.

cm Executes the current line.

Enter Executes the current line.

@letter

Inserts the value of the alias named _letter. The symbol letter represents a

single alphabetic character from the portable character set; implementations

may support additional characters as an extension. If the alias _letter

contains other editing commands, these commands are performed as part

of the insertion. If the _letter alias is not enabled, this command has no

effect.

Limits

Selecting a previous history line for editing while at a secondary prompt (that is,

while entering a subsequent line of a new multiline command) yields unexpected

results.

Related Information

fc, set, sh, vi

shift — Shift positional parameters

Format

shift [expression]

tcsh shell: shift [variable]

shedit

Chapter 2. Shell command descriptions 583

Description

shift renames the positional parameters so that i+nth positional parameter becomes

the ith positional parameter, where n is the value of the given arithmetic expression.

If you omit expression, the default value is 1. The value of expression must be

between zero and the number of positional parameters ($#), inclusive. The value of

$# is updated.

shift in the tcsh shell

Without arguments, shift discards argv[1] and shifts the members of argv to the

left. It is an error for argv not to be set or to have less than one word as value.

With variable, shift performs the same function on variable. See “tcsh — Invoke a

C shell” on page 626.

Examples

The commands:

set a b c d

shift 2

echo $*

produce:

c d

Usage Note

shift is a special built-in shell command.

Localization

shift uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure because the expression had a negative value or was greater than

the number of positional parameters.

Messages

Possible error messages include:

bad shift count expr

You specified an expression that did not evaluate to a number in the range

from 0 to the number of remaining positional parameters.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Allowing an expression, rather than just a number, is an extension found in the

z/OS UNIX System Services shell (a KornShell).

shift

584 z/OS V1R9.0 UNIX System Services Command Reference

Related Information

set, sh, tcsh

sleep — Suspend execution of a process for an interval of time

Format

sleep seconds

Description

sleep continues running until the specified number of seconds has elapsed. sleep

can delay execution of a program or produce periodic execution in conjunction with

shell commands.

The seconds argument can be either a number of seconds, or a more general time

description of the form nhnmns, with the nh, nm, and the s being optional.

Example

sleep 20h10m

sleeps for 20 hours and 10 minutes (or 72600 seconds).

Localization

sleep uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

2 Failure because you specified no seconds value or because seconds is an

incorrect argument (for example, incorrect format).

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

date

skulker — Remove old files from a directory

Format

skulker [–irw] [–l logfile] directory days_old

shift

Chapter 2. Shell command descriptions 585

Description

skulker finds files that are candidates for deletion in directory, based on the age

specified by days_old.

When you call skulker without any options, the files that are candidates for deletion

are found using the primaries as in the following find command line:

find directory -type f -atime +days_old -level 0 -print

For example, specifying 5 for days_old causes the find command to find files equal

to or older than 5 24-hour intervals earlier than now.

The skulker script (which is a z/OS shell script, and can be found in /samples)

should be copied and can be modified to suit your particular needs. Possible

locations for placing the script include /bin or /usr/sbin, especially if skulker is to

be run from a UID(0) program. If skulker is to be run by users, /usr/bin is another

possibility, but check that the sticky bit is on in the directory. If the script is called

from a privileged user (a superuser, a user with a UID of 0, or a user running with

the RACF trusted or privileged attribute), it is important to protect the script from

any modifications by a non-privileged user.

Options

–i Displays the files that are candidates for deletion, and prompts the user to

stop or continue with file removal. Do not use this option if you are invoking

skulker from a cron job. If skulker is invoked with –i from a cron job, no

files will be deleted. A message will be mailed to the caller, showing the

skulker output that includes the message “Request canceled.”

–l Specifies a logfile to store a list of files that have been deleted, are

candidates for deletion, or for which warnings have been mailed; and any

errors that may have occurred.

–r Moves recursively through subdirectories, finding both files and

subdirectories that are equal to or older than the specified number of days.

The files that are candidates for deletion are found using the primaries as in

the following find command line:

find directory -atime +days_old ! -name directory -print

The –name primary prevents skulker from deleting the actual directory that

was entered as a start point (for example, /tmp).

–w Does not remove files, but sends a warning to the owner of each old file

(using mailx) that the file is a candidate for deletion.

days_old

Specifies the age of the files you want to remove. For example, if you

specify 100 for days_old, all files that were last accessed 100 or more days

ago are marked as candidates for deletion.

directory

Specifies the directory in which to look for files.

 By default, files are removed from the specified directory based on access time and

their status as regular files, and are removed only from the directory specified (not

from any subdirectories).

skulker

586 z/OS V1R9.0 UNIX System Services Command Reference

Examples

1. To remove all files from /tmp that were last accessed 100 or more days ago:

skulker /tmp/ 100

The trailing slash in /tmp/ is necessary if /tmp is a symbolic link (as it is in

OS/390 Release 9 and higher), and you want to list or remove files from the

directory the link points to, rather than the symbolic link itself. If /tmp (or the

directory specified) is not a symbolic link, the trailing slash has no effect.

2. To remove all regular files from /tmp that were last accessed 11 or more days

ago:

 > ls -lL /tmp

 total 48

 -rw------- 1 BILLYJC SHUT 0 Nov 10 06:00 10.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 11 06:00 11.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 12 06:00 12.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 13 06:00 13.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 14 06:00 14.txt

 -rw------- 1 SUPERID SHUT 0 Nov 15 06:00 15.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 16 06:00 16.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 17 06:00 17.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 18 06:00 18.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 19 06:00 19.txt

 > date

 Mon Nov 29 11:17:20 EST 1999

 > skulker -i /tmp/ 11

 -rw------- 1 BILLYJC SHUT 0 Nov 10 06:00 10.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 11 06:00 11.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 12 06:00 12.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 13 06:00 13.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 14 06:00 14.txt

 -rw------- 1 SUPERID SHUT 0 Nov 15 06:00 15.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 16 06:00 16.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 17 06:00 17.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 18 06:00 18.txt

 Do you really want to delete these files? If yes, answer [y|Y].

 Any other response cancels your request.

 y

 Deleting files...

 > ls -lL /tmp

 total 48

 -rw------- 1 SUPERID SHUT 0 Nov 15 06:00 15.txt

 -rw------- 1 BILLYJC SHUT 0 Nov 19 06:00 19.txt

 >

Note that non-superuser BILLYJC (who issued the skulker command) was not

able to delete the superuser’s (SUPERID) file (15.txt), even though the find

command issued from skulker returned 15.txt as a filename to delete.

3. The skulker script can be run from a cron job. To use the cron daemon to run

the skulker script at 3:15 a.m. every Monday through Friday:

 > crontab

 15 3 * * 1-5 /etc/skulker -l /usr/spool/cron/skulker.log /tmp/ 100

 <control-D>

 >

This example removes all files from /tmp that were last accessed 100 or more

days ago. By default, cron sends the stdout and stderr of the command in a

mail message to the user who submitted the cron job.

skulker

Chapter 2. Shell command descriptions 587

Exit Values

0 Successful completion

1 Either skulker did not find any files that are candidates for deletion, or an

error occurred.

2 There was a usage error.

Messages

Possible messages include:

directory is not a directory

The find command returned a non-zero exit status: return code

Error occurred during remove [of file]. Return code=return code.

The rm command failed with return code while attempting to delete file.

file is in use, not removed.

Some other process was using this file. file cannot be removed.

sort — Start the sort-merge utility

Format

 sort [–cmu] [–o outfile] [–t char] [–y[n]] [–zn] [–bdfiMnr] [–k startpos[,endpos]]

... [file ...]

 sort [–cmu] [–o outfile] [–tchar] [–yn] [–zn] [–bdfiMnr] [+startposition

[–endposition]] ... [file ...]

Description

sort implements a full sort-and-merge utility. By default, it sorts according to all the

information in the record, in the order given in the record.

sort operates on input files containing records that are separated by the newline

character. When you do not specify either the –c or –m option, sort sorts the

concatenation of all input files and produces the output on standard output. The

following options select particular operations:

–c Checks input files to ensure that they are correctly ordered according to the

key position and sort ordering options specified, but does not modify or

output the files. This option affects only the exit code.

–m Merges files into one sorted output stream. This option assumes that each

input file is correctly ordered according to the other options specified on the

command line; you can check this with the –c option.

–u Ensures that output records are unique. If two or more input records have

equal sort keys, sort writes only the first record to the output. When you

use –u with –c, sort prints a diagnostic message if the input records have

any duplicates.

When you do not specify either the –c or the –m option, sort sorts the

concatenation of all input files and produces the output on standard output.

Options

–o outfile

Writes output to the file outfile. By default, sort writes output to the standard

skulker

588 z/OS V1R9.0 UNIX System Services Command Reference

output. The output file can be one of the input files. In this case, sort

makes a copy of the data to allow the (potential) overwriting of the input file.

–t char

Indicates that the character char separates input fields. When you do not

specify the –t option, sort assumes that any number of white-space (blank

or tab) characters separate fields.

–y[n] Restricts the amount of memory available for sorting to n KB of memory

(where a KB of memory is 1024 bytes). If n is missing, sort chooses a

reasonable maximum amount of memory for sorting, dependent on the

system configuration. sort needs at least enough memory to hold five

records simultaneously. If you try to request less, sort automatically takes

enough. When the input files overflow the amount of memory available,

sort automatically does a polyphase merge (external sorting) algorithm,

which is, of necessity, much slower than internal sorting. n must be at least

2. n has a maximum value of 1024 and a default value of 56.

 When you use –u with –c, sort prints a diagnostic message if the input

records have any duplicates. Using the –y option may therefore improve

sorting performance substantially for medium to large input files.

–zn Indicates that the longest input record (including the newline character) is n

bytes in length. By default, record length is limited to LINE_MAX.

 The following options control the way in which sort does comparisons between

records in order to determine the order in which the records are placed on the

output. The ordering options apply globally to all sorting keys except those keys for

which you individually specify the ordering option. For more on sorting keys, see

“Sorting Keys” on page 590.

–b Skips, for comparison purposes, any leading white space (blank or tab) in

any field (or key specification).

–d Uses dictionary ordering. With this option, sort examines only blanks,

uppercase and lowercase letters, and numbers when making comparisons.

–f Converts lowercase letters to uppercase for comparison purposes.

–i Ignores, for comparison purposes, nonprintable characters.

–k [startpos [endpos]].

Specifies a sorting key. For more information, see “Sorting Keys” on page

590.

–M Assumes that the field contains a month name for comparison purposes.

Any leading white space is ignored. If the field starts with the first three

letters of a month name in uppercase or lowercase, the comparisons are in

month-in-year order. Anything that is not a recognizable month name

compares less than JAN.

–n Assumes that the field contains an initial numeric value. sort sorts first by

numeric value and then by the remaining text in the field according to

options.

 Numeric fields can contain leading optional blanks or optional minus (−)

signs. sort does not recognize the plus (+) sign.

 This option treats a field which contains no digits as if it had a value of

zero. If more than one line contains no digits, the lines are sorted

alphanumerically.

–r Reverses the order of all comparisons so that sort writes output from

largest to smallest rather than smallest to largest.

sort

Chapter 2. Shell command descriptions 589

Sorting Keys

By default, sort examines entire input records to determine ordering. By specifying

sorting keys on the command line, you can tell sort to restrict its attention to one or

more parts of each record.

You can indicate the start of a sorting key with:

-k m[.n][options]

where m and the optional n are positive integers. You can choose options from the

set bdfiMnr (described previously) to specify the way in which sort does

comparisons for that sorting key. Ordering options set for a key override global

ordering options. If you do not specify any options for the key, the global ordering

options are used.

The number m specifies which field in the input record contains the start of the

sorting key. The character given with the –t option separates input fields; if this

option is not specified, spaces or tabs separate the fields. The resulting sort key is

from the mth field to the end of the record. The number n specifies which character

in the mth field marks the start of the sorting key; if you do not specify n, the sorting

key starts at the first character of the mth field.

If an ending position for a key is not specified, the sorting key extends from the

starting position to the end of the input record. You can also specify an ending

position for a key, with:

-k m[.n][options],

p[.q][options]

where p and q are positive integers, indicating that the sort key ends with the with

qth character of the pth field. If you do not specify q or if you specify a value of 0

for q, the sorting key ends at the last character of the pth field. For example:

-k 2.3,4.6

defines a sorting key that extends from the third character of the second field to the

sixth character of the fourth field. The b option applies only the key start or key end

for which it is specified;

-k 2

defines a sorting key that extends from the first character of the second field to the

end of the record;

-k2 2

defines a sorting key that extends from the first character of the second field to the

last character of the second field.

sort also supports a historical method of defining the sorting key. Using this

method, you indicate the start of the sorting key with:

+m[.n][options]

which is equivalent to:

–k m+1[.n+1][options]

You can also indicate the end of a sorting key with:

–p[.q][options]

sort

590 z/OS V1R9.0 UNIX System Services Command Reference

which when preceded with +m[.n] is equivalent to:

–k m+1[.n+1],p.0[options]

if q is specified and is zero. Otherwise,

–k m+1[.n+1],p+1[.q][options]

For example:

+1.2 -3.5

defines a sorting key with a starting position that sort finds by skipping the first two

characters of the next field and an ending position that sort finds by skipping the

first three fields and then the first five characters of the next field. In other words,

the sorting key extends from the third character of the second field to the sixth

character of the fourth field. This is the same key as defined under the –k option,

described earlier.

With either syntax, if the end of a sorting key is not a valid position after the

beginning key position, the sorting key extends to the end of the input record.

You can specify multiple sort key positions by using several –k options or several +

and – options. In this case, sort uses the second sorting key only for records where

the first sorting keys are equal, the third sorting key only when the first two are

equal, and so on. If all key positions compare equal, sort determines ordering by

using the entire record.

When you specify the –u option to determine the uniqueness of output records,

sort looks only at the sorting keys, not the whole record. (Of course, if you specify

no sorting keys, sort considers the whole record to be the sorting key.)

Examples

1. To sort an input file having lines consisting of the day of the month, white space,

and the month, as in:

30 December

23 MAY

25 June

10 June

use the command:

sort -k 2M -k 1n

2. To merge two dictionaries, with one word per line:

sort –m –dfi dict1 dict2 >newdict

Environment Variable

sort uses the following environment variable:

TMPDIR

Contains the pathname of the directory to be used for temporary files.

File

sort uses the following file:

/tmp/stm*

Temporary files used for merging and –o option. You can specify a different

directory for temporary files using the TMPDIR environment variable.

sort

Chapter 2. Shell command descriptions 591

Localization

sort uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_NUMERIC

v LC_TIME

v NLSPATH

The –M option works only if LC_TIME identifies a locale that contains the same

month names as the POSIX locale.

See Appendix F for more information.

Exit Values

0 Successful completion. Also returned if –c is specified and the file is in

correctly sorted order.

1 Returned if you specified –c and the file is not correctly sorted. Also

returned to indicate a nonunique record if you specified –cu.

2 Failure due to any of the following:

v Missing key description after –k

v More than one –o option

v Missing file name after –o

v Missing character after –t

v More than one character after –t

v Missing number with –y or –z

v endposition given before a startposition

v Badly formed sort key

v Incorrect command-line option

v Too many key field positions specified

v Insufficient memory

v Inability to open the output file

v Inability to open the input file

v Error in writing to the output file

v Inability to create a temporary file or temporary filename

Messages

Possible error messages include:

Badly formed sort key position x

The key position was not specified correctly. Check the format and try

again.

File filename is binary

sort has determined that filename is binary because it found a NULL (’ ’)

character in a line.

Insufficient memory for ...

This error normally occurs when you specify very large numbers for –y or

–z and there is not enough memory available for sort to satisfy the request.

sort

592 z/OS V1R9.0 UNIX System Services Command Reference

Line too long: limit nn — truncated

Any input lines that are longer than the default number of bytes

(LINE_MAX) or the number specified with the –z option are truncated.

Missing key definition after -k

You specified –k, but did not specify a key definition after the –k.

No newline at end of file

Any file not ending in a newline character has one added.

Nonunique key in record ...

With the –c and –u options, a nonunique record was found.

Not ordered properly at ...

With the –c option, an incorrect ordering was discovered.

Tempfile error on ...

The named temporary (intermediate) file could not be created. Make sure

that you have a directory named /tmp, and that this directory has space to

create files. You can change the directory for temporary files using the

TMPDIR environment variable.

Tempnam() error

sort could not generate a name for a temporary working file. This should

almost never happen.

Temporary file error (no space) for ...

Insufficient space was available for a temporary file. Make sure that you

have a directory named /tmp, and that this directory has space to create

files. You can change the directory for temporary files using the ROOTDIR

and TMPDIR environment variables.

Too many key field positions specified

This implementation of sort has a limit of 64 key field positions.

Write error (no space) on output

Some error occurred in writing the standard output. Barring write-protected

media and the like, this normally occurs when there is insufficient disk

space to hold all of the intermediate data.

Portability

POSIX.2, X/Open Portability Guide.

Available on all UNIX systems, with only UNIX System V.2 or later having the full

utility described here.

The –M, –y, and –z options are extensions of the POSIX standard.

Related Information

awk, comm, cut, join, uniq

The sortgen awk script is a useful way to handle complex sorting tasks. It originally

appeared in The AWK Programming Language, by Aho, Weinberger, and

Kernighan. The POSIX.2 standard regards the historical syntax for defining sorting

keys as obsolete. Therefore, you should use only the –k option in the future.

sort

Chapter 2. Shell command descriptions 593

spell — Detect spelling errors in files

Format

spell [–biluvx] [–d hashfile] [–f local] [–h history] [+local] [file ...]

Note: The spell utility is fully supported for compatibility with older UNIX systems.

However, because it is no longer supported by POSIX.2 IEEE standard

1003.2-1992, this utility should be avoided for applications intended to be

portable to other UNIX- branded systems.

Description

spell checks for misspelled words in each specified file. If you do not specify a file,

it checks the standard input (stdin). A list of potentially misspelled words is

produced on standard output (stdout).

Words are checked against a local word list and then against a hashed word list.

The hashed word list included in this distribution contains virtually no proper names

or technical terms. It is assumed that you will enter these words into your local word

list (or into your machine’s word list). Any capitalized word in the hash list must be

capitalized in the input document; all other words are matched either capitalized or

not. All word forms, including plurals, must be explicitly included in the hash list.

This approach prevents the acceptance of nonsense words that can result from the

algorithmic combination of legal roots with legal suffixes or prefixes, a phenomenon

common to many other spelling checkers.

Options

–b Uses British spelling (such as “colour” instead of “color”). The dictionary file

used is /usr/lib/hashb instead of /usr/lib/hash.

–d hashfile

Uses hashfile as the dictionary. hashfile is a hash list produced from a list of

words using the -i option of spell. To use a list other than the default

/usr/lib/hash, the –d option must be specified.

–f local

Uses the file local as a dictionary of local words, given one word per line. If

you do not specify this option, the file /usr/lib/lwords is used as the local

dictionary.

–h history

Appends a history of all misspelled words to the file history. This file can

be used by a system administrator for dictionary maintenance or generating

a local dictionary.

–i Creates a new hash list file or add words to an existing file, instead of

checking for spelling errors. Words to be entered into the dictionary should

be specified one per line with no white space on the line. Lines beginning

with the # character are ignored as comments. Be sure that the words you

are entering into the hash list are correctly spelled.

–l Produces a longer form of output. For each misspelled word, spell prints

three tab-separated columns containing the misspelled word, the line

number, and the filename.

–u Forces spell to accept any word that is in all uppercase. spell assumes

that such words are acronyms.

spell

594 z/OS V1R9.0 UNIX System Services Command Reference

–v Writes to stdout all words not literally in the dictionary. This is the default

for this implementation because it doesn’t apply suffix/prefix rules to derive

words.

–x Writes each plausible word stem to stdout. Because this implementation of

spell doesn’t derive words, all words are their own word stems.

+ local Uses the file local as a dictionary of local words, given one word per line.

This is synonymous with –f.

Examples

By default, spell does not sort the output. This maintains the order and number of

occurrences of spelling errors. The following command checks for spelling errors,

puts them in dictionary order, removes duplicates, and print them in a multicolumn

format:

spell file | sort –dfu | c

Localization

spell uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Missing hashfile name after –d

v Missing history filename after –h

v Missing local filename after –f

v Inability to open the local file

v Receipt of user interrupt

v An error reading the dictionary file

A spelling mistake is not considered an error.

2 Incorrect command-line option

Files

spell uses the following files:

/usr/lib

The default location of user hash files.

/usr/lib/hash

The default dictionary file, in hashed form.

/usr/lib/hashb

The British dictionary file, in hashed form.

/usr/lib/lwords

The default location of the local words file. This need not exist.

spell

Chapter 2. Shell command descriptions 595

Limits

Input lines in the text being checked are restricted to a maximum of 100 characters.

Portability

X/Open Portability Guide, UNIX systems.

The –d, –f, –h, –i, –l, and –u options are extensions of the POSIX standard.

Related Information

sort, vi

split — Split a file into manageable pieces

Format

 split [–a n] [–l n] [file [prefix]]

 split –b n[bkm] [–a n] [file [prefix]]

 split [–n] [–a n] file [prefix]

Description

split breaks a file up into a set of files. It starts a new file every time it has copied

1000 lines.

split names the files that it creates as a prefix followed by a suffix. x is the prefix

unless you specify a different prefix on the command line. Unless altered by the

following options, the suffix begins as aa and is incremented with each new file. By

default, therefore, the first file is xaa followed by xab, and so on.

Options

–a n Uses a suffix n letters long. The default is two.

–b n[bkm]

Splits the file every n units. The default unit size is bytes. When you follow

n with b, k, or m, split uses a corresponding unit size of 512 bytes, 1K

(1024 bytes), or 1 megabyte (1 048 576 bytes).

–l n Splits the file every n lines.

–n Is an obsolescent version of the –l option.

 If the file is – (dash) or if no file is specified, split reads the standard input (stdin).

Localization

split uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

spell

596 z/OS V1R9.0 UNIX System Services Command Reference

1 Failure due to any of the following:

v Error opening input or output file

v Missing number after –a

v Invalid –a option

v Missing byte count after –b

v Invalid byte count specification

v Invalid count specification

v Unknown option

v Out of memory for binary split buffer

v Read error on input file

v Write error on output file

v Too many names generated

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems,

The b suffix of the –b option is an extension to the POSIX.2 standard.

Related Information

csplit

stop — Suspend a process or job

Format

stop [pid ...] [job—identifier ...]

tcsh shell: stop %job|pid ...

Description

stop is an alias for kill –STOP. Like kill –STOP, stop sends a SIGSTOP to the

process you specify.

See “kill — End a process or job, or send it a signal” on page 330 for more

information.

stop in the tcsh shell

In the tcsh shell, stop stops the specified jobs or processes which are executing in

the background. job may be a number, a string, ’’, %, + or - . There is no default

job. Specifying stop alone does not stop the current job. See “tcsh — Invoke a C

shell” on page 626.

Options

job-identifier

Is the job identifier reported by the shell when a process is started with &. It

is one way to identify a process. It is also reported by the jobs command.

When using the job identifier with the stop command, the job identifier must

be prefaced with a percent (%) sign. For example, if the job identifier is 2,

the stop command would be entered as follows:

stop %2

pid Is the process ID that the shell reports when a process is started with &.

You can also find it using the ps command. The pid argument is a number

split

Chapter 2. Shell command descriptions 597

that may be specified as octal, decimal, or hex. Process IDs are reported in

decimal. stop supports negative values for pid.

 If pid is negative but not −1, the signal is sent to all processes whose

process group ID is equal to the absolute value of pid. The negative pid is

specified in this way:

stop –– –nn

where nn is the process group ID and may have a range of 2 to 7 digits (nn

to nnnnnnn).

stop –– –9812753

The format must include the –– before the –nn in order to specify the

process group ID.

 If pid is 0, the signal is sent to all processes in the process group of the

invoker.

 The process to be killed must belong to the current user, unless he or she is the

superuser.

Related Information

kill, jobs, sh, suspend, tcsh

strings — Display printable strings in binary files

Format

 strings [–aopxzB] [–n number] [–t format] [file ...]

 strings [–] [–opxz] [–t format] [–number] [file ...]

Description

If the command line specifies a filename of –, strings reads the standard input.

strings finds pieces of information in binary files. It is frequently used for looking

through executable files to uncover items such as copyright notices, error

messages, and undocumented feature.

The command displays strings of printable characters that are at least four

characters in length. Strings must be terminated by a NUL character or by a

newline.

Options

–a This option has no effect in the z/OS environment. The entire file is

examined, regardless of whether or not this option is specified.

–n number

Displays strings of printable characters that are at least number characters

in length. If you do not specify the –n option, strings will act as if –n 4 had

been specified.

–o For each string, displays as an octal value its offset in bytes from the

beginning of the file. This is the same as –t o.

stop

598 z/OS V1R9.0 UNIX System Services Command Reference

–t format

For each string, displays its offset in bytes from the beginning of the file.

The base of the offset is set to decimal, octal, or hexadecimal by specifying

format as d, o, or x, respectively.

–x For each string, displays as a decimal value its offset in bytes from the

beginning of the file. This is the same as –t x.

–z Ignores the POSIX definition of a string and searches for any group of

printable characters greater than four in length.

– Is the obsolescent version of –a.

–number

Is the obsolescent version of –n number.

File Tag Specific Options

–B Disable autoconversion of tagged files.

Localization

strings uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Incorrect command-line option

v Insufficient memory

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide.

A Berkeley addition to most UNIX systems. Most Berkeley versions do not require

the terminating NUL or newline.

The –o and –x options are extensions to the POSIX standard.

strip — Remove unnecessary information from an executable file

Format

strip file

Description

On some UNIX systems, strip removes debug information from an executable. On

z/OS, the debug information can only be removed by recompiling. strip does not

modify the contents of any executable file—it is functionally equivalent to touch file.

strings

Chapter 2. Shell command descriptions 599

Localization

strip uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v file does not exist or could not be opened.

v The user does not have write permission for file

v An error occurred while reading file

v file is not an executable file

v file is executable, but appears corrupted

2 No file was specified on the command line

Messages

Possible error messages include:

executable file file: No such file or directory

The input file does not exist. Check that the filename was entered correctly

and that it exists.

file file1: Not an executable file

strip only operates on executable files.

Write permission required to strip file

The user does not have write permission on the file.

executable file file: Permission denied

The user does not have read permission on the file.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

stty — Set or display terminal options

Format

stty [–ag] [operand]

Description

stty sets or reports the terminal I/O characteristics for the standard input device.

stty, entered without options or operands, reports only the terminal I/O

characteristics that differ from the defaults. stty, entered with operands enables,

disables, or selects the full range of terminal I/O characteristics.

The stty command affects whichever line discipline is in effect for your terminal. If

you are using the z/OS Communications Server, then stty affects the line discipline

strip

600 z/OS V1R9.0 UNIX System Services Command Reference

on the RISC System/6000® where the z/OS Communications Server is running. If

you are not using z/OS Communications Server, then stty affects the line discipline

for z/OS.

Options

This command supports the following options:

–a Displays all of the terminal I/O characteristics.

–g Displays all of the terminal I/O characteristics in a format that can be used

as input to the stty command.

The –a option gives you a clear readable description, whereas the –g option

enables you to save and restore the terminal I/O characteristics.

stty entered with operands enables, disables, or selects the full range of terminal

I/O characteristics.

Control Mode Operands

The valid operands for setting control modes are:

parenb

Enable parity generation and detection. Not valid for z/OS line discipline.

–parenb is always used. See “Usage notes” on page 606.

–parenb

Disable parity generation and detection.

parodd

Select odd parity. Not valid for z/OS line discipline. –parodd is always used.

See “Usage notes” on page 606.

–parodd

Select even parity.

cs5 Select character size CS5. Not valid for z/OS line discipline. CS8 is always

used. See “Usage notes” on page 606.

cs6 Select character size CS6. Not valid for z/OS line discipline. CS8 is always

used. See “Usage notes” on page 606.

cs7 Select character size CS7. Not valid for z/OS line discipline. CS8 is always

used. See “Usage notes” on page 606.

cs8 Select character size CS8.

number

Set the input and output baud rates to number. A number of zero hangs up

the modem line.

ispeed number

Set the input baud rate to number. Not valid for z/OS line discipline. No

special processing of zero is done. See “Usage notes” on page 606.

ospeed number

Set the output baud rate to number. Not valid for z/OS line discipline. No

special processing of zero is done. See “Usage notes” on page 606.

hupcl Hang up the modem line on the last close.

–hupcl

Do not hang up the modem line on the last close.

stty

Chapter 2. Shell command descriptions 601

hup Hang up the modem line on the last close.

–hup Do not hang up the modem line on the last close.

cstopb

Use two stop bits per character. Not valid for z/OS line discipline. –cstopb

is always used. See “Usage notes” on page 606.

–cstopb

Use one stop bit per character.

cread Enable the receiver.

–cread

Disable the receiver. Not valid for z/OS line discipline. cread is always

used. See “Usage notes” on page 606.

clocal Assume a line without modem control.

–clocal

Assume a line with modem control.

columns number

Set number of columns to number.

 This should only be used if rlogin or telnet client does not support window

size, or you are having trouble getting the correct size.

row number

Set number of rows to number.

 This should only be used if rlogin or telnet client does not support window

size, or you are having trouble getting the correct screen size.

Input Mode Operands

The valid operands for setting input modes are:

ignbrk

Ignore break on input.

–ignbrk

Do not ignore break on input.

brkint Signal INTR on break.

–brkint

Do not signal INTR on break.

ignpar

Ignore parity errors.

–ignpar

Do not ignore parity errors.

parmrk

Mark parity errors.

–parmrk

Do not mark parity errors.

inpck Enable input parity checking.

–inpck

Disable input parity checking.

istrip Strip input characters to seven bits. This feature is required by the

stty

602 z/OS V1R9.0 UNIX System Services Command Reference

standards but IBM strongly recomments that you not use this setting. It will

make it impossible to send EBCDIC alphanumeric characters to your shell

session and you will have to take extreme measures to terminate the

session.

–istrip Do not strip input characters to seven bits. This is the default and should

not be changed.

inlcr Map newline to carriage return on input.

–inlcr Do not map newline to carriage return on input.

igncr Ignore carriage return on input.

–igncr Do not ignore carriage return on input.

icrnl Map carriage return to newline on input.

–icrnl Do not map carriage return to newline on input.

iuclc Map uppercase alphabetic characters to lowercase on input.

–iuclc Do not map uppercase alphabetic characters to lowercase on input.

ixon Enable START/STOP output control.

–ixon Disable START/STOP output control.

ixany Allow any character to restart input.

–ixany

Do not allow any character to restart input.

ixoff Ask the system to send START/STOP characters to regulate the size of the

input queue.

–ixoff Ask the system not to send START/STOP characters to regulate the size of

the input queue.

Output Mode Operands

The valid operands for setting output modes are:

onlcr Converts newline characters to newline-carriage return sequences.

–onlcr Newline characters are displayed as newlines only.

opost Postprocess output.

–opost

Do not postprocess output. Ignore all other output modes.

olcuc Map lowercase alphabetic characters to uppercase on output.

–olcuc

Do not map lowercase alphabetic characters to uppercase on output.

ocrnl Map CR to NL on output.

–ocrnl Do not map CR to NL on output.

onocr Do not output CR at column 0.

–onocr

Output CR at column 0.

onlret The terminal newline key performs the CR function.

–onlret

The terminal newline key does not perform the CR function.

stty

Chapter 2. Shell command descriptions 603

ofill Use fill characters for delays.

–ofill Use timing for delays.

ofdel Fill characters are DELs.

–ofdel Fill characters are NULs.

cr0 Sets the style of delay for CRs (CRDLY) to CR0.

cr1 Sets the style of delay for CRs (CRDLY) to CR1.

cr2 Sets the style of delay for CRs (CRDLY) to CR2.

cr3 Sets the style of delay for CRs (CRDLY) to CR3.

nl0 Select the style of delay for NL (NDLY) to NL0.

nl1 Select the style of delay for NL (NLDLY) to NL1.

tab0 Sets the style of delay for horizontal tabs (TABDLY) to TAB0.

tab1 Sets the style of delay for horizontal tabs (TABDLY) to TAB1.

tab2 Sets the style of delay for horizontal tabs (TABDLY) to TAB2.

tab3 Sets the style of delay for horizontal tabs (TABDLY) to TAB3.

bs0 Select the style of delay for backspace (BSDLY) to BS0.

bs1 Select the style of delay for backspace (BSDLY) to BS1.

ff0 Select the style of delay for form feeds (FFDLY) to FF0.

ff1 Select the style of delay for form feeds (FFDLY) to FF1.

vt0 Select the style of delay for vertical tabs (VTDLY) to VT0.

vt1 Select the style of delay for vertical tabs (VTDLY) to VT1.

Local Mode Operands

The valid operands for setting local modes are:

isig Enable character checking against the special control characters INTR,

QUIT and SUSP.

–isig Disable character checking against the special control characters INTR,

QUIT and SUSP.

icanon

Enable canonical input mode.

–icanon

Disable canonical input mode.

xcase Set canonical uppercase or lowercase presentation.

–xcase

Do not set canonical uppercase or lowercase presentation.

iexten Enable any custom special control characters.

–iexten

Disable any custom special control characters.

echo Echo every character typed.

–echo Do not echo every character typed.

echoe Enable the ERASE character to visibly erase the latest character.

stty

604 z/OS V1R9.0 UNIX System Services Command Reference

–echoe

Do not enable the ERASE character to visibly erase the latest character.

echok Echo newline after a KILL character.

–echok

Do not echo newline after a KILL character.

echonl

Echo newline (even when echo is disabled).

–echonl

Do not echo newline when echo is disabled.

noflsh Disable flush after INTR, QUIT, and SUSP.

–noflsh

Enable flush after INTR, QUIT, and SUSP.

tostop

Send the SIGTOU signal for background output.

–tostop

Do not send the SIGTOU signal for background output.

Control Character Operands

In a doublebyte environment, the char parameter to these operands must be a

narrow (singlebyte) character.

The valid operands for assigning special control characters are:

min number

Set min to number.

time number

Set time to number.

eof char

Set end of file character to char.

eol char

Set end of line character to char.

erase char

Set ERASE character to char.

intr char

Set INTR character to char.

kill char

Set KILL character to char.

quit char

Set QUIT character to char.

susp char

Set SUSP character to char.

start char

Set START character to char.

stop char

Set STOP character to char.

Combination Mode Operands

The valid operands for setting combination modes are:

saved-settings

Set the terminal I/O characteristics to the saved settings produced by the

–g option.

stty

Chapter 2. Shell command descriptions 605

evenp Enable parenb and cs7; disable parodd. Not valid for z/OS line discipline.

See “Usage notes.”

parity Enable parenb and cs7; disable parodd. Not valid for z/OS line discipline.

See “Usage notes.”

oddp Enable parenb, cs7 and parodd. Not valid for z/OS line discipline. See

“Usage notes.”

–parity

Disable parenb and set cs8. Not valid for z/OS line discipline. See “Usage

notes.”

–evenp

Disable parenb and set cs8. Not valid for z/OS line discipline. See “Usage

notes.”

–oddp Disable parenb and set cs8. Not valid for z/OS line discipline. See “Usage

notes.”

raw Enable raw input and output.

–raw or cooked

Disable raw input and output.

nl Enable icrnl.

–nl Disable icrnl; unset inlcr and igncr.

lcase Set xcase, iuclc, and olcuc.

–lcase

Disable xcase, iuclc, and olcuc.

LCASE

Equivalent to lcase.

–LCASE

Equivalent to –lcase.

tabs Perserve tabs when printing.

–tabs or tab8

Expand to spaces when printing.

ek Reset ERASE and KILL characters to system defaults.

sane Reset all modes to reasonable values.

Usage notes

1. stty will operate successfully even if it is unable to perform one or more actions

in a group of requested actions. For example, if a valid z/OS operand is

requested with an invalid one, stty will operate successfully because it can

perform the valid operand. The valid operand will then be satisfied.

2. If stty is only used with invalid z/OS operands or invalid operands in

combination with valid operands that have already been satisfied, stty will fail.

Localization

stty uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

stty

606 z/OS V1R9.0 UNIX System Services Command Reference

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Error setting termios attributes

v Unknown mode

v Missing number after option

v Argument out of range

v Bad number after option

v Internal error

v Error reading termios attributes

v Missing character after option

v Badly formed argument option character

v Missing speed after ispeed or ospeed

v Bad speed argument

Portability

POSIX.2, UNIX System V.

su — Change the user ID associated with a session

Format

su [–] [–s][userid [arg ...]]

Description

su starts a new shell and lets you operate in it with the privileges of a superuser or

another user.

If you do not specify a user ID, su changes your authorization to that of the

superuser. If you specify a user ID, su changes your authorization to that of the

specified user ID. The new environment is built and then a new session is initiated.

The new session is run as a child shell of the shell issuing the su command.

Any arguments specified by arg are passed to the child shell, so must be valid

invocation flags or arguments accepted by the child shell.

su performs these functions:

v Obtains your user profile information. After validating that you have an OMVS

segment in the user profile, the OMVS segment information is obtained.

v Verifies authorization. If a user ID is not specified, you must have the

appropriate authorization to obtain superuser authority. You must be permitted to

the BPX.SUPERUSER resource in the FACILITY class. For more information,

see z/OS UNIX System Services Planning.

If a user ID is specified, and you do not have read access to the SURROGAT

class profile, BPX.SRV.uuuuuuuu (where uuuuuuuu is the MVS userid associated

with the target UID), you must enter the target user’s password when prompted.

If a user ID is specified, and you have read access to the SURROGAT class

profile for the target user, you can use the –s option, or press Enter at the

password. For more information see z/OS UNIX System Services Planning.

stty

Chapter 2. Shell command descriptions 607

v Changes the group ID. If a user ID is specified, the group ID is changed to that

of the specified user’s default group GID.

If a user ID is specified, the supplementary group list is changed to that of the

specified user.

If the change of group ID or supplemental group list fails, the su command

issues a message and continues.

v Changes the user ID. Your user ID may be changed to either the specified user

ID or the superuser’s user ID (UID 0).

– When a user ID is specified, your MVS identity changes to the specified user

ID, changing your access authority for MVS data sets in addition to changing

to the new user’s UID.

– When a user ID is not specified, your MVS identity remains the same. This

maintains your access authority to MVS data sets, while gaining superuser

authority.

– If you are already running under UID 0 and BPX.DAEMON is defined, issuing

su with no userid will result in your UID being switched to BPXROOT. If

BPX.DAEMON is not defined, and you issue su with the userid while running

under UID 0, your UID will remain set to 0. In both cases, access to the

BPX.SUPERUSER resource in the FACILITY class will not be checked.

v Sets up the shell environment.

If the login shell (’–’ flag) is specified, the OMVS segment of the new user is

used to set up the shell environment, similar to user login processing. This

includes setting the SHELL, HOME, and LOGNAME environment variables.

PATH is set to the system default (/bin), TERM is preserved from the current

environment, and STEPLIB is set to ″none″. Other environment variables are not

inherited by the new shell.

If the login shell is not specified, the OMVS segment of your user profile is used

to set up the shell environment. The environment is set up to be as similar as

possible to the environment of the shell issuing the su command. Existing values

of HOME, LOGNAME, and PATH are preserved. If not set in the current shell

environment, HOME and LOGNAME are set from the calling user’s profile, and

PATH is set to the system default (/bin). SHELL is set to calling user’s profile

value, or the default /bin/sh, if not defined.

v Executes the new shell. If login shell (’–’ flag) is specified, prepend ’–’ to the

shell’s name. This indicates that the shell should read its login startup files (for

example, /bin/sh will read /etc/profile and $HOME/.profile). The new shell is

initialized to run as a child process of the shell issuing the su command. If the su

command is run from a restricted shell (such as a shell that was started with the

–r option), you will exit from the restricted shell and leave the protection of the

trusted environment.

Notes:

1. The new shell is always run in a new address space, even if you have

_BPX_SHAREAS=YES set.

2. If you use the OMVS interface when running a shell created by su, any

attempt to execute TSO commands (PF6) results in the command running

back in your TSO address space. When these TSO commands run, they run

with your TSO identity, not the identity specified by su.

However, if you are not using the OMVS interface (for example, you rlogin or

telnet into the shell), you cannot use PF6 to execute a TSO command, and,

as a result, there will be no TSO address space or identity. The alternative

solution is to use tso –t which allows you to run a TSO/E command with the

current identity set by su.

su

608 z/OS V1R9.0 UNIX System Services Command Reference

To restore the previous session, enter exit or press <EscChar-D> (where EscChar

is normally the cent sign). If you use rlogin or telnet to enter the shell, you hold

down the Ctrl key while you press D. This action ends the child shell initiated by the

su command and returns you to the previous shell, user ID, and environment. See

z/OS UNIX System Services User’s Guide for more information about exiting the

shell environment.

Options

– Start the new shell as a login shell. Set the shell variables SHELL, HOME,

and LOGNAME according to the new user’s profile, and prepend a ’–’ to the

shell name to indicate that the shell should read its login profiles.

–s Does not prompt for password. If a user ID is specified, you must have read

access to the SURROGAT class profile, BPX.SRV.uuuuuuuu (where

uuuuuuuu is the MVS userid associated with the target UID).

Examples

To switch to admin user ID, but maintain the current user’s shell environment:

su admin

To authorize a user to switch to another user without entering a password, grant

them RACF SURROGAT authority:

RDEFINE SURROGAT BPX.SRV.ADMIN UACC(NONE)

PERMIT BPX.SRV.ADMIN CLASS(SURROGAT) ID(FRED) ACCESS(READ)

SETROPTS RACLIST(SURROGAT) REFRESH

Then, from Fred, issue:

su -s admin

To start a child shell with the login environment of the admin user ID:

su - admin

To run the /usr/lib/backupall script under the admin user ID (and return to the parent

shell environment when the script completes):

su admin /usr/lib/backupall

To run a remove shell command under the admin user ID (and return to the parent

shell environment when the command completes):

su admin -c "rm -rf /tmp/"

Usage notes

1. The new shell inherits the standard file descriptors from the su command, so

commands can be piped to the stdin of the new shell and run under the new

user.

2. If the OMVS NOECHO option is in effect, your password will be displayed.

3. Because su starts a new interactive shell, it should not be used from a batch

interface such as BPXBATCH, unless you provide the commands to be

executed under superuser via stdin to the su command.

4. After issuing su -s in the shell to switch to another user, the new user will not

have the authority to issue any commands that require an implicit open() of a

tty. This restriction includes calls which invoke the Binder (such as cp -X and

c89) as well as explicit attempts at opening a file descriptor (such as cat

/dev/fd2). An ICH408I message is written to the console to alert the user of the

access violation.

su

Chapter 2. Shell command descriptions 609

Exit Values

0 The command completed successfully

1 The user is not authorized to obtain superuser authority

2 Failure due to any of the following:

v Unable to execute the shell

v The OMVS segment of the user’s profile cannot be found

v Unable to set up the superuser environment
3 Failure due to any of the following:

v Incorrect command syntax

Messages

Possible error messages include:

User not authorized to obtain superuser authority

The user ID issuing the su command does not have the proper

authorization to switch to superuser. Verify authorization with the system

programmer.

Unable to set up the user environment. Processing terminates.

The environment variables required by the shell have not been set up.

Processing terminates. Contact the system programmer.

Unable to open the message catalog.

The message catalog cannot be opened. Processing continues with the

default messages being used. Verify that the message catalog exists in the

file system. Contact the system programmer.

Unable to execute the shell.

The initial program (shell) was not run. Verify that the initial program (shell)

exists on this system and that the user has permission to execute it.

The RACF profile for this user does not contain an OMVS segment.

During su command processing, the OMVS segment of the user’s TSO/E

profile could not be obtained. Contact the system programmer.

Command loaded from an unauthorized library. Processing terminates.

The su command must reside in an authorized library in order to check the

password of a specified user ID. Contact the system programmer.

User not authorized to switch to -"%s-".-n"

The setuid to the specified user’s UID failed because the user is not

authorized. Contact the system programmer.

Unable to switch to -"%s-", due to an error in the OMVS segment of the RACF

profile.-n"

The setuid to the specified user’s UID failed. Processing terminates.

Contact the system administrator.

User is not a surrogate of –″%s–″.–n″

User not defined to have appropriate permission to the SURROGAT class

profile for the new user. Either no password was entered or the –s option

was used. Processing terminates. Contact the system administrator.

Limits

Only users who have RACF access permission to the superuser class can use su

without specifying the user ID.

Portability

None. This command is an extension that comes with z/OS UNIX services.

su

610 z/OS V1R9.0 UNIX System Services Command Reference

Related Information

sh, ISHELL

sum — Compute checksum and block count for file

Format

sum [–ciprt] [file...]

Note: The sum utility is fully supported for compatibility with older UNIX systems.

However, it is recommended that the cksum utility be used instead because

it may provide greater functionality and is considered the standard for

portable UNIX applications as defined by POSIX.2 IEEE standard

1003.2-1992.

Description

sum calculates a checksum for each input file. It also displays the number of

512-byte blocks in each file. If you do not specify any files, or if you specify – as the

filename, sum reads standard input (stdin). The checksum is useful as a quick way

to compare a file or files that have been moved from one system to another to

ensure that data has not been lost.

sum differs from cksum only in the format of the output. The output of sum has the

form:

checksum blockcount filename

where blockcount is the number of 512-byte blocks in the file.

sum can calculate checksums in a variety of ways. The default checksum algorithm

produces a 16-bit unsigned integer resulting from the arithmetic addition of each

input byte. This checksum algorithm is not sensitive to byte order.

Options

–c Uses a standard 16-bit Cyclical Redundancy Check (CRC-16).

–i Uses the CCITT standard Cyclic Redundancy Check (CRC-CCITT). Data

communications network protocols often use a cyclic redundancy check to

ensure proper transmission. This algorithm is more likely to produce a

different sum for inputs which differ only in byte order.

–p Uses the POSIX.2 checksum algorithm.

–r Enables the use of an alternate checksum algorithm which has the

advantage of being sensitive to byte order.

–t Produces a line containing the total number of blocks of data read, as well

as the checksum of the concatenation of the input files.

Localization

sum uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

su

Chapter 2. Shell command descriptions 611

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to open input file

v Error reading the input file

2 Unknown command-line option

Portability

The default checksum algorithm is compatible with UNIX System V.2 and later. The

–r algorithm is also available on UNIX System V.2 and is the default algorithm for

Berkeley and Version 7. The –c, –i, and –t options are not available under UNIX.

Related Information

cmp, cksum, diff, ls, wc

suspend — Send a SIGSTOP to the current shell

Format

suspend

tcsh shell: suspend

Description

suspend is an alias for stop $$, where stop is an alias of kill –STOP and $$

expands to the current process of the shell. suspend sends a SIGSTOP to the

current shell.

See “kill — End a process or job, or send it a signal” on page 330 for more

information.

suspend in the tcsh shell

suspend causes the tcsh shell to stop in its tracks, much as if it had been sent a

stop signal with ^Z. See “tcsh — Invoke a C shell” on page 626.

Related Information

kill, sh, tcsh

sysvar — Display static system symbols

Format

sysvar var

Description

The sysvar command will allow users to obtain substitution text for system

variables that may be defined in IEASYMxx or in the system IPL parameters. The

substitution text will be printed to standard out. This could be used to substitute

system variables in shell variables. For example:

sum

612 z/OS V1R9.0 UNIX System Services Command Reference

system_name=$(sysvar SYSNAME)

Exit Values

o Successful completion

1 Failure because var is not a valid system variable

2 Failure because no var was specified

tabs — Set tab stops

Format

 tabs [+m[margin]] [–T term] [– number]

 tabs [+m[margin]] [–T term] –t tablist

 tabs [+m[margin]] [–T term] num1[,num2,...]

 tabs [+m[margin]] [–T term] tabspec

Description

tabs sends a series of characters to the standard output, designed to clear the

terminal hardware’s tab stops and then set new ones. The characters that are sent

depend on the type of terminal you are using.

The first column of your terminal screen is column 1. If you set a tab stop at

position N and then tab to that position, the next character displayed on the screen

appears in column N+1 of the line (that is, after the tab stop).

tabs may not be able to set the tab stops on some types of terminals. In this

situation, it issues an error message and then exits with a status greater than zero.

tabs with no arguments sets tab stops every 8 positions.

Options

+m[margin]

Sets the left margin to margin. It defaults to 10 if you do not specify a

value. All tab positions are relative to the left margin. To find the actual tab

positions, you add the value of margin to each tab position.

–T type

Indicates the type of terminal you have. The term argument is a site-specific

name for your terminal type.

 If you do not specify –T, tabs looks for an environment variable named

TERM and uses its value for type. If TERM is not defined, tabs assumes a

default terminal type.

–t tablist

Sets tab stops as specified by tablist. tablist consists of one or more

positive decimal integers, separated by commas; the numbers in the list

should be in strictly increasing order.

 If only one number N is given, tabs are set every N columns. If more than

one number is given, tabs are set at those column numbers.

num1[,num2,...]

Sets tab stops to the given numbers. The numbers in the list should be

positive decimal integers in strictly increasing order. Except for the first

number, any number in the list may be preceded by a plus sign (+), in

sysvar

Chapter 2. Shell command descriptions 613

which case the number is considered to be an increment on the previous

setting rather than a column position. For example,

tabs 4,8,12

tabs 4,+4,+4

are equivalent.

tabspec

Can be one of –a, –a2, –c, –c2, –c3, –f, –p, –s or –u and sets tab stops at

these positions:

–a 1,10,16,36,72

–a2 1,10,16,40,72

–c 1,8,12,16,20,55

–c2 1,6,10,14,49

–c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67

–f 1,7,11,15,19,23

–p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61

–s 1,10,55

–u 1,12,20,44

Each tabspec is designed for a particular programming language.

Assembler uses –a,–a2, and –u. COBOL uses –c, –c2, and –c3.

FORTRAN, PL/I, and SNOBOL use –f, –p, and –s, respectively.

–number

Sets tab stops every number positions along the line. number must be a

single-digit decimal number. If number is zero (–0), tabs clears all the tab

stops and does not set new ones.

Environment Variables

tabs uses the following environment variables:

TERM Contains the name of your terminal.

TERMINFO

Contains the pathname of the terminfo database.

Localization

tabs uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Missing definition in the terminfo database

2 Usage error

3 Unknown terminal or cannot find the terminfo database

4 Illegal tabs

5 An error occurred

tabs

614 z/OS V1R9.0 UNIX System Services Command Reference

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The +m, –t, and tabspec arguments are all extensions to the POSIX standard.

The –t argument is an extension to the X/Open standard.

Related Information

stty

tail — Display the last part of a file

Format

 tail[–B] [–f] [–bcklmn [±]number] [file]

 tail[–B] [–f] [±number [bcklmn]] [file]

Description

tail without options displays the last ten lines of file. This is useful for seeing the

most recent entries in log files and any file where new information is added on the

end.

The tail command is used with text files. To make a binary file input to the tail

command, use the –c option. If a binary file is input without the –c option being

specified, the entire file is sent to the screen.

Options

±number

Is either of the following:

+number

Skips to line number and then displays the rest of the file. For

example, +100 prints from line 100 to the end of the file.

–number

Prints number lines from the end of the file. For example, -20 prints

the last 20 lines in the file.

You can precede or follow both +number and –number with one of the

following letters to indicate the unit to be used:

v b–blocks

v c–bytes

v k–kilobytes

v l or n–lines

v m–megabytes

The default unit is lines.

–f Monitors a file as it grows. Every two seconds, tail wakes up and prints any

new data at the end of the file. This option is ignored if tail read from the

standard input, and standard input is a pipe.

File Tag Specific Options

–B Disable autoconversion of tagged files.

tabs

Chapter 2. Shell command descriptions 615

Localization

tail uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Insufficient memory

v Write error on the standard output (stdout)

v Badly formed line or character count

v Missing number after an option

v Error reopening a file descriptor
2 Failure due to an unknown command-line option

Messages

Possible error messages include:

Badly formed line/character count string

In an option of the form –n number or –number, the number was not a valid

number.

Reopening file descriptor number

–f was used to follow a file as it grew. tail closed the file associated with

the given file descriptor number and then tried to open it 2 seconds later. At

this point, tail found it could not reopen the file for reading, and therefore

could not follow the file any longer.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The POSIX standard does not include the use of b, k, or m as either options or

suffixes. –l is an extension of the traditional implementation of tail.

Related Information

cat, head, more

talk — Talk to another user

Format

talk address [terminal]

Description

talk lets you begin a two-way conversation with someone else logged in to the

system.

tail

616 z/OS V1R9.0 UNIX System Services Command Reference

Options

address

Indicates the user with whom you want to talk. The most common form of

address is the person’s user name (as given by the who command), but

other formats may be supported.

terminal

An optional identifier for use when the other user is logged in on more than

one terminal. The format of the terminal identifier is the same as given by

who.

Environment Variables

talk uses the following environment variables:

TERM Contains the name of your terminal.

TERMINFO

Contains the pathname of the terminfo database.

Localization

talk uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Usage notes

1. When you issue a talk command to request a conversation with another user,

the other user receives a message of the form:

Message from name

talk: connection requested by your_address

talk: respond with: talk your_address

To set up the connection, your intended recipient must issue the system

command

talk your_address

which establishes the two-way connection. After this connection has been

established, both of you can type simultaneously. talk displays incoming

messages from the other person in one part of the screen and outgoing

messages in another part of the screen.

Some terminals may not be able to split the screen into parts in this way.

Depending on the terminal type, talk may try to simulate this effect. However, it

may not be possible for both users to enter messages simultaneously. talk

determines terminal type by looking for an environment variable named TERM.

If this variable exists, talk uses its value as a site-specific name giving a

terminal type. If TERM doesn’t exist, talk assumes a default type.

2. The character-erase and line-kill characters work as usual. Typing <Ctrl-L>

refreshes both parts of the screen (for example, if some unusual character

messes up the display).

talk

Chapter 2. Shell command descriptions 617

3. The interrupt character (for example, <Ctrl-C>) terminates your talk session and

breaks the connection. When one side breaks the connection, talk notifies the

other side and exits.

4. The mesg command lets you refuse talk sessions. With:

mesg n

you can tell the system that you don’t want to be interrupted by talk requests. If

people try to establish a talk session with you, they are denied immediately; you

are not informed about such requests. For more details, see mesg.

Exit Values

The following exit status values are possible:

0 Successfully established and completed a transmission

>0 An error occurred, or you are trying to use talk on a terminal that cannot

handle the way talk uses the screen

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information

mail, mesg, who, write

tar — Manipulate the tar archive files to copy or back up a file

Format

 tar –c[#sbvwlzOUXS] –f file [–V volpat] [tarfile] [blocksize] [–C pathname]

 tar –r[#sbvwlzOUXS] –f file [–V volpat] [tarfile] [blocksize]

 tar –t[#sbvzEOUXS] –f file [–L type] [–V volpat] [tarfile] [blocksize] [–C

pathname]

 tar –x[#AsbvwpmozOUXS] –f file [–V volpat] [tarfile] [blocksize]

Note

APAR OW52499 (OS/390 R6 - z/OS R4) changed the tar default behavior for

extended USTAR attributes. Before the APAR is applied, for tar -U, the -X is

the default (extended USTAR attributes are saved). After the APAR is applied,

for tar -U, the -O is the default (extended USTAR attributes are NOT saved).

The APAR also introduces an environment variable (_OS390_USTAR=Y)

which makes tar -U save the extended USTAR attributes as long as -O is not

used. For more information on extended USTAR attributes, see pax utility

under “z/OS extended USTAR support” on page 498.

Description

tar reads, writes and lists archive files. An archive file is a single file containing one

or more files and/or directories. Archive files can be HFS files or MVS data sets. A

file stored inside an archive is called a component file; similarly, a directory stored

inside an archive is called a component directory.

Rule : MVS data sets cannot be specified for component files.

talk

618 z/OS V1R9.0 UNIX System Services Command Reference

Included with each component file and directory is recorded information such as

owner and group name, permission bits, file attributes, and modification time. You

can therefore use a single archive file to transfer a directory structure from one

machine to another, or to back up or restore groups of files and directories.

Archives created by tar are interchangeable with those created with the pax utility.

Both utilities can read and create archives in the default format of the other (USTAR

for pax and TAR for tar). To save extended USTAR attributes, the USTAR format

(-U) must be used with -X option. Also the OS390 format may be used using the -S

option. In general, the USTAR format with -X option and OS390 format records the

most information and is recommended. Archives are generally named with suffixes

such as .pax or .tar (or pax.Z and tar.Z for compressed files), but this is not

required.

 Table 30. Recommended USTAR format options

Intent Option

To save only standard attributes tar -U

To save all attributes to be restored on z/OS

system

tar -S

To save all attributes to be restored on z/OS

and non-z/OS systems

tar -UX

Tip : In order to preserve information such as extended attributes, external links,

ACLs, file tag information, and links whose targets exceed 100 characters, either

the USTAR format (-U) and -X option or the OS390 format using the -S option must

be used. See the -U option for selecting the USTAR format. The -O and -X options

and “z/OS extended USTAR support” on page 498 contain information about

enabling and disabling USTAR support.

You cannot use tar unless you specify –f.

Options

The four forms of the command shown in the syntax represent the main functions of

tar as follows:

–c Creates an archive. This command writes each named file into a newly

created archive. Directories recursively include all components. Under the

USTAR (–U) option, tar records directories and other special files in the

tape archive; otherwise, it ignores such files. If – appears in place of any

filename, tar reads the standard input for a list of files one per line. This

allows other commands to generate lists of files for tar to archive.

 Tip : In order to preserve information about extended attributes and

external links, the USTAR format (-U) must be used. Additionally, to

preserve ACLs, file tag information, and link names greater than 100

characters, the USTAR format (-U) and -X option must be used. The OS390

archive format may also be used with the -S option to store all the file

attributes.

–r Writes the named files to the end of the archive. It is possible to have more

than one copy of a file in a tape archive using this method. To use this form

of the command with a tape, it must be possible to backspace the tape.

tar

Chapter 2. Shell command descriptions 619

Rules : You cannot specify both the –r and the –z option at the same time.

Also, you cannot specify OS390 format to be appended to non-OS390

format archive or specify non-OS390 format to be appended to OS390

format archive.

–t Displays a table of contents. This displays the names of all the files in the

archive, one per line. If you specify one or more files on the command line,

tar prints only those filenames. The verbose (–v) and (for USTAR formatted

archives or OS390 formatted archives) the –E options can be used to show

the attributes and extended attributes of each component.

–x Extracts files from an archive. tar extracts each named file to a file of the

same name. If you did not specify any files on the command line, all files in

the archive are extracted. This extraction restores all file system attributes

as controlled by other options.

You must specify one of the preceding basic options as the first character of an

option string. You can add other characters to the option string. Unlike with other

commands, you must give options as a single string; for example, you might specify

–tv, but you cannot separate them, as in “–t –.” You can omit the leading dash – if

you want. Other possible options in the option string are:

A Restores ACL information when used with –x option.

b Sets the number of 512-byte blocks used for tape archive read/write

operations to blocksize. The blocksize argument must be specified, and

blocksize can be specified only when b is in the option string. When

reading from the tape archive, tar automatically determines the blocking

factor by trying to read the largest permitted blocking factor and using the

actual number read to be the blocksize. For UNIX compatibility, the largest

valid block size is 20 blocks; in USTAR mode, it is 60 blocks.

–C pathname

Is an unusual option because it is specified in the middle of your file list.

When tar encounters a –C pathname option while archiving files, it changes

the working directory (for tar only) to pathname and treats all following

entries in your file list (including another –C) as being relative to pathname.

–E Although still supported for compatiblilty with previous versions of tar, this

option has been replaced by –L E.

f You must specify f. The f option uses the file tapefile for the tape archive

rather than using the default. The tapefile argument must be specified, and

tapefile can be specified only when f is in the option string. The tapefile

argument must precede the blocksize argument if both are present. If

tapefile is the character –, the standard input is used for reading archives,

and the standard output is used for writing archives.

#s #s is not supported by. The default archive filename used by tar is

/dev/mt/0m. This option is the least general way to override this default. For

a more general method, see the f option. The filename generated by this

option has the form /dev/mt/#s. The # can be any digit between 0 and 7,

inclusive, to select the tape unit. The density selector s can be l (low), m

(medium), or h (high).

l Complains if all links are not resolved when adding files to the tape archive.

–L type

–L displays additional information when listing the contents of an archive.

Only one type may be specified per –L option. However, –L may be

specified mulitple times. The types that can be displayed are:

tar

620 z/OS V1R9.0 UNIX System Services Command Reference

A Displays extended ACL (Access Control List) data.

Note: Specifying tar –L A does not automatically turn on the

verbose table of contents format. You must also specify –v

to display the chmod settings associated with the file.
For more information on ACLs, see z/OS UNIX System Services

Planning and “ACL (access control list) tar support” on page 623.

E Same as verbose (–v) output, but additionally displays extended

attributes. See “Output” on page 622 for more information. –L E is

equivalent to the tar –E

T Displays file tag information. Does not automatically turn on the

verbose –v option but can be used with –v or any other

combination of table of contents display options. See “Output” on

page 622 for more information.

m Does not restore a file’s modification time stamp when extracting it from an

archive. The default behavior is to restore the time stamp from information

contained in the archive.

o When writing files to an archive, does not record owner and modes of

directories in the archive. If this is specified when extracting from an

existing ar archive, tar does not restore any owner and group information in

the archive. The default is to record this information when creating a tar

archive, and to restore it when extracting from the archive.

–O For USTAR formatted archive, this option turns off the extended USTAR

support. -O is the default and user needs to use -X option to turn on

extended USTAR support for USTAR archive.

 For more information, see “z/OS extended USTAR support” on page 498.

–X For USTAR formatted archives, –X enables extended USTAR support. This

option has no affect for non-USTAR formatted archives. tar –X functions in

the following manner:

v During archive writing, -X causes tar to preserve extended USTAR

information.

v During archive listing, -X causes tar to display extended USTAR

information. This is the default; -O may be used to disable extended

USTAR support.

v During archive reading, -X enables tar to restore extended USTAR

information. This is the default; -O may be used to disable extended

USTAR support.

The environment variable _OS390_USTAR=Y, also turns on the extended

USTAR information

Tip : To restore certain information, the user must also have the appropriate

privileges and have specified the corresponding options. For example, you

must specify –p to restore extended attributes and to restore ACLs.

 For more information on extended attributes, see “z/OS extended USTAR

support” on page 498.

p When extracting, restores the three high-order file permission bits, exactly

as in the archive. They indicate the set-user-ID, set-group-ID, and sticky bit.

For USTAR formatted archives, p also restores, if present, extended

attributes and -A restores ACLs.

tar

Chapter 2. Shell command descriptions 621

Tip : If -O is specified, it overrides -p for extended attributes- they will not

be restored. tar restores the modes exactly as stored in the archive and

ignores the UMASK.To use -p on UNIX systems, you must have

appropriate privileges; tar restores the modes restored exactly as in the

archive and ignores the UMASK.

U When creating a new tape archive with the –c option, forces tar to use the

USTAR format. The default format used when creating a new archive is the

original UNIX tar format. When you do not specify –c, tar can deduce

whether the tape archive is in USTAR format by reading it, so you can use

U to suppress a warning about USTAR format.

 In order to save external links, extended attributes, and file tag information,

and ACLs, the extended USTAR format must be used. To turn on the

extended USTAR format, the -U and -X options must be specified. The

OS390 format may also be used (-S option) to save all the file attributes by

default.

v Displays each filename, along with the appropriate action key letter as it

processes the archive. With the –t form of the command, this option gives

more detail about each archive member being listed and shows information

about the members in the same format used by the ls –l command. You

can also use the –L type option which provides the ability to display

additional information such as extended attributes and file tag information.

See “Output” for more information.

–V volpat

Provides automatic multivolume support. tar writes output to files—the

names of which are formatted with volpat. Any occurrence of # in volpat is

replaced by the current volume number. When you invoke tar with this

option, it prompts for the first number in the archive set, and waits for you

to type the number and a carriage return before proceeding with the

operation. tar issues the same sort of message when a write error or read

error occurs on the archive; this kind of error means that tar has reached

the end of the volume and should go on to a new one.

w Is used to confirm each operation, such as replacing or extracting. tar

displays the operation and the file involved. You can then confirm whether

you want the operation to take place. Typing in an answer that begins with

“y” tells tar to do the operation; anything else tells tar to go on to the next

operation.

z Reads or writes, or both reads and writes, the tape archive by first passing

through a compression algorithm compatible with that of compress.

Note: You cannot specify both the –r option and the –z option at the same

time.

Output

When the –v or –L E (or –E) option is used with –t (table of contents), tar

produces a verbose table of contents for the archive. The –L T option can also be

used to additionally, or without the verbose output, display file tag information. The

output for –v is similar to the output from the ls –l command with following

exceptions:

v The following notation is used to represent hard, symbolic, and external links:

hlink external link to origfile

indicates that hlink is a hard link of origfile.

tar

622 z/OS V1R9.0 UNIX System Services Command Reference

slink symbolic link to origfile

indicates that slink is a symbolic link to origfile.

elink external link to ORIG.FILE

indicates that elink is an external link to ORIG.FILE.

v For symbolic and external links, pax output always shows a filesize of 0

Refer to the description of ls for an explanation of the ls –v.

The output from the –L E (or –E) option has the same format as –v and

additionally displays a column showing the extended attributes:

a Program runs APF-authorized if linked AC=1

p Program is considered program-controlled

s Program runs in a shared address space

l Program is loaded from the shared library region

Note: l is a lower-case L, not an upper-case i.
– attribute not set

The format of the tar –L E (or –E) output is variable in length and will be extended

as necessary to display additional file characteristics that are not supported by tar

–v (ls –l).

The format of the tar –L T output is similar to the output from chtag –p. If specified

with –v or –L E, the output will be displayed on the same line of and before the –v

output. When used without –v, only the file tag information and filenames are

displayed. For example:

/tmp> tar -L T -tf asciitagged.tar

m ISO8859-1 T=off text_am

t ISO8859-1 T=on text_at

- untagged T=off text_au

This option can be used with –v and/or –o E to display additional verbose output.

For example:

/tmp> tar -L T -tvf asciitagged.tar

m ISO8859-1 T=off -rw-r--r-- 1 SteveS Kings 9 Apr 30 22:31 text_am

t ISO8859-1 T=on -rw r--r-- 1 SteveS Kings 9 Apr 30 22:31 text_at

- untagged T=off -rw-r--r-- 1 SteveS Kings 9 Apr 30 22:06 text_au

ACL (access control list) tar support

Archive Writing or Creating

ACL data is stored in USTAR formatted archives, when -X option is used. The

OS390 format (-S option) also stores the ACL information.

tar –O can be used to disable the creation of special headers. This prevents tar

from storing ACL data and other non-standard information such as file tag data and

long link names. However, there is no option to disable storing of ACL data only.

Archive Reading or Restoring

By default, ACL data will not be restored when reading or restoring files from an

archive. However, for USTAR and OS390 formatted archives, you can use tar –A to

restore ACL data.

tar

Chapter 2. Shell command descriptions 623

Archive Listing (Table of Contents)

For verbose output (tar –v), + is added to the end of the file permission bits for all

files with extended ACLs. For example, file2 and dir1 have extended ACL entries:

> tar -tvf acldata.tar

-rwx------ 1 STIERT SHUT 294912 Nov 9 09:57 file1

-rwx------+ 1 STIERT SHUT 294912 Nov 9 09:57 file2

drwxr-xr-x+ 2 STIERT SHUT 8192 Mar 20 2000 dir1/

For more information about access control lists, see z/OS UNIX System Services

Planning.

Usage notes

1. Use the pax command if you need to use multibyte patterns when searching for

filenames.

2. The POSIX 1003.1 standard defines formats for pax and tar archives that limit

the length of the target of a link file to 100 characters or less.

Note: In the case of a hard link, the target is the first occurrence of the hard

link which is archived. Subsequent hard links refer to the first instance.
Beginning with OS/390 Release 6, pax and tar provide extended USTAR

support and the OS390 format that allows these links to be preserved when

creating an archive and restored when reading an archive. See “z/OS extended

USTAR support” on page 498 for more information.

3. The POSIX 1003.1 standard defines formats for pax and tar archives that limit

the size of a file that can be stored in a pax and tar archive to less than 8

gigabytes in size. If a file being archived is 8 gigabytes or greater, an error

message is issued, and the file is skipped. The command continues, but will

end with a non-zero exit status.

4. On the z/OS system, superuser privileges or read access to the appropriate

FACILITY classes are required to create character special files, to restore user

and group names, and to set certain extended attributes.

5. Pathnames in the tape archive are normally restricted to a maximum length of

100 bytes. However, in USTAR (-U) and OS390(-O) format, pathnames can be

up to 255 bytes long.

6. When transferring archives between z/OS and other UNIX systems, note the

following:

a. File transfers (for example, using OPUT/OGET or ftp put/get) must be done

using binary or image format. This is true, even for archives consisting only

of text files.

b. You may need to convert text files from EBCDIC to ASCII (or some other

character set). You can use the iconv utility to convert files before or after

archiving. When text files are being created or extracted, you can use the

pax –o option to convert them.

7. Automatic conversion on files with file tag information is disabled when:

v reading files during creation of an archive

v during writes while extracting files from an archive

That is, the settings of system and environment variables that turn automatic

conversion on and off will have no affect on tar’s reading and writing of files.

pax supports file tag options which support conversion of files based on their

file tag settings.

tar

624 z/OS V1R9.0 UNIX System Services Command Reference

Examples

1. The following command takes a directory and places it in an archive in

compressed format:

tar –cvzf archive directory

2. To identify all files that have been changed in the last week (7 days), and to

archive them to the /tmp/posix/testpgm file, enter:

find /tmp/posix/testpgm –type f –mtime –7 | tar –cvf testpgm.tar –

–type –f tells find to select only files. This avoids duplicate input to tar.

3. In the following examples, archive acidata.tar contains file1, file2, and dir1. file1

has no ACL data, file2 has an access ACL, and dir1 contains a file default, a

directory default, and an access ACL. If you only specify option –f, your output

will be:

> tar -f acldata.tar

file1

file2

dir1

If you also specify –L A, ACL information will be displayed:

> tar -L A -f acldata.tar

file1

file2

user:WELLIE2:rw-

group:SYS1:rwx

Finally, if you add the verbose option, –v, you will see the chmod settings

associated with the file:

> tar -L A -vf acldata.tar

-rwx------ 1 STIERT SHUT 294912 Nov 9 09:57 file1

-rwx------+ 1 STIERT SHUT 294912 Nov 9 09:57 file2

user:WELLIE2:rw-

group:SYS1:rwx

drwxr-xr-x+ 2 STIERT SHUT 8192 Mar 20 2000 dir1/

user:RRAND:rwx

user:WELLIE2:rw-

group:SHUT:rwx

fdefault:user:RRAND:rwx

fdefault:group:SHUT:r-x

default:user:ANGIEH:rwx

default:group:SYS1:r--

Localization

tar uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit values

0 Successful completion

1 Failure due to any of the following:

v Incorrect option

v Incorrect command-line arguments

v Out of memory

tar

Chapter 2. Shell command descriptions 625

v Compression error

v Failure on extraction

v Failure on creation

Portability

4.2BSD

The –U option is an extension to provide POSIX USTAR format compatibility. The

–p option is a common extension on BSD UNIX systems that is not available on

UNIX System V systems. The –O, –X, and –S options are also extensions of

POSIX standard.

Related information

cpio, pax

Also see the pax file format description in Appendix H for more information.

tcsh — Invoke a C shell

Format

 tcsh [–bcdeFfimnqstvVxX]

 tcsh –l

Note: –l is a lowercase L, not an uppercase i.

Description

tcsh contains the following topics and subtopics:

v Options and invocation

v Options

v Editing

v Command syntax

v Substitutions

v Command Execution

v Features

v Jobs

v Status Reporting

v Automatic, Periodic, and Time Events

v Native Language System Report

v Signal Handling

v Built-in Commands

v Shell and Environment Variables

v Files

v Problems and Limitations

Options and invocation

The tcsh shell is an enhanced but completely compatible version of the Berkeley

UNIX C shell, tcsh. It is a command language interpreter usable both as an

interactive login shell and a shell script command processor. It includes a

command-line editor, programmable word completion, spelling correction, a history

mechanism, job control, and a C-like syntax.

You can invoke the shell by typing an explicit tcsh command. A login shell can also

be specified by invoking the shell with the –l option as the only argument.

tar

626 z/OS V1R9.0 UNIX System Services Command Reference

A login shell begins by executing commands from the system files /etc/csh.cshrc

and /etc/csh.login.It then executes commands from files in the user’s home

directory: first ~/.tcshrc, then ~/.history (or the value of the histfile shell variable),

then ~/.login, and finally ~/.cshdirs (or the value of the dirsfile shell variable). The

shell reads /etc/csh.login after /etc/csh.cshrc.

Non-login shells read only /etc/csh.cshrc and ~/.tcshrc or ~/.cshrc on invocation.

Commands like stty, which need be run only once per login, usually go in the

user’s ~/.login file.

In the normal case, the shell begins reading commands from the terminal,

prompting with >. The shell repeatedly reads a line of command input, breaks it into

words, places it on the command history list, and then parses and executes each

command in the line. See “Command execution” on page 645.

A user can log out of a tcsh shell session by typing ^D, logout, or login on an

empty line (see ignoreeof shell variable), or via the shell’s autologout mechanism.

When a login shell terminates, it sets the logout shell variable to normal or

automatic as appropriate, then executes commands from the files /etc/csh.logout

and ~/.logout.

Note: The names of the system login and logout files vary from system to system

for compatibility with different csh variants; see “tcsh files” on page 671.

Options

If the first argument (argument 0) to the tcsh shell is - (hyphen), then it is a login

shell. You can also specify the login shell by invoking the tcsh shell with the –l as

the only argument.

The z/OS UNIX System Services tcsh shell accepts the following options on the

command line:

–b Forces a break from option processing, causing any further shell arguments

to be treated as non-option arguments. The remaining arguments will not be

interpreted as shell options. This may be used to pass options to a shell

script without confusion or possible subterfuge.

–c Reads and executes commands stored in the command shell (this option

must be present and must be a single arugment). Any remaining arguments

are placed in the argv shell variable.

–d Loads the directory stack from ~/.cshdirs as described under “Options and

invocation” on page 626, whether or not it is a login shell.

–e Terminates shell if any invoked command terminates abnormally or yields a

non-zero exit status.

–i Invokes an interactive shell and prompts for its top-level input, even if it

appears to not be a terminal. Shells are interactive without this option if

their inputs and outputs are terminals.

–l Invokes a login shell. Only applicable if –l is the only option specified.

Note: –l is a lower-case L not an upper-case i.

–m Loads ~/.tcshrc even if it does not belong to the effective user.

tcsh

Chapter 2. Shell command descriptions 627

–n Parses commands but does not execute them. This aids in debugging shell

scripts.

–q Accepts SIGQUIT and behaves when it is used under a debugger. Job

control is disabled.

–s Take command input from the standard input.

–t Reads and executes a single line of input. A \ (backslash) may be used to

escape the newline at the end of this line and continue onto another line.

–v Sets the verbose shell variable so command input is echoed after history

substitution.

–x Sets the echo shell variable so commands are echoed immediately before

execution.

–V Sets the verbose shell variable even before executing ~/.tcshrc.

–X Is to –x as –V is to –v.

After processing of option arguments, if arguments remain but none of the –c, –i,

–s, or –t were given, the first argument is taken as the name of a file of commands,

or script, to be executed. The shell opens this file and saves its name for possible

resubstitution by $0. Since many systems use shells whose shell scripts are not

compatible with this shell, the tcsh shell uses such a standard shell to execute a

script whose character is not a #, that is, which does not start with a comment.

Remaining arguments are placed in the argv shell variable.

tcsh shell editing

In this topic, we first describe the Command-Line Editor. We then discuss

Completion and Listing and Spelling Correction which describe two sets of

functionality that are implemented as editor commands but which deserve their own

treatment. Finally, the Editor Commands topic lists and describes the editor

commands specific to the tcsh shell and their default bindings.

tcsh shell command-line editor

Command-line input can be edited using key sequences much like those used in

GNU Emacs or vi. The editor is active only when the edit shell variable is set, which

it is by default in interactive shells. The bindkey built-in command can display and

change key bindings. Emacs-style key bindings are used by default, but bindkey

can change the key bindings to vi-style bindings.

The shell always binds the arrow keys to:

down down-history

up up-history

left backward-char

right forward-char

unless doing so would alter another single-character binding. One can set the arrow

key escape sequences to the empty string with settc to prevent these bindings.

Other key bindings are, for the most part, what Emacs and vi users would expect

and can easily be displayed by bindkey, so there is no need to list them here.

Likewise, bindkey can list the editor commands with a short description of each.

tcsh

628 z/OS V1R9.0 UNIX System Services Command Reference

Note: Editor commands do not have the same notion of a word as does the tcsh

shell. The editor delimits words with any non-alphanumeric characters not in

the shell variable wordchars, while the tcsh shell recognizes only whitespace

and some of the characters with special meanings to it, listed under

“Command syntax” on page 636.

Completion and listing

The tcsh shell is often able to complete words when given a unique abbreviation.

Type part of a word (for example ls /usr/lost) and press the tab key to run the

complete-word editor command. The shell completes the filename /usr/lost to

/usr/lost+found/, replacing the incomplete word with the complete word in the input

buffer. (Note the terminal / (forward slash); completion adds a / to the end of

completed directories and a space to the end of other completed words, to speed

typing and provide a visual indicator of successful completion. The addsuffix shell

variable can be unset to prevent this.) If no match is found (for example,

/usr/lost+found doesn’t exist), the terminal bell rings. If the word is already

complete (for example, there is a /usr/lost on your system, or you were thinking too

far ahead and typed the whole thing), a / or space is added to the end if it isn’t

already there.

Completion works anywhere in the line, not just at the end; completed text pushes

the rest of the line to the right. Completion in the middle of a word often results in

leftover characters to the right of the cursor which need to be deleted.

Commands and variables can be completed in much the same way. For example,

typing em [tab] would complete ’em’ to ’emacs’ if emacs were the only command

on your system beginning with ’em’. Completion can find a command in any

directory in the path or if given a full pathname. Typing echo $ar[tab] would

complete ’$ar’ to ’$argv’ if no other variable began with ’ar’.

The shell parses the input buffer to determine whether the word you want to

complete should be completed as a filename, command or variable. The first word

in the buffer and the first word following ’;’, ’|’, ’|&’, ’&&’ or ’||’ is considered to be a

command. A word beginning with ’$’ is considered to be a variable. Anything else is

a filename. An empty line is completed as a filename.

You can list the possible completions of a word at any time by typing ^D to run the

delete-char-or-list-or-eof editor command. The tcsh shell lists the possible

completions using the ls-F built-in and reprints the prompt and unfinished command

line, for example:

> ls /usr/l[’^D]

lbin/ lib/ local/ lost+found/

> ls /usr/l

If the autolist shell variable is set, the tcsh shell lists the remaining choices (if any)

whenever completion fails:

> set autolist

> nm /usr/lib/libt[tab]

libtermcap.a@ libtermlib.a@

> nm /usr/lib/libterm

If autolist is set to ambiguous, choices are listed only if multiple matches are

possible, and if the completion adds no new characters to the name to be matched.

tcsh

Chapter 2. Shell command descriptions 629

A filename to be completed can contain variables, your own or others’ home

directories abbreviated with ~ (tilde; see “Filename substitution” on page 643) and

directory stack entries abbreviated with = (equal; see “Directory stack substitution”

on page 644). For example:

> ls ~k[^D]

kahn kas kellogg

> ls ~ke[tab]

> ls ~kellogg/

or

> set local = /usr/local

> ls $lo[tab]

> ls $local/[^D]

bin/ etc/ lib/ man/ src/

> ls $local/

Variables can also be expanded explicitly with the expand-variables editor

command.

delete-char-or-list-or-eof only lists at the end of the line; in the middle of a line it

deletes the character under the cursor and on an empty line it logs one out or, if

ignoreeof is set, does nothing. M-^D, bound to the editor command list-choices,

lists completion possibilities anywhere on a line, and list-choices (or any one of the

related editor commands which do or don’t delete, list and/or log out, listed under

delete-char-or-list-or-eof) can be bound to ^D with the bindkey built-in command

if so desired.

The complete-word-fwd and complete-word-back editor commands (not bound to

any keys by default) can be used to cycle up and down through the list of possible

completions, replacing the current word with the next or previous word in the list.

The tcsh shell variable fignore can be set to a list of suffixes to be ignored by

completion. Consider the following:

 > ls

 Makefile condiments.h~ main.o side.c

 README main.c meal side.o

 condiments.h main.c~

 > set fignore = (.o \~)

 > emacs ma[^D]

 main.c main.c~ main.o

 > emacs ma[tab]

 > emacs main.c

’main.c~’ and ’main.o’ are ignored by completion (but not listing), because they end

in suffixes in fignore. \ is needed in front of ~ to prevent it from being expanded to

home as described under “Filename substitution” on page 643. fignore is ignored if

only one completion is possible.

If the complete shell variable is set to enhance, completion: 1.) ignores case and

2.) considers periods, hyphens and underscores (’.’, ’-’ and ’_’) to be word

separators and hyphens and underscores to be equivalent.

If you had the following files:

comp.lang.c comp.lang.perl comp.std.c++

comp.lang.c++ comp.std.c

tcsh

630 z/OS V1R9.0 UNIX System Services Command Reference

and typed mail -f c.l.c[tab], it would be completed to mail -f comp.lang.c, and ^D

would list comp.lang.c and comp.lang.c++. mail -f c..c++[^D] would list

comp.lang.c++ and comp.std.c++. Typing rm a--file[^D] in the following directory

A_silly_file a-hyphenated-file another_silly_file

would list all three files, because case is ignored and hyphens and underscores are

equivalent. Periods, however, are not equivalent to hyphens or underscores.

Completion and listing are affected by several other tcsh shell variables: recexact

can be set to complete on the shortest possible unique match, even if more typing

might result in a longer match. For example:

> ls

fodder foo food foonly

> set recexact

> rm fo[tab]

just beeps, because ’fo’ could expand to ’fod’ or ’foo’, but if we type another ’o’,

> rm foo[tab]

> rm foo

the completion completes on ’foo’, even though ’food’ and ’foonly’ also match.

autoexpand can be set to run the expand-history editor command before each

completion attempt, and correct can be set to complete commands automatically

after one hits ’return’. matchbeep can be set to make completion beep or not beep

in a variety of situations, and nobeep can be set to never beep at all. nostat can

be set to a list of directories and/or patterns which match directories to prevent the

completion mechanism from stat(2)ing those directories.

Note: The completion operation succeeds, but faster. The setting of nostat is

evident when using the listflags variable. For example:

>set listflags=x

>ls-F /u/pluto

Dir1/exe1*

>set nostat=(/u/pluto/)

>ls-F /u/pluto

Dir1exe1

>

Although, you must be careful when setting nostat to keep the trailing /

(forward slash).
listmax and listmaxrows can be set to limit the number of items and rows

(respectively) that are listed without asking first. recognize_only_executables can

be set to make the shell list only executables when listing commands, but it is quite

slow.

Finally, the complete built-in command can be used to tell the shell how to

complete words other than filenames, commands and variables. Completion and

listing do not work on glob-patterns (see “Filename substitution” on page 643), but

the list-glob and expand-glob editor commands perform equivalent functions for

glob-patterns.

Spelling correction

The tcsh shell can sometimes correct the spelling of filenames, commands and

variable names as well as completing and listing them.

Individual words can be spelling-corrected with the spell-word editor command

(usually bound to M-s and M-S where M = Meta Key or escape (ESC) key) and the

tcsh

Chapter 2. Shell command descriptions 631

entire input buffer with spell-line (usually bound to M-$). The correct shell variable

can be set to ’cmd’ to correct the command name or ’all’ to correct the entire line

each time return is typed.

When spelling correction is invoked in any of these ways and the shell thinks that

any part of the command line is misspelled, it prompts with the corrected line:

> set correct = cmd

> lz /usr/bin

CORRECT>ls /usr/bin (y|n|e|a)?

where one can answer ’y’ or space to execute the corrected line, ’e’ to leave the

uncorrected command in the input buffer, ’a’ to abort the command as if ^C had

been hit, and anything else to execute the original line unchanged.

Spelling correction recognizes user-defined completions (see the complete built-in

command). If an input word in a position for which a completion is defined

resembles a word in the completion list, spelling correction registers a misspelling

and suggests the latter word as a correction. However, if the input word does not

match any of the possible completions for that position, spelling correction does not

register a misspelling.

Like completion, spelling correction works anywhere in the line, pushing the rest of

the line to the right and possibly leaving extra characters to the right of the cursor.

Attention: Spelling correction is not guaranteed to work the way one intends, and

is provided mostly as an experimental feature.

Editor commands

bindkey lists key bindings and bindkey -l lists and briefly describes editor

commands. Only new or especially interesting editor commands are described here.

See emacs and vi for descriptions of each editor’s key bindings.

The character or characters to which each command is bound by default is given in

parentheses. ^character means a control character and M-character a meta

character, typed as escape-character on terminals without a meta key. Case counts,

but commands which are bound to letters by default are bound to both lower- and

uppercase letters for convenience.

complete-word

Completes a word as described under “Completion and listing” on page

629.

complete-word-back

Like complete-word-fwd, but steps up from the end of the list.

complete-word-fwd

Replaces the current word with the first word in the list of possible

completions. May be repeated to step down through the list. At the end of

the list, beeps and reverts to the incomplete word.

complete-word-raw

Like complete-word, but ignores user-defined completions.

copy-prev-word

Copies the previous word in the current line into the input buffer. See also

insert-last-word.

dabbrev-expand

Expands the current word to the most recent preceding one for which the

tcsh

632 z/OS V1R9.0 UNIX System Services Command Reference

current is a leading substring, wrapping around the history list (once) if

necessary. Repeating dabbrev-expand without any intervening typing

changes to the next previous word etc., skipping identical matches much

like history-search-backward does.

delete-char (not bound)

Deletes the character under the cursor. See also delete-char-or-list-or-eof.

delete-char-or-eof (not bound)

Does delete-char if there is a character under the cursor or end-of-file on

an empty file. See also delete-char-or-list-or-eof.

delete-char-or-list (not bound)

Does delete-char if there is a character under the cursor or list-choices at

the end of the line. See also delete-char-or-list-or-eof.

delete-char-or-list-or-eof (^D)

Does delete-char if there is a character under the cursor, list-choices at

the end of the line or end-of-file on an empty line. See also

delete-char-or-eof, delete-char-or-list and list-or-eof.

down-history

Like up-history, but steps down, stopping at the original input line.

end-of-file

Signals an end of file, causing the tcsh shell to exit unless the ignoreeof

shell variable is set to prevent this. See also delete-char-or-list-or-eof.

expand-history (M-space)

Expands history substitutions in the current word. See “History substitution”

on page 637. See also magic-space, toggle-literal-history, and the

autoexpand shell variable.

expand-glob(^X-*)

Expands the glob-pattern to the left of the cursor. For example:

>ls test*[^X-*]

would expand to

>ls test1.c test2.c

if those were the only two files in your directory that begin with ’test’. See

“Filename substitution” on page 643.

expand-line (not bound)

Like expand-history, but expands history substitutions in each word in the

input buffer.

expand-variables (^X-$)

Expands the variable to the left of the cursor. See “Variable substitution” on

page 641.

history-search-backward (M-p, M-P)

Searches backwards through the history list for a command beginning with

the current contents of the input buffer up to the cursor and copies it into

the input buffer. The search string may be a glob-pattern (see “Filename

substitution” on page 643) containing ’*’, ’?’, ’[]’ or ’{}’. up-history and

down-history will proceed from the appropriate point in the history list.

Emacs mode only. See also history-search-forward and i-search-back.

history-search-forward(M-n, M-N)

Like history-search-backward, but searches forward.

tcsh

Chapter 2. Shell command descriptions 633

i-search-back (not bound)

Searches backward like history-search-backward, copies the first match

into the input buffer with the cursor positioned at the end of the pattern, and

prompts with ’bck: ’ and the first match. Additional characters may be typed

to extend the search. i-search-back may be typed to continue searching

with the same pattern, wrapping around the history list if necessary,

(i-search-back must be bound to a single character for this to work) or one

of the following special characters may be typed:

^W Appends the rest of the word under the cursor to the search

pattern.

delete (or any character bound to backward-delete-char)

Undoes the effect of the last character and deletes a character from

the search pattern if appropriate.

^G If the previous search was successful, aborts the entire search. If

not, goes back to the last successful search.

escape

Ends the search, leaving the current line in the input buffer.

Any other character not bound to self-insert-command terminates the

search, leaving the current line in the input buffer, and is then interpreted as

normal input. In particular, a carriage return causes the current line to be

executed. Emacs mode only. See also i-search-fwd and

history-search-backward.

i-search-fwd

Like i-search-back, but searches forward.

insert-last-word (M-_)

Inserts the last word of the previous line (!$) into the input buffer. See also

copy-prev-word.

list-choices (M-D)

Lists completion possibilities as described under “Completion and listing” on

page 629. See also delete-char-or-list-or-eof.

list-choices-raw (^X-^D)

Like list-choices, but ignores user-defined completions.

list-glob (^X-g, ^X-G)

Lists (via the ls-F) matches to the glob-pattern (see “Filename substitution”

on page 643) to the left of the cursor.

list-or-eof (not bound)

Does list-choices or end-of-file on an empty line. See also

delete-char-or-list-or-eof.

magic-space (not bound)

Expands history substitutions in the current line, like expand-history, and

appends a space. magic-space is designed to be bound to the spacebar,

but is not bound by default.

normalize-command (^X-?)

Searches for the current word in PATH and, if it is found, replaces it with

the full path to the executable. Special characters are quoted. Aliases are

expanded and quoted but commands within aliases are not. This command

is useful with commands which take commands as arguments, for example,

dbx and sh -x.

tcsh

634 z/OS V1R9.0 UNIX System Services Command Reference

normalize-path (^X-n, ^X-N)

Expands the current word as described under the expand setting of the

symlinks shell variable.

overwrite-mode (unbound)

Toggles between input and overwrite modes.

run-fg-editor (M-^Z)

Saves the current input line and looks for a stopped job with a name equal

to the last component of the file name part of the EDITOR or VISUAL

environment variables, or, if neither is set, ed or vi. If such a job is found, it

is restarted as if fg %job had been typed. This is used to toggle back and

forth between an editor and the shell easily. Some people bind this

command to ^Z so they can do this even more easily.

run-help (M-h, M-H)

Searches for documentation on the current command, using the same

notion of current command as the completion routines, and prints it. There

is no way to use a pager; run-help is designed for short help files.

Documentation should be in a file named command.help, command.1,

command.6, command.8 or command, which should be in one of the

directories listed in the HPATH enviroment variable. If there is more than

one help file only the first is printed.

self-insert-command (text characters)

In insert mode (the default), inserts the typed character into the input line

after the character under the cursor. In overwrite mode, replaces the

character under the cursor with the typed character. The input mode is

normally preserved between lines, but the inputmode shell variable can be

set to insert or overwrite to put the editor in that mode at the beginning of

each line. See also overwrite-mode.

sequence-lead-in (arrow prefix, meta prefix, ^X)

Indicates that the following characters are part of a multi-key sequence.

Binding a command to a multi-key sequence really creates two bindings:

the first character to sequence-lead-in and the whole sequence to the

command. All sequences beginning with a character bound to

sequence-lead-in are effectively bound to undefined-key unless bound to

another command.

spell-line (M-$)

Attempts to correct the spelling of each word in the input buffer, like

spell-word, but ignores words whose first character is one of ’-’, ’!’, ’^’ or

’%’, or which contain ’\’, ’*’ or ’?’, to avoid problems with switches,

substitutions and the like. See “Spelling correction” on page 631.

spell-word (M-s, M-S)

Attempts to correct the spelling of the current word as described under

“Spelling correction” on page 631. Checks each component of a word which

appears to be a pathname.

toggle-literal-history (M-r, M-R)

Expands or unexpands history substitutions in the input buffer. See also

expand-history and the autoexpand shell variable.

undefined-key (any unbound key)

Beeps.

tcsh

Chapter 2. Shell command descriptions 635

up-history (up-arrow, ^P)

Copies the previous entry in the history list into the input buffer. If histlit is

set, uses the literal form of the entry. May be repeated to step up through

the history list, stopping at the top.

vi-search-back (?)

Prompts with ? for a search string (which may be a glob-pattern, as with

history-search-backward), searches for it and copies it into the input

buffer. The bell rings if no match is found. Hitting return ends the search

and leaves the last match in the input buffer. Hitting escape ends the

search and executes the match. vi mode only.

vi-search-fwd (/)

Like vi-search-back, but searches forward.

which-command (M-?)

Does a which (built-in command) on the first word of the input buffer.

which displays the command that will be executed by the shell after

substitutions and path searching. The displayed command has passed

access checks by the security product based on the effective ids of the

user.

Command syntax

The tcsh shell splits input lines into words at blanks and tabs. The special

characters ’&’, ’|’, ’;’, ’<’, ’>’, ’(’, and ’)’ and the doubled characters ’&&’, ’||’, ’<<’ and

’>>’ are always separate words, whether or not they are surrounded by whitespace.

When the tcsh shell’s input is not a terminal, the character ’#’ is taken to begin a

comment. Each # and the rest of the input line on which it appears is discarded

before further parsing.

A special character (including a blank or tab) may be prevented from having its

special meaning, and possibly made part of another word, by preceding it with a

backslash (\) or enclosing it in single (’), double (″) or backward (’ ` ’) quotes.

When not otherwise quoted a newline preceded by a \ is equivalent to a blank, but

inside quotes this sequence results in a newline.

Furthermore, all substitutions (see “Substitutions” on page 637) except history

substitution can be prevented by enclosing the strings (or parts of strings) in which

they appear with single quotes or by quoting the crucial characters (e.g. ’$’ or ’ `’ for

variable substitution or command substitution respectively) with \. (alias substitution

is no exception: quoting in any way any character of a word for which an alias has

been defined prevents substitution of the alias. The usual way of quoting an alias is

to precede it with a backslash.) History substitution is prevented by backslashes but

not by single quotes. Strings quoted with double or backward quotes undergo

Variable substitution and Command substitution, but other substitutions are

prevented.

Text inside single or double quotes becomes a single word (or part of one).

Metacharacters in these strings, including blanks and tabs, do not form separate

words. Only in one special case (see “Command substitution” on page 643) can a

double-quoted string yield parts of more than one word; single-quoted strings never

do. Backward quotes are special: they signal command substitution, which may

result in more than one word.

Quoting complex strings, particularly strings which themselves contain quoting

characters, can be confusing. Remember that quotes need not be used as they are

tcsh

636 z/OS V1R9.0 UNIX System Services Command Reference

in human writing! It may be easier to quote not an entire string, but only those parts

of the string which need quoting, using different types of quoting to do so if

appropriate.

The backslash_quote shell variable can be set to make backslashes always quote

\, ’, and ″. This may make complex quoting tasks easier, but it can cause syntax

errors in csh (or tcsh) scripts.

Substitutions

This topic describes the various transformations the tcsh shell performs on input in

the order in which they occur. The topic will cover data structures involved and the

commands and variables which affect them. Remember that substitutions can be

prevented by quoting as described under “Command syntax” on page 636.

History substitution

Each command, or event, input from the terminal is saved in the history list. The

previous command is always saved, and the history shell variable can be set to a

number to save that many commands. The histdup shell variable can be set to not

save duplicate events or consecutive duplicate events.

Saved commands are numbered sequentially from 1 and stamped with the time. It

is not usually necessary to use event numbers, but the current event number can

be made part of the prompt by placing an exclamation point (!) in the prompt shell

variable.

The shell actually saves history in expanded and literal (unexpanded) forms. If the

histlit shell variable is set, commands that display and store history use the literal

form.

The history built-in command can print, store in a file, restore and clear the history

list at any time, and the savehist and histfile shell variables can be set to store the

history list automatically on logout and restore it on login.

History substitutions introduce words from the history list into the input stream,

making it easy to repeat commands, repeat arguments of a previous command in

the current command, or fix spelling mistakes in the previous command with little

typing and a high degree of confidence.

History substitutions begin with the character !. They may begin anywhere in the

input stream, but they do not nest. The ! may be preceded by a \ to prevent its

special meaning; for convenience, a ! is passed unchanged when it is followed by a

blank, tab, newline, = or (. History substitutions also occur when an input line

begins with ^. This special abbreviation will be described later. The characters used

to signal history substitution (! and ^ (caret)) can be changed by setting the

histchars shell variable. Any input line which contains a history substitution is

printed before it is executed.

A history substitution may have an event specification, which indicates the event

from which words are to be taken, a word designator, which selects particular

words from the chosen event, and/or a modifier, which manipulates the selected

words.

An event specification can be

n A number, referring to a particular event

–n An offset, referring to the even n before the current event

tcsh

Chapter 2. Shell command descriptions 637

The current event. This should be used carefully in csf, where there is no

check for recursion. tcsh allows 10 levels of recursion.

! The previous event (equivalent to -1)

s The most recent event whose first word begins with the string s

?s? The most recent event which contains the string s. The second ? can be

omitted if it is immediately followed by a newline.

For example, consider this bit of someone’s history list:

9 8:30 nroff -man wumpus.man

10 8:31 cp wumpus.man wumpus.man old

11 8:36 vi wumpus.man

12 8:37 diff wumpus.man.old wumpus.man

The commands are shown with their event numbers and time stamps. The current

event, which we haven’t typed in yet, is event 13. !11 and !-2 refer to event 11. !!

refers to the previous event, 12. !! can be abbreviated ! if it is followed by : (colon;

described below). !n refers to event 9, which begins with n. !?old? also refers to

event 12, which contains old. Without word designators or modifiers history

references simply expand to the entire event, so we might type !cp to redo the copy

command or !!|more if the diff output scrolled off the top of the screen.

History references may be insulated from the surrounding text with braces if

necessary. For example, !vdoc would look for a command beginning with vdoc, and,

in this example, not find one, but !{v}doc would expand unambiguously to vi

wumpus.mandoc. Even in braces, history substitutions do not nest.

While csh expands, for example, !3d to event 3 with the letter d appended to it, tcsh

expands it to the last event beginning with 3d; only completely numeric arguments

are treated as event numbers. This makes it possible to recall events beginning

with numbers. To expand !3d as in csh say !\3d.

To select words from an event we can follow the event specification by a : (colon)

and a designator for the desired words. The words of an input line are numbered

from 0, the first (usually command) word being 0, the second word (first argument)

being 1, etc. The basic word designators are:

0 The first command word

n The nth argument

^ The first argument, equivalent to 1

$ The last argument

% The word matched by an ?s? search

x-y A range of words

–y Equivalent to 0–y

* Equivalent to ^–$, but returns nothing if the event contains only 1 word

x* Equivalent to x-$

x- Equivalent to x*, but omitting the last word ($)

Selected words are inserted into the command line separated by single blanks. For

example, the diff command in the previous example might have been typed as diff

!!:1.old !!:1(using :1 to select the first argument from the previous event) or diff !-2:2

!-2:1to select and swap the arguments from the cp command. If we didn’t care

tcsh

638 z/OS V1R9.0 UNIX System Services Command Reference

about the order of the diff we might have said diff !-2:1-2or simply diff !-2:*. The cp

command might have been written cp wumpus.man !#:1.old, using # to refer to the

current event. !n:- hurkle.man would reuse the first two words from the nroff

command to say nroff -man hurkle.man.

The : separating the event specification from the word designator can be omitted if

the argument selector begins with a ’^’, ’$’, ’*’, ’%’ or ’-’. For example, our diff

command might have been diff !!^.old !!^ or, equivalently, diff !!$.old !!$. However, if

!! is abbreviated !, an argument selector beginning with - (hypen) will be interpreted

as an event specification.

A history reference may have a word designator but no event specification. It then

references the previous command. Continuing our diff example, we could have said

simply diff !^.old !^or, to get the arguments in the opposite order, just diff !*.

The word or words in a history reference can be edited, or modified, by following it

with one or more modifiers, each preceded by a : (colon):

h Remove a trailing pathname component, leaving the head.

t Remove all leading pathname components, leaving the tail.

r Remove a filename extension .xxx, leaving the root name.

e Remove all but the extenstion

u Uppercase the first lowercase letter.

l Lowercase the first uppercase letter.

s/l/r Substitute l for r. l is simply a string like r, not a regular expression as in the

eponymous ed command. Any character may be used as the delimiter in

place of /; a \ can be used to quote the delimiter inside l and r. The

character & in the r is replaced by l; \ also quotes &. If l is empty (’’’’), the l

from a previous substitution or the s from a previous ?s? event specification

is used. The trailing delimiter may be omitted if it is immediately followed by

a newline.

& Repeat the previous substitution

g Apply the following modifier once to each word.

a Apply the following modifier as many times as possible to a single word. ’a’

and ’g’ can be used together to apply a modifier globally. In the current

implementation, using the ’a’ and ’s’ modifiers together can lead to an

infinite loop. For example, :as/f/ff/ will never terminate. This behavior might

change in the future.

p Print the new command line but do not execute it.

q Quote the substituted words, preventing further substitutions.

x Like q, but break into words at blanks, tabs and newlines.

Modifiers are applied only to the first modifiable word (unless ’g’ is used). It is an

error for no word to be modifiable.

For example, the diff command might have been written as diff wumpus.man.old

!#^:r, using :r to remove .old from the first argument on the same line (!#^). We

could say echo hello out there, then echo !*:u to capitalize ’hello’, echo !*:au to say

it out loud, or echo !*:agu to really shout. We might follow mail -s ″I forgot my

tcsh

Chapter 2. Shell command descriptions 639

password″ rot with !:s/rot/root to correct the spelling of ’root’ (but see “Spelling

correction” on page 631 for a different approach).

There is a special abbreviation for substitutions. ^, when it is the first character on

an input line, is equivalent to !:s^. Thus, we might have said ^rot^root to make the

spelling correction in the previous example. This is the only history substitution

which does not explicitly begin with !.

In csh as such, only one modifier may be applied to each history or variable

expansion. In tcsh, more than one may be used, for example

% mv wumpus.man /usr/man/man1/wumpus.1

% man !$:t:r

man wumpus

In csh, the result would be wumpus.1:r. A substitution followed by a colon may need

to be insulated from it with braces:

> mv a.out /usr/games/wumpus

> setenv PATH !$:h:$PATH

Bad ! modifier: $.

> setenv PATH !{-2$:h}:$PATH

setenv PATH /usr/games:/bin:/usr/bin:.

The first attempt would succeed in csh but fails in tcsh, because tcsh expects

another modifier after the second colon instead of $.

Finally, history can be accessed through the editor as well as through the

substitutions just described. The following commands search for events in the

history list and compile them into the input buffer:

v up-history

v down-history

v history-search-backward

v history-search-forward

v i-search-back

v i-search-fwd

v vi-search-back

v vi-search-fwd

v copy-prev-word

v insert-last-word

The toggle-literal-history editor command switches between the expanded and

literal forms of history lines in the input buffer. expand-history and expand-line

expand history substitutions in the current word and in the entire input buffer

respectively.

Alias substitution

The shell maintains a list of aliases which can be set, unset and printed by the

alias and unalias commands. After a command line is parsed into simple

commands (see “Command execution” on page 645) the first word of each

command, left-to-right, is checked to see if it has an alias. If so, the first word is

replaced by the alias. If the alias contains a history reference, it undergoes history

substitution as though the original command were the previous input line. If the

alias does not contain a history reference, the argument list is left untouched.

Thus if the alias for ls were ls -l the command ls /usrwould become ls -l /usr, the

argument list here being undisturbed. If the alias for lookup were grep !^

/etc/passwd then lookup bill would become grep bill /etc/passwd. Aliases can be

tcsh

640 z/OS V1R9.0 UNIX System Services Command Reference

used to introduce parser metasyntax. For example, alias print ’pr \!* | lpr’ defines a

command (print) which prints its arguments to the line printer.

Alias substitution is repeated until the first word of the command has no alias. If an

alias substitution does not change the first word (as in the previous example) it is

flagged to prevent a loop. Other loops are detected and cause an error.

Some aliases are referred to by the shell; see “tcsh built-in commands” on page

653.

Variable substitution

The tcsh shell maintains a list of variables, each of which has as value a list of zero

or more words. The values of tcsh shell variables can be displayed and changed

with the set and unset commands. The system maintains its own list of

″environment″ variables. These can be displayed and changed with printenv,

setenv and unsetenv.

Variables may be made read-only with set -r. Read-only variables may not be

modified or unset; attempting to do so will cause an error. Once made read-only, a

variable cannot be made writable, so set -r should be used with caution.

Environment variables cannot be made read-only.

Some variables are set by the tcsh shell or referred to by it. For instance, the argv

variable is an image of the shell’s argument list, and words of this variable’s value

are referred to in special ways. Some of the variables referred to by the tcsh shell

are toggles; the shell does not care what their value is, only whether they are set or

not. For instance, the verbose variable is a toggle which causes command input to

be echoed. The -v command line option sets this variable. Special shell variables

lists all variables which are referred to by the shell.

Other operations treat variables numerically. The @ (at) command permits numeric

calculations to be performed and the result assigned to a variable. Variable values

are, however, always represented as (zero or more) strings. For the purposes of

numeric operations, the null string is considered to be zero, and the second and

subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed,

variable substitution is performed keyed by $ characters. This expansion can be

prevented by preceding the $ with a \ except within double quotes (″) where it

always occurs, and within single quotes (’) where it never occurs. Strings quoted

by backward quotes or accents (`) are interpreted later (see “Command substitution”

on page 643) so $ substitution does not occur there until later, if at all. A $ is

passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable

expanded separately. Otherwise, the command name and entire argument list are

expanded together. It is thus possible for the first (command) word (to this point) to

generate more than one word, the first of which becomes the command name, and

the rest of which become arguments.

Unless enclosed in double quotes (″) or given the :q modifier the results of variable

substitution may eventually be command and filename substituted. Within ″, a

variable whose value consists of multiple words expands to a (portion of a) single

word, with the words of the variable’s value separated by blanks. When the :q

tcsh

Chapter 2. Shell command descriptions 641

modifier is applied to a substitution the variable will expand to multiple words with

each word separated by a blank and quoted to prevent later command or filename

substitution.

The following metasequences are provided for introducing variable values into the

shell input. Except as noted, it is an error to reference a variable which is not set.

$name[selector]

${name[selector]}

Substitutes only the selected words from the value of name. The selector is

subjected to $ substitution and may consist of a single number or two

numbers separated by a - (hyphen). The first word of a variable’s value is

numbered 1. If the first number of a range is omitted it defaults to 1. If the

last member of a range is omitted it defaults to $#name. The selector *

selects all words. It is not an error for a range to be empty if the second

argument is omitted or in range.

$0 Substitutes the name of the file from which command input is being read.

An error occurs if the name is not known.

$number

${number}

Equivalent to $argv[number].

$* Equivalent to $argv, which is equivalent to $argv[*].

The : (colon) modifiers described under “History substitution” on page 637, except

for :p, can be applied to the “Variable substitution” on page 641. More than one

may be used. Braces may be needed to insulate a variable substitution from a

literal colon just as with history substitution; any modifiers must appear within the

braces. The following substitutions can not be modified with : modifiers.

$?name

${?name}

Substitutes the string 1 if name is set, 0 if it is not.

$0 Substitutes the name of the file from which command input is being read.

An error occurs if the name is not known.

$?0 Substitutes 1 if the current input filename is known, 0 if it is not. Always 0 in

interactive shells.

$#name or ${#name}

Substitutes the number of words in name.

$# Equivalent to ’$#argv’.

$%name

${%name}

Substitutes the number of characters in name.

$%number

${%number}

Substitutes the number of characters in $argv[number].

$? Equivalent to $status.

$$ Substitutes the (decimal) process number of the (parent) shell.

tcsh

642 z/OS V1R9.0 UNIX System Services Command Reference

$! Substitutes the (decimal) process number of the last background process

started by this shell.

$< Substitutes a line from the standard input, with no further interpretation

thereafter. It can be used to read from the keyboard in a shell script. While

csh always quotes $<, as if it were equivalent to $<:q, tcsh does not.

Furthermore, when tcsh is waiting for a line to be typed the user may type

an interrupt to interrupt the sequence into which the line is to be

substituted, but csh does not allow this.

The editor command expand-variables, normally bound to ^X-$, can be used to

interactively expand individual variables.

Command, filename and directory stack substitution

The remaining substitutions are applied selectively to the arguments of tcsh built-in

commands. This means that portions of expressions which are not evaluated are

not subjected to these expansions. For commands which are not internal to the tcsh

shell, the command name is substituted separately from the argument list. This

occurs very late, after input-output redirection is performed, and in a child of the

main shell.

Command substitution: Command substitution is indicated by a command

enclosed in ’ ’ ’. The output from such a command is broken into separate words at

blanks, tabs and newlines, and null words are discarded. The output is variable and

command substituted and put in place of the original string.

Command substitutions inside double quotes (″) retain blanks and tabs; only

newlines force new words. The single final newline does not force a new word in

any case. It is thus possible for a command substitution to yield only part of a word,

even if the command outputs a complete line.

Filename substitution: If a word contains any of the characters ’*’, ’?’, ’[’ or ’{’ or

begins with the character ’~’ it is a candidate for filename substitution, also known

as globbing. This word is then regarded as a pattern (glob-pattern), and replaced

with an alphabetically sorted list of file names which match the pattern.

In matching filenames, the character . (period) at the beginning of a filename or

immediately following a / (forward slash), as well as the character / must be

matched explicitly. The character * matches any string of characters, including the

null string. The character ? matches any single character. The sequence [...]

matches any one of the characters enclosed. Within [...], a pair of characters

separated by - matches any character lexically between the two.

Some glob-patterns can be negated: The sequence [^...] matches any single

character not specified by the characters and/or ranges of characters in the braces.

An entire glob-pattern can also be negated with ^:

> echo *

bang crash crunch ouch

> echo ^cr*

bang ouch

Glob-patterns which do not use ’?’, ’*’, or’[]’ or which use ’{}’ or ’^’ (below) are not

negated correctly.

The metanotation a{b,c,d}e is a shorthand for abe ace ade. Left-to-right order is

preserved: /usr/source/s1/{oldls,ls}.c expands to /usr/source/s1/oldls.c

tcsh

Chapter 2. Shell command descriptions 643

/usr/source/s1/ls.c. The results of matches are sorted separately at a low level to

preserve this order, such as, like the following example, where ../{memo,*box}

might expand to ../memo ../box ../mbox. (Note that ’memo’ was not sorted with the

results of matching ’*box’.) It is not an error when this construct expands to files

which do not exist, but it is possible to get an error from a command to which the

expanded list is passed. This construct may be nested. As a special case the words

{, } and {} are passed undisturbed. The character ~ at the beginning of a filename

refers to home directories. Standing alone, i.e. ~, it expands to the invoker’s home

directory as reflected in the value of the home shell variable. When followed by a

name consisting of letters, digits and - (hyphen) characters the shell searches for a

user with that name and substitutes their home directory; thus ~ken might expand

to /usr/ken and ~ken/chmach to /usr/ken/chmach. If the character ~ is followed

by a character other than a letter or / or appears elsewhere than at the beginning of

a word, it is left undisturbed. A command like setenv MANPATH

/usr/man:/usr/local/man:~/lib/man does not, therefore, do home directory substitution

as one might hope. It is an error for a glob-pattern containing ’*’, ’?’, ’[’ or ’~’, with or

without ’^’, not to match any files. However, only one pattern in a list of

glob-patterns must match a file (so that, for example, rm *.a *.c *.o would fail only if

there were no files in the current directory ending in ’.a’, ’.c’, or ’.o’), and if the

nonomatch shell variable is set a pattern (or list of patterns) which matches nothing

is left unchanged instead of causing an error.

The noglob shell variable can be set to prevent filename substitution, and the

expand-glob editor command, normally bound to ^X-*, can be used to interactively

expand individual filename substitutions.

Directory stack substitution: The directory stack is a list of directories,

numbered from zero, used by the pushd, popd and dirs built-in commands for

tcsh. dirs can print, store in a file, restore and clear the directory stack at any time,

and the savedirs and dirsfile shell variables can be set to store the directory stack

automatically on logout and restore it on login. The dirstack shell variable can be

examined to see the directory stack and set to put arbitrary directories into the

directory stack.

The character = (equal) followed by one or more digits expands to an entry in the

directory stack. The special case =- expands to the last directory in the stack. For

example,

 > dirs -v

 0 /usr/bin

 1 /usr/spool/uucp

 2 /usr/accts/sys

 > echo =1

 /usr/spool/uucp

 > echo =0/calendar

 /usr/bin/calendar

 > echo =-

 /usr/accts/sys

The noglob and nonomatch shell variables and the expand-glob editor command

apply to directory stack as well as filename substitutions.

Other substitutions: There are several more transformations involving filenames,

not strictly related to the “Directory stack substitution,” but mentioned here for

completeness. Any filename may be expanded to a full path when the symlinks

variable is set to expand. Quoting prevents this expansion, and the normalize-path

editor command does it on demand. The normalize-command editor command

expands commands in PATH into full paths on demand. Finally, cd and pushd

tcsh

644 z/OS V1R9.0 UNIX System Services Command Reference

interpret - (hyphen) as the old working directory (equivalent to the tcsh shell

variable owd). This is not a substitution at all, but an abbreviation recognized only

by those commands. Nonetheless, it too can be prevented by quoting.

Command execution

The next three topics describe how the shell executes commands and deals with

their input and output.

Simple commands, pipelines, and sequences

A simple command is a sequence of words, the first of which specifies the

command to be executed. A series of simple commands joined by ’|’ characters

forms a pipeline. The output of each command in a pipeline is connected to the

input of the next.

Simple commands and pipelines may be joined into sequences with ’;’, and will be

executed sequentially. Commands and pipelines can also be joined into sequences

with ’||’ or ’&&’, indicating, as in the C language, that the second is to be executed

only if the first fails or succeeds respectively.

A simple command, pipeline or sequence may be placed in parentheses, ’()’, to

form a simple command, which may in turn be a component of a pipeline or

sequence. A command, pipeline or sequence can be executed without waiting for it

to terminate by following it with an ’&’.

Built-in and non-built-in command execution

tcsh Built-in commands are executed within the shell. If any component of a

pipeline except the last is a built-in command, the pipeline is executed in a subshell.

Parenthesized commands are always executed in a subshell:

(cd; pwd); pwd

which prints the home directory, leaving you where you were (printing this after the

home directory), while

cd; pwd

leaves you in the home directory. Parenthesized commands are most often used to

prevent cd from affecting the current shell.

When a command to be executed is found not to be a built-in command the tcsh

shell attempts to execute the command via execve. Each word in the variable path

names a directory in which the tcsh shell will look for the command. If it is given

neither a -c nor a -t option, the shell hashes the names in these directories into an

internal table so that it will only try an execve in a directory if there is a possibility

that the command resides there. This greatly speeds command location when a

large number of directories are present in the search path. If this mechanism has

been turned off (via unhash), if the shell was given a -c or -t argument or in any

case for each directory component of path which does not begin with a /, the shell

concatenates the current working directory with the given command name to form a

pathname of a file which it then attempts to execute.

If the file has execute permissions but is not an executable to the system (that is, it

is neither an executable binary nor a script which specifies its interpreter), then it is

assumed to be a file containing shell commands and a new shell is spawned to

read it. The shell special alias may be set to specify an interpreter other than the

shell itself.

tcsh

Chapter 2. Shell command descriptions 645

Input or output

The standard input and standard output of a command may be redirected with the

following syntax:

 Table 31. Standard Input/Output Syntax for tcsh Shell

Syntax Description

< name Open file name (which is first variable, command and

filename expanded) as the standard input.

<< word Read the shell input up to a line which is identical to word.

word is not subjected to variable, filename or command

substitution, and each input line is compared to word

before any substitutions are done on this input line. Unless

a quoting \, ″ , ’ ’ or ’ ’ ’ appears in word variable and

command substitution is performed on the intervening

lines, allowing \ to quote $, \ and ’ (single quote).

Commands which are substituted have all blanks, tabs,

and newlines preserved, except for the final newline which

is dropped. The resultant text is placed in an anonymous

temporary file which is given to the command as standard

input.

> name

>! name

>& name

>&! name

The file name is used as standard output. If the file does

not exist then it is created; if the file exists, its is

overwritten and, therefore, the previous contents are lost.

If the shell variable noclobber is set, then the file must not

exist or be a character special file (for example, a terminal

or /dev/null) or an error results. This helps prevent

accidental destruction of files. In this case the ! forms can

be used to suppress this check.

The forms involving & (ampersand) route the diagnostic

output into the specified file as well as the standard output.

name is expanded in the same way as < input filenames

are.

>> name

>>& name

>>! name

>>&! name

Like >, but appends output to the end of name. If the shell

variable noclobber is set, then it is an error for the file not

to exist, unless one of the ! forms is given.

A command receives the environment in which the shell was invoked as modified

by the input-output parameters and the presence of the command in a pipeline.

Thus, unlike some previous shells, commands run from a file of shell commands

have no access to the text of the commands by default; instead they receive the

original standard input of the shell. The << mechanism should be used to present

inline data. This permits shell command scripts to function as components of

pipelines and allows the shell to block read its input. The default standard input for

a command run detached is not the empty file /dev/null, but the original standard

input of the shell. If this is a terminal and if the process attempts to read from the

terminal, then the process will block and the user will be notified (see “Jobs” on

page 650).

Diagnostic output may be directed through a pipe with the standard output. Simply

use the form |& instead of just |.

tcsh

646 z/OS V1R9.0 UNIX System Services Command Reference

The shell cannot presently redirect diagnostic output without also redirecting

standard output, but (command > output-file) >& error-file is often an acceptable

workaround. Either output-file or error-file may be /dev/tty to send output to the

terminal.

Features

Having described how the tcsh shell accepts, parses and executes command lines,

we now turn to a variety of its useful features.

Control flow

The tcsh shell contains a number of commands which can be used to regulate the

flow of control in command files (shell scripts) and (in limited by useful ways) from

terminal output. These commands all operate by forcing the shell to reread or skip

in its input and, due to the implementation, restrict the placement of some of the

commands.

The foreach, switch, and while statements, as well as the if-then-else form of the if

statement, require that the major keywords appear in a single simple command on

an input line.

If the shell’s input is not seekable, the shell buffers up input whenever a loop is

being read and performs seeks in this internal buffer to accomplish the rereading

implied by the loop . (To the extent that this allows, backward gotos will succeed on

non-seekable inputs.)

Expressions

The if, while, and exit built-in commands use expressions with a common syntax.

The expressions can include any of the operators described in the next three topics.

Note that the @ built-in command has its own separate syntax.

Logical, arithmetical and comparison operators: These operators are similar to

those of C and have the same precedence. They include:

|| && | ^ & == != =~ !~ <= >=

< > << >> + - * / % ! ~ ()

Here the precedence increases to the right, ’==’ ’!=’ ’=~’ and ’!~’, ’<=’ ’>=’ ’<’ and

’>’, ’<<’ and ’>>’, ’+’ and ’-’, ’*’ / and ’%’ being in groups, at the same level. The ’==’

’!=’ ’=~’ and ’!~’ operators compare their arguments as strings; all others operate on

numbers. The operators ’=~’ and ’!~’ are like ’!=’ and ’==’ except that the right hand

side is a glob-pattern (see “Filename substitution” on page 643) against which the

left hand operand is matched. This reduces the need for use of the switch built-in

command in shell scripts when all that is really needed is pattern matching.

Strings which begins with 0 are considered octal numbers. Null or missing

arguments are considered 0. The results of all expressions are strings, which

represent decimal numbers. It is important to note that no two components of an

expression can appear in the same word; except when adjacent to components of

expressions which are syntactically significant to the parser (’$’ ’|’ ’<’ ’>’ ’(’ ’)’) they

should be surrounded by spaces.

Command exit status: Commands can be executed in expressions and their exit

status returned by enclosing them in braces ({}). Remember that the braces should

be separated from the words of the command by spaces. Command executions

succeed, returning true, that is, 1, if the command exits with status 0, otherwise they

tcsh

Chapter 2. Shell command descriptions 647

fail, returning false (0). If more detailed status information is required then the

command should be executed outside of an expression and the status shell variable

examined.

File inquiry operators: Some of these operators perform true/false tests on files

and related objects. They are of the form -op file, where op is one of:

ac An extended ACL of type c exists. Character c represents the type of ACL:

a Access ACL

d Directory default ACL

f File default ACL

Note: Testing with suboptions d and f will always return false for files (files

do not have default ACLs).

r Read access (as determined by security product and effective ids)

w Write access (as determined by security product and effective ids)

x Execute access (as determined by security product and effective ids)

X Executable in the path or shell built-in. For example, –X ls and –X ls-F are

generally true, but –X /bin/ls is not. (This is determined by security product

and effective ids.)

e Existence

Ea File has the APF extended attribute

Ep File has the program

Es File has the shared address space extended attribute

El File has the shared library extended attribute

o Ownership

x Zero size

s Non-zero size

f Plain file

d Directory

l Symbolic link

b Block special file

c Character special file

p Named pipe (fifo)

S Socket special file

u Set-user ID bit is set

g Set-group-ID bit is set

k Sticky bit is set

t t file_descriptor (which must be a digit) is an open file descriptor for a

terminal device

L Applies subsequent operators in a multiple-operator test to a symbolic link

instead of to the file to which the link points

tcsh

648 z/OS V1R9.0 UNIX System Services Command Reference

file is command and filename expanded and then tested to see if it has the

specified relationship to the real user. If file does not exist or is inaccessible or, for

the operators indicated by *, if the specified file type does not exist on the current

system, then all inquiries return false (0).

These operators may be combined for conciseness: –xy file is equivalent to –x file

&& –y file. For example, –fx is true (returns 1) for plain executable files, but not for

directories.

L may be used in a multiple-operator test to apply subsequent operators to a

symbolic link instead of to the file to which the link points. For example, -lLo is true

for links owned by the invoking user. Lr, Lw, and Lx are always ture for links and

false for non-links. L has a different meaning when it is the last operator in a

multiple-operator test.

It is possible but not useful, and sometimes misleading, to combine operators which

expect file to be a file with operators which do not (for example, X and t). Following

L with a non-file operator can lead to particularly strange results.

Other operators return other information, that is not just 0 or 1. They have the same

format as before where op may be one of:

A Last file access time, as the number of seconds since epoch

A: Like A, but in timestamp format, that is, ’Fri May 14 16:36:10 1993’

M Last file modification time

M: Like M, but in timestamp format

C Last inode modification time

C: Like C, but in timestamp format

D Device number

I Inode number

F Composite file identifier, in the form device : inode

L The name of the file pointed to by a symbolic link

N Number of (hard) links

P Permissions, in octal, without leading zero

P: Like P, with leading zero

P mode

Equivalent to -P mode & file, that is, -P22 file returns 22 if file is writable by

group and other, 20 if by group only, and 0 if by neither.

P mode:

Like P mode, with leading zero

U Numeric userid

U: Username, or the numeric userid if the username is unknown

G Numeric groupid

G: Groupname, or the numeric groupid if the groupname is unknown

Z Size in bytes

m file returns the seclabel of the file if one exists. Otherwise, returns false.

tcsh

Chapter 2. Shell command descriptions 649

Only one of these operators may appear in a multiple-operator test, and it must be

the last. L has a different meaning at the end of and elsewhere in a

multiple-operator test. Because 0 is a valid return value for many of these

operators, they do not return 0 when they fail: most return -1, and F returns :

(colon).

File inquiry operators can also be evaluated with the filetest built-in command.

File inquiry operators for use with file tagging and the filetest built-in

command:

–B file

v True if the file is tagged as binary

v False if the file is not tagged or tagged as text

v Returns codeset if the file is tagged as mixed text and binary, that is,

txtflag = OFF and codeset stored in file tag

–T file

v False if the file is not tagged or if it is tagged as txtflag = OFF

v Returns codeset if the file is tagged as text

Either –B file or –T file will allow a tcsh ″if test″ to evaluate to true when the file is

tagged as indicated. These two operators will also allow tcsh to test for a specific

codeset. For example,

if (-T file == IBM-1047) #True if tagged as IBM-1047 text

if (-B file) #True if tagged as binary

Note: Codesets which are aliases of each other exist which may cause the test to

fail, since the file inquiry operator may return an alias of the codeset you are

testing.

Jobs

The shell associates a job with each pipeline. It keeps a table of current jobs,

printed by the jobs command, and assigns them small integer numbers. When a job

is started asynchronously with & (ampersand), the shell prints a line which looks

like

[1] 1234

indicating that the job which was started asynchronously was job number 1 and had

one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the suspend

key (usually ^Z), which sends a STOP signal to the current job. The shell will then

normally indicate that the job has been ’Suspended’ and print another prompt. If the

listjobs shell variable is set, all jobs will be listed like the jobs built-in command; if

it is set to ’long’ the listing will be in long format, like jobs -l. You can then

manipulate the state of the suspended job. You can put it in the background with

the bg command or run some other commands and eventually bring the job back

into the foreground with fg. (See also the run-fg-editor editor command.) A ^Z

takes effect immediately and is like an interrupt in that pending output and unread

input are discarded when it is typed. The wait built-in command causes the shell to

wait for all background jobs to complete.

The ^] key sends a delayed suspend signal, which does not generate a STOP

signal until a program attempts to read it, to the current job. This can usefully be

tcsh

650 z/OS V1R9.0 UNIX System Services Command Reference

typed ahead when you have prepared some commands for a job which you wish to

stop after it has read them. The ^Y key performs this function in csh; in tcsh , ^Y is

an editing command.

A job being run in the background stops if it tries to read from the terminal.

Background jobs are normally allowed to produce output, but this can be disabled

by giving the command stty tostop. If you set the stty option, then background jobs

will stop when they try to produce output like they do when they try to read input.

There are several ways to refer to jobs in the shell. The character % introduces a

job name. If you wish to refer to job number 1, you can name it as %1. Just naming

a job brings it to the foreground; thus %’ is a synonym for fg %1, bringing job 1

back into the foreground. Similarly, saying %1 & resumes job 1 in the background,

just like bg %1. A job can also be named by an unambigous prefix of the string

typed in to start it: %ex would normally restart a suspended ’ex’ job, if there were

only one suspended job whose name began with the string ’ex’. It is also possible

to say %? string to specify a job whose text contains string , if there is only one

such job.

The shell maintains a notion of the current and previous jobs. In output pertaining to

jobs, the current job is marked with a + (plus) and the previous job with a -

(hyphen). The abbreviations %+, %, and (by analogy with the syntax of the history

mechanism) %% all refer to the current job, and %- refers to the previous job.

The job control mechanism requires that the stty option new be set on some

systems. It is an artifact from a new implementation of the tty driver which allows

generation of interrupt characters from the keyboard to tell jobs to stop. See stty

and the setty tcsh built-in command for details on setting options in the new tty

driver.

Status reporting

The tcsh shell learns immediately whenever a process changes state. It normally

informs you whenever a job becomes blocked so that no further progress is

possible, but only just before it prints a prompt. This is done so that it does not

otherwise disturb your work. If, however, you set the shell variable notify, the shell

will notify you immediately of changes of status in background jobs. There is also a

shell command notify which marks a single process so that its status changes will

be immediately reported. By default notify marks the current process; simply say

’notify’ after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned that ’You

have stopped jobs.’ You may use the jobs command to see what they are. If you

do this or immediately try to exit again, the shell will not warn you a second time,

and the suspended jobs will be terminated.

Automatic, periodic and timed events

There are various ways to run commands and take other actions automatically at

various times in the life cycle of the shell.

v The sched built-in command puts commands in a scheduled-event list, to be

executed by the shell at a given time.

v The beepcmd, cwdcmd, periodic and precmd special aliases can be set,

respectively, to execute commands when the shell wants to ring the bell, when

the working directory changes, every t-period minutes and before each prompt.

tcsh

Chapter 2. Shell command descriptions 651

v The autologout shell variable can be set to log out of the shell after a given

number of minutes of inactivity.

v The mail shell variable can be set to check for new mail periodically.

v The printexitvalue shell variable can be set to print the exit status of commands

which exit with a status other than zero.

v The rmstar shell variable can be set to ask the user, when rm * is typed, if that

is really what was meant.

v The time shell variable can be set to execute the time built-in command after the

completion of any process that takes more than a given number of CPU

seconds.

v The watch and who shell variables can be set to report when selected users log

in or out, and the log built-in command reports on those users at any time.

National language system report

When using the system’s NLS, the setlocale function is called to determine

appropriate character classification and sorting. This function typically examines the

LANG and LC_CTYPE environment variables; refer to the system documentation

for further details.

Unknown characters (those that are neither printable nor control characters) are

printed in the format \nnn.

The version shell variable indicates what options were chosen when the shell was

compiled. Note also the newgrp built-in and echo_style shell variable and the

locations of the shell’s input files (see “tcsh files” on page 671).

The tcsh shell currently does not support 3 locales. They are IBM-1388 (Chinese),

IBM-933 (Korean) and IBM-937 (Traditional Chinese).

Signal handling

Login shells ignore interrupts when reading the file ~/.logout.The shell ignores quit

signals unless started with -q. Login shells catch the terminate signal, but non-login

shells inherit the terminate behavior from their parents. Other signals have the

values which the shell inherited from its parent.

In shell scripts, the shell’s handling of interrupt and terminate signals can be

controlled with onintr, and its handling of hangups can be controlled with hup and

nohup.

The shell exits on a hangup (see also the logout shell variable). By default, the

shell’s children do too, but the shell does not send them a hangup when it exits.

hup arranges for the shell to send a hangup to a child when it exits, and nohup

sets a child to ignore hangups.

Terminal management

The shell uses three different sets of terminal (tty) modes: edit, used when editing,

quote, used when quoting literal characters, and execute, used when executing

commands. The shell holds some settings in each mode constant, so commands

which leave the tty in a confused state do not interfere with the shell. The shell also

matches changes in the speed and padding of the tty. The list of tty modes that are

kept constant can be examined and modified with the setty built-in. Although the

editor uses CBREAK mode (or its equivalent), it takes typed-ahead characters

anyway.

tcsh

652 z/OS V1R9.0 UNIX System Services Command Reference

The echotc, settc and telltc commands can be used to manipulate and debug

terminal capabilities from the command line.

The tcsh shell adapts to window resizing automatically and adjusts the environment

variables LINES and COLUMNS if set.

tcsh built-in commands

The list below contains tcsh built-in commands which are not /bin/sh built-ins.

Descriptions for the tcsh built-in commands are found at “tcsh built-in command

descriptions” on page 673.

 % filetest popd uncomplete

alloc glob pushd unhash

bindkey hashstat rehash unlimit

breaksw hup repeat unsetenv

builtins limit sched watchlog

bye login setenv where

chdir logout settc which

complete ls-F setty writedown

dirs notify source

echotc onintr telltc

Other tcsh built-in commands are also found in the z/OS shell. In some cases, they

may differ in function; see the specific command description for a discussion of the

tcsh version of the command.

 : (colon) cd fg nice stop unset

@ (at) echo history nohup suspend wait

alias eval jobs printenv time

bg exec kill set umask

break exit newgrp shift unalias

As well as built-in commands, the tcsh shell has a set of special aliases:

 beepcmd periodic shell

cwdcmd precmd

If set, each of these aliases executes automatically at the indicated time. They are

initially undefined. For more information about aliases, see “Alias substitution” on

page 640.

Descriptions of these aliases are as follows:

beepcmd

Runs when the shell wants to ring the terminal bell.

cwdcmd

Runs after every change of working directory. For example, if the user is

working on an X window system using xterm and a re-parenting window

manager that supports title bars such as twm and does

> alias cwdcmd ’echo -n "^[]2;${HOST}:$cwd ^G"’

then the shell will change the title of the running xterm to be the name of

the host, a colon, and the full current working directory. A fancier way to do

that is

> alias cwdcmd ’echo -n "^[]2;${HOST}:$cwd^G^[]1;${HOST}^G"’

tcsh

Chapter 2. Shell command descriptions 653

This will put the hostname and working directory on the title bar but only the

hostname in the icon manager menu. Putting a cd, pushd or popd in

cwdcmd may cause an infinite loop.

periodic

Runs every tperiod minutes. This provides a convenient means for

checking on common but infrequent changes such as new mail. For

example, if one does

 > set tperiod = 30

 > alias periodic checknews

then the checknews program runs every 30 minutes. If periodic is set but

tperiod is unset or set to 0, periodic behaves like precmd.

precmd

Runs just before each prompt is printed. For example, if one does

> alias precmd date

then date runs just before the shell prompts for each command. There are

no limits on what precmd can be set to do, but discretion should be used.

shell Specifies the interpreter for executable scripts which do not themselves

specify an interpreter. The first word should be a full pathname to the

desired interpreter. For example: /bin/tcsh or /usr/local/bin/tcsh (by

default, this is set to /bin/tcsh).

tcsh programming constructs

 1. breaksw

Causes a break from a switch, resuming after the endsw.

 2. case label

A label in a switch. See the switch built-in description.

 3. continue

Continues execution of the nearest enclosing while or foreach. The rest of the

commands on the current line are executed.

 4. default

Labels the default case in a switch statement. It should come after all case

labels.

 5. else

end

endif

endsw

See the description of the foreach, if, switch, and while statements that

follow.

 6. goto word

With goto, word is filename and command substituted to yield a string of the

form label. The tcsh shell rewinds its input as much as possible, searches for a

line of the form label, possible preceded by blanks or tabs, and continues

exectution after that line.

 7. foreach

...

end

Successively sets the variable name to each member of wordlist and executes

the sequence of commands between this command and the matching end.

tcsh

654 z/OS V1R9.0 UNIX System Services Command Reference

(Both foreach and end must appear alone on separate lines.) The built-in

command continue may be used to continue the loop prematurely and the

built-in command break to terminate it prematurely. When this command is

read from the terminal, the loop is read once prompting with foreach? (or

prompt2) before any statements in the loop are executed. If you make a

mistake typing in a loop at the terminal you can rub it out.

 8. if (expr) then

...

else if (expr2) then

...

else

...

endif

If the specified expr is true then the commands to the first else are executed;

otherwise if expr2 is true then the commands to the second else are executed.

Any number of else-if pairs are possible; only one endif is needed. The else

part is optional. (The words else and endif must appear at the beginning of

input lines; the if must appear alone on its input line or after an else.)

 9. switch (string)

case str1:

...

breaksw

...

default

...

breaksw

endsw

Each case label is successively matched, against the specified string which is

first command and filename expanded. The file metacharacters *, ? and [...]

may be used in the case labels, which are variable expanded. If none of the

labels match before a default label is found, then the execution begins after

the default label. Each case label and the default label must appear at the

beginning of a line. The command breaksw causes execution to continue after

the endsw. Otherwise control may fall through case labels and default labels

as in C. If no label matches and there is no default, execution continues after

the endsw.

10. while (expr)

...

end

Executes the commands between the while and the matching end while expr

(expression) evaluates non-zero. while and end must appear alone on their

input lines. break and continue may be used to terminate or continue the loop

prematurely. If the input is a terminal, the user is prompted the first time

through the loop as with foreach.

tcsh shell and environment variables

The variables described in this topic have special meaning to the tcsh shell. The

tcsh shell sets addsuffix, argv, autologout, command, echo_style, edit, gid,

group, home, loginsh, path, prompt, prompt2, prompt3, shell, shlvl, tcsh, term,

tty, uid, user, and version at startup. They do not change thereafter, unless

changed by the user. The tcsh shell updates cwd, dirstack, owd, and status when

necessary, and sets logout on logout.

tcsh

Chapter 2. Shell command descriptions 655

The shell synchronizes group, home, path, shlvl, term, and user with the

environment variables of the same names: whenever the environment variable

changes the shell changes the corresponding shell variable to match (unless the

shell variable is read-only) and vice versa. Although cwd and PWD have identical

meanings, they are not synchronized in this manner.

The shell automatically interconverts the different formats of path and PATH.

 Table 32. tcsh Built-in Shell Variables

Variable Purpose

addsuffix If set, filename completion adds / to the end of directories

and a space to the end of normal files.

ampm This variable gives a user the ability to alter the time

format in their tcsh prompt. Specifically, ampm will

override the %T and %P formatting sequences in a user’s

prompt. If set, all times are shown in 12hour AM/PM

format.

argv The arguments to the shell. Positional parameters are

taken from argv. For example, $1 is replaced by $argv.

Set by default, but usually empty in interactive shells.

autocorrect If set, the spell-word editor command is invoked

automatically before each completion. (This variable is

not implemented.)

autoexpand If set, the expand-history editor command is invoked

automatically before each completion attempt.

autolist If set, possibilities are listed after an ambiguous

completion. If set to ambiguous, possibilites are listed

only when no new characters are added by completion.

autologout Set to the number of minutes of inactivity before

automatic logout. Automatic locking is an unsupported

feature on the z/OS platform. If you specify a second

parameter on the autologout statement (intending it to

be for autolock), this parameter will be assigned to

autologout. When the shell automatically logs out, it

prints ’autologout’, sets the variable logout to automatic

and exits. Set to 60 (automatic logout after 60 minutes)

by default in login and superuser shells, but not if the

shell thinks it is running under a window system (the

DISPLAY environment variable is set), or the tty is a

pseudo-tty (pty). See also the logout shell variable.

backslash_ quote If set, backslashes (\) always quote \, ’ (single quote) and

″ (double quote). This may make complex quoting tasks

easier, but it can cause syntax errors in csh scripts.

cdpath A list of directories in which cd should search for

subdirectories if they aren’t found in the current directory.

command If set, the command which was passed to the shell with

the -c flag.

complete If set to enhance, completion first ignores case and then

considers periods, hyphens and underscores (’.’, ’-’ and

’_’) to be word separators and hyphens and underscores

to be equivalent.

tcsh

656 z/OS V1R9.0 UNIX System Services Command Reference

Table 32. tcsh Built-in Shell Variables (continued)

Variable Purpose

correct If set to cmd, commands are automatically

spelling-corrected. If set to complete, commands are

automatically completed. If set to all, the entire command

line is corrected.

cwd The full pathname of the current directory. See also the

dirstack and owd shell variables.

dextract If set, pushd +n extracts the nth directory from the

directory stack instead of rotating it to the top.

dirsfile The default location in which dirs -S and dirs -L look for

a history file. If unset, ~/.cshdirs is used. Because only

~/.tcshrc is normally sourced before ~/.cshdirs, dirsfile

should be set in ~/.tcshrc instead of ~/.login.

For example:

set dirsfile = ~/.cshdirs

dirstack An array of all the directories on the directory stack.

$dirstack[1] is the current working directory, $dirstack[2]

the first directory on the stack, etc. Note that the current

working directory is $dirstack[1] but =0 in directory stack

substitutions, etc. One can change the stack arbitrarily by

setting dirstack, but the first element (the current working

directory) is always correct. See also the cwd and owd

shell variables.

dunique If set, pushd removes any instances of name from the

stack before pushing it onto the stack.

echo If set, each command with its arguments is echoed just

before it is executed. For non-built-in commands all

expansions occur before echoing. Built-in commands are

echoed before command and filename substitution, since

these substitutions are then done selectively. Set by the

-x command line option.

tcsh

Chapter 2. Shell command descriptions 657

Table 32. tcsh Built-in Shell Variables (continued)

Variable Purpose

echo_style The style of the echo built-in. May be set to:

bsd Don’t echo a newline if the first argument is -n.

sysv Recognize backslashed escape sequences in

echo strings.

both Recognizes both the -n flag and backslashed

escape sequences; the default.

none Recognize neither.
Set to both by default to the local system default.

The following is an example of this variable’s use:

 > echo $echo_style

 bsd

 > echo "\n"

 \n

 > echo -n "test"

 test>

 > set echo_style=sysv

 > echo $echo_style

 sysv

 > echo "\n"

 > echo -n "test"

 -n test

 > set echo_style=both

 > echo $echo_style

 both

 > echo -n "test"

 test> echo "\n"

 >set echo_style=none

 > echo $echo_style

 none

 > echo -n "test"

 -n test

 > echo "\n"

 \n

 >

edit If set, the command-line editor is used. Set by default in

interactive shells.

ellipsis If set, the %c’/’%. and %C prompt sequences (see the

prompt shell variable) indicate skipped directories with

an ellipsis (...) instead of /.

fignore Lists file name suffixes to be ignored by completion.

filec In the tcsh shell, completion is always used and this

variable is ignored.

gid The user’s real group ID.

group The user’s group name.

histchars A string value determining the characters used in history

substitution. The first character of its value is used as the

history substitution character, replacing the default

character ! (exclamation point). The second character of

its value replaces the character ^ (caret) in quick

substitutions.

tcsh

658 z/OS V1R9.0 UNIX System Services Command Reference

Table 32. tcsh Built-in Shell Variables (continued)

Variable Purpose

histdup Controls handling of duplicate entries in the history list. If

set to all only unique history events are entered in the

history list. If set to prev and the last history event is the

same as the current command, then the current

command is not entered in the history. If set to erase and

the same event is found in the history list, that old event

gets erased and the current one gets inserted. The prev

and all options renumber history events so there are no

gaps.

histfile The default location in which history -S and history -L

look for a history file. If unset, ~/.history is used. histfile

is useful when sharing the same home directory between

different machines, or when saving separate histories on

different terminals. Because only ~/.tcshrc is normally

sourced before ~/.history, histfile should be set in

~/.tcshrc instead of ~/.login.

An example:

set histfile = ~/.history

histlit If set, built-in and editor commands and the savehist

mechanism use the literal (unexpanded) form of lines in

the history list. See also the toggle-literal-history editor

command.

history The first word indicates the number of history events to

save. The optional second word indicates the format in

which history is printed; if not given, %h\t%T\t%R\n is

used. The format sequences are described below under

prompt. (Note that %R has a variable meaning). Set to

100 by default.

home Initialized to the home directory of the invoker. The

filename expansion of ~ refers to this variable.

ignoreeof If set to the empty string or 0 and the input device is a

terminal, the end-of-file command (usually generated by

the user by typing ^D on an empty line) causes the shell

to print ’Use ″logout″ to leave tcsh.’ instead of exiting.

This prevents the shell from accidentally being killed. If

set to a number n, the shell ignores n - 1 consecutive

end-of-files and exits on the nth. If unset, 1 is used. That

is, the shell exits on a single ^D.

implicitcd If set, the shell treats a directory name typed as a

command as though it were a request to change to that

directory. If set to verbose, the change of directory is

echoed to the standard output. This behavior is inhibited

in non-interactive shell scripts, or for command strings

with more than one word. Changing directory takes

precedence over executing a like-named command, but it

is done after alias substitutions. Tilde and variable

expansions work as expected.

inputmode If set to insert or overwrite, puts the editor into that input

mode at the beginning of each line.

tcsh

Chapter 2. Shell command descriptions 659

Table 32. tcsh Built-in Shell Variables (continued)

Variable Purpose

listflags If set to x, a or A, or any combination thereof (for

example, xA), they are used as flags to ls-F, making it

act like ls -xF, ls -Fa, ls -FA or a combination (for

example, ls -FxA): a shows all files (even if they start

with a ’.’), A shows all files but ’.’ and ’..’, and x sorts

across instead of down. If the second word of listflags is

set, it is used as the path to ls(1).

listjobs If set, all jobs are listed when a job is suspended. If set

to long, the listing is in long format.

listlinks If set, the ls-F built-in command shows the type of file to

which each symbolic link points. For an example of its

use, see “ls-F built-in command for tcsh: List files” on

page 685.

listmax The maximum number of items which the list-choices

editor ocmmand will list without asking first.

listmaxrows The maximum number of rows of items which the

list-choices editor command will list without asking first.

loginsh Set by the shell if is a login shell. Setting or unsetting it

within a shell has no effect. See also shlvl.

logout Set by the shell to normal before a normal logout,

automatic before an automatic logout, and hangup if the

shell was killed by a hangup signal (see “Signal handling”

on page 652). See also the autologout shell variable.

mail The names of the files or directories to check for

incoming mail, separated by whitespace, and optionally

preceeded by a numeric word. Before each prompt, if 10

minutes have passed since the last check, the shell

checks each file and says ’You have new mail.’ (or, if mail

contains multiple files, ’You have new mail in name.’) if

the filesize is greater than zero in size and has a

modification time greater than its access time.

If you are in a login shell, then no mail file is reported

unless it has been modified after the time the shell has

started up, in order to prevent redundant notifications.

Most login programs will tell you whether or not you have

mail when you log in.

If a file specified in mail is a directory, the shell will count

each file within that directory as a separate message,

and will report ’You have n mails.’ or ’You have n mails in

name.’ as appropriate. This functionality is provided

primarily for those systems which store mail in this

manner, such as the Andrew Mail System.

If the first word of mail is numeric it is taken as a different

mail checking interval, in seconds. Under very rare

circumstances, the shell may report ’You have mail.’

instead of ’You have new mail.’

matchbeep If set to never, completion never beeps. If set to

nomatch, it beeps only when there is no match. If set to

ambiguous, it beeps when there are multiple matches. If

set to notunique, it beeps when there is one exact and

other longer matches. If unset, ambiguous is used.

tcsh

660 z/OS V1R9.0 UNIX System Services Command Reference

Table 32. tcsh Built-in Shell Variables (continued)

Variable Purpose

nobeep If set, beeping is completely disabled.

noclobber If set, restrictions are placed on output redirection to

insure that files are not accidentally destroyed and that

>> redirections refer to existing files, as described in

“Input or output” on page 646.

noglob If set, filename substitution and directory stack

substitution are inhibited. This is most useful in shell

scripts which do not deal with filenames, or after a list of

filenames has been obtained and further expansions are

not desirable.

nokanji If set and the shell supports Kanji (see the version shell

variable), it is disabled so that the meta key can be used.

nonomatch If set, a filename substitution or directory stack

substitution which does not match any existing files is left

untouched instead of causing an error. It is still an error

for the substitution to be malformed, that is, echo [still

gives an error.

nostat A list of directories (or glob-patterns which match

directories; see “Filename substitution” on page 643) that

should not be stat(2)ed during a completion operation.

This is usually used to exclude directories which take too

much time to stat(2), for example /afs.

notify If set, the shell announces job completions

asynchronously. The default is to present job completions

just before printing a prompt.

owd The old working directory, equivalent to the - (hyphen)

used by cd and pushd. See also the cwd and dirstack

shell variables.

path A list of directories in which to look for executable

commands. A null word specifies the current directory. If

there is no path variable then only full pathnames will

execute. path is set by the shell at startup from the PATH

environment variable or, if PATH does not exist, to a

system-dependent default something like (/usr/local/bin

/usr/bsd /bin /usr/bin .). The shell may put ’.’ first or last in

path or omit it entirely depending on how it was compiled;

see the version shell variable. A shell which is given

neither the -c nor the -t option hashes the contents of the

directories in path after reading ~/.tcshrc and each time

path is reset. If one adds a new command to a directory

in path while the shell is active, one may need to do a

rehash for the shell to find it.

printexit- value If set and an interactive program exits with a non-zero

status, the shell prints ’Exit status’.

prompt2 The string with which to prompt in while and foreach

loops and after lines ending in \ (backslash). The same

format sequences may be used as in prompt (note the

variable meaning of %R). Set by default to %R? in

interactive shells.

tcsh

Chapter 2. Shell command descriptions 661

Table 32. tcsh Built-in Shell Variables (continued)

Variable Purpose

prompt3 The string with which to prompt when confirming

automatic spelling correction. The same format

sequences may be used as in prompt (note the variable

meaning of %R). Set by default to CORRECT>%R

(y|n|e|a)? in interactive shells.

promptchars If set (to a two-character string), the %# formatting

sequence in the prompt shell variable is replaced with the

first character for normal users and the second character

for the superuser.

pushdtohome If set, pushd without arguments does pushd ^, like cd.

pushdsilent If set, pushd and popd do not print the directory stack.

recexact If set, completion completes on an exact match even if a

longer match is possible.

recognize_ only_ executables If set, command listing displays only files in the path that

are executable.

rmstar If set, the user is prompted before rm * is executed.

rprompt The string to print on the right-hand side of the screen

(after the command input) when the prompt is being

displayed on the left. It recognises the same formatting

characters as prompt. It will automatically disappear and

reappear as necessary, to ensure that command input

isn’t obscured, and will only appear if the prompt,

command input, and itself will fit together on the first line.

If edit isn’t set, then rprompt will be printed after the

prompt and before the command input.

savedirs If set, the shell does dirs -S before exiting.

savehist If set, the shell does history -S before exiting. If the first

word is set to a number, at most that many lines are

saved. (The number must be less than or equal to

history.) If the second word is set to merge, the history

list is merged with the existing history file instead of

replacing it (if there is one) and sorted by time stamp and

the most recent events are retained.

An example:

set savehist = (15 merge)

sched The format in which the sched built-in command prints

scheduled events. If not given, %h\t%T\t%R\n is used.

The format sequences are described under prompt; note

the variable meaning of %R.

shell The file in which the shell resides. This is used in forking

shells to interpret files which have execute bits set, but

which are not executable by the system (see “Built-in and

non-built-in command execution” on page 645. Initialized

to the (system-dependent) home of the shell.

shlvl The number of nested shells. Reset to 1 in login shells.

See also loginsh.

status The status returned by the last command. If it terminated

abnormally, then 0200 is added to the status. tcsh built-in

commands which fail return exit status 1, all other built-in

commands return status 0.

tcsh

662 z/OS V1R9.0 UNIX System Services Command Reference

Table 32. tcsh Built-in Shell Variables (continued)

Variable Purpose

tcsh The version number of the shell in the format R.VV.PP,

where R is the major release number, VV the current

version and PP the patchlevel.

term The terminal type. Usually set in ~/.login as described

under “Options and invocation” on page 626.

tperiod The period, in minutes, between executions of the

periodic special alias.

tty The name of the tty, or empty if not attached to one.

uid The user’s login name.

user The user’s login name.

verbose If set, causes the words of each command to be printed,

after history substitution (if any). Set by the –v command

line option.

tcsh

Chapter 2. Shell command descriptions 663

Table 32. tcsh Built-in Shell Variables (continued)

Variable Purpose

version The version ID stamp. It contains the shell’s version

number (see tcsh), origin, release date, vendor, operating

system and machine (see VENDOR, OSTYPE, and

MACHTYPE environment variables) and a

comma-separated list of options which were set at

compile time. Options which are set by default in the

distribution are noted.

8b The shell is eight bit clean; default.

7b The shell is not eight bit clean.

nls The system’s NLS is used; default for systems

with NLS.

If Login shells execute /etc/csh.login before

instead of after /etc/csh.cshrc and ~/.login

before instead of after ~/.tcshrc and ~/.history.

dl ’.’ is put last in path for security; default.

nd ’.’ is omitted from path for security.

vi vi-style editing is the default instead of emacs.

dtr Login shells drop DTR when exiting.

bye bye is a synomym for logout and log is an

alternate name for watchlog.

al autologout is enabled; default.

kan Kanji is used and the ISO character set is

ignored, unless the nokanji shell variable is set.

sm The system’s malloc is used.

hb The #!<program> <args> convention is emulated

when executing shell scripts.

ng The newgrp built-in is available.

rh The shell attempts to set the REMOTEHOST

environment variable.

afs The shell verifies your password with kerberos

server if local authentication fails. The afsuser

shell variable or the AFSUSER environment

variable override your local username if set.
An administrator may enter additional strings to indicate

differences in the local version.

visiblebell If set, a screen flash is used instead of the audible bell.

See nobeep. (Currently not implemented.)

tcsh

664 z/OS V1R9.0 UNIX System Services Command Reference

Table 32. tcsh Built-in Shell Variables (continued)

Variable Purpose

watch A list of user/terminal pairs to watch for logins and

logouts. If either the user is any all terminals are watched

for the given user and vice versa. Setting watch to (any

any) watches all users and terminals. For example,

set watch = (george ttyd 1 any console $user any)

reports activity of the user george on ttyd1, any user on

the console, and oneself (or a trespasser) on any

terminal.

Logins and logouts are checked every 10 minutes by

default, but the first word of watch can be set to a

number to check every so many minutes. For example,

set watch = (1 any any)

reports any login/logout once every minute. For the

impatient, the log built-in command triggers a watch

report at any time. All current logins are reported (as with

the log built-in) when watch is first set.

The who shell variable controls the format of watch

reports.

who The format string for watch messages. The following

sequences are replaced by the given information:

%n The name of the user who logged in/out.

%a The observed action, i.e., ’logged on’. ’logged

off’, or ’replaced olduser on’.

%l The terminal (tty) on which the user logged

in/out.

%M The full hostname of the remote host, or ’local’ if

the login/logout was from the local host.

%m The hostname of the remote host up to the first

’.’ (period). The full name is printed if it is an IP

address or an X Window System display.
%M and %m are available only on systems which store

the remote hostname in /etc/utmp. If unset, %n has %a

%l from %m. is used, or %n has %a %l. on systems

which don’t store the remote hostname.

wordchars A list of non-alphanumeric characters to be considered

part of a word by the forward-word, back-ward word, etc.

editor commands. If unset, *?_-.[] ~= is used.

tcsh shell variables not described in the Table 32 on page 656 table are described

below:

prompt

The string which is printed before reading each command from the terminal.

prompt may include any of the following formatting sequences, which are

replaced by the given information:

%/ The current working directory.

%~ The current working directory, but with one’s home directory

tcsh

Chapter 2. Shell command descriptions 665

represented by ~ and other users’ home directories represented by

~user as per filename substitution. ~user substitution happens only

if the shell has already used ~user in a pathname in the current

session.

%c[[0]n], %.[[0]n]

The trailing component of the current working directory, or n trailing

components if a digit n is given. If n begins with 0, the number of

skipped components precede the trailing components in the format

/trailing. If the ellipsis shell variable is set, skipped components are

represented by an ellipsis so the whole becomes ...trailing. ~

substitution is done as in %~~ , but the ~ component is ignored

when counting trailing components.

%C Like %c, but without ^ substitution.

%h, %!, !

The current history event number.

%M The full hostname.

%m The hostname up to the first ’.’ (period).

%S (%s)

Start (stop) standout mode.

%B (%b)

Start (stop) boldfacing mode.

%U (%u)

Start (stop) underline mode.

%t, %@

The time of day in 12–hour AM/PM format.

%T Like %t, but in 24–hour format (but see the ampm shell variable).

%p The precise time of day in 12–hour AM/PM format, with seconds.

%P Like %p, but in 24–hour format (but see the ampm shell variable).

\c c is parsed as in bindkey.

^c c is parsed as in bindkey.

%% A single %.

%n The user name.

%d The weekday in ’Day’ format.

%D The day in ’dd’ format.

%w The month in ’Mon’ format.

%W The month in ’mm’ format.

%y The year in ’yy’ format.

%Y The year in ’yyyy’ format.

%l The tcsh shell’s tty.

%L Clears from the end of the prompt to end of the display or the end

of the line.

%$ Expands the shell or environment variable name immediately after

the $.

tcsh

666 z/OS V1R9.0 UNIX System Services Command Reference

%# > (or the first character of the promptchars shell variable) for

normal users, # (or the second character of promptchars) for the

superuser.

%{string%}

Includes string as a literal escape sequence. It should be used only

to change terminal attributes and should not move the cursor

location. This cannot be the last sequence in prompt.

%? The return code of the command executed just before the prompt.

%R In prompt2, the status of the parser. In prompt3, the corrected

string. In history, the history string.

The bold, standout and underline sequences are often used to distinguish a

superuser shell. For example,

>set prompt = "%m [%h] %B[%@%b [%/] you rang?"

tut [37] [2:54] [/usr/accts/sys] you rang? _

Set by default to %# in interactive shells.

symlinks

Can be set to several different values to control symbolic link (’symlink’)

resolution:

v If set to chase, whenever the current directory changes to a directory

containing a symbolic link, it is expanded to the real name of the

directory to which the link points. This does not work for the user’s home

directory.

v If set to ignore, the shell tries to construct a current directory relative to

the current directory before the link was crossed. This means that cding

through a symbolic link and then cd..’ing returns one to the original

directory. This only affects built-in commands and filename completion.

v If set to expand, the shell tries to fix symbolic links by actually expanding

arguments which look like pathnames. This affects any command, not

just built-ins. Unfortunately, this does not work for hard-to-recognize

filenames, such as those embedded in command options. Expansion

may be prevented by quoting. While this setting is usually the most

convenient, it is sometimes misleading and sometimes confusing when it

fails to recognize an argument which should be expanded. A compromise

is to use ignore and use the editor command normalize-path (bound by

default to ^X-n) when necessary.

Some examples are in order. First, let’s set up some play directories:

 > cd /tmp

 > mkdir from from/src to

 > ln -s from/src to/dist

Here’s the behavior with symlinks unset,

 > cd /tmp/to/dist; echo $cwd

 /tmp/to/dist

 > cd ..; echo $cwd

 /tmp/from

here’s the behavior with symlinks set to chase,

 > cd /tmp/to/dst; echo $cwd

 /tmp/from/src

 > cd ..; echo $cwd

 /tmp/from

tcsh

Chapter 2. Shell command descriptions 667

here’s the behavior with symlinks set to ignore,

 > cd /tmp/to/dist; echo $cwd

 /tmp/to/dst

 > cd ..; echo $cwd

 /tmp/to

and here’s the behavior with symlinks set to expand.

 > cd /tmp/to/dist; echo $cwd

 /tmp/to/dst

 > cd ..; echo $cwd

 /tmp/to

 > cd /tmp/to/dist; echo $cwd

 /tmp/to/dst

 > cd ".."; echo $cwd

 /tmp/from

 > /bin/echo ..

 /tmp/to

 > /bin/echo ".."

 ..

expand expansion:

1. works just like ignore for built-ins like cd,

2. is prevented by quoting, and

3. happens before filenames are passed to non-built-in commands.

time If set to a number, then the time built-in command executes automatically

after each command which takes more than that many CPU seconds. If

there is a second word, it is used as a format string for the output of the

time built-in. The following sequences may be used in the format string:

%U The time the process spent in user mode in cpu seconds.

%S The time the process spent in kernel mode in cpu seconds.

%E The elapsed (wall clock) time in seconds.

%P The CPU percentage computed as (%U + %S) / %E.

%W The number of times the process was swapped.

%X The average amount in (shared) text space used in Kbytes.

%D The average amount in (unshared) data/stack space used in

Kbytes.

%K The total space used (%X + %D) in Kbytes.

%M The maximum memory the process had in use at any time in

Kbytes.

%F The number of major page faults (page needed to be brought from

disk).

%R The number of minor page faults.

%I The number of input operations.

%O The number of output operations.

%r The number of socket messages received.

%s The number of socket messages sent.

%k The number of signals received.

%w The number of voluntary context switches (waits).

tcsh

668 z/OS V1R9.0 UNIX System Services Command Reference

%c The number of involuntary context switches.

Only the first four sequences are supported on systems without BSD

resource limit functions. The default time format is

Uu %Ss %E %P %X+%Dk %I+%Oio %Fpf+%Ww

for systems that support resource usage reporting.

The following table contains a list of tcsh environment variables.

 Table 33. tcsh Environment Variables

ENVIRONMENT VARIABLE PURPOSE

COLUMNS A list of directories in which cd should search for

subdirectories if they aren’t found in the current

directory.

DISPLAY Used by X Window System. If set, the shell does not

set AUTOLOGOUT.

EDITOR The pathname to a default editor. See also the VISUAL

environment variable and the run-fg-editor editor

command.

GROUP Equivalent to the group shell variable.

HOME Equivalent to the HOME shell variable.

HOST Initialized to the name of the machine of the machine

on which the shell is running, as determined by the

gethostname system call.

HOSTTYPE Initialized to the type of the machine on which the shell

is running, as determined at compile time. This variable

is obsolete and will be removed in a future version.

HPATH A colon-separated list of directories in which the

run-help editor command looks for a command

documentation.

LANG Gives the preferred character environment. See

“National language system report” on page 652.

LC_CTYPE If set, only CTYPE character handling is changed. See

“National language system report” on page 652.

LINES The number of lines in the terminal. See “Terminal

management” on page 652.

MACHTYPE The machine type (microprocessor class or machine

model), as determined at compile time.

NOREBIND If set, printable characters are not rebound to

SELF-INSERT-COMMAND. After a user sets

NOREBIND, a new shell must be started. See “National

language system report” on page 652.

OSTYPE The operating system, as determined at compile time.

PATH A colon-separated list of directories in which to look for

executables. Equivalent to the path shell variable, but

in a different format.

PWD Equivalent to the cwd shell variable, but not

synchronized to it; updated only after an actual directory

change.

tcsh

Chapter 2. Shell command descriptions 669

Table 33. tcsh Environment Variables (continued)

ENVIRONMENT VARIABLE PURPOSE

REMOTE- HOST The host from which the user has logged in remotely, if

this is the case and the shell is able to determine it.

(The z/OS tcsh shell is not currently compiled with

REMOTEHOST defined; see the version shell

variable.)

SHLVL Equivalent to the shlvl shell variable.

TERM Equivalent to the term shell varialbe.

USER Equivalent to the user shell variable.

VENDOR The vendor, as determined at compile time.

VISUAL The pathname to a default full-screen editor. See the

editor environment variable and the run-fg-editor

editor command.

Using tcsh shell variables to control automatic conversion

When the tcsh shell is redirecting stdin, stdout, or stderr, it will default to no

automatic conversion of tagged files, and no tagging of files created by the

redirection. The following tcsh shell variables will override this behavior:

 Table 34. tcsh Shell Variables for Automatic Conversion

Variable Purpose

_TAG_REDIR_IN=TXT Redirected stdin will override the file’s TXTFLAG,

treating it as if it were tagged as:

TXTFLAG = ON, CCSID = existing file tag CCSID

This has no effect if CCSID = 0.

_TAG_REDIR_IN=BIN Redirected stdin will override the file’s TXTFLAG,

treating it as if it were tagged as:

TXTFLAG = OFF, CCSID = existing file tag CCSID

This effectively disables automatic conversion.

_TAG_REDIR_OUT=TXT Redirected stdout will be tagged as:

TXTFLAG = ON, CCSID = program CCSID at the time

of the first write (if not already tagged)

_TAG_REDIR_OUT=BIN Redirected stdout will be tagged as:

TXTFLAG = OFF, CCSID = program CCSID at the time

of the first write (if not already tagged)

_TAG_REDIR_ERR=TXT Redirected stderr will be tagged as:

TXTFLAG = ON, CCSID = program CCSID at the time

of the first write (if not already tagged)

_TAG_REDIR_ERR=BIN Redirected stderr will be tagged as:

TXTFLAG = OFF, CCSID = program CCSID at the time

of the first write (if not already tagged)

The automatic conversion shell variable can be specified for one command, or for

multiple commands within a tcsh shell session or shell script. If the variable is set in

a user’s .tcshrc file, then it will affect child shells, that is, nested shell scripts.

tcsh

670 z/OS V1R9.0 UNIX System Services Command Reference

|

Note: Because the standard tcsh shell execution performs redirection before

variable assignment, the syntax for specifying the shell variable for one

command is set var=value. For example:

(set _TAG_REDIR_OUT=TXT; command >file)

These variables can also be used in pipelined commands, to tag the stdout of each

command that is writing to a pipeline, and/or the stdin of each command reading

from a pipeline.

tcsh files

/etc/csh.cshrc

Read first by every shell.

/etc/csh.login

Read by login shells after /etc/csh.cshrc..

~/.tcshrc

Read by every shell after /etc/csh.cshrc or its equivalent.

~/.history

Read by login shells after ~/.tcshrc if savehist is set. See also histfile.

~/.login

The shell reads ~/.login after ~/.tcshrc and ~/.history. See the version

shell variable.

~/.cshdirs

Read by login shells after ~/.login if savedirs is set. See also dirsfile.

~/.logout

Read by login shells at logout.

/bin/sh

Used to interpret shell scripts not starting with a #.

/tmp/sh*

Temporary file for < <.

tcsh shell: problems and limitations

When a suspended command is restarted, the tcsh shell prints the directory it

started in if this is different from the current directory. This can be misleading (that

is, wrong) as the job may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the

form ’a ; b ; c’ are also not handled gracefully when stopping is attempted. If you

suspend ’b’, the tcsh shell will then immediately execute ’c’. This is especially

noticeable if this expansion results from an alias. It suffices to place the sequence

of commands in ()’s to force it to a subshell, for example, (a ; b ; c).

Control over tty output after processes are started is primitive. In a virtual terminal

interface much more interesting things could be done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell

procedures should be provided instead of aliases.

tcsh

Chapter 2. Shell command descriptions 671

Commands within loops are not placed in the history list. Control structures should

be parsed instead of being recognized as built-in commands. This would allow

control commands to be placed anywhere, to be combined with |, and to be used

with & and ; (semi-colon) metasyntax.

foreach does not ignore here documents when looking for its end.

It should be possible to use the : (colon) modifiers on the output of command

substitutions.

The screen update for lines longer than the screen width is very poor if the terminal

cannot move the cursor up (terminal type ’dumb’).

It is not necessary for HPATH and NOREBIND to be environment variables.

Glob-patterns which do not use ’?’, ’*’ or ’[]’ or which use ’{}’ or ’~’ are not negated

correctly.

The single-command form of if does output redirection even if the expression is

false and the command is not executed.

ls-F includes file identification characters when sorting filenames and does not

handle control characters in filenames well. It cannot be interrupted.

visiblebell shell variable is currently not implemented.

In filename and programmed completion, the ’C’ completion ru le word list type

does not correctly select completion from the given directory.

There are three locales (code pages) which the tcsh shell will not correctly support:

IBM-1388 (Chinese), IBM-933 (Korean) and IBM-937 (Traditional Chinese).

If you want to help maintain and test tcsh, send mail to listserv@mx.gw.com with

the text 'subscribe tcsh '.

Limits

Some limitations of the tcsh shell are:

v Words can be no longer than 1024 characters.

v The system limits argument lists to 10240 characters.

v The number of arguments to a command which involves filename expansion is

limited to 1/6th the number of characters allowed in an argument list.

v Command substitutions may substitute no more characters than are allowed in

an argument list.

v To detect looping, the shell restricts the number of alias substitutions on a single

line to 20.

Related information

: (colon), @ (at), alias, bg, break, cd, continue, echo, eval, exec, exit, fg,

history, jobs, kill, newgrp, nice, nohup, printenv, set, shift, stop, suspend,

time, umask, unalias, unset, wait

tcsh

672 z/OS V1R9.0 UNIX System Services Command Reference

tcsh built-in command descriptions

@ (at) built-in command for tcsh: Print the value of tcsh shell variables

Format

 @

 @ name = expr

 @ name[index] = expr

 @ name+ + |– –

 @ name[index]+ + |– –

Description

@ (at) in the tcsh shell prints the value of tcsh shell variables.

Options

@ in the tcsh shell supports the following options:

name = expr

Assigns the value of expr to name.

name[index] = expr

Assigns the value of expr to the index’th component of name. Both name

and its index’th component must already exist.

 For both name = expr and name[index] = expr , expr may contain the

operators *, +, etc. as in C. If expr contains <, >, &, or ″ then at least part

of expr must be placed within (). The syntax of expr has nothing to do with

that described under “Expressions” on page 647.

 expr must evaluate to a numeric expression. Therefore, use set instead of

@ to assign array variables.

name+ + |– –

Increments (++) or decrements (– –) name.

name[index]+ + |– –

Increments (++) or decrements (– –) name’s index’th component.

Usage notes

1. The space between @ and name is required.

2. The spaces between name and = and between = and expr are optional.

3. Components of expr must be separated by spaces.

Related information

tcsh

% (percent) built-in command for tcsh: Move jobs to the foreground or

background

Format

% [job] [&]

Description

%, is a synonym for the fg built-in command.

v % (percent) without arguments will bring the current job to the foreground.

v % specified with a job number attempts to bring that particular job to the

foreground.

tcsh

Chapter 2. Shell command descriptions 673

v % job & will move the specified job to the background. This syntax works the

same as the bg built-in command. If no job is specified, the current job is moved

to the background.

Note: Current jobs will have a + next to the status column in jobs command

output. See “Jobs” on page 650.

Related information

jobs, tcsh

alloc built-in command for tcsh: Show the amount of dynamic memory

acquired

Format

alloc argument

Description

Shows the amount of dynamic memory acquired, broken down into used and free

memory. alloc used with an argument, shows the number of free and used blocks

in each size category. The categories start at size 8 and double at each step.

Note: alloc is supported, but the output is not meaningful on z/OS.

Related information

tcsh

bindkey built-in command for tcsh: List all bound keys

Format

 bindkey [-l|-d|-e|-v|-u]

 bindkey [-a] [-b] [-k] [-r] [– –] key

 bindkey [-a] [-b] [-k] [-c|-s] [– –] key command

Description

bindkey specified alone (without options, key, or key command) lists all bound keys

and the editor command to which each is bound.

bindkey specified with key (with or without options) lists the editor command to

which key is bound.

bindkey specified with key command (with or without options) binds the editor

command to key.

Options

–l Lists all commands and a short description of each.

–d Binds all keys to the standard bindings for the default editor.

–e Binds all keys to the standard GNU Emacs-like bindings.

–v Binds all keys to the standard vi-like bindings.

–a Lists or changes key-bindings in the alternative key map. This is the key

map used in vi command mode.

–b key is interpreted as a control character written ^character (’^A’) or

C-character (’C-A’), a meta character written M-character (’M-A’), or an

extended prefix key written X-character (’X-A’).

tcsh: % (percent)

674 z/OS V1R9.0 UNIX System Services Command Reference

–k key is interpreted as a symbolic arrow key name, which may be one of

’down’, ’up’, ’left’ or ’right’.

–r Removes key’s binding. Be careful: bindkey -r does not bind key to

self-insert-command, it unbinds key completely.

–c command is interpreted as a built-in or external command instead of an

editor command.

–s command is taken as a literal string and treated as terminal input when key

is typed. Bound keys in command are themselves reinterpreted, and this

continues for ten levels of interpretation.

– – Forces a break from option processing, so the next word is taken as key

even if it begins with ’-’.

Usage notes

1. key may be a single character or a string. If a command is bound to a string,

the first character of the string is bound to sequence-lead-in and the entire

string is bound to the command.

2. Control characters in key can be literal (they can be typed by preceding them

with the editor command quoted-insert, normally bound to ’^V’) or written

caret-character style, for example, ’^A’. Delete is written ’^?’ (caret-question

mark). key and command can contain backslashed escape sequences (in the

style of System V echo) as follows:

\a Bell

\b Backspace

\e Escape

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\nnn The EBCDIC character corresponding to the octal number nnn

 ’\’ nullifies the special meaning of the following characters, notably ’\/’ and ’^’.

Related information

tcsh

builtins built-in command for tcsh: Prints the names of all built-in

commands

Format

builtins

Description

Prints the names of all built-in commands.

Related information

tcsh

tcsh: bindkey

Chapter 2. Shell command descriptions 675

bye built-in command for tcsh: Terminate the login shell

Format

bye

Description

A synonym for the logout built-in command. (See the version shell variable.)

Related information

logout

chdir built-in shell command for tcsh: Change the working directory

Format

chdir

Description

A synonym for the cd built-in command.

Related information

cd, tcsh

complete built-in command for tcsh: List completions

Format

complete [command [word/pattern/list[:select]/[[suffix]/] ...]]

Description

complete, without arguments, lists all completions. With command, complete lists

completions for command. With command and word etc., complete defines

completions.

Arguments

command

command may be a full command name or a glob-pattern. See “Filename

substitution” on page 643. It can begin with – to indicate that completion

should be used only when command is ambiguous.

word word specifies which word relative to the current word is to be completed,

and may be one of the following:

c Current-word completion. pattern is a glob-pattern which must

match the beginning of the current word on the command line.

pattern is ignored when completing the current word.

C Like c, but includes pattern when completing the current word.

n Next-word completion. pattern is a glob-pattern which must match

the beginning of the previous word on the command line.

N Like n, but must match the beginning of the word two before the

current word.

p Position-dependent completion. pattern is a numeric range, with the

same syntax used to index shell variables, which must include the

current word.

list The list of possible completions, which may be one of the following:

tcsh: bye

676 z/OS V1R9.0 UNIX System Services Command Reference

a Aliases

b Bindings (editor commands)

d Directories

D Directories which begin with the supplied path prefix

e Environment variables

f Filenames

F Filenames which begin with the supplied path prefix

g Groupnames

j Jobs

l Limits

n Nothing

s Shell variables

S Signals

t Plain (text) files

T Plain (text) files which begin with the supplied path prefix

v Any variables

u Usernames

x Like n, but prints select when list-choices is used

X Completions

$var Words from the variable var

(...) Words from the given list

... Words from the output of command

select select is an optional glob-pattern. If given, only words from list which match

select are considered and the fignore shell variable is ignored. The last

three types of completion may not have a select pattern, and x uses select

as an explanatory message when the list-choices editor command is used.

suffix suffix is a single character to be appended to a successful completion. If

null, no character is appended. If omitted (in which case the fourth delimiter

can also be omitted), a slash is appended to directories and a space to

other words.

Examples

 1. Some commands take only directories as arguments, so there is no point in

completing plain files. For example:

> complete cd ’p/1/d/’

completes only the first word following cd (p/1) with a directory.

 2. p-type completion can be used to narrow down command completion. For

example:

 > co[^D]

 complete compress

 > complete -co* ’p/0/(compress)/’

 > co[^D]

 > compress

tcsh: complete

Chapter 2. Shell command descriptions 677

This completion completes commands (words in position 0, p/0) which begin

with co (thus matching co*) to compress (the only word in the list). The leading

- indicates that this completion is to be used only with ambiguous commands.

 3. This is an example of n-type completion. Any word following find and

immediately following -user is completed from the list of users.

> complete find ’n/-user/u/’

 4. This demonstrates c-type completion. Any word following cc and beginning

with -I is completed as a directory. -I is not taken as part of the directory

because we used lowercase c.

> complete cc ’c/-I/d/’

 5. Different lists are useful with different commands:

 > complete alias ’p/1/a/’

 > complete man ’p/*/c/’

 > complete set ’p/1/s/’

 > complete true ’p/1/x:Truth has no options./’

These complete words following alias with aliases, man with commands, and

set with shell variables. true doesn’t have any options, so x does nothing

when completion is attempted and prints ’Truth has no options.’ when

completion choices are listed.

The man example, and several other examples below, could just as well have

used c/* or n/* as p/*.

 6. Words can be completed from a variable evaluated at completion time,

 > complete ftp ’p/1/$hostnames/’

 > set hostnames = (rtfm.mit.edu tesla.ee.cornell.edu)

 > ftp [^D]

 rtfm.mit.edu tesla.ee.cornell.edu

 > ftp [^C]

 > set hostnames = (rtfm.mit.edu tesla.ee.cornell.edu uunet.uu.net)

 > ftp [^D]

 rtfm.mit.edu tesla.ee.cornell.edu uunet.uu.net

or from a command run at completion time:

 > complete kill ’p/*/’ps | awk \{print\ \$1\}’/’

 > kill -9 [^D]

 23113 23377 23380 23406 23429 23529 23530 PID

The complete command does not itself quote its arguments, so the braces,

space and $ in {print $1} must be quoted explicitly.

 7. One command can have multiple completions:

 > complete dbx ’p/2/(core)/’ ’p/*/c/’

This example completes the second argument to dbx with the word core and

all other arguments with commands. The positional completion is specified

before the next-word completion. Since completions are evaluated from left to

right, if the next-word completion were specified first it would always match

and the positional completion would never be executed. This is a common

mistake when defining a completion.

 8. The select pattern is useful when a command takes only files with particular

forms as arguments. For example,

 > complete cc ’p/*/f:*.[cao]/’

completes cc arguments only to files ending in .c, .a, or .o. select can also

exclude files, using negation of a glob-pattern as described under “Filename

substitution” on page 643.

tcsh: complete

678 z/OS V1R9.0 UNIX System Services Command Reference

9. One might use

 > complete rm ’p/*/f:^*.{c,h,cc,C,tex,1,man,l,y}/’

to exclude precious source code from rm completion. Of course, one could still

type excluded names manually or override the completion mechanism using

the complete-word-raw or list-choices-raw editor command.

10. The D, F and Tlists are like d, f and t respectively, but they use the select

argument in a different way: to restrict completion to files beginning with a

particular path prefix. For example, the Elm mail program uses = as an

abbreviation for one’s mail directory. One might use

 > complete elm c@=@F:$HOME/Mail/@

to complete elm -f = as if it were elm -f ~/Mail/. We used @ instead of / to

avoid confusion with the select argument, and we used $HOME instead of ~

because home directory substitution only works at the beginning of a word.

11. suffix is used to add a nonstandard suffix (not space or ’/’ for directories) to

completed words. For example,

 > complete finger ’c/*@/$hostnames/’ ’p/1/u/@’

completes arguments to finger from the list of users, appends an @, and then

completes after the @ from the hostnames variable. Note the order in which

the completions are specified.

12. A more complex example:

 complete find \

 ’n/-name/f/’ ’n/-newer/f/’ ’n/-{,n}cpio/f/’ \

 ’n/-exec/c/’ ’n/-ok/c/’ ’n/-user/u/’ \

 ’n/-group/g/’ ’n/-fstype/(nfs 4.2)/’ \

 ’n/-type/(b c d f l p s)/’ \

 ’c/-/(name newer cpio ncpio exec ok user \

 group fstype type atime ctime depth inum \

 ls mtime nogroup nouser perm print prune \

 size xdev)/’ \

 ’p/*/d/’

This completes words following -name, -newer, -cpio or ncpio (note the pattern

which matches both) to files, words following -exec or -ok to commands, words

following user and group to users and groups respectively and words following

-fstype or -type to members of the given lists. It also completes the switches

themselves from the given list (note the use of c-type completion) and

completes anything not otherwise completed to a directory.

Programmed completions are ignored if the word being completed is a tilde

substitution (beginning with ~) or a variable (beginning with $). complete is an

experimental feature, and the syntax may change in future versions of the

shell. See also the uncomplete built-in command.

Related information

tcsh, uncomplete

dirs built-in command for tcsh: Print the directory stack

Format

 dirs [-l] [-n|-v]

 dirs -S|-L [filename]

 dirs -c

tcsh: complete

Chapter 2. Shell command descriptions 679

Description

dirs used alone prints the directory stack in the following format: The top of the

stack is at the left and the first directory in the stack is the current directory. For

example:

 > cd <========== # Change to home dir

 > pushd /bin <== # Change dir to /bin and add /bin to dir stack

 /bin ~

 > pushd /tmp <== # Change dir to /tmp and add /tmp to dir stack

 /tmp /bin ~

 > dirs <======== # Display current dir stack

 /tmp /bin ~

 > dirs -l <===== # Display in expanded (long) format

 /tmp /bin /u/erinf

 > dirs -v <===== # Display in verbose format

 0 /tmp

 1 /bin

 2 ~

 > popd <======== # Change dir back to /bin and remove /tmp from dir stack

 /bin ~

 >pwd

 /bin

Note: dir=directory

Options

–l Output is expanded explicitly to home or the pathname of the home

directory for the user.

-n Entries are wrapped before they reach the edge of the screen.

-v Entries are printed one per line, preceded by their stack postions.

 If more than one of -n or -v is given, -v takes precedence.

-S Saves the directory stack to filename as a series of cd and pushd

commands.

-L The tcsh shell sources filename, which is presumably a directory stack file

saved by the -S option or the savedirs mechanism. In either case, dirsfile

is used if filename is not given and ~/.cshdirs is used if dirsfile is unset.

 Login shells do the equivalent of dirs -L on startup and, if savedirs is set,

you should issue dirs -S before exiting. Because only ~/.tcshrc is normally

sourced before ~/.cshdirs, dirsfile should be set in ~/.tcshrc instead of

~/.login.

–c Clear the directory stack.

Related information

tcsh

echotc built-in command for tcsh: Exercise the terminal capabilities in

args

Format

echotc [-sv] arg ...

Description

echotc takes advanatage of the terminal capabilities in args. For example, echotc

cm 3 10 sends it to column 3 and row 10.

tcsh: dirs

680 z/OS V1R9.0 UNIX System Services Command Reference

If arg is baud, cols, lines, meta or tabs, echotc prints the value of that capability

(either yes or no, which indicates that the terminal does or does not have that

capability). You might use this to make the output from a shell script less verbose

on slow terminals, or limit command output to the number of lines on the screen:

 > set history=`echotc lines`

 > @ history--

Termcap strings may contain wildcards which will not echo correctly. One should

use double quotes when setting a shell variable to a terminal capability string, as in

the following example that places the date in the status line:

 > set standout=`echotc sò

 > set end_standout=`echotc sè

 > echo -n "$standout"; date; echo -n "$end_standout"

 Mon Oct 25 10:06:48 EDT 1999

 >

Note: The date, as indicated, is printed out in standard output.

The infocmp command can be used to print the current terminal description in

termcap format (instead of terminfo format).

Options

-s Nonexistent capabilities return the empty string instead of causing an error.

-v Messages are verbose.

Related information

tcsh

filetest built-in command for tcsh: Apply the op file inquiry operator to

a file

Format

filetest -op file –

Description

filetest applies op (which is a file inquiry operator) to each file and returns the

results as a space-separated list. For more information on file inquiry operators, see

“File inquiry operators” on page 648.

Examples

1. To use the filetest command to retrieve the seclabel:

> filetest -m myfile

SYSLOW

2. To test for a specific seclabel using an if statement:

if (-m myfile == "SYSLOW") then

 echo "myfile has seclabel of SYSLOW"

endif

Related information

tcsh

glob built-in command for tcsh: Write each word to standard output

Format

glob wordlist

tcsh: echotc

Chapter 2. Shell command descriptions 681

Description

glob is like echo, but no \ (backslash) escapes are recognized and words are

delimited by null characters in the output. glob is useful for programs which wish to

use the shell to filename expand a list of words.

Related information

echo, tcsh

hashstat built-in command for tcsh: Print a statistic line on hash table

effectiveness

Format

hashstat

Description

hashstat prints a statistics line indicating how effective the internal hash table has

been at locating commands (and avoiding exec’s). An exec is attempted for each

component of the path where the hash function indicates a possible hit, and in each

component which does not begin with a / (forward slash).

z/OS systems have a vfork() command, however, tcsh is not compiled to use it.

Typically on machines without vfork, hashstat prints only the number and size of

hash buckets, but on z/OS systems, a hashstat print out would contain this:

> hashstat

> hashstat 512 hash buckets of 8 bits each

>

Related information

tcsh

hup built-in command for tcsh: Run command so it exits on a hang-up

signal

Format

hup [command]

Description

With command, hup runs the command such that it will exit on a hangup signal and

arranges for the shell to send it a hangup signal when the shell exits. Commands

may set their own response to hangups, overriding hup. Without an argument

(allowed only in a shell script), hup causes the shell to exit on a hangup for the

remainder of the script. See “Signal handling” on page 652.

Related information

nohup, tcsh

limit built-in command for tcsh: Limit consumption of processes

Format

limit [–h] [resource [maximum-use]]

Description

limit limits the consumption by the current process and each process it creates to

not individually exceed maximum-use on the specified resource. If no maximum-use

is given, then the current limit is printed; if no resource is given, then all limitations

tcsh: glob

682 z/OS V1R9.0 UNIX System Services Command Reference

are given. If the -h flag is given, the hard limits are used instead of the current

limits. The hard limits impose a ceiling on the values of the current limits. All hard

limits can be raised only by a process which has superuser authority but a user

may lower or raise the current limits within the legal range. If a user attempts to

make a soft limit ″unlimited″, and their effective UID is not 0, then limit (or unlimit)

will set the soft limit to the current hard limit value.

Resources currently include:

addressspace

The maximum address space size for the process, measured in kilobytes. If

the limit is exceeded, malloc() and mmap() functions will fail. Also,

automatic stack growth will fail. An attempt to set the address space size

limit lower than the current usage or higher than the existing hard limit will

fail.

coredumpsize

The size of the largest core dump file that will be created. A value of 0

(zero) prevents file creation. Dump file creation will stop at this limit.

cputime

The maximum amount of CPU time, in seconds, to be used by each

process. If the limit is exceeded, a SIGXCPU signal is sent to the process

and the process is granted a small CPU time extension to allow for signal

generation and delivery. If the extension is used up, the process is

terminated with a SIGKILL signal. An attempt to set the CPU limit lower

than that already used will fail.

datasize

The data size limit is the maximum size of the break value for the process,

in units of 1024 bytes. This resource always has unlimited hard and soft

limits.

descriptors

The maximum number of open file descriptors allowed for the process. This

number is one greater than the maximum value that may be assigned to a

newly created descriptor. Any function that attempts to create a new file

descriptor beyond the limit will fail. An attempt to set the open file

descriptors limit lower than that already used will fail.

filesize

The largest single file which can be created by a process. A value of 0

(zero) prevents file creation. If the size is exceeded, a SIGXFSZ signal is

sent to the process. If the process is blocking, catching, or ignoring

SIGXFSZ, continued attempts to increase the size of a file beyond the limit

will fail

memlimit

The amount of storage, in megabytes, above the 2 gigabyte bar that a

process is allowed to have allocated and unhidden at any given time. An

attempt to set the storage size limit lower than the current usage or higher

than the existing hard limit will fail.

stacksize

The maximum size of the automatically-extended stack region for a

process. The stack is a per-thread resource that has unlimited hard and soft

limits.

maximum-use may be given as a (floating point or integer) number followed by a

scale factor. For cputime the default scaling is seconds, while m for minutes or h for

tcsh: limit

Chapter 2. Shell command descriptions 683

hours, or a time of the form mm:ss giving minutes and seconds may be used. For

memlimit, the default scaling is in megabytes. For all limits for which the scale is not

specified, the default scale is k or kilobytes (1024 bytes); a scale factor of m or

megabytes may also be used.

For both resource names and scale factors, unambiguous prefixes of the names

suffice.

Usage note

If the command fails because of an attempt to set a resource limit lower than the

current amount in use or higher than the existing hard limit, the resulting error

message may indicate an invalid argument.

Related information

tcsh, ulimit, unlimit

Also see setrlimit() in z/OS XL C/C++ Run-Time Library Reference.

log built-in command for tcsh: Print the watch tcsh shell variable

Format

log

Description

Prints the watch shell variable and reports on each user indicated in watch who is

logged in, regardless of when a user last logged in.

Note: The z/OS tcsh shell is compiled to use watchlog. If you attempt to use log

on a z/OS system, you will get an error that says ″Command not found″.

Related information

tcsh, watchlog

login built-in command for tcsh: Terminate a login shell

Format

login

Description

login terminates a login shell, replacing it with an instance of /bin/login. This is one

way to log off (included for compatibility with sh).

Related information

logout, tcsh

logout built-in command for tcsh: Terminate a login shell

Format

logout

Description

logout terminates a login shell. Especially useful if ignoreeof is set.

Related information

login, tcsh

tcsh: limit

684 z/OS V1R9.0 UNIX System Services Command Reference

ls-F built-in command for tcsh: List files

Format

ls-F [-switch ...] [file ...]

Description

In the tcsh shell, ls-F lists files like ls -F, but works much faster. It identifies each

type of special file in the listing with a special character:

/ Directory

* Executable

Block device

% Character device

| Named pipe

= Socket

@ Symbolic link

If the listlinks shell variable is set, symbolic links are identified in more detail (only,

of course, on systems which have them):

@ Symbolic link to a non-directory

> Symbolic link to a directory

& Symbolic link to nowhere

listlinks also slows down ls-F.

If you use files which are set-up as follows:

#creating a file

 touch file1

#creating a symbolic link to the file

 ln -s file1 link1

#creating a directory

 mkdir dir1

#creating a symbolic link to the directory

 ln -s dir1 linkdir1

#creating a symbolic link to a file that doesn’t exist

 ln -s noexist linktonowhere

when you issue an ls-F with listlinks unset, you will get the following output:

> ls-F

dir1/ file1 link1@ linkdir1@ linktonowhere@

>

with listlinks set:

> set listlinks

> ls-F

dir1/ file1 link1@ linkdir1> linktonowhere&

>

If the listflags shell variable is set to x, a or A, or any combination thereof (for

example, xA), they are used as flags to ls-F, making it act like ls -xF, ls -Fa, ls -FA

or a combination ls -FxA. On z/OS, ls -C is the default. However, on machines

where ls -C is not the default, ls-F acts like ls -CF, unless listflags contains an x,

in which case it acts like ls -xF.

tcsh: lsF

Chapter 2. Shell command descriptions 685

See “tcsh — Invoke a C shell” on page 626.

Usage note

To view an online description for the ls-F command, you must type ls-F without the

dash. So, to see the man page you would issue:

man lsF

Related information

ls, tcsh

notify built-in command for tcsh: Notify user of job status changes

Format

notify [%job ...]

Description

notify causes the shell to notify the user asynchronously when the status of any of

the specified jobs (or, without %job, the current job) changes, instead of waiting

until the next prompt. job may be a number, a string, ″, %, + or ’-’ as described

under “Jobs” on page 650. See also the notify shell variable.

Related information

tcsh

onintr built-in command for tcsh: Control the action of the tcsh shell

on interrupts

Format

onintr [-|label]

Description

onintr controls the action of the shell on interrupts. Without arguments, onintr

restores the default action of the shell on interrupts, which is to terminate shell

scripts or to return to the terminal command input level. With ’-’, causes all

interrupts to be ignored. With label, causes the shell to execute a goto label when

an interrupt is received or a child process terminates because it was interrupted.

onintr is ignored if the shell is running detached and in system startup files, where

interrupts are disabled anyway.

Related information

goto, tcsh

popd built-in command for tcsh: Pop the directory stack

Format

popd [-p] [-l] [-n|-v] [+n]

Description

popd without options, pops the directory stack and returns to the new top directory.

With a number +n, discards the n’th entry in the stack. All forms of popd print the

final directory stack, just like dirs. The pushdsilent shell variable can be set to

prevent this.

tcsh: lsF

686 z/OS V1R9.0 UNIX System Services Command Reference

Options

–l Output is expanded explicitly to home or the pathname of the home

directory for the user.

-n Entries are wrapped before they reach the edge of the screen.

-p Overrides pushdsilent.

-v Entries are printed one per line, preceded by their stack postions.

 If more than one of -n or -v is given, -v takes precedence.

Related information

tcsh

pushd built-in command for tcsh: Make exchanges within directory

stack

Format

pushd [-p] [-l] [-n|-v] [name| +n]

Description

pushd with options, exchanges the top two elements of the directory stack. If

pushdtohome is set, pushd without arguments does pushd ~, like cd. With name,

pushd pushes the current working directory onto the directory stack and changes to

name. If name is ’-’, it is interpreted as the previous working directory (see

“Filename substitution” on page 643). If dunique is set, pushd removes any

instances of name from the stack before pushing it onto the stack. With a number

+n, pushd rotates the n’th element of the directory stack around to be the top

element and changes to it. If dextract is set, however, pushd +n extracts the n’th

directory, pushes it onto the top of the stack and changes to it. So, instead of just

rotating the entire stack around, dextract lets the user have the n’th directory

extracted from its current position, and pushes it onto the top. For example:

 > pushd /tmp

 /tmp ~

 > pushd /bin

 /bin /tmp ~

 > pushd /u

 /u /bin /tmp ~

 > pushd /usr

 /usr /u /bin /tmp ~

 > pushd +2

 /bin /tmp ~ /usr /u

 > set dextract

 > dirs

 /bin /tmp ~ /usr /u

 > pushd +2

 ~ /bin /tmp /usr /u

 >

Finally, all forms of pushd print the final directory stack, just like dirs. The

pushdsilent tcsh shell variable can be set to prevent this.

Options

–l Output is expanded explicitly to home or the pathname of the home

directory for the user.

-n Entries are wrapped before they reach the edge of the screen.

-p Overrides pushdsilent.

tcsh: popd

Chapter 2. Shell command descriptions 687

-v Entries are printed one per line, preceded by their stack postions.

 If more than one of -n or -v is given, -v takes precedence.

Related information

cd, tcsh

rehash built-in command for tcsh: Recompute internal hash table

Format

rehash

Description

rehash causes the internal hash table of the contents of the directories in the path

variable to be recomputed. This is needed if new commands are added to

directories in path while you are logged in. This should only be necessary if you

add commands to one of your own directories, or if a systems programmer changes

the contents of one of the system directories. Also flushes the cache of home

directories built by tilde (~) expansion.

Related information

hashstat, tcsh

repeat built-in command for tcsh: Execute command count times

Format

repeat count command

Description

The specified command is executed count times. repeat is subject to the same

restrictions as the command in the one line if statement. I/O redirections occur

exactly once, even if count is 0.

Related information

tcsh

sched built-in command for tcsh: Print scheduled event list

Format

 sched

 sched hh:mm command

 sched n

Description

sched used alone prints the scheduled-event list. The sched shell variable may be

set to define the format in which the scheduled-event list is printed. sched hh:mm

command adds command to the scheduled-event list. For example:

 >sched 11:00 echo It\’s eleven o\’clock.

causes the shell to echo ’It’s eleven o’clock.’ at 11 AM. The time may be in 12-hour

AM/PM format

>sched 5pm set prompt=’[%h] It\’s after 5; go home: >’

or may be relative to the current time:

>sched +2:15 /usr/lib/uucp/uucico -r1 -sother

tcsh: pushd

688 z/OS V1R9.0 UNIX System Services Command Reference

A relative time specification may not use AM/PM format. The third form removes

item n from the event list:

 > sched

 1 Wed Apr 4 15:42 /usr/lib/uucp/uucico -r1 -sother

 2 Wed Apr 4 17:00 set prompt=[%h] It’s after 5; go home: >

 > sched -2

 > sched

 1 Wed Apr 4 15:42 /usr/lib/uucp/uucico -r1 -sother

A command in the scheduled-event list is executed just before the first prompt is

printed after the time when the command is scheduled. It is possible to miss the

exact time when the command is to be run, but an overdue command will execute

at the next prompt. A command which comes due while the shell is waiting for user

input is executed immediately. However, normal operation of an already-running

command will not be interrupted so that a scheduled-event list element may be run.

This mechanism is similar to, but not the same as, the at command on some UNIX

systems. Its major disadvantage is that it may not run a command at exactly the

specified time. Its major advantage is that because sched runs directly from the

shell, it has access to shell variables and other structures. This provides a

mechanism for changing one’s working environment based on the time of day.

Related information

tcsh

setenv built-in command for tcsh: Set environment variable name to

value

Format

setenv [name [value]]

Description

setenv without arguments, prints the names and values of all environment

variables. Given name, sets the environment variable name to value or, without

value, to the null string.

Related information

tcsh

settc built-in command for tcsh: Tell tcsh shell the terminal capability

cap value

Format

settc cap value

Description

settc tells the tcsh shell to believe that the terminal capability cap (as defined in

termcap) has the value value. No sanity checking is done. Concept terminal users

may have to settc xn no to get proper wrapping at the rightmost column.

Related information

tcsh

tcsh: sched

Chapter 2. Shell command descriptions 689

setty built-in command for tcsh: Control tty mode changes

Format

setty [-d|-q|-x] [-a] [+|-]mode]

Description

setty controls which tty modes (see the stty command description which contains

lists of mode operands, such as echoe and echok) the shell does not allow to

change. Without arguments, setty lists the modes in the chosen set which are fixed

on (+mode) or off (-mode). The available modes, and thus the display, vary from

system to system. With +mode, -mode or mode, fixes mode on or off or removes

control from mode in the chosen set. For example, setty +echok echoe fixes echok

mode on and allows commands to turn echoe mode on or off, both when the shell

is executing commands.

Options

–a List all tty modes in the chosen set whether or not they are fixed.

[-d|-q|-x]

Tells setty to act on the edit, quote or execute set of tty modes

respectively; without -d, -q or -x, execute is used.

Related information

tcsh

source built-in command for tcsh: Read and execute commands from

name

Format

source [-h] name [args ...]

Description

Using source, the shell reads and executes commands from name. The commands

are not placed on the history list. If any arguments are given, they are placed in

argv. source commands may be nested; if they are nested too deeply the shell

may run out of file descriptors. An error in a source at any level terminates all

nested source commands.

Options

–h Commands are placed on the history list instead of being executed, much

like history -L.

Related information

history, tcsh

telltc built-in command for tcsh: List terminal capability values

Format

telltc

Description

telltc lists the values of all terminal capabilities.

Related information

tcsh

tcsh: setty

690 z/OS V1R9.0 UNIX System Services Command Reference

uncomplete built-in command for tcsh: Remove completions whose

names match pattern

Format

uncomplete pattern

Description

uncomplete removes all completions whose names match pattern. For example,

uncomplete * removes all completions. It is not an error for nothing to be

uncompleted.

Related information

complete, tcsh

unhash built-in command for tcsh: Disable use of internal hash table

Format

unhash

Description

unhash disables use of the internal hash table to speed location of executed

programs.

Related information

tcsh

unlimit built-in command for tcsh: Remove resource limitations

Format

unlimit [-h] [resource]

Description

unlimit removes the limitation on resource or, if no resource is specified, all

resource limitations.

The hard limit may be lowered to any value that is greater than or equal to the soft

limit. All hard limits can be raised only by a process which has superuser authority.

This behavior is identical to ulimit in the z/OS shell. If a user attempts to remove

the soft limit on a resource, and their effective UID is not 0, then unlimit will set the

soft limit to the current hard limit value.

Options

–h Corresponding hard limits are removed. Only the superuser may do this.

Related information

limit, tcsh, ulimit

Also see setrlimit() in z/OS XL C/C++ Run-Time Library Reference.

unsetenv built-in command for tcsh: Remove environmental variables

that match pattern

Format

unsetenv pattern

tcsh: uncomplete

Chapter 2. Shell command descriptions 691

Description

unsetenv removes all environment variables whose names match pattern. For

example, unsetenv * removes all environment variables; we strongly recommend

against this. It is not an error for nothing to be unsetenved.

Related information

setenv, tcsh

watchlog built-in command for tcsh: Print the watch shell variable

Format

watchlog

Description

watch is an alternate name for the log built-in command. It prints the watch shell

variable and reports on each user indicated in watch who is logged in, regardless

of when a user last logged in.

See the version shell variable.

Related information

log, tcsh

where built-in command for tcsh: Report all instances of command

Format

where command

Description

where reports all known instances of command, including aliases, built-ins and

executables in path.

Related information

tcsh, which

which built-in command for tcsh: Display next executed command

Format

which command

Description

which displays the command that will be executed by the shell after substitutions

and path searching. This command correctly reports tcsh aliases and built-ins. The

displayed command has passed access checks by the security product based on

the effective ids of the user. See also the which-command editor command.

Related information

tcsh, where

tee — Duplicate the output stream

Format

tee [–ai] [file ...]

tcsh: unsetenv

692 z/OS V1R9.0 UNIX System Services Command Reference

Description

tee clones an output stream. It copies the standard input to each output file as well

as to the standard output.

Options

–a Appends to (rather than overwrites) each output file.

–i Ignores interrupt signals, making it suitable for use as a background

process.

Examples

The following command runs the program prog and pipes the program’s standard

output into tee:

prog | tee file

As a result, tee writes the output to both the standard output and the specified file.

Localization

tee uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Out of memory when allocating I/O buffers

v I/O error reading or writing to a file

v Error creating an output file

v Error opening an output file for appending

2 Failure due to incorrect command-line option

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

cat

test — Test for a condition

Format

test expression

[expression]

tee

Chapter 2. Shell command descriptions 693

Description

test checks for various properties of files, strings, and integers. It does not produce

any output other than error messages, but returns the result of the test as the exit

status.

The command line is a Boolean expression. The simplest expression is a string that

is true if the string is nonempty (that is, has nonzero length). More complex

expressions are composed of operators and operands, each of which is a separate

argument (that is, surrounded by white space). The operators imply the number and

type of their operands. The operators taking a file operand evaluate as false

(without error) if the file does not exist.

The following is a list of recognized operands:

–Aa file

True if file has an extended access ACL entry.

–Ad file

True if file is a directory with a directory default ACL.

–Af file

True if file is a directory with a file default ACL.

–b file True if file is a block special file (block special files are not supported)

–B file True if the file is tagged as binary (not text)

–c file True if file is a character special file

–d file True if file is a directory

–e file True if file exists

–Ea file

True if the file has the APF extended attribute

–Ep file

True if the file has the program control extended attribute

–Es file

True if the file has the shared address space extended attribute

–El file

True if the file has the shared library extended attribute

–f file True if file is an ordinary file

–g file True if the set-group-ID attribute of file is on

–h file True if file is a symbolic link

–k file True if the “sticky” bit is on file is on

–L file True if file is a symbolic link

–Ma file

True if the file has any Multilevel Security seclabel.

–n string

True if the length of string is greater than zero

–p file True if file is a FIFO (named pipe)

–r file True if file is readable (based on the security product’s check against the

effective user/group)

test

694 z/OS V1R9.0 UNIX System Services Command Reference

–s file True if size of the file is nonzero

–t fd True if the numeric file descriptor fd is open and associated with a terminal

–T file True if the file is tagged as text

–u file True if the set-user-ID attribute of file is on

–w file True if file is writable (based on the security product’s check against the

effective user/group)

–x file True if file is executable (based on the security product’s check against the

effective user/group)

–z string

True if the length of the string is zero

string True if string is not a null string

string1 = string2

True if string1 and string2 are identical

string != string

True if string1 and string2 are not identical

number1 –eq number2

True if number1 and number2 are equal

Within the shell, either number can be an arbitrary shell arithmetic expression; the

same applies for the other five numerical comparisons that follow. Both number1

and number2 must be integers.

number1 –ge number2

True if number1 is greater than or equal to number2

number1 –gt number2

True if number1 is greater than number2

number1 –le number2

True if number1 is less than or equal to number2

number1 –lt number2

True if number1 is less than number2

number1 –ne number2

True if number1 is not equal to number2

file1 –nt file2

True if file1 is newer than file2

file1 –ot file2

True if file1 is older than file2

file1 –ef file2

True if file1 has the same device and inode number as file2

file –CS codeset

True if the file is tagged with the codeset

file –Ml seclabel

True if the file has the multilevel security seclabel seclabel. False if the file

does not have a seclabel that matches seclabel

expr1 –a expr2

Logical AND; true if both expr1 and expr2 are true

test

Chapter 2. Shell command descriptions 695

expr1 –o expr2

Logical OR; true if either expr1 and expr2 is true

! expr Logical negation; true if expr is false

(expr)

Binding; true if expr is true

 The precedence of the operators in descending order is: unary operators,

comparison operators, logical AND, logical OR.

The second form of the test command:

[expression]

is synonymous with the first.

Usage notes

1. test is a built-in shell command.

2. test can compare variables; however, if the variable is null, the expression may

be incorrect for test. For example:

NULL=

test $NULL = "so"

does not work, because the z/OS shell expands this to:

test = "so"

which is not a valid expression for test. A way to get around this is to prepend

some value to both strings, as in:

test x$NULL = x"so"

Failure to quote variable expansions is a common mistake. For example:

test $NULL != string

If NULL is undefined or empty, this results in:

test != string

which is not a valid test expression. This problem can be fixed by enclosing

$NULL in quotes.

Note: These two examples perform basically the same function; that is, they

protect the command against a variable having a possible null value.

Examples

The following command reports on whether the first positional parameter contains a

directory or a file:

if [-f $1]

then

 echo $1 is a file

elif [-d $1]

then

 echo $1 is a directory

else

 echo $1 neither file nor directory

fi

test

696 z/OS V1R9.0 UNIX System Services Command Reference

This example illustrates the use of test, and is not intended to be an efficient

method.

Localization

test uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 The expression was true

1 The expression was false

2 The expression was badly formed

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –k, –L, –nt, –ot, –ef, –a, and –o operators plus the use of parentheses to

group operators together are all extensions of the POSIX standard.

Related Information

expr, find, let, ls, sh

tic — Put terminal entries in the terminfo database

Format

tic [–v]number [–c] file

Description

tic creates the terminfo database. It puts the compiled terminal entries in the

directory /usr/share/lib/terminfo. If the TERMINFO environment variable is set, the

results are placed in the directory specified by the TERMINFO environment variable

rather than in the directory /usr/share/lib/terminfo.

The Curses application uses the terminfo database, which contains a list of terminal

descriptions. This enables you to manipulate a terminal’s display regardless of the

terminal type. For information on defining the terminfo database, see z/OS UNIX

System Services Planning.

For more information about curses, see z/OS C Curses.

Options

–vNumber

Writes trace entries on the progress of tic. Number is an integer that

indicates the level of verbosity. Levels 1, 2, 5, 7, 8, and 9 or greater are

supported.

test

Chapter 2. Shell command descriptions 697

–c Specifies that the input terminal specifications are to be checked for

correctness, but the terminfo database is not to be updated. If an incorrect

terminal specification is encountered, a message identifying the error is

written to stdout. The checking continues until all of the input terminal

specifications have been processed.

file_name

Specifies the name of a file containing the terminal specifications. Only a

single filename can be specified. The files supported by z/OS curses are

identical to the specifications with the exception that the source code must

be EBCDIC rather than ASCII.

 If the files are copied from an MVS data set into the HFS, the MVS data set

must be in record format VB. If a filename is not specified, terminal

specifications are read from the terminfo.src file. (The terminfo.src file is

in the directory /samples.)

Note: All of the .ti files have been moved to the /samples directory.

Example

A sample command is:

tic /samples/ibm.ti

There is no output to the shell.

Environment Variables

tic uses the following environment variable:

TERMINFO

Contains the pathname of the terminfo database.

Related Information

infocmp

time — Display processor and elapsed times for a command

Format

time [–p] command-line

tcsh shell: time [command]

Description

time runs the command given as its argument and produces a breakdown of total

time to run (real), total time spent in the user program (user), and total time spent

in system processor overhead (sys).

Times given are statistical, based on where execution is at a clock tick. Output is

written to standard error (stderr).

time in the tcsh shell

time executes command (which must be a simple command, not an alias, a

pipeline, a command list, or a parenthesized command list) and prints a time

summary as described under the tcsh time variable (see “tcsh — Invoke a C shell”

on page 626

tic

698 z/OS V1R9.0 UNIX System Services Command Reference

on page 626). If necessary, an extra shell is created to print the time statistic when

the command completes. Without command, time prints a time summary for the

current shell and its children.

Option

–p Guarantees that the historical format of the time command is output.

Usage Note

time is a built-in shell command.

Localization

time uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_NUMERIC

v NLSPATH

See Appendix F for more information.

Exit Values

If time successfully invokes command-line, it returns the exit status of

command-line. Otherwise, possible exit status values are:

0 Successful completion

1 An error occurred in the time utility

2 Failure due to an invalid command-line option

2 Invalid command-line argument

126 time found command but could not invoke it

127 time could not find command

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information

sh, tcsh

times — Get process and child process times

Format

times [–p]

Description

times displays user and system times accumulated by the shell and commands run

as children of the shell. Times are displayed in minutes and seconds. User time is

CPU time spent in user programs. System time is CPU time spent in the operating

system on behalf of the user process.

time

Chapter 2. Shell command descriptions 699

Option

–p Formats the output in seconds without units. For example, 1 minute and 3.7

seconds is displayed as:

63.47

Times are displayed in minutes and seconds. User time is processor time

spent in user programs. System time is processor time spent in the

operating system on behalf of the user process. The output layout is:

shell user time shell system time

child user time child system time

Usage Note

times is a built-in shell command.

Localization

times uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

2 Failure that resulted in a usage message, usually due to an incorrect

command-line option

Portability

X/Open Portability Guide.

The –p option is an extension to the XPG standard.

Related Information

sh, time

touch — Change the file access and modification times

Format

 touch [–acm] [–f agefile] [–r agefile] [–t time] file ...

 touch [–acm] time file ...

Description

The touch command changes certain dates for each file argument. By default,

touch sets both the date of last file modification and the date of last file access to

the current time. This is useful for maintaining correct release times for software

and is particularly useful in conjunction with the make command.

times

700 z/OS V1R9.0 UNIX System Services Command Reference

Options

–a Sets only the access time.

–c Does not create any file that does not already exist. Normally, touch

creates such files.

–m Sets only the modification time.

If you do not specify –a or –m, touch behaves as though you specified both.

To tell touch to use a time other than the current, use one of the following options:

–f agefile

Is an obsolete version of the –r option.

–r agefile

Sets the access and modification times (as indicated by the other options)

to those kept for agefile.

–t time

Specifies a particular time using this format:

 [[[[cc]yy]mm]dd]hhmm [.ss]

 where:

v cc is the first two digits of the year (optional)

v yy is the last two digits of the year (optional)

v mm is the number of the month (01—12) (optional)

v dd is the day of the month (optional)

v hh is the hour in 24-hour format (required)

v mm is the minutes (required)

v ss is the seconds (optional)

An obsolete (but still supported) version of this command lets you omit the

–t, but the format is:

[[mm]dd]hhmm[.ss]

or:

mmddhhmmyy[.ss]

Examples

1. To set the modification time of newfile to the present, enter:

touch newfile

2. To set the modification time of oldfile to 13:05 on July 3, 1994, enter:

touch –t 9407031305 oldfile

3. To set the modification time of newfile to that of oldfile, enter:

touch –r oldfile newfile

Environment Variable

touch uses the following environment variable:

TZ Contains the time zone that touch is to use when interpreting times.

See Appendix I for more information.

touch

Chapter 2. Shell command descriptions 701

Localization

touch uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to access the desired file

v Too early a date was specified

v Inability to create a file

v Inability to change a file’s times
2 Failure that resulted in a usage message, including:

v Unknown command-line option

v Only one of –t, –f, or –r is allowed

v –r was missing the agefile

v –t was missing its argument

v Incorrect date string

Messages

Possible error messages include:

Age file inaccessible

Indicates that time could not be found for the file given with the –f or –r

option either because that file does not exist or because the requesting

user is not granted the appropriate permission for the file.

Missing age file argument

You specified –f or –r, but did not give a filename after it.

Years earlier than year incorrect

Your system recognizes dates only back to the given year. touch does not

accept dates before that time.

Bad date conversion

Only one –r, –f, or –t flag allowed

Missing the date or time argument

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

cp, date

Appendix I also explains how to set the local time zone with the TZ environment

variable.

touch

702 z/OS V1R9.0 UNIX System Services Command Reference

tput — Change characteristics of terminals

Format

 tput [–T type] capname[parm1...parm9]

 tput [–T type] –S

Description

tput lets you change your terminal’s characteristics. The capname arguments

indicate how you want to change the characteristics. Possible capnames are:

clear Clears the screen

init Initializes your terminal

reset Resets your terminal

tput does its work by outputting appropriate character sequences to the standard

output. These character sequences are terminal-specific.

Usually, tput looks for an environment variable named TERM. If TERM exists, tput

uses its value as the terminal type. If it doesn’t exist, tput assumes a default

terminal type.

Options

–T type

Identifies the type of your terminal. This overrides the TERM environment

variable.

 The second format of this command provides extensions for XPG/System V. This

format of tput accepts an additional option, –S.

–S Takes input from standard input, one capability/capname per line. A blank

line terminates input.

An additional capname is supported for System V:

longname

Returns the long descriptive name of the terminal.

An extension to provide System V capabilities allows capname to be a capability

from the terminfo database. If the capability requires arguments, they appear after

the capname option.

Localization

tput uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Environment Variables

tput uses the following environment variables:

tput

Chapter 2. Shell command descriptions 703

TERM Contains the current terminal type.

TERMINFO

Can be used to override the default database.

Exit Values

0 tput successfully wrote an appropriate character sequence to change the

terminal’s characteristics, or a Boolean terminfo variable is true.

1 A Boolean terminfo variable is false.

2 Failure that generated a usage message such as:

v capname was not a recognized keyword

v You specified an incorrect command-line option

3 tput has no information about the terminal type given by –T or TERM.

4 The requested capname cannot be performed on your type of terminal.

>4 An error occurred.

Portability

POSIX.2 User Portability Extension, UNIX systems.

Related Information

stty, tabs

tr — Translate characters

Format

 tr [–c | C] [-s] string1 string2

 tr –s [–c | C] string1

 tr –d [–c | C] string1

 tr –ds [–c | C] string1 string2

Description

tr copies data read from the standard input to stdout, substituting or deleting

characters as specified by the options and string1 and string2. string1 and string2

are considered to be sets of characters. In its simplest form, tr translates each

character in string1 into the character at the corresponding position in string2.

Note: tr works on a character basis, not on a collation element basis. Thus, for

example, a range that includes the multicharacter collation element ch in

regular expressions, does not include it here.

Options

–c If the variable _UNIX03 is unset or is not set to YES, the behavior of -c

option complements the set of characters specified by string1. This means

that tr constructs a new set of characters, consisting of all the characters

not found in string1 and uses this new set in place of string1.

 If the variable _UNIX03=YES is set, the behavior of -c option complements

the set of values specified by string1. This means that tr constructs a new

set and the complements of the values specified by string1 (the set of all

tput

704 z/OS V1R9.0 UNIX System Services Command Reference

|

|
|
|
|

|
|
|
|

|
|
|

possible binary values, except for those actually specified in the string1

operand) are placed in this new set in ascending order by binary value. The

new set is used in place of string1.

-C Complements the set of characters specified by string1. This means that tr

constructs a new set and the complements of the characters specified by

string1 (the set of all characters in the current character set, as defined by

the current setting of LC_CTYPE, except for those actually specified in the

string1 operand) are placed in this new set in ascending collation sequence,

as defined by the current setting of LC_COLLATE. This behaves the same

as -c when the variable _UNIX03 is unset or is not set to YES.

–d Deletes input characters found in string1 from the output.

–s tr checks for sequences of a string1 character repeated several consecutive

times. When this happens, tr replaces the sequence of repeated characters

with one occurrence of the corresponding character from string2; if string2

is not specified, the sequence is replaced with one occurrence of the

repeated character itself. For example:,

tr –s abc xyz

translates the input string aaaabccccb into the output string of xyzy.

 If you specify both the –d and –s options, you must specify both string1

and string2. In this case, string1 contains the characters to be deleted,

whereas string2 contains characters that are to have multiple consecutive

appearances replaced with one appearance of the character itself. For

example:

tr –ds a b

translates the input string abbbaaacbb into the output string bcb.

 The actions of the –s option take place after all other deletions and

translations.

String Options

You can use the following conventions to represent elements of string1 and string2:

character

Any character not described by the conventions that follow represents itself.

\ooo An octal representation of a character with a specific coded value. It can

consist of one, two, or three octal digits (01234567). Doublebyte characters

require multiple, concatenated escape sequences of this type, including the

leading \ for each byte.

\character

The \ (backslash) character is used as an escape to remove the special

meaning of characters. It also introduces escape sequences for nonprinting

characters, in the manner of C character constants: \b, \f, \n, \r, \t, and

\v.

c1–c2 In the POSIX locale, as long as neither endpoint is an octal sequence of

the form \ooo, this represents all characters between characters c1 and c2

(in the current locale’s collating sequence) including the end values. For

example, ’a–z’ represents all the lowercase letters in the POSIX locale,

whereas ’A–Z’ represents all that locale’s uppercase letters. One way to

convert lowercase and uppercase is with the following filter:

tr

Chapter 2. Shell command descriptions 705

|
|
|

||
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

tr ’a-z’ ’A-Z’

This is not, however, the recommended method; use the [:class:]

construct instead.

 If the second endpoint precedes the starting endpoint in the collation

sequence, it causes an error.

 If either or both of the range endpoints are octal sequences of the form

\ooo, this represents the range of specific coded values between the two

range endpoints, inclusive.

 This construct c1–c2 is only applied in POSIX locale.

Note: The current locale has a significant effect on results when specifying

subranges using this method. If the command is required to give

consistent results irrespective of locale, the use of construct c1-c2

should be avoided.

[c*n] This represents n repeated occurrences of character c. (If n has a leading

zero, tr assumes it is octal; otherwise, it is assumed to be decimal.) You

can omit the number for the last character in a subset. This representation

is valid only in string2.

[:class:]

This represents all characters that belong to the character class class in the

locale indicated by LC_CTYPE. When the class [:upper] or [:lower:]

appears in string1 and the opposite class, [:lower:] or [:upper:] appears

in string2, tr uses the LC_CTYPE tolower or toupper mappings in the

same relative positions.

[=c=] This represents all characters that belong to the same equivalence class as

the character c in the locale indicated by LC_COLLATE. Only international

versions of the code support this format.

Usage notes

When string2 is shorter than string1, tr does not pad string2. The remaining

characters in string1 will not be translated. For example:

tr ’0123456789’ ’d’

only translates ’0’ to ’d’, ’123456789’ remain unchanged.

Coding the example in the following way:

tr ’0123456789’ ’[d*]’

translates all digits to the letter ’d’.

Examples

This example creates a list of all words (strings of letters) found in file1 and puts it

in file2:

tr –cs "[:alpha:]" "[\n*]" <file1 >file2

Environment variables

tr uses the following environment variable:

tr

706 z/OS V1R9.0 UNIX System Services Command Reference

|

|
|

|
|

|
|
|

|

|
|
|
|

|

|
|

|

|

|

|

|

|

|

_UNIX03

For more information about the effect of _UNIX03 on this command, see

Appendix N, “UNIX shell commands changed for UNIX03,” on page 943.

Localization

tr uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure because of unknown command line option, or too few arguments

Portability

POSIX.2, X/Open Portability Guide.

tr is downward–compatible with both the UNIX Version 7 and System V variants of

this command, but with extensions (C escapes, handles ASCII NUL,

internationalization).

trap — Intercept abnormal conditions and interrupts

Format

trap [’handler’] [event ...]

Description

trap intercepts certain kinds of exception conditions. Any signal may be intercepted

by specifying an event corresponding to the signal number.

With an event of ERR, trap invokes the handler after receiving any having a nonzero

exit status. The exception to this is conditions in if, while, and until statements.

This trap is not inherited within a function.

With a trap number of 0 or EXIT, trap invokes the handler during exit from the shell.

Within a function, it is invoked during exit from the function.

Any other event corresponds to a signal number or signal name. (See kill for a

table of valid signal numbers and their names.) If a signal is being ignored when

you enter the shell, the shell continues to ignore it without regard to any traps.

Because system initialization sets the value of the SIGIOERR signal to ignore, this

signal cannot be set by trap.

The handler argument is a command list. It is usually more than one word, and so

you must quote it to appear as a single argument. It is scanned when the trap

function is initially invoked. When the trap condition is raised, the shell scans the

tr

Chapter 2. Shell command descriptions 707

|
|
|

command list again and runs the commands. A missing argument or an argument of

− (dash) resets the default trap condition. A null argument ('') causes the trap

condition to be ignored.

If there are no arguments at all, trap prints a list of all the traps and their

commands.

Usage Note

trap is a special built-in shell command.

Examples

1. On error or exit, this example deletes a temporary file created during command

execution.

trap ’rm –f /tmp/xyz$$; exit’ ERR EXIT

When an interrupt signal is received, the example prompts whether to abort,

and exits if the answer is y.

trap ’read REPLY?"ABORT??"

 case $REPLY in

 y) exit 1;;

 esac’ 2

2. This example saves your shell history file (specified by the value you give the

HISTFILE environment variable) before timing you out, so you can restore it

when you log on again.

trap ’cp $HISTFILE $HOME/old_hist.bak; exit’ ALRM

Localization

trap uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Incorrect signal name

v Incorrect signal number

2 Incorrect command-line argument

Messages

Possible error messages include:

name not a valid trap name

You specified an unrecognized trap name. The usual cause of this error is a

typing mistake on the command line.

Portability

POSIX.2, X/Open Portability Guide.

trap

708 z/OS V1R9.0 UNIX System Services Command Reference

Related Information

sh

true — Return a value of 0

Format

true [argument ...]

Description

true simply yields an exit status of zero (success). It ignores any arguments given

on the command line. This can be surprisingly useful—for example, when you are

evaluating shell expressions for their side effects.

Usage Note

true is a built-in shell command.

Localization

true uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Value

Since true always succeeds, the only possible exit status is:

0 Successful completion

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

sh

tso — Run a TSO/E command from the shell

Format

tso [–o] [–t] TSO_command

Description

tso runs a TSO/E command from the shell using the TSO/E service routine or the

OMVS interface.

Options

–o Specifies that the command be issued through the OMVS interface.

–t Specifies that the command be issued through the TSO/E service routine. If

trap

Chapter 2. Shell command descriptions 709

a mini-TSO/E environment is to be established, use environment variables

to specify the allocations that you need.

 If you do not specify an option, the following rules determine how to run the TSO/E

command:

v If stdout is not a tty, the TSO/E service routine is used because it is possible

that the command output will be redirected to a file or piped to another

command.

v If the controlling tty supports 3270 passthrough mode, the OMVS interface is

used.

v If neither is applicable, then the TSO/E service routine is used.

Examples

1. To use OPUT to copy a file to a file in your current directory, issue:

tso –t "oput source.c(hello) 'hello.c' "

If you do not specify –t, the command is run in your TSO/E session through

OMVS, if possible. This copies the file to a file relative to the working directory

of your TSO/E session, which is usually your home directory.

Quotes are used around the command to avoid shell parsing.

2. To use OPUTX to copy all members of a PDS to your current directory, issue:

tso –t "oputx source.c . lc suffix(c)"

If you do not specify the –t option, the command is run in your TSO/E session

through OMVS, if possible. This copies the file to a file relative to the working

directory of your TSO/E session which is usually your home directory.

Quotes are used around the command to avoid shell parsing.

Since OPUTX uses ISPF, allocations for the ISPF DD names must be

performed to run this command. The following is an example of the environment

variables that are set to perform these allocations. This can be included in your

.profile for convenience. Make sure the export statements start in column one.

The data set names may differ on your system.

Assign the DD names to allocate

export TSOALLOC=ispprof:ispplib:ispmlib:isptlib:ispllib:ispslib:\

isptabl:isplog:sysexec

Allocate an empty, temporary ISPF profile data set

export ispprof="alloc new unit(sysvio) space(1,1) cyl dir(5) \

recfm(f,b) lrecl(80) blksize(3120)"

Allocate an empty, temporary ISPF table data set

export isptabl="alloc new unit(sysvio) space(1,1) cyl dir(5) \

recfm(f,b) lrecl(80) blksize(3120)"

Allocate the ISPF log to SYSOUT

export isplog="alloc sysout(a) recfm(v,a) lrecl(125) blksize(129)"

Allocate the OpenMVS and ISPF panel data sets to ISPPLIB

export ispplib=SYS1.SBPXPENU:SYS1.ISP.SISPPENU

Allocate the OpenMVS and ISPF message data sets to ISPMLIB

#

tso

710 z/OS V1R9.0 UNIX System Services Command Reference

export ispmlib=SYS1.SBPXMENU:SYS1.ISP.SISPMENU

Allocate the ISPF table data set to ISPTLIB

export isptlib=SYS1.ISP.SISPTENU

Allocate the ISPF skeleton data set to ISPSLIB

export ispslib=SYS1.ISP.SISPSENU

Allocate any load library to ISPLLIB if ISPF is in LINKLIST/LPA

export ispllib=SYS1.LINKLIB

Allocate the OpenMVS EXEC data set to SYSEXEC

export sysexec=SYS1.SBPXEXEC

Environment Variables

If the tso command is to be run through the TSO/E service routine, you may need

to perform allocations or other customization for the TSO/E environment. These can

be specified using environment variables. You can use the following environment

variables:

SYSEXEC

Specifies the allocation specification for the SYSEXEC DD name. If the

TSOALLOC variable is set, this variable is not automatically used.

SYSPROC

Specifies the allocation specification for the SYSPROC DD name. If the

TSOALLOC variable is set, this variable is not automatically used.

TSOALLOC

Specifies the names of the environment variables that contain allocation

specifications. The names are separated by colons. Case is respected;

lowercase letters are treated as lowercase. The names of the environment

variables also correspond to the name of the DD name to be allocated. The

DD name is always treated as uppercase but the variable name can be

specified in mixed case to avoid possible conflict with similar environment

variable names.

 New HOLD attribute is supported for SYSOUT allocation in the BPXWDYN

text interface and TSOALLOC environment variable.

TSOOUT or tsoout

Specifies the allocation attributes for SYSTSPRT. The format of the variable

is in bpxwdyn format without a dd name. For example:

export tsoout="alloc path(’/dev/tty’) pathopts(owronly) filedata(text)"

Rule: If both TSOOUT and tsoout are used, TSOOUT takes precedence.

TSOPREFIX

Specifies a prefix for temporary data sets that need to be cataloged.

Lowercase letters are treated as uppercase letters. If you do not specify this

variable, the user’s login name (user ID) is used.

TSOPROFILE

Specifies that the profile be reset with the arguments you specify when

running the TSO/E command. (The specified arguments replace the default

values.) For example, to set the TSO prefix and to turn off message IDs,

issue:

tso

Chapter 2. Shell command descriptions 711

export TSOPROFILE="prefix(wjs) nomsgid"

The value of this variable is passed to the TSO/E PROFILE command as is.

If the PROFILE command fails, the requested command is not run. The

output from the PROFILE command is sent to stdout along with the

PROFILE command that was issued.

An allocation specification can be either a list of cataloged data set names

separated by colons or a data set allocation request. If a list of data set names is

used, lowercase letters are treated as uppercase and the data set names must be

fully qualified.

You can specify a data set allocation request by beginning the specification with the

keyword alloc followed by keywords or keyword-value pairs in a format similar to

the TSO/E ALLOCATE command. Keys are separated by blanks. A complete listing

of keys can be found in z/OS Using REXX and z/OS UNIX System Services.

DA (data set name [(member name)]) | DSN (data set name [(member name)])

Data set name to allocate. The name must be fully qualified and can

include a member name. Quotes can be used but are ignored.

MOD | NEW | OLD | SHR

Specifies the status of the data set.

CATALOG | DELETE | KEEP | UNCATALOG

Specifies the data set disposition.

TRACKS

Specifies that space be allocated in units of tracks.

CYL Specifies that space be allocated in units of cylinders

DIR(directory blocks)

Specifies the number of directory blocks.

SPACE(primary[,secondary])

Specifies that primary and (optionally) secondary space be allocated.

VOL(volume serial)

Specifies the VOLSER.

UNIT(unit name)

Specifies the unit name, device type, or unit address.

SYSOUT[(class)]

Specifies that a sysout data set is to be allocated and optionally defines the

output class.

HOLD Specifies that the output data is to be held until released by user or

operator.

WRITER(external writer name)

Specifies the external writer.

FORMS(forms name name)

Specifies the print form.

DEST(destination)

Specifies the output destination.

COPIES(number of copies)

Specifies the number of copies to be printed.

tso

712 z/OS V1R9.0 UNIX System Services Command Reference

DUMMY

Specifies that a dummy data set be allocated.

BLKSIZE(block size)

Specifies the block size.

LRECL(record length)

Specifies the logical record length.

DSORG(PS|PO|DA)

Specifies the data set organization.

RECFM(format[,format...])

Specifies the record format. The values are A, B, D, F, M, S, T, U, and V.

You can combine several of these values.

STORCLAS(storage class)

Specifies the storage class.

MGMTCLAS(management class)

Specifies the management class

DATACLAS(data class)

Specifies the data class.

RECORG(LS)

Specifies that a VSAM linear data set be created.

DSNTYPE(LIBRARY|PDS|HFS)

Specifies the data set type.

SPIN(UNALLOC)

Specifies that a sysout data set be spun off at allocation.

NORECALL

Specifies that the allocation request be failed if the data set is migrated.

PATH(’pathname’)

Specifies that the allocation is for a file in the HFS.

PATHOPTS(pathopt[,pathopt]...)

Specifies a list of path options: ORDWR OEXCL OSYNC OTRUNC

OCREAT OWRONLY ORDONLY OAPPEND ONOCTTY ONONBLOCK.

PATHMODE(pathmode[,pathmode]...)

Specifies a list of pathmodes: SIRUSR SIWUSR SIXUSR SIRWXU SIRGRP

SIWGRP SIXGRP SIRWXG SIROTH SIWOTH SIXOTH SIRWXO SISUID

SISGID SISVTX

PATHDISP(KEEP|DELETE[,KEEP|DELETE])

Specifies the normal and abnormal file disposition.

FILEDATA(TEXT|BINARY)

Specifies whether the data is to be treated as text or binary.

Messages

0–254 Successful completion

255 The return code is outside the range 0–254 or the tso command ended in

error

tso

Chapter 2. Shell command descriptions 713

tsort — Sort files topologically

Format

tsort [file]

Description

tsort reads input from files (or from the standard input if you do not specify a file)

and produces an ordered list of items consistent with a partial ordering of items

provided by the input.

Input to tsort takes the form of pairs of items (nonempty strings) separated by

blanks. A pair of two different items indicates ordering. A pair of identical items

indicates presence, but not ordering.

Example

The command:

tsort <<EOF

a b c c d e

g g

f g e f

h h

EOF

produces the output:

a

b

c

d

e

f

g

h

Localization

tsort uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

>0 An error occurred

Portability

POSIX.2, X/Open Portability Guide.

tty — Return the user’s terminal name

Format

tty [–s]

tsort

714 z/OS V1R9.0 UNIX System Services Command Reference

Description

tty displays the filename of the terminal device associated with the standard input.

Options

–s Does not display the name; the exit status of tty indicates whether the

standard input is a terminal.

Localization

tty uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Standard input is a terminal

1 Standard input is not a terminal

2 Failure because of an unknown command-line option, or too many

arguments

Messages

Possible error messages include:

Not a tty

The standard input is not associated with a terminal.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The POSIX standard considers the –s option to be obsolete.

type — Tell how the shell interprets a name

Format

type name ...

Description

type identifies the nature of one or more names. Names can be shell reserved

words, aliases, shell functions, built-in commands, or executable files. For

executable files, the full pathname is given.

Usage Note

type is a built-in shell command.

Localization

type uses the following localization environment variables:

v LANG

v LC_ALL

tty

Chapter 2. Shell command descriptions 715

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

2 Failure because of an incorrect command-line argument

Messages

Possible error messages include:

name is not found

type could not locate the specified name. Check that the name was

specified properly and that you have the appropriate permissions.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

alias, command, sh, whence

typeset — Assign attributes and values to variables

Format

 typeset ±f [tux] name ...

 typeset [±lprtuxH] [±iLRZ[number]] [variable[=value]]

Description

Invoking typeset with no options displays a list of all variables and their attributes.

This list is sorted by variable name and includes quoting so that it can be reinput to

the shell with the built-in command eval. When only arguments of the form +option

are specified, typeset displays a list of the variables that have all specified

attributes set. When only arguments of the form –option are present, typeset

displays a list of all the variables having all the specified attributes set, and also

displays their values.

When the f option is used, typeset applies to functions; otherwise, it applies to

variables. For functions, the only other applicable options are –t, –u and –x.

If the command line contains at least one variable, the attributes of each variable

are changed. In this case, parameters of the form –option turn on the associated

attributes. Parameters of the form +option turn off the associated attributes. (Notice

that, contrary to what you might expect, − means on, and + means off.) Parameters

of the form variable=value turn on the associated attributes and also assign value to

variable.

When typeset is invoked inside a function, a new instance of each variable is

created. After the function ends, each variable is restored to the value and attributes

it had before the function was called.

type

716 z/OS V1R9.0 UNIX System Services Command Reference

Options

–f Specifies attributes of functions.

–H Performs file mapping from POSIX to the host name.

–i[number]

Marks each variable as having an integer value, thus making arithmetic

faster. If number is given and is nonzero, the output base of each variable

is number. The default is decimal.

–l Converts uppercase characters to lowercase in any value assigned to a

variable. If the –u option is currently turned on, this option turns it off.

–p Writes output to the coprocess. This option is not currently implemented.

–r Makes each variable read-only. See readonly.

–t Tags each variable. Tags are user-defined, and have no meaning to the

shell. For functions with the –f option, this turns on the xtrace option. See

set for a discussion of the xtrace option.

–u Converts lowercase characters to uppercase in any value assigned to a

variable. If the –l option is currently turned on, this option turns it off.

 When used with –f, the –u option indicates that the functions named in the

command line are not yet defined. The attributes specified by the typeset

command are applied to the functions once they are defined.

–x Sets each variable for automatic export. See export.

 The last three options that follow justify, within a field, the values assigned to each

variable. The width of the field is number if it is defined and is nonzero; otherwise,

the width is that of the first assignment made to variable.

–L[number]

Left-justifies the values assigned to each variable by first removing any

leading blanks. Leading zeros are also removed if the –Z option has been

turned on. Then blanks are added on the end or the end of the value is

truncated as necessary. If the –R flag is currently turned on, this option

turns it off.

–R[number]

Right-justifies the values assigned to each variable by adding leading

blanks or by truncating the start of the value as necessary. If the –L flag is

currently turned on, this option turns it off.

–Z[number]

Right-justifies values assigned to each variable. If the first nonblank

character of value is a digit, leading zeros are used. See also the –L option.

Usage Note

typeset is a built-in shell command as well as a separate utility.

An autoloaded function is defined (loaded) by the /bin/sh shell when invoked as a

command name, it’s not already defined to the shell, and the function definition file

is found in a directory specified in the FPATH variable. (For more information see

“Command Execution” on page 556 under the sh command.) To replace an

autoloaded function, use the unset -f name command. The next time the function

name is invoked, the FPATH search will find the new version.

typeset

Chapter 2. Shell command descriptions 717

Localization

typeset uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

2 Failure due to an incorrect command-line argument

 If the command is used to display the values of variables, the exit status value is

the number of names that are incorrect.

Messages

Possible error messages include:

Base number not in [2,36]

You used the –i option to specify a base for an integer, but the base was

not in the range 2 through 36. All bases must be in this range.

name not a function

You tried to declare the given name as a function, but the name already

referred to something that was not a function (for example, a variable).

Portability

POSIX.2. It is an extension to the POSIX.2 and XPG standards.

Related Information

export, readonly, sh

uconvdef — Create binary conversion tables

Format

uconvdef [–f SrcFile] [–v] uconvTable

Description

uconvdef reads SrcFile and creates uconvTable, a binary conversion table.

SrcFile is the input source file that defines a mapping between UCS-2 and

multibyte code sets.

Note: UCS-2 is the Universal Multiple-Octat Coded Character Set defined by

ISO/IEC 10646-1:1993(EE), while multibyte code sets consists of one or

more bytes per character.

uconvTable is in a format that can be opened and read by iconv conversion

functions.

Options

–f SrcFile

SrcFile is the input source file that defines a mapping between UCS-2 and

typeset

718 z/OS V1R9.0 UNIX System Services Command Reference

another single or multibyte code set. If this option is not used, standard

input is read. For information on the format of the input source table, refer

to the ucmap description in z/OS XL C/C++ Programming Guide.

–v Specifies that the SrcFile file statements be displayed.

uconvTable

Specifies the pathname of the compiled table created by the uconvdef

command. This file defines conversions into and out of UCS-2.

Example

To create the compiled uconvTable that defines the conversion table between

IBM-1047 and UCS-2, issue:

uconvdef –f IBM-1047.ucmap /usr/lib/nls/locale/uconvTable/IBM-1047

The \ (backslash) is a line continuation character that is needed if the command is

broken into multiple lines.

Exit Values

0 Successful completion.

>0 An error occurred.

Related Information

iconv

The iconv subroutine, iconv_close subroutine, iconv_open subroutine (refer to

z/OS XL C/C++ Programming Guide).

ulimit — Set process limits

Format

ulimit [–SHaAcdfMnst] [num]

Description

ulimit sets or displays the resource limits on processes created by the user.

Options

–S Set or display the soft limits. The soft limit may be modified to any value

that is less than or equal to the hard limit. For certain resource values, the

soft limit cannot be set lower than the existing usage.

–H Set or display the hard limits. The hard limit may be lowered to any value

that is greater than or equal to the soft limit. The hard limit can be raised

only by a process which has superuser authority.

–a Display all resource limits that are available.

-A Set or display the maximum address space size for the process, in units of

1024 bytes. If the limit is exceeded, storage allocation requests and

automatic stack growth will fail. An attempt to set the address space size

limit lower than the current usage or to set the soft limit higher than the

existing hard limit will fail.

–c Set or display the core file limit. The core file limit is the maximum size of a

uconvdef

Chapter 2. Shell command descriptions 719

dump of memory (in 512–byte blocks) allowed for the process. A value of 0

(zero) prevents file creation. Dump file creation will stop at this limit.

–d Set or display the data size limit. The data size limit is the maximum size of

the break value for the process, in units of 1024 bytes. This resource

always has unlimited hard and soft limits.

–f Set or display the file size limit. The file size limit is the maximum file size

(in 512–byte blocks) allowed for the process. A value of 0 (zero) prevents

file creation. If the size is exceeded, a SIGXFSZ signal is sent to the

process. If the process is blocking, catching, or ignoring SIGXFSZ,

continued attempts to increase the size of a file beyond the limit will fail.

–M Set or display the amount of storage above the 2 gigabyte bar that a

process is allowed to have allocated and unhidden, in megabyte

increments. An attempt to set the storage size limit lower than the current

usage or to set the soft limit higher than the existing hard limit will fail.

 Tip: The amount of storage that ulimit -M displays does not necessarily

reflect the MEMLIMIT setting found in the user’s RACF OMVS segment.

The value displayed will depend on how the user entered the OMVS shell

and whether a change of identity was performed.

–n Set or display the file descriptors limit. The file descriptors limit is the

maximum number of open file descriptors allowed for the process. This

number is one greater than the maximum value that may be assigned to a

newly created descriptor. Any function that attempts to create a new file

descriptor beyond the limit will fail. An attempt to set the open file

descriptors limit lower than that already used will fail.

–s Set or display the stack size limit. The stack size limit is the maximum size

of the stack for a process, in units of 1024 bytes. The stack is a per-thread

resource that has unlimited hard and soft limits.

–t Set or display the cpu time limit. The cpu time limit is the maximum amount

of CPU time (in seconds) allowed for the process. If the limit is exceeded, a

SIGXCPU signal is sent to the process and the process is granted a small

CPU time extension to allow for signal generation and delivery. If the

extension is used up, the process is terminated with a SIGKILL signal. An

attempt to set the CPU limit lower than that already used will fail.

num The new limit. num can be specified as “unlimited”.

Usage notes

1. ulimit is a built-in shell command. It cannot be used with the tcsh shell.

2. If the command fails because of an attempt to set a resource limit lower than

the current amount in use or higher than the existing hard limit, the resulting

error message may indicate an invalid argument.

Localization

ulimit uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

ulimit

720 z/OS V1R9.0 UNIX System Services Command Reference

|

Related Information

setrlimit in z/OS XL C/C++ Run-Time Library Reference.

umask — Set or return the file mode creation mask

Format

umask [–S] [mode]

tcsh shell: umask [value]

Description

umask sets the file-creation permission-code mask of the invoking process to the

given mode. You can specify the mode in any of the formats recognized by chmod;

see chmod for more information.

The mode may be specified in symbolic (rwx) or octal format. The symbolic form

specifies what permissions are allowed. The octal form specifies what permissions

are disallowed.

The file-creation permission-code mask (often called the umask) modifies the

default (initial) permissions for any file created by the process. The umask specifies

the permissions which are not to be allowed.

If the bit is turned off in the umask, a process can set it on when it creates a file. If

you specify:

umask a=rx

you have allowed files to be created with read and execute access for all users. If

you were to look at the mask, it would be 0222. The write bit is set, because write

is not allowed. If you want to permit created files to have read, write, and execute

access, then set umask to 0000. If you call umask without a mode argument,

umask displays the current umask.

umask in the tcsh shell

In the tcsh shell, umask sets the file creation mask to value, which is given in octal.

Common values for the mask are 002, giving all access to the group and read and

execute access to others, and 022, giving read and execute access to the group

and others. Without value, umask prints the current file creation mask. See “tcsh —

Invoke a C shell” on page 626.

Options

–S Displays the umask in a symbolic form:

u=perms,g=perms,o=perms

giving owner, group and other permissions. Permissions are specified as

combinations of the letters r (read), w (write), and x (execute).

Localization

umask uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

ulimit

Chapter 2. Shell command descriptions 721

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to an incorrect command-line argument, or incorrect mode

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

chmod, tcsh

unalias — Remove alias definitions

Format

 unalias name ...

 unalias –a

tcsh shell: unalias pattern

Description

unalias removes each alias name from the current shell execution environment.

unalias in the tcsh shell

In the tcsh shell, unalias removes all aliases whose names match pattern. For

example,

unalias *

removes all aliases. It is not an error for nothing to be unaliased. See “tcsh —

Invoke a C shell” on page 626.

Options

–a Removes all aliases in the current shell execution environment.

Localization

unalias uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Usage notes

unalias is a built-in shell command.

umask

722 z/OS V1R9.0 UNIX System Services Command Reference

Exit Values

0 Successful completion

1 There was an alias that could not be removed

2 Failure due to an incorrect command-line option or there were two aliases

that could not be removed

>2 Tells the number of aliases that could not be removed

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide.

Related Information

alias, sh, tcsh

uname — Display the name of the current operating system

Format

uname [–aImnrsv]

Note: Option –I is an uppercase i, not a lowercase L.

Description

The uname command lets shell scripts and other programs determine configuration

information about the machine upon which the shell is running.

Options

The following options select the information to be displayed:

–a All fields (equivalent to –mnrsv).

–I The IBM current product name information. This option affects the value of

the system name, release and version fields. This option may affect the

output of the –a, –r, –s and –v options. When –I is not specified (the

default), the OS/390 product name information is returned.

–m The processor or machine type.

–n The node name of this particular machine. The node name is set by the

SYSNAME sysparm (specified at IPL), and it usually differentiates machines

running at a single location.

–r The release (minor version) number of the operating system.

–s The name of the operating system. This is the default output, when no

options are given.

–v The version (major version) number of the operating system.

uname displays the selected information in the following order:

<system name> <nodename> <release> <version> <machine>

Examples

1. The following shell command changes the prompt to identify the node name of

the system:

unalias

Chapter 2. Shell command descriptions 723

export PS1="`uname –n ` $ "

2. The following indicates what is returned when you specify the –I option and

when you do not (not specifying –I is the default):

If running on z/OS 1.2:

issuing >uname -rsv gives you

OS/390 12.00 03

issuing >uname -rsvI gives you

z/OS 02.00 01

Localization

uname uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Usage Note

uname is a built-in shell command.

Exit Values

0 Successful completion

1 Failure due to inability to find the desired information

2 Failure due to a incorrect command-line option

Portability

POSIX.2, X/Open Portability Guide, UNIX System V.

Related Information

sh

uncompress — Undo Lempel-Ziv compression of a file

Format

uncompress [cDfVv [file]]

Description

uncompress expands compressed data written by the Lempel-Ziv compression

program compress. Data is read from file or the standard input. On UNIX systems,

the name of the file to be uncompressed must end with .Z. If it doesn’t,

uncompress adds one before looking for the file. It places the uncompressed

output in a file with the same name but without the .Z extension. If this file already

exists, uncompress asks if you want to overwrite it, unless you specify the –f

option.

Since the number of bits of compression is encoded in the compressed data,

uncompress automatically uses the correct number of bits. This includes the 9–14

bit compression range specified by POSIX.

uname

724 z/OS V1R9.0 UNIX System Services Command Reference

Options

–c Writes uncompressed output to the standard output (like zcat).

–D Must be used to uncompress a sorted dictionary file compressed using the

–D option of compress.

–f Forces file to be uncompressed, regardless of whether a file with the same

base name already exists.

–V Prints version number information for uncompress.

–v Displays name of each file when it is uncompressed.

Localization

uncompress uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Unknown command-line option

v Inability to obtain information about an argument file

v File has more than one link

v File is not a regular file

v File is not in compressed format

v File was compressed using more than 16 bits

v There is no space for decompress tables

v A compressed file is corrupt

Portability

uncompress is found on many UNIX systems.

The –D option is an extension to traditional implementations of uncompress; the

–D and –V options are extensions to the POSIX standard.

Related Information

compress, cpio, pack, unpack, zcat

unexpand — Compress spaces into tabs

Format

unexpand [–a] [–t tablist] [file ...]

Description

unexpand replaces blank characters in the data from each file argument with the

most efficient use of tabs and spaces. If you do not specify any files, unexpand

reads the standard input. The result is sent to standard output.

uncompress

Chapter 2. Shell command descriptions 725

Backspace characters are preserved. By default, unexpand compresses only

leading spaces into tabs; tab stops are set every eight spaces.

Options

unexpand supports the following options:

–a Compresses spaces into tabs wherever the resulting output is shorter,

regardless of where the spaces occur in the line.

–t tablist

Specifies tab stops. The numbers in tablist are delimited by blanks or

commas. If tablist is a single number, then unexpand places tab stops

every tablist positions. If tablist contains multiple numbers, unexpand

places tab stops at those specific positions. Multiple numbers in tablist must

be in ascending order. This option, like the –a option, compresses spaces

to tabs at any appropriate point in the line. If you specify –t, unexpand

ignores the presence or absence of –a.

Localization

unexpand uses the following localization variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to an incorrect command-line argument, or an inability to open

the input files

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, 4.2BSD.

Related Information

expand, pr

uniq — Report or filter out repeated lines in a file

Format

 uniq [–c|–d|–u] [–f number1] [–s number2] [input_file [output_file]]

 uniq [–cdu] [–number] [+number] [input_file [output_file]]

Description

uniq manipulates lines that occur more than once in a file. The file must be sorted,

since uniq only compares adjacent lines. When you invoke this command with no

options, it writes only one copy of each line in input_file to output_file. If you do not

specify input_file or you specify –, uniq reads the standard input.

unexpand

726 z/OS V1R9.0 UNIX System Services Command Reference

If you do not specify output_file, uniq uses the standard output. The specified

output_file cannot be a FIFO.

Options

–c Precedes each output line with the number of times that line occurred in the

input.

–d Displays only lines that are repeated (one copy of each line).

–f number1

Ignores the first number1 fields when comparing lines. Blanks separate

fields in the input.

–s number2

Ignores the first number2 characters when comparing lines. If you specify

both –s and –f, uniq ignores the first number2 characters after the first

number1 fields.

–u Displays only those lines that are not repeated.

 You can choose only one of the –c, –d, or –u options.

–number

Equivalent to –f number (obsolescent).

+number

Equivalent to –s number (obsolescent).

Examples

1. The command:

uniq

is a filter which prints one copy of each different line in its sorted input.

2. The command:

uniq -f 2 -s 1

compares lines starting with the second character of the third field.

3. The command:

uniq -d

prints one instance of each repeated line in the input (and omits all unique

lines).

Localization

uniq uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

uniq

Chapter 2. Shell command descriptions 727

v Incorrect command-line option

v Missing number after –f

v Missing or incorrect number after –s

v Inability to open the input or output file

Messages

Possible error messages include:

Missing character skip count

You specified –s but did not supply a number after the –s.

Missing number of fields to skip

You specified –f but did not supply a number after the –f.

Field skip not a number in string

In a -number or +number construct, number was not a valid number. This

could arise because of a typographical error in entering a – option.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

comm, sort

unlink — Removes a directory entry

Format

unlink file

Description

unlink removes a directory entry.

Following the format, file specifies the entry to be removed, which can refer to a

pathname, a hard link, or a symbolic link. If file refers to a symbolic link, unlink

removes the symbolic link but not any file or directory named by the contents of the

symbolic link. If the entry that is unlinked is the last one associated with a file, then

the file itself will be deleted.

unlink is implemented as a shell built-in.

Localization

unlink uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

uniq

728 z/OS V1R9.0 UNIX System Services Command Reference

Exit Values

0 Successful completion

1 Failure due to any of the following:

v No write permission for directory containing link to be removed

v Attempting to unlink a file that does not exist

v Pathname specified is a directory

2 Failure due to incorrect number of arguments specified

Related Information

mv, rm, rmdir

unmount — Remove a file system from the file hierarchy

Format

unmount [–R] [–v] [–o normal|drain|immediate|force|reset] pathname...

Description

The unmount shell command, located in /usr/sbin, unmounts file systems.

Note: An unmount user must have UID(0) or at least have READ access to the

SUPERUSER.FILESYS.MOUNT resource found in the UNIXPRIV class.

Options

–R Unmounts the specified file system and all the file systems below it in the

file system hierarchy.

–o normal|drain|immediate|force|reset

normal

Specifies that if no user is accessing any of the files in the specified

file system, the system processes the unmount request. Otherwise,

the system rejects the unmount request. This is the default

drain Specifies that an unmount drain request is to be made. The system

will wait for all use of the file system to be ended normally before

the unmount request is processed or until another UNMOUNT

command is issued.

Note: Currently unmount –o drain is not supported in a sysplex. If

an unmount –o drain is issued in a sysplex, the following

behavior is exhibited:

v If there is no activity in the file system, unmount -o drain

will perform the unmount, but it will behave like an

unmount normal.

v If there is activity in the file system, unmount -o drain will

return a Return_value of -1 with Return_code EINVAL and

Reason_code JrNotSupInSysplex.

immediate

The system will unmount the file system immediately. Any users

accessing files in the specified file system will receive failing return

unlink

Chapter 2. Shell command descriptions 729

codes. All data changes to files in the specified file system are

saved. If the data changes cannot be saved, the unmount request

fails.

force Also specifies that the system will unmount the file system

immediately. Any users accessing files in the specified file system

will receive failing return codes. If possible, all data changes to files

in the specified file system are saved. If the data changes to the

files cannot be saved, the unmount request continues and data is

lost.

Note: An unmount –o immediate request must be issued before

you can request an unmount –o force of a file system.

Otherwise, unmount –o force fails.

reset A reset request stops a previous unmount –o drain request.

Note: unmount –o reset is not supported in a sysplex.

–v Lists all file systems that are unmounted.

pathname... specifies the pathnames to use for locating the file system you want

unmounted. This may be the pathname for any file or directory within that file

system. For example, if the file system you want unmounted contains the file or

directory /u/wjs, you can issue:

unmount /u/wjs

and that will effectively unmount the file system.

Examples

1. The output of mount –q can be used for the input of unmount. For example:

mount -q /ict/hfsfir

can be used as input:

unmount $(mount -q /ict/hfsdir)

2. To unmount a file system that contains the file or directory /u/wjs:

unmount /u/wjs

3. To unmount a file system that contains the file or directory /u along with all other

file systems mounted over or below that file system:

unmount -R /u

Usage notes

v The path name for chmount/unmount is a node, symbolic links cannot be

followed unless a trailing slash is added to the symbolic link name. For example,

if /etc has been converted into a symbolic link, /etc -> $SYSNAME/etc, issuing

chmount -w /etc (without the trailing slash) will result in trying to chmount -w

/etc -> $SYSNAME/etc. This may result in RACF errors depending on the

security access for the symlinked file. However, adding the trailing slash, by

specifying chmount -w /etc/ the symlink will be followed and RACF will

determine the access from the symlinked file.

v The unmount shell command operates on the path name and its associated file

system. In the case where a path name has no file system mounted on it, the

associated file system is the one that contains the path. For example:

unmount

730 z/OS V1R9.0 UNIX System Services Command Reference

mkdir /mega

mount -f ’posix.hfs.mega’ /mega

mkdir /mega/wellie0

mount -f ’posix.hfs.wellie0’ /mega/wellie0

then:

unmount -R /mega

will unmount the file system mounted at /mega/wellie0 and /mega. Entering the

same command again:

unmount -R /mega

will attempt to unmount the file system containing the /mega directory (in this

case root) and any other file systems that are mounted on root.

Exit Values

0 Successful completion

Related Information

chmount, mount

unpack — Decode Huffman packed files

Format

unpack file...

Note: The unpack utility is fully supported for compatibility with older UNIX

systems. However, it is recommended that the uncompress utility be used

instead because it may provide greater functionality and is considered the

standard for portable UNIX applications as defined by POSIX.2 IEEE

standard 1003.2-1992.

Description

unpack uncompresses files compressed by pack, using a Huffman minimal

redundancy code. By default, unpack looks for file with a .z extension. It places the

decompressed output in a file with the same name, but without the extension. The

owner, permissions, and times of last access and last modification are also

preserved. Packed files can be identified by file. You can use pcat to view packed

text files without unpacking them in place.

unpack doesn’t unpack a file if:

v The file name is too long after the .z is removed

v The input file cannot be opened

v An existing file has the same name as the output file

v The output file can’t be created

v The input file doesn’t appear to have been created by pack

Localization

unpack uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

unmount

Chapter 2. Shell command descriptions 731

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

File

unpack uses the following file:

pk$* Temporary copy of input file. (You may see this in the current directory if

unpack is interrupted.) The file is located in the same directory as the file

being unpacked.

Exit Values

0 Successful completion

n Indicates that files could not be unpacked properly. For example, if three out

of six files could not be unpacked properly, the exit status is 3.

 Possible reasons for failure include:

v Unknown command-line option

v Error creating a name for a temporary file

v Error opening an input file or a temporary file

v Error writing to a temporary file

v Inability to rename a temporary file

v Inability to restore the modification time on a packed file

v Input file was not packed

v A packed file is corrupt

Messages

Possible error messages include:

file: Not a packed file

pack did not process the file. In this case, the file is not changed.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

file, pack, pcat

unset — Unset values and attributes of variables and functions

Format

 unset name ...

 unset –fv name ...

tcsh shell: unset pattern

Description

Calling unset with no options removes the value and attributes of each variable or

function name.

unpack

732 z/OS V1R9.0 UNIX System Services Command Reference

unset in the tcsh shell

unset removes all variables whose names match pattern, unless they are read-only.

For example:

unset *

which we strongly recommend you do not do, will remove all variables unless they

are read-only. It is not an error for nothing to be unset.

See “tcsh — Invoke a C shell” on page 626.

Options

–f Removes the value and attributes of each function name.

–v Removes the attribute and value of the variable name. This is the default if

no options are specified.

 unset cannot remove names that have been set read-only.

Usage notes

unset is a special built-in shell command.

Localization

unset uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to an incorrect command-line option

2 Failure due to an incorrect command-line argument

 Otherwise, unset returns the number of specified names that are incorrect, not

currently set, or read-only.

Messages

Possible error messages include:

name readonly variable

The given name cannot be deleted because it has been marked read-only.

Portability

POSIX.2, X/Open Portability Guide.

Related Information

readonly, sh, tcsh

unset

Chapter 2. Shell command descriptions 733

uptime — Report how long the system has been running

Format

uptime

Description

uptime gives a one–line display of the following information:

v Current time

v How long the system has been running

v Number of users who are currently logged into z/OS UNIX and the system load

averages for the past 1, 5, and 15 minutes. Load averages are not supported on

z/OS UNIX, and are displayed as 0.00

Files

uptime uses the following file:

/etc/utmpx

Current login status file.

Localization

uptime uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion.

1 Invalid /etc/utmpx file

 Command syntax error.

uucc — Compile UUCP configuration files

Format

uucc

Description

uucc reads the contents of the uucp configuration files and compiles them into a

single configuration file called /usr/lib/uucp/config. The configuration files are:

v Systems

v Devices

v Dialers

v Dialcodes

v Permissions

Because uucc expects these text files to be in the current working directory, you

need to change the directory (with the cd command) to /usr/lib/uucp before issuing

uptime

734 z/OS V1R9.0 UNIX System Services Command Reference

uucc. For more information on creating and maintaining UUCP configuration files,

refer to z/OS UNIX System Services Planning.

Files

uucc uses the following files:

/usr/lib/uucp/Systems

Contains a list of remote systems and the methods for connecting with

them.

/usr/lib/uucp/Devices

Describes the physical and logical connections listed in the Systems file.

/usr/lib/uucp/Dialers

Contains dialing information for the modems and dialers listed in the

Devices file.

/usr/lib/uucp/Dialcodes

Contains abbreviations that can be used in the phone numbers specified in

Systems.

/usr/lib/uucp/Permissions

Defines the commands and areas of the file system that remote sites can

access on your system.

/usr/lib/uucp/config

Contains the previous information compiled into one file for use by the uucp

utilities.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to open file

v Insufficient memory

v Ctrl-C interrupt

Related Information

uucp

uucico daemon — Process UUCP file transfer requests

Format

uucico [–f] [–g grade] [–r0|–r1] [–s system] [–x type]

Description

The uucico daemon processes file transfer requests that were queued by uucp

and uux. It establishes the connection with remote sites and manages the transfer

of data between the local and remote sites as specified by the queued uucp or uux

job.

uucico is automatically invoked after the uucp or uux command completes (unless

the –r option was specified on the uucp or uux command). To process requests

that cannot be successfully completed at the time the uucp or uux command was

executed and to initiate transfers from remote sites, the traditional approach is to

use cron to start uucico at regular intervals. (See z/OS UNIX System Services

Planning for more information about using cron to start uucico. It contains

information on creating crontabs.)

uucc

Chapter 2. Shell command descriptions 735

uucico has two modes: slave mode and master mode.

v In slave mode, uucico receives requests from the remote site. The –r0 option

(the default option) starts uucico in slave mode. uucico is typically started in

slave mode by either the uucpd daemon (for remote connections via TCP/IP) or

as the login shell for special UUCP user IDs that can be logged onto via serial

connections. See uucpd and uucp for more information.

v In master mode, uucico processes requests from the local site; the –r1 and –s

options start uucico in master mode. uucico is typically started in master mode

via cron. uucp and uux also invoke uucico in master mode by default.

If uucico cannot contact a remote system, it does not allow itself to run again until

a specified amount of time has passed. You can specify how long the daemon

should wait before trying to call each system again by setting a parameter in the

Permissions file. For information on how to do this, refer to z/OS UNIX System

Services Planning.

If uucico receives a SIGQUIT, SIGTERM or SIGPIPE signal, it ends any current

conversation with a remote site and exits.

Options

–f Ignores the required wait period for all remote systems and makes calls as

requested.

–g grade

Processes outgoing work only if it is designated priority grade or better.

grade is a number (0–9) or letter (A–Z, a–z), where 0 is the highest priority

and z is the lowest.

r0 | –r1

Specifies the mode for uucico to use. r0 (the default) specifies slave mode;

r1 specifies master mode. If you want uucico to call a remote system

(master mode), specify –r1.

–s system

Calls the remote system. By default, uucico calls all defined systems.

–x type

Turns on debugging. type is a number indicating the level of detail. 0 is the

least detail and 9 is the most detail. The debugging output is written to

stderr if uucico is run in the foreground, or to /usr/spool/uucp/LOGFILE if

uucico is run in the background by uucpd or by a remote uucico logging

into a UUCP user ID.

 The LOGFILE must be monitored so that it does not fill up your file system.

Examples

To call the remote site west, with debugging output sent to stdout:

uucico –r1 –x 9 –s west

Files

uucico uses the following files:

/usr/lib/uucp/config

UUCP configuration file. See uucc.

/usr/spool/uucp/LOGFILE

UUCP debug file

uucico daemon

736 z/OS V1R9.0 UNIX System Services Command Reference

/usr/spool/locks

The directory containing the lock files created by uucico.

/usr/spool/uucp/.Status

UUCP status file

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Unknown command-line option

v Not running setuid uucp

v Argument list too long

v Unable to open log file

v CTRL-C interrupt

Portability

X/Open Portability Guide.

Related Information

uucc, uucp, uulog, uux, uuxqt

uucp — Copy files between remote UUCP systems

Format

 uucp [–Ccdfjmr] [–g grade] [–n user] [–x debug_level] [site1!] file1 [site2!] file2

 uucp [–Ccdfjmr] [–g grade] [–n user] [–x debug_level] file... [site2!] directory

Description

uucp copies a source file or files from one site to a target on another site. The

source can be a file or group of files specified by metacharacters. The source

cannot be a directory. The target can be a corresponding filename or directory.

Filenames given to uucp have the form:

[site!] pathname

or

[site1![site2!]... pathname

where site names the remote site. If a site is not specified, pathname is a pathname

on your machine. site must be on the list of site names that uucp knows about.

Use uuname to list sites that are known to uucp.

You can also specify multiple site names as a way of sending files to a site that

your system does not have a direct connection to. Filenames that contain multiple

site names are called multinode or multihop names. When processing a uucp

request involving multihop names, only the destination name can be a multihop

name. The source filename cannot be a multihop name.

Pathnames can have one of these forms:

v A full pathname.

v A pathname preceded by ~name/, where ~name is replaced on the specified

site by the login directory of user name.

uucico daemon

Chapter 2. Shell command descriptions 737

v A pathname preceded by ~/, where ~/is replaced on the specified site with the

name of the public UUCP directory.

v A filename or prefix name containing the current directory on your machine as a

prefix.

Destination pathnames cannot begin with exactly two slashes, which indicate an

MVS filename.

If the target is a directory, you must append / to the end of the pathname to ensure

that it is not treated as a file. If the / is not appended to a directory name, then the

name is treated as a filename and multiple copies to that command will behave like

the cp command. That is, each subsequent copy will overlay the previous one.

Pathnames can contain the shell metacharacters ?, *, and []. The character ~ also

has a special meaning, as previously described. The appropriate site expands these

characters after encountering them.If the destination file is a multihop name, then

the source file cannot contain shell metacharacters because uucp uses uux to

handle multihop requests, and uux does not allow shell metacharacters in names.

Be careful when using metacharacters, because expansions on other sites may

occur in unforeseen ways. For more information on metacharacters and their

expansion by the shell, see sh.

Options

–C Copies named files to the spool directory for transfer. If both this option and

the –c option are given, this option takes precedence. This option is useful

if you will be making changes to the file after running the uucp command

and want to send the version of the file before you changed it.

–c Does not copy files to the spool directory for transfer. This is the default.

–d Makes all necessary intermediate directories to complete file transfer. This

is the default.

–f Does not make intermediate directories. If –f is specified with the –d option,

–f takes precedence.

–g grade

Sets the priority of this job to grade. It is a number (0–9) or letter (A–Z, a–z),

where 0 is the highest priority and z is the lowest.

–j Passes the UUCP job ID number to standard output; this job ID can be

used with uustat to determine the job’s status or to terminate it. If uucp

generates several job requests and several job IDs, only the last one

appears.

–m Sends mail notifying you when the copy has completed. The default is to

send mail only if an error occurs that prevents the copy from being made.

–n user

Notifies the user at the destination site when a file you have sent to the

destination site has arrived. This option has no effect when you use uucp

to get files from the remote system.

–r Queues the job to be processed later. Do not start uucico to begin

transferring the file.

–x debug_level

Sets the verbosity of the debugging information to the specified debug level,

which is a number, 0 or greater. Level 0 provides tersed messages while

uucp

738 z/OS V1R9.0 UNIX System Services Command Reference

level 9 provides verbose messages. Values greater than 9 give no

additional information. The default level is 0.

 Options are not passed on to remote sites when the destination of your uucp

command is a multihop name. For this uucp command:

uucp –mf file1 site1!site2!/file1

the –m and –f options are ignored. For multihop, uucp creates a uux request to

run a uucp command at the next site (site1 in our example). But because site1 can

be any system that supports uucp, it is possible that this particular system may not

support the same options that are supported by uucp. For that reason, options are

not passed to the uucp command to be run at site1.

To summarize the restrictions when using multihop destination names:

v Options are not passed.

v Shell metacharacters cannot be used in source file names.

Examples

1. To copy the file /notes/memo from your site to a file named minutes in the

public UUCP directory on a site named south:

uucp /notes/memo south! ~/minutes

2. You can also copy files locally. To copy the file resume.txt on your site to the

file /business/resumes/november on your site:

uucp resume.txt /business/resumes/november

You must have read permission on the current directory. If the directories

business/resumes don’t already exist, they are created, if you have write

permission in /.

3. To copy the file index from the public UUCP directory on north to the current

directory on the local site:

uucp north! ~/index

You must have write permission on the current directory.

4. To copy the file index from the public UUCP directory on south to the

subdirectory south/records in the public UUCP directory on the current site:

uucp -f -m south! ~/index ' ~/south/records/'

You need to protect the tilde so the shell does not expand them to the user’s

home directory. If the subdirectory south/records does not already exist, the file

copy fails. Mail is sent to you when the transfer is completed successfully.

5. You want to copy a file from your system to the site named east. Your system

does not have a connection to east, but you do have a connection to north,

and north has a connection to east:

uucp memo north!east! ~/memo

6. You want to use shell metacharacters to specify the files to be transferred to a

remote site.

In this command, the source pathname is expanded by the shell. The uucp

command succeeds as long as there is at least one file that matches the name

specification:

uucp /mystuff/file?.[ab&]* remote!/tmp/

In this command, the source pathname is not expanded by the shell, because it

cannot find any matching file. The '!' is not allowed, because uucp interpretes

all '!' characters as delimiting system names.

uucp

Chapter 2. Shell command descriptions 739

uucp remote!/tmp/file?.[!b]* /mystuff/

Environment Variable

uucp uses the following environment variable:

TZ Sets the time zone used with date and time messages

Localization

uucp uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLECT

v LC_CTYPE

v LC_MESSAGES

v LC_TIME

See Appendix F for more information.

Files

uucp uses the following files:

/usr/lib/uucp/config

UUCP configuration file generated by uucc.

/usr/spool/uucp/LOGFILE

Log file for uucp and other UUCP utilities.

/usr/spool/uucppublic

Public UUCP directory.

/usr/spool/uucp/.Sequence/sitename

Sequence files, one for each remote site.

Usage Note

uucp does not convert files to or from EBCDIC. If a text file is sent from an ASCII

system to an MVS system, it must be converted to EBCDIC after its arrival.

Similarly, if an EBCDIC text file is sent to an ASCII system, the file is not

automatically converted to ASCII. The receiving user must convert the file to ASCII.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to open log file

v Insufficient memory

v Ctrl-C interrupt
2 Unknown command-line option

 uucp can also have partial failures, where a file is inaccessible or a host could not

be determined. uucp returns the 1 exit value and logs the partial failure in the log

file /usr/spool/uucp/LOGFILE. Files that were accessible or had a known host are

still queued for transfer.

Portability

X/Open Portability Guide, UNIX systems.

The –g option is an extension to the POSIX standard.

uucp

740 z/OS V1R9.0 UNIX System Services Command Reference

Related Information

uucc, uucico, uulog, uux

uucpd daemon — Invoke uucico for TCP/IP connections from remote

UUCP systems

Format

uucpd [–l seconds] [–x debug_level]

Description

The uucpd program allows remote uucico programs to communicate with local

uucico in order to perform file transfers via TCP/IP connections. inetd starts uucpd

when the remote uucico connects to the UUCP port. uucpd manages the login

sequence with the remote uucico. After successful login, it then starts uucico to

complete the transfer.

In order for inetd to start uucpd, the inetd configuration file (for example,

inetd.conf) must contain a uucp entry such as the following:

uucp stream tcp nowait OMVSKERN /usr/sbin/uucpd uucpd -l0

Options

–l seconds

Sets the login timeout value in seconds. When seconds are specified as

zero, the login will wait without timing out.

–x debug_level

Invoke uucpd and uucico with the –x option. debug_level indicates the

level of detail (0 is least detail and 9 is most detail). The uucpd login

sequence debug output is written to a file in TMPDIR with a filename

beginning with uucpd and followed by randomly generated characters. The

uucico debug output is written to the uucp logfile.

Note: When using the –x option, the UUCP logfile should be monitored so

that it does not become too large and fill up the file system.

The Permissions file provides an alternative method for setting debug for

connections on a system by system basis. See the topic on Permissions

files in z/OS UNIX System Services Planning for more information.

Usage Note

uucpd is not affected by the locale information specified in locale-related

environment variables.

Exit Values

0 Successful completion

1 Failure to establish a connection with the remote system

>1 uucico failure

Portability

X/Open Portability Guide.

uucp

Chapter 2. Shell command descriptions 741

Related Information

inetd, uucico, uucp, uux

uudecode — Decode a transmitted binary file

Format

uudecode [-o outfile] [infile...]

Description

uudecode decodes data that was encoded by uuencode. If an infile is specified on

the command line, uudecode decodes that file; if no infile is specified on the

command line, input is read from the standard input. Output is written to the

filename that was specified when the file was encoded. When the -o option is

specified, the filename that was specified when the file was encoded is overridden

by the outfile operand. See uuencode for more information.

uudecode automatically strips off any leading and trailing lines added by mailers.

For a summary of the UNIX03 changes to this command, see Appendix N, “UNIX

shell commands changed for UNIX03,” on page 943.

Options

-o outfile

A pathname of a file is used instead of any pathname contained in the input

data. Specifying an outfile option-argument of /dev/stdout indicates

standard output is used.

Localization

uudecode uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Usage notes

If the pathname of the file to be produced exists and is writable, the file is

overwritten. If it exists, but is not writable by the user, uudecode will end with an

error.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Inability to open the input file

v Missing begin line in the input file

v Inability to create the output file

v Missing end line in the input file

v A file that is too short
2 Failure because of an incorrect command-line option

uucpd daemon

742 z/OS V1R9.0 UNIX System Services Command Reference

|

|

|
|
|
|
|
|

|
|

|

|
|
|
|

|

|
|
|

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide. Generally found on

most UNIX systems.

Related Information

uuencode

uuencode — Encode a file for safe transmission

Format

uuencode [-m] [infile] remotefile

Description

When files are transmitted over a network or over phone lines, nonprintable

characters (for example, control characters) may be interpreted as commands,

telling the network to do something. In general, therefore, it is not safe to transmit a

file if it contains nonprintable characters.

uuencode translates a binary file into a special code that consists entirely of

printable characters from the POSIX portable character set. A file encoded in this

way is generally safe for transmission over networks and phone lines. uuencode is

often used to send binary files through electronic mail.

If an infile is specified on the uuencode command line, uuencode reads that file as

input. Otherwise, it reads the standard input. uuencode always writes the encoded

result to the standard output. The encoded version of the data is about 35% larger

than the original. If the size is a problem, you can shrink the file with compress

before encoding it. The recipient must decode it and then uncompress it.

The remotefile command-line argument is the name that the file should be given

after it has been transmitted to its destination. Specifying a remotefile operand of

/dev/stdout indicates that uudecode is to use standard output. When the file

reaches its destination, uudecode can be used to translate the encoded data into

its original form. The first line of the encoded file records the file’s access

permission bits and the remotefile argument.

Because the encoded file consists entirely of printable characters, you may use a

text editor to edit the file. Of course, the only things you are likely to edit are the

name of the original file or the name of the remote file.

For a summary of the UNIX03 changes to this command, see Appendix N, “UNIX

shell commands changed for UNIX03,” on page 943.

Options

-m Encode the output using the MIME Base64 algorithm. If -m is not specified,

the historical algorithm is used.

Examples

This command encodes the file long_name.tar.Z so it decodes with the name

arc.trz and redirects the output to arc.uue:

uuencode long_name.tar.Z arc.trz > arc.uue

uudecode

Chapter 2. Shell command descriptions 743

|

|

|
|
|
|
|

|
|
|
|
|
|

|
|

|

||
|

Localization

uuencode uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure because of an incorrect command-line option, or a missing

command-line argument

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide. Generally found on

most UNIX systems.

Related Information

uudecode

uulog — Display log information about UUCP events

Format

uulog [–s site]

Note: The uulog utility is fully supported for compatibility with older UNIX systems.

However, because it is no longer supported by POSIX.2 IEEE standard

1003.2-1992, this utility should be avoided for applications intended to be

portable to other UNIX-branded systems.

Description

uulog displays information about UUCP events, such as file transfers and remote

command execution. It also displays the most recent debug output to the log. In

order to use uulog, you must have permission to read the file /usr/spool/uucp/
LOGFILE.

The format of the display is:

user ID local_site date/time messagetext

where:

user ID

Login ID of the user who requested the file transfer or requested the

command be run. Entries created by uuxqt or by programs spawned by

uuxqt have the ID uucp.

local_site

Name of the local site.

date/time

Date and time of the event in the form (mm/dd-hh:mm).

uuencode

744 z/OS V1R9.0 UNIX System Services Command Reference

messagetext

Text of the log entry. The message text depends on the event being

recorded; most entries are self-explanatory.

Options

If you do not specify an option, uulog displays the debug information for the last

conversation that failed.

–s site Displays information about UUCP events for this site.

Environment Variables

uulog uses the following environment variable:

TZ Sets the time zone used with date and time messages.

Localization

uulog uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_LCTIME

v NLSPATH

See Appendix F, “Localization,” on page 907 for more information.

Files

uulog uses the following files:

/usr/lib/uucp/config

UUCP configuration file. (See uucc.)

/usr/spool/uucp

UUCP spool directory.

/usr/spool/uucp/LOGFILE

Log file for uulog and other UUCP utilities.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v LOGFILE could not be opened

v Could not lock LOGFILE
2 Unknown command-line option

Portability

X/Open Portability Guide, UNIX systems.

Related Information

uucc, uucp, uux

uulog

Chapter 2. Shell command descriptions 745

uuname — Display list of remote UUCP systems

Format

uuname [–l]

Note: The uuname utility is fully supported for compatibility with older UNIX

systems. However, because it is no longer supported by POSIX.2 IEEE

standard 1003.2-1992, this utility should be avoided for applications intended

to be portable to other UNIX- branded systems.

Description

uuname displays a list of all remote systems known to UUCP. Systems are listed in

the order they are entered in /usr/lib/uucp/Systems. To display only the local

system name, use the –l option.

Options

–l Displays the local system name.

Localization

uuname uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_LCTIME

v NLSPATH

See Appendix F for more information.

File

uuname uses the following file:

/usr/lib/uucp/config

UUCP configuration file. See uucc.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Argument list too long

v Inability to open log file

v Insufficient memory

v Ctrl-C interrupt
2 Unknown command-line option

Portability

X/Open Portability Guide, UNIX systems.

Related Information

uucc, uucp, uux

uuname

746 z/OS V1R9.0 UNIX System Services Command Reference

uupick — Manage files sent by uuto and uucp

Format

uupick [–s system]

Note: The uupick utility is fully supported for compatibility with older UNIX

systems. However, because it is no longer supported by POSIX.2 IEEE

standard 1003.2-1992, this utility should be avoided for applications intended

to be portable to other UNIX- branded systems.

Description

uupick is an interactive shell script used to manage files in the UUCP public

receive directory that were sent to you using the uuto command. Only those files in

the receive directory are managed. (See “Files” on page 748 for a description of

this directory.)

For each file or directory entry found, uupick prompts you with one of the following

messages, depending on the type of the entry:

from system: file name ?

from system: dir name ?

where system is the name of the system that sent the file or directory, and name is

the name of the file or directory.

To tell uupick how to handle an entry, issue one of the following commands:

ENTER

Skips this entry and go to the next one.

* Display the uupick command summary.

d Deletes the specified entry.

m [target]

Moves the entry to the named target directory or file. If the target does not

specify an absolute pathname or no directory, the pathname is assumed to

be relative to the current directory. If no directory is given, uupick assumes

the current directory.

a [dir] Moves all files from system to the target directory dir.

p Prints the contents of the entry to standard output. If the entry is a directory,

p lists the files in the directory.

q Quits uupick.

CTRL-D

Quits uupick.

!command

Escapes to the shell in order to perform command.

The tilde (~) does not stand for the public UUCP directory in pathnames specified

inside uupick. It is interpreted by the command shell being used.

Options

–s system

Displays only files from the system system.

uupick

Chapter 2. Shell command descriptions 747

Localization

uupick uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_LCTIME

v NLSPATH

See Appendix F for more information.

Files

uupick uses the following files:

/usr/lib/uucp/config

The UUCP configuration file, which contains the list of known systems as

well as the location of the public UUCP library. See uucc.

/usr/spool/uucppublic

The default value for the public UUCP directory. The public UUCP directory

is always the home directory of the user uucp as defined in the user

database.

/usr/spool/uucppublic/receive/user/system

When files are sent to your system using uuto, they are placed into

/usr/spool/uucppublic/receive/user/system, where user is your login

name and system is the name of the system that sent the files.

Usage notes

1. uupick does not convert files from EBCDIC. If you receive a file from an ASCII

system, you will need to convert it to EBCDIC.

2. When moving files, uupick does not check for files of the same name in the

destination directory. These files are overwritten.

3. uupick is a shell script.

Portability

X/Open Portability Guide.

Related Information

uuto

uustat — Display status of pending UUCP transfers

Format

 uustat [–j jobid | –k jobid | –r jobid]

 uustat [–m]

 uustat [–q]

 uustat [–s site] [–u user]

 uustat [–a [–o number] [–y number]]

uupick

748 z/OS V1R9.0 UNIX System Services Command Reference

Description

uustat displays reports on the progress of pending UUCP transfers. You can

display the status of transfers for a particular job ID or user ID. uustat can also

stop or restart jobs in the queue.

If you do not specify any options, it displays the status of all UUCP requests for all

sites made by the current user.

Options

–a Displays the jobs queued for all users instead of only the jobs for the user

issuing the command.

–j jobid

Displays the status of the specified job.

–k jobid

Stops the UUCP job identified by jobid. uustat can display the job ID of a

job in the queue, when used with one of the other options. You cannot use

this option with the –q or –r options.

–o number

Displays the jobs that are older than number hours.

–q Displays the latest conversation status and times tried for all sites that

recently had errors, as well as a count of the jobs queued. You cannot use

this option with the –k or –r options.

–m Displays the latest conversation status and times tried for all sites, as well

as a count of the jobs queued. You cannot use this option with the –k or –r

options.

–r jobid

Restarts the UUCP request specified by jobid. This option updates the

timestamp on the file, making the request appear recent. It cannot restart

jobs that have been stopped with the –k option. You cannot use this option

with the –k or –q options.

–s site Displays the status of all UUCP transfers requested for site.

–u user

Displays the status of all UUCP transfers requested by user.

–y number

Displays the jobs that are younger than number hours.

Output

uustat uses a variety of output formats, depending on the options specified.

If you do not specify an option, or if you specify the –s and –u options, the output is

in this format, one line to every request within a work file:

job ID mo/dy—hh:mm rtype site user information

The following list explains the fields:

job ID Identifies the job. If a job contains more than one request, subsequent

requests are displayed below the first, without a job ID.

mo/dy—hh:mm

Time of the request.

uustat

Chapter 2. Shell command descriptions 749

rtype The request type, either S (for send) or R (for receive).

site The name of the remote site.

user The name of the user who requested the job.

information

Describes the request. The format depends on the type of request.

 For a send request, information has the format:

size filename

where size is the size in bytes of the file to be sent and filename is either

the absolute pathname on your site, or the UNIX-style filename relative to

your spool directory for the remote site.

 For a receive request, information has the format:

filename

For a remote execution request (such as a request produced by mailx, the

command to be run is displayed after any data files associated with it.

For the –q and –m options, the output is in this format:

site transfersC (age) commandsX(age) status retry

where:

site Remote site name.

transfersC(age)

Number of file transfer jobs pending; if any are over one day old, the age in

days of the oldest job is given in parentheses.

commandsX(age)

Number of pending command requests that have been received; if any are

over one day old, the age in days of the oldest job is given in parentheses.

status Time and result of the last attempt to call this site. The status field shows

the status of attempts made by this system to connect to other systems.

When other systems call this system, this field is not updated.

retry Time to the next connection attempt in hours:minutes and the current retry

count. The retry field is displayed only between retry attempts.

For the –k and –r options, uustat displays a message telling you if the attempt to

stop or restart a job was successful.

Examples

1. To display all waiting UUCP requests:

uustat

2. To display all jobs waiting for remote site east:

uustat –s east

3. To stop the UUCP job associated with job ID westn0003:

uustat –k westn0003

Environment Variables

uustat uses the following environment variable:

uustat

750 z/OS V1R9.0 UNIX System Services Command Reference

TZ Sets the time zone used with date and time information.

See Appendix I for more information.

Localization

uustat uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Files

uustat uses the following files:

/usr/lib/uucp/config

UUCP configuration file.

/usr/spool/uucp

UUCP spool directory, containing site-specific subdirectories and information

files.

/usr/spool/uucp/site

Subdirectory containing queued job requests, work files, data files, and

execution files for the UUCP host site.

/usr/spool/uucp/.Status/site

Status file for the remote UUCP host site. uustat queries the status file with

the –q option.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Argument list too long

v Unable to open log file

v Log files

v Insufficient memory

v CTRL-C interrupt
2 Unknown command-line option.

Portability

X/Open Portability Guide, UNIX systems.

Related Information

uucp, uulog, uuxqt

uuto — Copy files to users on remote UUCP systems

Format

uuto [–mp] file ... destination

Note: The uuto utility is fully supported for compatibility with older UNIX systems.

However, because it is no longer supported by POSIX.2 IEEE standard

uustat

Chapter 2. Shell command descriptions 751

1003.2-1992, this utility should be avoided for applications intended to be

portable to other UNIX- branded systems.

Description

uuto is a simplified method of using uucp to copy a file, or files, to a user on

another system. file is a file, or files, on your system. The destination has the

following form:

system!user

where system is a system known to uucp and user is the login name of a user on

the remote system. You can use uuname to list the names of the remote system

known to uucp. Make sure to enter the user name in the proper case. Otherwise,

the recipient will not be able to use uuto to receive the files you have sent.

uuto sends files to the UUCP public directory on the remote system. In particular,

the files are sent to the directory:

pubdir/receive/user/sendsystem

where pubdir is the UUCP public directory, user is the user’s name specified in the

destination, and sendsystem is the name of the sending system.

The recipient is notified by mail when the files arrive. If several files are sent, the

recipient is notified when the last file arrives. Depending on the nature of the remote

system, the recipient may move files from this directory using the uupick utility or

by using the usual system copy commands.

Options

–m Sends the user a note when the copy is completed.

–p Places files in spool directory before transfer to remote system.

Localization

uuto uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_LCTIME

v NLSPATH

See Appendix F for more information.

Files

uuto uses the following files:

/usr/lib/uucp/config

The configuration file for UUCP contains the list of systems that uucp

knows about. This configuration file is compiled from a number of text

configurations using the uucc utility. (See uucc for more information.)

/usr/spool/uucppublic

The public UUCP directory.

uuto

752 z/OS V1R9.0 UNIX System Services Command Reference

Usage notes

1. uuto is a shell script.

2. uuto does not convert files to ASCII. If you use uuto to send a file to an ASCII

system, it will have to be converted to ASCII after it has been sent.

Portability

X/Open Portability Guide, UNIX systems.

Related Information

uucc, uulog, uupick, uustat, uux

uux — Request command execution on remote UUCP systems

Format

uux [–bCcjnprz] [–g grade] [–x debug_level] [site!] commandstring

Description

uux specifies that commandstring be run on another site. If files required to run the

command are on different sites, uux generates the UUCP requests to gather the

files together on one site, runs the command, and sends the standard output of the

command to a file on a specified site.

commandstring is any valid command for the remote site, with arguments, except

that the command and any filenames can specify a site in the UUCP manner:

site1!command site2!file1

where site1 is the name of the site where the command is to be run, and site2 is

the name of the site where file1 is.

v If you do not specify any site names, then the command and any files are

assumed to reside at your site.

v If you specify a site for the command, but not for the files, then the files are

assumed to reside on the same site named for the command.

v If you specify a site for some of the files, then those files without a site name are

assumed to reside on the site named.

site must be a valid site name, as listed by the uuname command. Specifying

multiple site names, such as site1!site2!command or site1!site2!file is not allowed

for uux

Pipes of commands are valid, but only the first command in a pipeline can have a

site name. All other commands in the pipeline take place on the site specified for

the first command.

Filenames can have one of these forms:

v A full pathname.

v A pathname preceded by ~name/, where ~name is replaced on the specified

site by the login directory of user name.

v A pathname preceded by ~/, where ~/ is replaced on the specified site with the

name of the public UUCP directory.

v A filename or prefix name containing the current directory on your machine as a

prefix.

uuto

Chapter 2. Shell command descriptions 753

Unlike arguments to uucp, pathnames cannot contain the shell metacharacters ?, *,

and [].

Nonlocal filenames must be unique within the command, or the command fails. This

is because nonlocal files are copied to a working directory on the remote site; if the

filenames are not unique, one overwrites another.

If the command fails, you are notified by electronic mail.

Options

–b Mails input back to the user. The contents of stdin are sent back to the

user if the command fails.

–C Copies named files to the spool directory for transfer. If both this option and

the –c option are given, this option takes precedence. This option is useful

if you will be making changes to the file after running the uux command

and want to send the version of the file before you changed it.

–c Does not copy files to the spool directory for transfer. This is the default.

–g grade

Sets the priority of the job to grade. It is a number (0–9) or a letter (A–Z,

a–z), where 0 is the highest priority and z is the lowest.

–j Passes the UUCP job ID number to standard output. This job ID can be

used with uustat to determine the job’s status or to terminate it. If the uux

request generates several job IDs, only the last is shown.

–n Does not send mail if the command fails.

–p Uses standard input of uux as the standard input for the specified

command. The input is stored in a temporary file that is passed to the

command when it runs.

–r Queues the job to be processed later. Do not start uucico to begin

transferring the file.

–x debug_level

Sets the verbosity of the debugging information to debug_level, which is a

number that is 0 or greater. Level 0 provides terse messages while level 9

provides verbose messages. Values greater than 9 give no additional

information. The default level is 0.

–z Returns notification of success to the user who issued the uux command.

 Commands on remote sites are actually run by uuxqt in its own directory,

/usr/spool/uucp/.Xqtdir.

Special Characters

The command string passed to uux can use the shell metacharacters <, >, ;, and │.

If any of these characters are not valid for the command interpreter on the

destination system, the command fails.

More complex redirection, such as 2>, is not handled by uux because the 2 is

interpreted as a parameter to the preceeding command). Only the simple

metacharacters listed are allowed.

To escape a filename or quoted string, use parentheses. Parentheses pass the

filename to the command on the remote site without special interpretation by uux.

uux

754 z/OS V1R9.0 UNIX System Services Command Reference

For example, the following command will not do what you expect because “hello”

will be treated as a file unless enclosed in parentheses.

uux "Remote!echo hello >test.out"

The correct way to enter that command is:

uux "Remote!echo (hello) >test.out"

Examples

1. Suppose that a neighboring site, south, has a program called laser for printing

and formatting documents. You have execute permission for laser. To print the

file inventor.y in south’s public UUCP directory using south’s laser program:

uux south!laser ' ~/inventor.y'

The tilde needs protection from shell expansion.

To print the file report.001 in your public UUCP directory:

uux south!laser ! ~/report.001

2. Suppose you have execute permission for uucp on south. To request that south

use uucp to copy the file index from its public UUCP directory to west, a

neighbor of south:

uux south!uucp \(~/index\) \(west! ~/\)

The arguments ~/index and west! ~/ are not interpreted by uux because of

the parentheses. The backslashes are necessary to escape the parentheses on

the z/OS shell.

Security

uux is potentially a security risk to your system. UUCP minimizes the risk by

allowing you to specify the commands that can be run by each remote site. (See

the section on Permissions files in z/OS UNIX System Services Planning for more

information.)

For electronic mail, each remote site must be able to execute a mail routing agent

on your site. Further permissions can be granted at your discretion.

Localization

uux uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

See Appendix F for more information.

Files

uux uses the following files:

/usr/lib/uucp/config

UUCP configuration file

/usr/spool/uucp/site

Subdirectory containing queued job requests, work files, data files, and

execution files for the UUCP host site.

/usr/spool/uucp/LOGFILE

Log file for uux and other UUCP utilities.

uux

Chapter 2. Shell command descriptions 755

/usr/spool/uucp/.Sequence/sitename

Sequence file containing the 4-digit sequence number of the last job

queued. If uux requires a sequence number, it is based on the value in this

file. If this file does not exist, uux creates it with the sequence number

0000. sitename is the name of a remote site; each remote site has its own

sequence number.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Argument list too long

v Inability to open log file

v Insufficient memory

2 Unknown command-line option

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –g, –p, –r, and –x options are extensions to the POSIX standard. They are

retained for compatibility with other UNIX UUCP implementations.

Related Information

uucc, uucico

uuxqt daemon — Carry out command requests from remote UUCP

systems

Format

uuxqt [–c command_name] [–s site] [–x debug_level]

Description

The uuxqt daemon carries out the command requests made on other sites by mail

programs, news programs, or by the uux command.

uuxqt is automatically started after uucico completes. Additionally, cron can be

used to start uuxqt at predetermined times.

Options

–c command_name

Processes only requests to run command_name.

–s site Runs only commands requested by site.

–x debug_level

Sets the verbosity of the debugging information to debug_level, which is a

number, 0 or greater. Level 0 provides terse messages while level 9

provides verbose messages. Values greater than 9 give no additional

information. The default level is 0.

uux

756 z/OS V1R9.0 UNIX System Services Command Reference

Examples

To run all of the commands requested by the remote site north:

uuxqt –s north

Usage notes

1. The uuxqt command is a security risk on all sites, because it allows outside

access to your computer. UUCP limits the danger by setting execute

permissions for every site in the configuration file. See the topic on Permissions

files in z/OS UNIX System Services Planning for more information.

2. uuxqt checks the command requests from each site against the list of allowed

commands and either runs them or sends a mail message that says:

Permission denied

Localization

uuxqt does not use localization environment variables.

Files

uuxqt uses the following files:

/usr/lib/uucp/config

UUCP configuration file

/usr/spool/uucp/.Xqtdir

This file contains permissions for UUCP sites.

/usr/spool/uucp/.Sequence/sitename

Sequence file containing the four-digit sequence number of the last job

queued. If uuxqt requires a sequence number (for example, to mail a

message), it is based on the value in this file. If this file does not exist,

uuxqt creates it with the sequence number 0000. sitename is the name of a

remote site; each remote site has its own sequence file.

/usr/spool/uucp/site

Subdirectory containing commands from the UUCP host site (as well as all

work files and data files associated with site). The format of the execute

files is described in uucp.

/usr/spool/uucp/.Xqtdir

Working directory for uuxqt. All required files are copied here before uuxqt

runs a command.

Exit Values

0 Successful completion

1 Failure because of any of the following:

v Argument list too long

v Unable to open log file

v Insufficient memory

v Ctrl-C interrupt
2 Unknown command-line option

Portability

X/Open Portability Guide

Some UUCP systems produce execute files with command lines that are not

supported by uuxqt.

uuxqt daemon

Chapter 2. Shell command descriptions 757

Related Information

uucc, uucp, uux

vi — Use the display-oriented interactive text editor

Format

 vi [–elRrsv] [–c command] [–t tag] [–w size] [file ...]

 vi [–elRrsv] [+command] [–t tag] [–w size] [file ...]

These symbols are used throughout this command description:

Ctrl-L followed by a single letter indicates the control character transmitted by

holding down the Ctrl key and the letter key at the same time.

BACKSPACE indicates the real backspace key. This may differ from the Ctrl-H key.

ENTER indicates the ENTER key, which is labeled RETURN on some keyboards.

ESCAPE indicates the Escape key.

INTERRUPT indicates the break key; often Ctrl-C.

→ indicates the right arrow key.

← indicates the left arrow key.

↓ indicates the down arrow key.

↑ indicates the up arrow key.

Description

vi has two components: a screen editor (vi), and a line editor (ex). Each has a

different set of commands. You can invoke the line editor from within the screen

editor. Conversely, you can invoke the screen editor from within the line editor.

In the screen editor, you are in either command mode or insert mode. In command

mode, every character you type is immediately interpreted as a command. In insert

mode, every character you type is added to the text that you are editing.

There are two ways to start your session in ex mode:

v Invoke the command under the name ex.

v Invoke it under the name vi but specify the –e option.

Similarly, there are two ways to start your session in vi mode:

v Invoke it under the name ex but specify the –v option.

v Invoke the command under the name vi (without specifying –e).

vi and ex work on text files. If a file contains the NUL character (value .0 or \0), it

is turned into the value 0x7F. The newline character is interpreted as a line

delimiter. Each line is limited to a maximum length of {LINE MAX}–1 bytes,

including the newline. Any lines exceeding that length are truncated at that length. If

the last line in the file does not end in a newline, a newline is added. In all those

cases, vi marks the file as modified and displays a message.

uuxqt daemon

758 z/OS V1R9.0 UNIX System Services Command Reference

Note: vi is available if you login to the shell with the rlogin command or via telnet.

It is not available if you login with the OMVS command.

Options

–c command

Runs command before displaying any text on the screen. command is any

ex command. You can specify multiple ex commands by separating them

with an or-bar (|) and enclosing them in quotes. The quotes ensure that the

shell does not interpret the | as a pipe character. For example:

–c 'set all | ver'

–e Invokes ex.

–l Sets lisp mode. The (and) commands use blocks of lisp code as their

context rather than sentences.

–R Sets the readonly variable, preventing the accidental overwriting of files.

Any command that writes to a file requires the ! suffix.

–r Tries to recover all files specified on the command line after a system or

editor crash. If you do not specify any files, vi displays a list of all

recoverable files.

–s Turns on quiet mode. This tells the editor not to print file information

messages, thus allowing ex to be used as a filter. Because the file isn’t

displayed, the editor doesn’t read the value of the TERM environment

variable. This option also keeps ex from reading any startup files (.exrc or

the file specified by EXINIT).

–t tag Searches for a tag in the same way that you use with the ex tag command

(described later).

–v Puts the editor into vi mode.

–w size

Sets the option variable window to size. See “Set Option Variables” on page

779 for more information.

+command

Is an obsolete version of the –c option.

Current Position Pointer

The current position marker indicates a position in the text that is currently being

edited (or has just been edited). In ex mode, the current position pointer is just the

line number of the line being edited. In vi mode, the pointer gives this line number

plus the position of the cursor within the line. The line indicated by the current

position pointer is always on the screen.

Display Conventions

vi uses three display conventions:

v vi displays the input for search commands (/ and ?), ex commands (:), and

system commands (!) on the bottom line of the screen. Error and informational

messages also appear on this line.

v If the last line in the file is above the bottom of the screen, screen lines beyond

the end of the file are displayed with a single ~character in column one.

v In certain infrequent circumstances (usually involving lines longer than the width

of the screen), vi is unable to fill the display with complete lines. In this case, one

or more screen lines are shown with a single @ character in column one.

vi

Chapter 2. Shell command descriptions 759

These lines are not part of the file content and should be ignored.

vi Command Summary

vi commands can be divided into several categories:

v Scrolling commands adjust the position of text on the screen. The current

position pointer only changes if the current line is scrolled off the screen. For

example, Ctrl-E scrolls the text on the screen up one line. The cursor remains

pointing to the same text that it was pointing to, unless that text is moved off the

screen.

v Movement commands move the cursor in the file. For example, the character j

moves the cursor down one line and the screen is scrolled only if necessary.

There are two types of movement commands:

– Absolute movement commands move the cursor, regardless of the nature of

the surrounding text. For example, j always moves the cursor down one line.

Absolute movement commands are listed in “Absolute Movement Commands”

on page 761.

– Context-dependent movement commands move move the cursor based on

the nature of the text; for example, w moves the cursor to the beginning of the

next word, so it must look at the text to determine where the next word

begins.

Context-dependent movement commands are listed in “Context-Dependent

Movement Commands” on page 762.

v Text insertion commands let you add new text to the existing text. They are listed

in “Text Insertion Commands” on page 766.

v Manipulation commands let you change the text that is already in the file. They

are listed in “Object Manipulator Commands” on page 764.

Scrolling Commands

vi scrolling and movement commands can be preceded by a decimal integer that

serves as a count, as in:

[count] command

count means different things with different commands. If you type count, it is not

displayed anywhere on the screen.

Ctrl-B Scrolls text back by a page, (that is, a screen), less two lines. The cursor is

placed on the bottom line of the screen. count specifies a number of pages

to scroll. The default value for count is 1.

Ctrl-D Scrolls text onto the bottom of the screen. The current position pointer

moves forward the same amount in the text, which means that the cursor

stays in the same relative position on the screen. If count is given, the

screen scrolls forward by the given number of lines; this number is used for

all future Ctrl-D and Ctrl-U commands (until a new count is given). The

default scrolling amount is half the screen.

Ctrl-E Scrolls a new line onto the bottom of the screen. The current position

pointer is not changed unless the current line scrolls off the top of the

screen; then the pointer is set to the top line. If count is given, the screen

scrolls forward the given number of lines. The default value for count is 1.

Ctrl-F Scrolls text forward a page (that is, a screen), less two lines. The cursor is

placed on the top line of the screen. count specifies the number of pages to

scroll. The default value for count is 1.

vi

760 z/OS V1R9.0 UNIX System Services Command Reference

Ctrl-U Scrolls text onto the top of the screen. The current position pointer moves

backward the same amount in the text, which means that the cursor stays

in the same relative position on the screen. count operates as for Ctrl-D.

The default scrolling amount is half the screen.

Ctrl-Y Scrolls a new line onto the top of the screen. The current position pointer is

not changed unless the current line scrolls off the bottom of the screen;

then the pointer is set to the bottom line. If count is given, the screen scrolls

backward the given number of lines. The default value for count is 1.

[n] z [m] type

Redraws the screen in a window of m lines. type determines the position of

the current line. If type is the newline character, the current line is placed at

the top of the window. If type is a period (.), the current line is placed in the

middle of the window. If type is a minus sign (–), the current line is placed

at the bottom of the window. If n is given, the current position pointer is first

set to that absolute line number; then the screen is positioned according to

type. If you omit n, it defaults to the current line. If you omit m, it defaults to

window. (See “Set Option Variables” on page 779.)

Absolute Movement Commands

All the following movement commands except m, 0, ^, `, and u can be preceded by

count to repeat the movement that many times.

G Moves to the absolute line number specified as count. As a special case, if

count is zero or is not specified, the cursor is moved to the last line of the

file.

h Moves the cursor one position to the left.

BACKSPACE

Moves the cursor one position to the left.

← Moves the cursor one position to the left.

Ctrl-H Moves the cursor one position to the left.

↓ Moves the cursor to the next line at the same column on the screen. Scroll

the screen one line if needed.

j Moves the cursor to the next line at the same column on the screen. Scroll

the screen one line if needed.

Ctrl-J Moves the cursor to the next line at the same column on the screen. Scroll

the screen one line if needed.

Ctrl-N Moves the cursor to the next line at the same column on the screen. Scroll

the screen one line if needed.

k Moves the cursor to the previous line at the same column on the screen.

Scrolls the screen up one line if needed.

↑ Moves the cursor to the previous line at the same column on the screen.

Scrolls the screen up one line if needed.

Ctrl-P Moves the cursor to the previous line at the same column on the screen.

Scrolls the screen up one line if needed.

l Moves the cursor one position to the right.

→ Moves the cursor one position to the right.

SPACE

Moves the cursor one position to the right.

vi

Chapter 2. Shell command descriptions 761

m Records the current position pointer under a mark name. A mark name is a

single lowercase letter, given immediately after the m. For example, the

command ma records the current location of the current position pointer

under the name a.

0 (Zero) Moves the cursor to the first character of the current line.

+ Moves the cursor to the first nonblank character on the next line. Scroll the

screen one line if needed.

Ctrl-M Moves the cursor to the first nonblank character on the next line. Scroll the

screen one line if needed.

– Moves the cursor to the first nonblank character on the previous line.

Scrolls the screen up one line if needed.

| Moves the cursor to the column number specified as count. This is a screen

column number, not a character offset. If a doublebyte character occupies

column positions 5 and 6, the command 6| moves the cursor to the

character that includes column 6.

 If count is greater than the length of the current line, vi moves the cursor to

the last character on the line. If the column indicated is spanned by a tab,

vi moves the cursor to the first character after the tab.

^ Moves the cursor to the first nonblank character of the current line.

$ Moves cursor forward to the end of a line. count specifies the number of

lines, including the current line, to move forward.

` When followed by a mark name, moves the cursor to the position that has

been associated with that name. The position is set by the m command. A

grave character followed by another grave character moves the cursor to

the previous context. The previous context is typically the last place where

you made a change. More precisely, the previous context is set whenever

you move the cursor in a nonrelative manner.

u Similar to the grave (`) character, except that the cursor is set to the first

nonblank character on the marked line.

Context-Dependent Movement Commands

vi defines a word as:

v A sequence of letters, digits, and underscores delimited at both ends by

characters that are not letters, digits, or underscores; the beginning or end of a

line; or the end of the editing buffer.

v A sequence of characters other than letters, digits, underscores, or white space

delimited at both ends by a letter, digit, underscore, white space, the beginning or

end of a line, or the end of the editing buffer.

vi defines a fullword as a a sequence of nonblank characters delimited at both ends

by blank characters (space, tab, newline) or by the beginning or end of a line or file.

B Moves the cursor back to the first character of the current fullword. If the

cursor is already at the beginning of a fullword, vi moves it to the first

character of the preceding fullword.

b Moves the cursor back to the first character of the current word. If the

cursor is already at the beginning of a word, vi moves it to the first

character of the preceding word.

vi

762 z/OS V1R9.0 UNIX System Services Command Reference

E Moves the cursor forward to the end of a fullword. If the cursor is already at

the end of a word, vi moves it to the last character of the next fullword.

e Moves the cursor forward to the end of a word. If the cursor is already at

the end of a word, vi moves it to the last character of the next word.

Fc Searches backward in the line for the single character c and positions the

cursor on top of it. When count is given, the editor searches back for the

count the such character.

fc Searches forward in the line for the single character c and positions the

cursor on top of it. When count is given, the editor searches for the count

the such character.

H Places the cursor on the first nonblank character of the top line of the

screen. count specifies the number of lines from the top of the screen.

L Places the cursor on the first nonblank character of the bottom line of the

screen. count specifies the number of lines from the bottom of the screen.

M Places the cursor on the first nonblank character of the middle line of the

screen.

N Repeats previous / or ?, but in the opposite direction.

n Repeats previous / or ?.

Tc Searches backward in the line for the character c and position the cursor

after the character being sought. count searches backward for the count the

matching character and then positions the cursor after the character being

sought.

tc Searches forward in the line for the character c and position the cursor on

the preceding character. count searches forward for the count the matching

character and then positions the cursor on the preceding character.

W Moves forward to the start of the next fullword.

w Moves forward to the start of the next word.

(Moves back to the beginning of the previous sentence. A sentence is

bounded by a period (.), exclamation mark (!), or question mark (?);

followed by any number of closing double quotes, ("), closing single quotes

(’), closing parentheses ()), or closing square brackets (]); followed by two

spaces or the end of the line. Paragraph and section boundaries are also

sentence boundaries; see [[and {.

 If you specified the lisp option, a lisp s-expression is considered a sentence

for this command.

) Moves forward to the beginning of the next sentence. See (for the

definition of a sentence.

 If you specified the lisp option, a lisp s-expression is considered a sentence

for this command.

{ Moves back to the beginning of a paragraph. A paragraph begins on a

blank line, a section boundary, or a text formatter macro in the paragraphs

variable.

} Moves forward to the beginning of the next paragraph. See { for the

definition of a paragraph.

[[Moves back to the beginning of a section. A section begins on lines starting

vi

Chapter 2. Shell command descriptions 763

with a form feed (Ctrl-L), starting with an open brace {, a text formatter

macro in the sections variable, or begin or end of file.

 If you specified the lisp option, a section boundary is also identified by a

line with a leading (.

]] Moves forward to the beginning of the next section. See [[for the definition

of a section.

 If you specified the lisp option, a section boundary is also identified by a

line with a leading (.

% Finds the balancing character to that under the cursor. The character

should be one of the following characters:

[{(< >)}].

; Repeats the previous F, f, T, or t command.

, Repeats the previous F, f, T, or t command in the opposite direction.

/regexp ,

Search forward in the file for a line matching the regular expression regexp

and position the cursor at the first character of the matching string. When

used with an operator to define a text range, the range begins with the

character at the current cursor position and ends with the first character of

the matching string. You can specify whole lines by following regexp with

/+n or /–n, where n is the offset from the matched line.

?regexp

Is similar to /, but searches backwards in the file.

Ctrl-] Uses the word after the cursor as a tag. (For information about tag, see

ex.)

Object Manipulator Commands

An object manipulator command works on a block of text. The command character

is followed immediately by any kind of movement command. The object that is

manipulated by the object manipulator command is the text from the current

position pointer to wherever the movement command would leave the cursor.

For example, in dL, d is the object manipulator command to delete an object. It is

followed by the movement command L which means move to the bottom line of the

screen. The object manipulated by the command thus extends from the current line

to the bottom line on the screen; these lines are deleted.

Normally an object extends up to, but not including, the position of the cursor after

the move command. However, some movements work in a line mode. For example,

L puts the cursor on the first nonblank character of the last line on the screen. If it

is used in an object manipulation command, it includes the entire starting line and

the entire ending line. Some other objects include the cursor position. For example,

d$ deletes up to and including the last character on a line; by itself the $ would

have placed the cursor on the final character. Repeating the command letter implies

working on a line basis; thus 5dd deletes five lines.

Objects that are deleted or otherwise manipulated have their original values placed

in a buffer, an area of computer memory that can hold text. There are several ways

this can be done:

vi

764 z/OS V1R9.0 UNIX System Services Command Reference

1. You can use a named buffer. Buffers are named with single lowercase letters.

To place an object in a buffer, type a double quote " followed by the buffer

name, followed by the object manipulator command, as in:

"adL

This deletes text from the current line to the bottom line on the screen and puts

the deleted text in buffer a. Usually, this sort of operation overwrites the current

contents of the buffer. However, if you use the same form but specify the buffer

name in uppercase, the object is appended to the current contents of the buffer.

For example:

"AdL

deletes from the current line to the bottom line on the screen, and adds the

deleted text to buffer a.

2. If you are deleting material and delete at least one full line, vi uses buffers

numbered 1 through 9. The first time a full line or more is deleted, the text is

placed in buffer 1. The next time, the old contents of 1 are copied to 2, and the

newly deleted text is put into 1. In the same way, deleted text continues to be

rippled through the nine numbered buffers. When text is rippled out of buffer 9,

it is gone for good.

3. In all other cases, the object manipulated goes to the unnamed buffer. For

example, the unnamed buffer is used if you delete less than a line of text. The

unnamed buffer is like the other buffers, but doesn’t have a name.

Following are some examples of the use of buffers:

1. To delete text from the current cursor position through to the bottom of the

screen and place it into buffer 1 (this will also ripple numbered buffers), enter:

dL

2. To delete from the current cursor position through to the next position containing

(but not including) the string fred, and place the deleted text into buffer a, enter:

"ad/fred/+0

3. To delete the current word and place it into an unnamed buffer, enter:

dw

The following section lists the object manipulator commands.

c Deletes the object and enters insert mode for text insertion after the current

cursor position. If less than one line is changed, a dollar sign ($) is placed

on the final character of the object and typing goes directly over top of the

current object until the dollar sign ($) is reached. Additional text is inserted,

with the existing text shifting to make room for the new text.

d Deletes the object.

y Moves the object to the appropriate buffer; the source is not changed. This

can be used to duplicate or copy objects.

< Shifts the object left by the value of the variable shiftwidth. This operator

always works on a line basis. This command replaces all leading blanks

and tabs required for the new indent amount. count shifts count lines.

> Shifts the object right by the value of the variable shiftwidth. This operator

always works on a line basis. This command replaces all leading blanks

and tabs required for the new indent amount. count shifts count lines.

! Filters the object through an external command. After typing the object, the

command line opens up for a system command which is parsed in the

vi

Chapter 2. Shell command descriptions 765

same manner as the ex system command (:!). This operator then invokes

the given command and sends the entire object on a line basis to that

command. The object is then deleted and the output from the command

replaces it. For example, 1G!Gsort moves to the first line of the file; then

takes all the text from the first line to the last line and runs it through the

sort command. The output of sort then replaces the original text.

Object Manipulator Abbreviations

To make things easier, the following shorthand commands are equivalent to the

shown object manipulations. Each can be preceded by count or by a buffer name to

save the manipulated text.

C Changes to the end of the current line. This is equivalent to the c$

command.

D Deletes to the end of the current line. This is equivalent to the d$

command.

s Substitute the character. This is equivalent to the cl command.

S Substitute the line. This is equivalent to the cc command.

x Deletes the current character. This is equivalent to the dl command.

X Deletes the previous character. This is equivalent to the dh command.

Y Yanks the current line. This is equivalent to the yy command.

Text Insertion Commands

Text insertion commands let you add new text to existing text.

A Enters insert mode at end of line. This is equivalent to the $a command.

a Enters insert mode after the current cursor position.

I Enters insert mode before first nonblank character on line. This is

equivalent to the ^i command.

i Enters insert mode before the current cursor position.

O Opens up a new line before the current line and enters insert mode on it.

o Opens up a new line after the current line and enters insert mode on it.

R Replaces characters on the screen with characters typed up to the next

ESC. Each character typed overlays a character on the screen. The

newline character is an exception; it is simply inserted and no other

character is replaced. While you are doing this, the screen may not

correspond exactly to the contents of the file, because of such things as

tabs. The screen is updated when you leave insert mode.

r Replaces the character under the cursor with the next character typed.

When count is given, count characters following the cursor to the new

character are changed. If count is given and the newline character is the

replacement character, count characters are deleted (as usual) and

replaced with a single newline character, not count newlines.

Miscellaneous Commands

J Joins count lines together. If you do not specify count, or count is less than

2, vi uses a count of 2, joining the current line and the next line. This

command supplies appropriate spacing: one space between words, two

spaces after a period, and no spaces at all when the first character of the

vi

766 z/OS V1R9.0 UNIX System Services Command Reference

line is a). When a line ends with white space, vi retains the white space,

does not add any further spaces, and then appends the next line.

p Same as p except that text is pasted before the cursor instead of after it.

P Put buffer contents before the cursor. Also called a paste operation. If

preceded by quote buffername (for example, “b), the contents of that buffer

are used; otherwise the contents of the unnamed buffer are used. If the

buffer was created in ex mode, the contents of the buffer are inserted

before the current line. If the buffer was created in vi mode, the contents

are inserted before the cursor. As a special case, if a paste operation is

repeated with the period (.) command and it used a numbered buffer, the

number of the buffer is incremented. Thus, “1p ..., pastes in the contents of

buffer 1 through buffer 6; in other words the last six things that were deleted

are put back.

Q Switches to ex mode. You leave vi mode and the ex prompt is shown on

the bottom line of the screen.

U Undoes all changes to current line. As soon as you move off a line or

invoke an ex command on the line, the original contents of the line are

forgotten and U is not successful.

u Undoes last change. If repeated, you undo the undo (that is, go back to

what the text was before the undo). Some operations are treated as single

changes; for example, everything done by a global G is undone with undo.

ZZ Writes the file out, if changed, and then exits.

. Repeats the last command. Any command that changes the contents of the

file can be repeated by this command. If you do not specify count with the .

command, vi uses the count that was specified for the command being

repeated.

~ Toggles the case of the character under the cursor and moves the cursor

right by one. This command can be preceded by count to change the case

of count characters.

& Repeats the previous ex substitute command, using the current line as the

target. Flags set by the previous command are ignored. Equivalent to the

ex command &.

: Invokes a single ex command. The editor places the cursor on the bottom

line of the screen and displays a colon (:) to prompt for input. You can then

type one or more ex commands; when you press ESC or a RETURN, the

line you have entered is passed to ex and executed there.

@ Invokes a macro. When the next character is a letter from a through z, vi

treats it as the name of a buffer. The contents of that buffer are treated as

input typed to vi. The text of a macro may contain an @ calling another

macro. A macro may call itself, provided it is invoked at the end of the

macro (tail recursion). Such a macro executes forever or until an error

occurs or the INTERRUPT key is pressed. A macro that invokes itself at the

beginning (head recursion) loops until it runs out of memory. A vi error

terminates all currently executing macros. All changes made during a macro

call are treated as a unit and may be undone with a single u command.

= Reindents the specified line as though they were set via lisp and

autoindent-set, if the lisp option was specified.

vi

Chapter 2. Shell command descriptions 767

Ctrl-G Displays the current pathname, current line number, total number of lines in

the file, and the percentage of the way through the file. This is equivalent to

the ex command file.

Ctrl-L Redraws the screen assuming another process has written on it. This

should never happen unless a filter ! command writes to the screen rather

than the standard output.

Ctrl-R Redraws the screen, removing any deleted lines flagged with the @

convention.

Ctrl-Z Stops the editor and returns you to system level. You can return to the

editor with the fg command; however, when you resume a vi session in this

way, all of the session’s buffers are empty. The jobs command lists all the

stopped vi jobs. The amount of available memory limits the number of vi

sessions that may be stopped at one time (see fg and jobs).

Ctrl-^ Switches to editing the alternate file (see ex for an explanation of write). If

you attempt this and you have not written out the file since you made the

most recent change, vi does not switch to the alternate file.

Insert Mode Commands

The object manipulation command c, and the text insertion commands [AaIiOoRr]

put vi into INSERT mode. In this mode, most characters typed are inserted in the

file. The following characters have special meaning.

Ctrl-D Decrements the autoindent for the current line by one level. This is only

relevant if the variable autoindent is on.

Ctrl-H Deletes the last typed character. The character is not removed from the

screen; however it is no longer in your file. When you backspace over

characters, new text overwrites the old ones. You are permitted to

backspace to the start of the current line regardless of where you started to

insert text. (This is not true of some other versions of vi.)

BACKSPACE

Deletes the last typed character. The character is not removed from the

screen; however it is no longer in your file. When you backspace over

characters, new text overwrites the old ones. You are permitted to

backspace to the start of the current line regardless of where you started to

insert text. (This is not true of some other versions of vi.)

Ctrl-J Ends the current line and starts a new one.

Ctrl-M Ends the current line and starts a new one.

RETURN

Ends the current line and starts a new one.

Ctrl-Q Inserts the following character literally, instead of using its special meaning.

You could use this to escape, say, the ESC character itself. It is impossible

to insert a Ctrl-J or the null character in your line.

Ctrl-V Inserts the following character literally, instead of using its special meaning.

You could use this to escape, say, the ESC character itself. It is impossible

to insert a Ctrl-J or the null character in your line.

Ctrl-T Increments the autoindent for the current line by one level. This is only

relevant if the variable autoindent is on.

Ctrl-W Deletes the word preceding the cursor and blanks. Although the characters

are not removed from the screen, they are no longer in your file.

vi

768 z/OS V1R9.0 UNIX System Services Command Reference

Ctrl-@

If this is the first character typed after entering insert mode, the previously

typed insert mode contents are repeated. After this, you exit insert mode.

Only up to 256 characters from the previous insertion are inserted.

ESC Leaves insert mode.

INTERRUPT

Leaves insert mode.

ex Command Mode

vi enters ex command mode if the program is invoked with the –e option or if the Q

command is issued from vi. You can issue a single ex command from vi using the :

command.

An ex command takes the general form:

[address-list] [[command] [!] [parameters]]

Each part is optional and may be invalid for some commands. You can specify

multiple commands on a line by separating them with an or-bar |.

address-list

Commands can take zero, one, or two addresses. The address % is a short

form to indicate the entire file. You can omit any or all of the addresses. In

the command descriptions to follow, the addresses shown are the

addresses that the commands use by default. Possible default addresses

are:

[.,.] Indicates a two-address line range defaulting to the current line.

[1,$] Indicates a two-address line range defaulting to the entire file.

[.+1] Indicates a single address defaulting to the next line.

address

An address refers to a line in the text being edited. An address can be an

expression involving the following forms:

. The value of dot; that is, the current line.

n A line number indicating an absolute line in the file; the first line has

absolute line number 1.

$ The last line in the file.

+[n] n lines forward in the file. If you omit n, it defaults to 1.

–[n] n lines backward in the file. If you omit n, it defaults to 1.

’x The value of the mark x.

/pat/ Search for regular expression pat forward from the current line.

?pat? Search for regular expression pat backwards from the current line.

Thus:

/pattern/+3

++

100

are three addresses: the first searches for a pattern and then goes three

lines further; the second indicates two lines after dot; and the third indicates

the 100th line in the file.

vi

Chapter 2. Shell command descriptions 769

command

The command is a word, which can be abbreviated. Characters shown in

square brackets are optional. For example:

a[ppend]

indicates that the append command can be abbreviated to simply a.

! Some commands have a variant; this is usually toggled with an exclamation

mark (!) immediately after the command.

parameters

Many ex commands use parameters to allow you to specify more

information about commands. Common parameters include:

buffer Specifies one of the named areas for saving text.

count Is a positive integer, specifying the number of lines to be affected

by the command. If you do not specify count, it defaults to 1.

file Is the pathname for a file. If file includes the % character, vi

replaces that character with the pathname of the current file. If file

includes the # character, vi replaces that character with the

pathname of the alternate file. If you do not specify a file, the

default is the current file.

flags Indicate actions to be taken after the command is run. It can consist

of leading plus (+) and minus (–) signs to adjust the value of the

current line indicator, followed by p, l, or # to print, list, or number a

line. Thus:

.+5 delete 6 ++#

deletes starting five lines down from dot; six lines are deleted; the

current line indicator is set to the following line, then incremented

by two; and that line is printed with its line number.

Regular Expressions and Replacements

Many ex commands use regular expressions when searching and replacing text. A

regular expression (indicated by pat in the command descriptions) is used to match

a set of characters.

A regular expression consists of a string of normal characters that exactly match

characters in a line. These can be intermixed with special characters (known as

metacharacters), which allow matching in some special manner. Metacharacters

can themselves be matched directly by preceding them with the backslash (\)

character. If the variable magic is turned off, all but two of the metacharacters are

disabled; in this case, the backslash character must precede them to allow their use

as metacharacters. See Appendix C, “Regular Expressions (regexp),” on page 885

for examples.

Summary of Regular Expressions

^ Matches the start of a line. This is only a metacharacter if it is the first

character in the expression.

$ Matches the end of a line. This is only a metacharacter if it is the last

character in the expression.

. Matches any single character.

* Matches zero or more occurrences of the previous expression.

vi

770 z/OS V1R9.0 UNIX System Services Command Reference

\< Matches the empty string preceding the start of a word. A word is a series

of alphanumeric or underscore characters preceded by and followed by

characters that are not alphanumeric or underscore.

\> Matches the empty string following the end of a word. A word is a series of

alphanumeric or underscore characters preceded by and followed by

characters that are not alphanumeric or underscore.

[string]

Matches any of the characters in the class defined by string. For example,

[aeiouy] matches any of the vowels. You can put a range of characters in a

class by specifying the first and last characters of the range, with a hyphen

(-) between them. For example, in ASCII [A–Za–z] matches any upper or

lowercase letter. If the first character of a class is the caret (^), the class

matches any character not specified inside the square brackets. Thus, in

ASCII [a–z_][^0–9] matches a single alphabetic character or the

underscore, followed by any nonnumeric character.

\(...\) A set of characters in the pattern can be surrounded by escaped

parentheses. See “Summary of Replacement Patterns” for a discussion of

the \n replacement pattern. This is not affected by the setting of magic.

~ Matches the replacement part of the last substitute command.

 A replacement (indicated by repl in the command descriptions) describes what to

put back in a line for the set of characters matched by the regular expression.

Summary of Replacement Patterns

& Is replaced by the entire string of matched characters.

~ Is replaced by the entire replacement pattern from the last substitute.

\n Is replaced by the string that matched the nth occurrence of a \(...\) in the

regular expression. For example, consider:

s/\([a-zA-Z]*\)our/\1or/

The \1 represents the string that matched the regular expression

\([a-zA-Z]*\). Thus the previous command might change the word colour to

color.

\u Turns the next character in the replacement to uppercase.

\l Turns the next character in the replacement to lowercase.

\U Turns the following characters in the replacement to uppercase.

\L Turns the following characters in the replacement to lowercase.

\E, \e Turns off the effects of \U or \L.

ex Commands

You can enter these commands as shown in ex mode. In vi mode, they must be

preceded by the colon (:) character.

ab[breviate] lhs rhs

Indicates that the word lhs should be interpreted as abbreviation for rhs.

(See “Context-Dependent Movement Commands” on page 762 for the

definition of word.) If you enter lhs surrounded by white space in vi INSERT

mode, it is automatically changed into rhs. If you do not specify any

vi

Chapter 2. Shell command descriptions 771

arguments for the ab command, it displays the abbreviations that are

already defined. Abbreviated names cannot contain # or any other form of

punctuation.

[.] a[ppend][!]

Enters ex INSERT mode. Text is read and placed after the specified line.

An input line consisting of one period (.) leaves INSERT mode. If you

specify an address of zero, text is inserted before the first line of the file.

The current line indicator points to the last line typed.

 If an exclamation mark (!) is specified, the autoindent option is toggled

during input. This command cannot be invoked from vi mode.

ar[gs] Displays the current list of files being edited. The current file is shown

enclosed by square brackets.

cd[!] path

Changes the current directory to path. If you omit path, cd sets the current

working directory to the directory identified by the HOME variable. If path is

a relative pathname, cd searches for it using the directories specified in the

CDPATH variable. If path is –, then cd changes to the previous working

directory. If you modified the buffer since the last write, vi displays a

warning message. You can override this behavior by including the

exclamation mark (!).

[.,.] c[hange][!] [count]

Deletes the line range given and then enters INSERT mode. If an

exclamation mark (!) is specified, autoindent is toggled during input. You

cannot invoke this command from vi mode.

chd[ir][!] [path]

Same as cd.

[.,.] co[py] addr [flags]

Copies the line range given after addr. If addr is zero, the lines are inserted

before the first line of the file. The current line indicator points to the last

line of the inserted copied text.

[.,.] d[elete] [buffer] [count] [flags]

Deletes the specified line range. After the line range is deleted, the current

line indicator points to the line after the deleted range. A buffer can be

specified as a letter a–z. If so, deleted lines are saved in the buffer with that

name. If an uppercase letter is specified for buffer, the lines are appended

to the buffer of the corresponding lowercase name. If no buffer name is

given, deleted lines go to the unnamed buffer.

e[dit] [!] [+line] [file]

Begins a new editing session on a new file; the new file replaces the old file

on the screen. This command is usually invalid if you have modified the

contents of the current file without writing it back to the file. Specifying an

exclamation mark (!) goes on to start a new session even you have not

saved the changes of the current session.

 You can specify line as either a line number or as a string of the form

/regexp or ?regexp where regexp is a regular expression. When line is a

line number, the current line indicator is set to the specified position. When

it has the form /regexp, vi searches forward through the file for the first

occurrence of regexp and sets the current line indicator to that line. ?regexp

is similar to /regexp except that vi searches through the file backwards. If

you omit line and do not specify a file, the value of the current line indicator

does not change. Otherwise, if a file is specified, the current line indicator is

vi

772 z/OS V1R9.0 UNIX System Services Command Reference

set to either the first or last line of the buffer, depending on whether the

command was issued in vi or ex mode.

ex[!] [+line] [file].

Begins a new editing session on a new file; the new file replaces the old file

on the screen. This command is usually invalid if you have modified the

contents of the current file without writing it back to the file. Specifying an

exclamation mark (!) goes on to start a new session even you have not

saved the changes of the current session.

 You can specify line as either a line number or as a string of the form

/regexp or ?regexp where regexp is a regular expression. When line is a

line number, the current line indicator is set to the specified position. When

it has the form /regexp, vi searches forward through the file for the first

occurrence of regexp and sets the current line indicator to that line. ?regexp

is similar to /regexp except that vi searches through the file backwards. If

you omit line and do not specify a file, the value of the current line indicator

does not change. Otherwise, if a file is specified, the current line indicator is

set to either the first or last line of the buffer, depending on whether the

command was issued in vi or ex mode.

f[ile] [file]

Changes the current file name to file and marks it [Not edited]. If this file

exists, it cannot be overwritten without using the exclamation mark (!)

variant of the write command.

[1,$] g[lobal] [!] /pat/ [commands]

Matches pat against every line in the given range. On lines that match, the

commands are run. If the exclamation mark (!) variant is set, the

commands are run on lines that do not match. This is the same as using

the vi command.

 The global command and the undo command cannot occur in the list of

commands. A subsequent undo command undoes the effect of the entire

global command. In ex mode, multiple command lines can be entered by

ending all but the last with a backslash (\). Commands that will take input

are permitted; the input is included in the command list, and the trailing

period (.) can be omitted at the end of the list. For example:

g/rhino/a\

hippo

appends the single line hippo to each line containing rhino. delim is an

arbitrary, nonalphabetic character. The total length of a global command list

is limited (see “Limits” on page 787).

[.] i[nsert][!]

Enter ex INSERT mode, reads text and places it before the specified line.

Otherwise, this is identical to the append command. This command cannot

be entered from vi mode.

[.,.+1] j[oin][!] [count] [flags]

Joins together the lines of text within the range. Unless an exclamation

mark (!) is specified, all white space between adjacent joined lines is

deleted. Two spaces are provided if the previous line ended in a period, no

spaces if the joined line begins with a opening parenthesis, and one space

otherwise.

[.] k x Synonymous with the mark command.

vi

Chapter 2. Shell command descriptions 773

[.,.] l[ist] [count] [flags]

Displays the line range in a visually unambiguous manner. This command

displays tabs as ^I, and the end of lines as $. The only useful flag is #, for

line numbering. The current line indicator points to the last line displayed.

map[!] lhs rhs

This defines macros for use in vi. The lhs is a string of characters;

whenever that string is typed exactly, vi behaves as if the string rhs had

been typed. If lhs is more than one character long, none of the characters

are echoed or acted on until either a character is typed that isn’t in the lhs

(in which case all the characters up to that point in the lhs are run) or the

last character of lhs is typed. If the variable remap is set, rhs itself can

contain macros. If the flag ! is specified, the map applies within vi INSERT

mode; otherwise it applies to command mode. A map command with no

arguments lists all macros currently defined.

[.] ma[rk] x

Records the specified line as being marked with the single lowercase letter

x. The line can then be addressed at any point as ’x.

[.,.] m[ove] [addr] [flags]

Moves the specified line range after the addr given. If addr is zero, the text

is moved to the start of the file. The current line indicator is set to the last

line moved.

n[ext][!] [+command] [file ...]

Begins editing the next file in the file list (where the file list was either

specified on the command line or in a previous next command). If the

current file has been modified since the last write, ex usually prevents you

from leaving the current file. You can get around this by specifying an

exclamation mark (!). If the autowrite is set, the current file is written

automatically and you go to the next file. If a list of files is specified, they

become the new file list. If necessary, expressions in this list are expanded.

Thus:

next *.c

sets the file list to all the files in the current directory with names ending in

.c (typically C source files).

[.,.] nu[mber] [count] [flags]
[.,.] # [count] [flags]
 Displays the specified line range with leading line numbers. The current line

indicator points to the last line displayed.

[.] o[pen] [pat] [flags]

Enters open mode, which is simply vi mode with a oneline window. If a

match is found for the regular expression pat in the specified line, then the

cursor is placed at the start of the matching pattern.

pre[serve]

Saves the current buffer in a form that can later be recovered using the –r

option on the recover command. vi sends you mail telling you that you can

recover this file and explains how to do so.

[.,.] p[rint] [count] [flags]

Displays the specified line range. The current line indicator points to the last

line displayed.

vi

774 z/OS V1R9.0 UNIX System Services Command Reference

[.] pu[t] [buffer]

Pastes deleted or yanked lines back into the file after the given line. If no

buffer name is given, the most recently changed buffer is used.

 Because the edit command does not destroy buffers, you can send that

command in conjunction with put and yank to move text between files.

q[uit][!]

Exit from vi or ex. If the current file has been modified, an exclamation

mark (!) must be used or you cannot exit until you write the file.

[.] r[ead] [!][file]

Reads the contents of file and inserts them into the current file after the

given line number. If the line number is 0, the contents of the given file are

inserted at the beginning of the file being edited. If the current filename is

not set, a file must be given, and it becomes the current file name;

otherwise, if a file is given, it becomes the alternate file name. If the file

begins with an exclamation mark (!), then it is taken as a system

command. Pipes are used to read in the output from the command after the

given line number.

rec[over] file

Attempts to recover file if it was saved as the result of a preserve

command or a system or editor crash. If you do not specify file, this

command displays a list of all recoverable files.

rew[ind][!]

Rewinds the file argument list back to the beginning and starts editing the

first file in the list. If the current file has been modified, an exclamation mark

(!) must be specified; otherwise, you cannot leave the current file until you

have written it out. If autowrite is set, the current file is written out

automatically if it needs to be.

se[t] [parameter-list]

Assigns or displays the values of option variables, If you do not specify a

parameter list, set displays all the variables with values that have changed

since the editing session started. If the parameter all is specified, ex

displays all variables and their values. You can use the parameter list to set

or display each of many variable values. Each argument in the list is a

variable name; if it is a Boolean variable, the value is set on or off

depending on whether the name is prefixed by no. Non-Boolean variables

alone in an argument are a request to display their values. A Boolean

variable’s value can be displayed by following the name by a question mark

(?). You can set numeric or string variables with:

name=value

In a string variable, spaces must be preceded by a backslash. For example:

set readonly? noautowrite shell=/bin/sh

shows the value of the readonly flag, sets noautowrite, and sets the shell

to /bin/sh.

set report report=5

shows the value of the report variable, and then set the value to 5. See

“Set Option Variables” on page 779 for more details.

sh[ell] Invokes a child shell. The environment variable SHELL is used to find the

name of the shell to run.

vi

Chapter 2. Shell command descriptions 775

so[urce] file

Runs editor commands from file. A file being executed with source can

contain source commands of its own.

st[op] Suspends the editor session and returns to system level. For more

information, see the description of the vi command Ctrl-Z.

[.,.] s[ubstitute] [/pat/repl/] [options] [count] [flags]

Searches each line in the line range for the regular expression pat and

replaces matching strings with repl.

 Normally, ex only replaces the first matching string in each line. If options

contains g [global], all matching strings are changed.

 If options contains c [confirm], ex first prints the line with caret (^)

characters marking the pat matching location; you can then type y if you

want ex to go ahead with the substitution. pat cannot match over a line

boundary; however in ex mode, repl can contain a newline, escaped by a

preceding backslash (\). See Appendix C, “Regular Expressions (regexp),”

on page 885 for full information on both pat and repl. If there is no pat or

repl, ex uses the most recently specified regular expression or replacement

string. You can use any nonalphabetic character in place of the slash (/) to

delimit pat and repl.

su[spend]

This is synonymous with the stop command.

[.,.] t addr [flags]

This is synonymous with the copy command.

ta[g][!] tagname

Looks up tagname in the files listed in the variable tags. If the tag name is

found in a tags file, that file also contains the name of the file that contains

the tag and a regular expression required within that file to locate that tag. If

the given file is different from the one you are currently editing, ex normally

begins editing the new file. However, if you have modified the current file

since the last time it was written out, ex does not start editing a new file

unless the tag command contains an exclamation mark (!). If autowrite is

on, the current file is automatically written out and the new file read in.

When the new file is read in, the regular expression from the tags file is

invoked with the magic variable off.

 Tag names are typically used to locate C function definitions in C source

files. The first step is to create a tags file using the ctags command. After

you do this, you can use the ex tag command to look up a particular

function definition and go directly to that definition in the file that contains it.

 All characters in tag names are significant unless the variable taglength is

nonzero; in this case, only the given number of characters are used in the

comparison.

una[bbreviate] lhs

The abbreviation lhs previously created by abbreviate is deleted.

u[ndo]

Undoes the last change or set of changes that modified the buffer. Globals

and vi macros are both considered as single changes that can be undone.

A second undo undoes the undo restoring the previous state. The edit

command cannot be undone, because it cleans up the temporary file which

is used to maintain undo information. You cannot undo operating system

commands and commands that write output to the file system.

vi

776 z/OS V1R9.0 UNIX System Services Command Reference

unm[ap][!] lhs

Deletes the lhs map. If the flag ! is used, this applies to the insert mode

maps; otherwise it applies to the command mode maps.

[1,$] v /pat/ commands

This is a synonym for the global command with the ! flag; that is, a global

for all nonmatching lines. You can use any nonalphabetic character to

delimit pat instead of the slash (/).

ve[rsion]

Displays the current version information for vi or ex.

[.] vi[sual] [type] [count] [flags]

Enters vi mode. If no type is specified, the current line is at the top of the

screen. If type is caret (^), the bottom line of the screen is one window

before the current line. If type is a minus sign, (–), the current line is at the

bottom of the screen. If type is a period (.), the current line is in the middle

of the screen.

 You can use the undo command to undo all the changes that occurred

during the vi command.

[1,$] w[rite][!] [>>] [file]

Writes the given range of lines to file. If two right angle brackets (>>) are

included, the lines are appended to the current contents of the file. If the

current file name is not set, a file must be given. This becomes the current

file name. Otherwise, file becomes the alternate filename if it is specified. If

the file begins with an exclamation mark (!), then it is taken as a system

command. vi writes the given range to the command through a pipe.

 If a file is given, it must not already exist. The variable readonly must not

be set. If a file is not given, the file must be edited; that is, it must be the

same file as that read in. All these conditions can be overridden by using

the flag !.

[1,$] wn[!] [>>] [file]

Similar to write, except that it begins editing the next file in the file list

immediately afterwards (if the write is successful).

[1,$] wq[!] [>>] [file]

Similar to write, except that it exits the editor immediately afterwards (if the

write is successful).

x[it] If you have modified the current file since the last write, performs a write

command using the specified range and file name and then terminates.

[.,.] y[ank] [buffer] [count]

Copies the given line range to the specified buffer (a letter from a through

z). If a buffer is not specified, the unnamed buffer is used. Buffers are not

destroyed by an edit command, so yank and put can be used to move text

between files.

 Because the edit command does not destroy buffers, you can use that

command in conjunction with put and yank to move text between files.

[.+1]z [type] [count] [flags]

Displays count lines. If no count is specified, ex uses the current value of

the scroll variable. The lines are displayed with the given line located

according to the type. If type is a plus sign (+), the editor displays the given

line and a screenful after that. If type is a period (.), the editor displays

screenful with the given line in the middle. If type is a minus sign (-), the

editor displays a screenful with the given line at the end. If type is a caret

vi

Chapter 2. Shell command descriptions 777

(^), the editor displays the screenful before that. If type is an equal sign (=),

the current line is centered on the screen with a line of hyphens printed

immediately before and after it. The current line indicator points to the last

line displayed.

[.,.] <[<...] [count] [flags]

Shifts the line range by the value of the shiftwidth variable. If there are

multiple left angle brackets (<), each one causes another shift. The current

line indicator points to the last line displayed. If a count is specified, that

many lines are shifted.

[.,.] >[>...] [count] [flags]

Shifts the line range right by the value of the shiftwidth variable. If there

are multiple right angle brackets (>), each one causes another shift. The

current line indicator points to the last line displayed. If a count is specified,

that many lines are shifted.

[range] ! command

Submits command to be run by the command interpreter named by the

SHELL variable. If range is given, the command is invoked with the

contents of that line range as input. The output from the command then

replaces that line range. Thus:

1,$!sort

sorts the entire contents of the file.

 Substitutions are made in command before it is run. Any occurrences of an

exclamation mark (!) are replaced by the previous command line, while

occurrences of percentage (%) and hash mark (#) characters are replaced

with the pathnames of the current and alternate files, respectively. If any

such substitutions actually take place, the new command line is displayed

before it is executed. (See the read and write sections in “ex Command

Mode” on page 769 for more information about the current and alternative

files.)

 If the file has been modified and the variable autowrite is on, the file is

written before calling the command. If autowrite is off, a warning message

is given.

[$] = Displays the given line number. The default line number is the last line of

the file. The current line indicator is not changed.

“ a line of text

This is a comment.

[.,.] & [options] [count] [flags]

Repeats the last substitute command. If any options, count, or flags are

specified, they replace the corresponding items in the previous substitute

command.

[.,.] ~ [options] [count] [flags]

Repeats the last substitute command. However, the regular expression

that is used is the last regular expression; that is, if there has been a

search, the search’s regular expression is used. The simple substitute with

no arguments, or the & command, uses the regular expression from the

previous substitute. substitute with an empty regular expression uses the

last regular expression, like ~. If any options, count, or flags are specified,

they replace the corresponding items in the previous substitute command.

vi

778 z/OS V1R9.0 UNIX System Services Command Reference

@ buffer

Executes each line in buffer as an ex command. If you do not specify buffer

or if you specify a buffer named @, the last buffer executed is used.

Ctrl-D Displays the number of lines of text given by the scroll variable. The

current line indicator points to the last line displayed.

Special Characters in ex Commands

When an ex command contains the percentage character (%), the character is

replaced by the name of the current file. For example, if you are about to try out a

macro and you are worried that the macro may damage the file, you could issue:

!cp % /tmp

to copy the current file to a safe holding place. As another example, a macro could

use the percentage character (%) to refer to the current file.

When an ex command contains the hash mark (#), the character is replaced by the

name of the alternate file. The name of the alternate file can be set with the read

command as described previously. Thus a command like:

e #

tells ex to edit the alternate file. Using an alternate file can be particularly

convenient when you have two files that you want to edit simultaneously. The

command just given lets you flip back and forth between the two files.

Set Option Variables

Options are set with the set command. For example:

set autowrite

sets the autowrite option. For options which are flags, i.e., are not numeric, the

variables can be turned off by putting no in front of the name in the set command,

as in:

set noautowrite

In the following list, variables that are off by default are preceded by no. The

minimal abbreviation of each option is shown after the comma. Default values are

shown after the equal sign (=).

autoflush, af

When this option is set, it holds the maximum number of seconds of data a

user would lose if a system crash occurs. vi will flush memory out to its

temporary files approximately this many seconds, unless no changes have

been made to the current edit buffer, or the user is sitting idle. It allows you

to eventually recover a more current representation of your edit buffer (after

the exrecover daemon and vi —r is run) because it intermittently updates

vi’s temporary files which are used by the exrecover daemon.

 Note the following:

v The default is set to 120 seconds (2 minutes).

v To turn off this option, set autoflush to 0.

v This option has no effect on read-only files.

v This option is different than the previous preserve option because it

works with vi’s temporary files (whose location is specified by the

environment variables: TMP_VI, TMPDIR or TMP) as opposed to

recovered files found in /etc/recover/$LOGNAME.

vi

Chapter 2. Shell command descriptions 779

autoindent, ai

When autoindent is on and you are entering text, the indentation of the

current line is used for the new line. In vi mode, you can change this

default indentation by using the control keys Ctrl-D (to shift left) or Ctrl-T to

shift right. In ex mode, a tab or spaces can be typed at the start of a line to

increase the indent, or a Ctrl-D can be typed at the start of the line to

remove a level. ^Ctrl-D temporarily removes the ident for the current line.

0Ctrl-D places the current line at a zero indent level, and the next line has

this indent level as well.

 The size of indent levels is defined by the variable shiftwidth.. Based on

this value and the value of tabstop, the editor generates the number of tabs

and spaces needed to produce the required indent level.

 The default is noautoident.

autoprint, ap

When this option is set in ex mode, the current line is printed after the

following commands: copy, delete, join, move, substitute, undo, &, ~, <,

and >. Automatic displaying of lines does not take place inside global

commands.

 The default is autoprint.

autowrite, aw

When this option is on, the current file is automatically written out if it has

been changed since it was last written and you have run any of the

following commands: next, rewind, tag, Ctrl-^ (vi), and Ctrl-] (vi). Using

an exclamation mark (!) with any of these commands stops the automatic

write.

 The default is noautowrite.

beautify, bf

When this option is on, the editor discards all nonprinting characters from

text read in from files.

 The default is nobeautify.

cdpath Used by cd to find relative pathnames when changing the directory. You

must delimit entries with a colon (:). If the current directory is to be included

in the search, it must be indicated by a dot (.). cdpath defaults to the

contents of the CDPATH environment variable if it exists, or to dot (.) if it

doesn’t.

directory, dir

The editor uses temporary files with unique names under the given

directory. Any error on the temporary files is fatal.

 The default is directory=tmp.

edcompatible

When this option is on, the editor attempts to make substitution commands

behave in a way that is compatible with the ed editor. The g and c options

on the substitute commands are remembered and toggled by their

occurrence. The r option uses the last regular expression rather than the

last substitute regular expression. Percentage mark (%) as the entire pattern

is equivalent to the previous pattern.

 The default is nocompatible.

errorbells, eb

When this option is on, vi precedes error messages with the alert character.

vi

780 z/OS V1R9.0 UNIX System Services Command Reference

When it is off, the editor warns you of an error by displaying a message

using a standout mode of your terminal (such as reverse video).

 The default is noerrorbells.

exrc When this option is on, ex and vi access any .exrc files in the current

directory during initialization. If it is off, ex and vi ignore such files unless

the current directory is the HOME directory.

home Used as the destination directory by cd. If no path is specified, home

defaults to the contents of the HOME environment variable if it exists, or to

the vi startup directory if it does not.

ignorecase, ic

When this option is on, the case of letters is ignored when matching strings

and regular expressions.

 The default is noignorecase.

linedelete

vi sets the line delete character automatically to the current terminal line

delete character, as specified by the user. Within vi, you can set the line

delete character with the linedelete variable. The value you specify is the

numeric value of the line delete character. The default is 0x15, the ASCII

value for Ctrl-U. Another popular value is 0x18 for Ctrl-X.

list When this option is on, tabs are displayed as a caret mark (^) rather than

expanded with blanks, and the ends of lines are indicated with a dollar sign

($).

 The default is nolist.

magic When this option is off (nomagic), regular expression characters ^ \ and $

become the only ones with special meanings. All other regular expression

metacharacters must be preceded by a backslash (\) to have their special

meaning.

 The default is magic.

maxbuffers

The number of K units (1024 bytes) of memory to be used for the editor

buffers. These are allocated in units of 16K.

 The default is maxbuffers=512, but if that is not available upon entry, this is

set to the number actually obtained. At least 32K is needed. This is in

addition to the code and data space required by vi; this may be as much as

128K. Changing maxbuffers has no effect.

mesg When this option is on, ex allows others to use the write or talk commands

to write to your terminal while you are in visual mode. The command

mesg n

overrides this variable (see mesg). This option has no effect on systems

not supporting mesg.

number, nu

When this option is on, line numbers are displayed to the left of the text

being edited.

 The default is nonumber.

paragraphs

This list of character pairs controls the movement between paragraphs in vi

mode. Lines beginning with a period (.) followed by any pair of characters

vi

Chapter 2. Shell command descriptions 781

in the list are paragraph boundaries (for example, .IP). Such lines are

typically commands to text formatters like nroff or troff.

 The default is paragraphs="IPLPPPQPP LIpplpipbp""

prompt When this option is on, ex command mode prompts with a colon (:). No

prompts are given if input is not being read from a terminal.

 The default is prompt.

pwd This is a read-only variable. The value always refers to the current working

directory, and can only be changed by the cd command.

quiet When this option is on, vi does not display file information messages.

 The default is set by the –s option.

readonly

When this option is on, vi does not let you write to the current file.

 The default is based on the permissions of the current file. If you do not

have write permission on this file, the default is readonly. Otherwise, the

default is set by the –R option.

remap If this option is on and a map macro is expanded, the expansion is

reexamined to see if it also contains map macros.

 The default is remap.

report The editor displays a message whenever you issue a command that affects

more than this number of lines.

 The default is report=5.

restrict

All filenames are restricted to the current directory. Subcommands cannot

be called. This variable is automatically set if you invoke the editor with a

command that starts with the letter r, as in rvi. When the option is turned

on, it cannot be turned off.

 The default is norestrict.

scroll This sets the number of lines to scroll for the z ex and Ctrl-D (ex)

commands.

 The default is the value of the variable window, divided by two.

sections

This list of character pairs controls the movement between sections in vi

mode. Lines beginning with a period (.) followed by any pair of characters

in the list are section boundaries (for example, .SH). Such lines are typically

commands to text formatters like nroff or troff.

 The default is sections="SHNHH HU"

shell, sh

This is the name of the command interpreter to be used for ! commands

and the shell command. The default value is taken from the SHELL

environment variable.

shiftwidth, sw

This sets the width of indent used by shift commands and autoindent.

 The default is shiftwidth=8.

showmatch, sm

If this option is on and you type a closing parenthesis or closing brace in

vi

782 z/OS V1R9.0 UNIX System Services Command Reference

input mode, the cursor moves to the matching open parenthesis or brace. It

stays there for about one second and then moves back to where you were.

This lets you note the relationship between opening and closing

parentheses/braces.

 The default is noshowmatch.

showmode

When this option is on, vi displays an indicator in the bottom right-hand

corner of the screen if you are in Insert/Open/Change/Replace mode. If no

indicator is displayed, you are in Command mode.

 The default is noshowmode.

tabstop

Tab stops for screen display in vi mode are set to multiples of this number.

 The default is tabstop=8.

taglength, tl

If this variable is nonzero, tags are only compared for this number of

characters.

 The default is taglength=0.

tags The value of this variable should be a list of file names separated by a

backslash (\) followed by a space. If there is no backslash before the

space, vi treats the second and subsequent tags as part of an

option=value combination. For example:

set tags=file1\ file2\ file3\

These are used by the tag ex command and the Ctrl-] vi command. The

files are typically created with the ctags program.

 The default is tags=tags.

term The value of this variable is the terminal type. The TERM environment

variable specifies this variable’s default value.

terse If this option is on, messages are displayed in a very abbreviated form. The

default is noterse.

warn When this option is on, commands with an exclamation mark (!) print a

warning message if the current file has been modified. No message is

printed if this option is off.

 The default is warn.

window This variable gives the number of text lines available in vi mode or the

default number of lines to display for the command.

 The default is given by the –w option. If it is not specified with the –w

option, its value defaults to the environment variable LINES or the value

found in the terminfo database for TERM.

wrapmargin wm

If this variable is nonzero in vi insert mode, when a line reaches this

number of characters from the right of the screen, the current word moves

down to the next line automatically; you don’t have to press ENTER.

 The default is wramargin=0.

vi

Chapter 2. Shell command descriptions 783

wrapscan, ws

If this option is off, forward searches stop at the end of the file and

backward searches stop at the beginning.

 The default is wrapscan

writeany, wa

If this option is off, the editor does not let a file marked [Not edited]

overwrite an existing file.

 The default is nowriteany.

Editor Initialization

Initialization code consists of one or more ex commands that run when the editor

starts up. Initialization code can be obtained in several ways:

1. If there is an environment variable named EXINIT with a nonnull value, it is

assumed to hold initialization code. vi executes this code using an ex source

command.

2. If EXINIT does not exist or has a null value, the editor tries to find a file named

.exrc. If you have an environment variable named HOME, the value of this

variable is assumed to be the name of your home directory. vi runs the .exrc

file using an ex source command.

3. If EXINIT variable or the $HOME/.exrc file sets the option variable exrc and if

there is a file named .exrc under the current directory, it is assumed to hold

initialization code. vi runs this code using an ex source command.

All .exrc files must be owned by the same user ID that invoked the vi command,

and must only be writable by that user ID. Typical permissions for a .exrc file would

be 744.

The .exrc file is read as if it were a sequence of keystrokes typed at the beginning

of an ex session. As a result, the contents of .exrc must be the same as the

characters you would type if you were in vi or ex. In particular, if the input contains

an unusual character (for example, a carriage return) that you would usually

precede with Ctrl-V, there must be a Ctrl-V in the .exrc file. If you are creating an

.exrc file with vi, you must type Ctrl-V Ctrl-V to put a Ctrl-V character into your

initialization file, then Ctrl-V followed by the special character to put the special

character into your initialization file. The .exrc file must show both Ctrl-V and the

special character. A command specified in the .exrc file may be ignored (treated as

a comment) by beginning that line with a double quote (″) character.

Files

vi uses the following files:

/tmp Directory used for temporary files if TMP_VI, TMPDIR and TMP are not

defined.

/tmp/VInnnnn.mmm

Temporary files.

.exrc Startup file.

Environment Variables

vi uses the following environment variables:

CDPATH

Contains a list of directories to be searched.

vi

784 z/OS V1R9.0 UNIX System Services Command Reference

COLUMNS

Contains the number of columns between the left and right margins (see

option variable wrapmargin). This is also used as the horizontal screen

size.

ENV Contains the pathname of a file containing KornShell commands. When you

invoke sh, it executes this file before doing anything else.

EXINIT

Contains a list of vi commands to be run when the editor is started up.

HOME Contains the directory to be searched for the editor startup file.

LINES Contains the number of lines in a screenful (see option variable windows).

This is also used as the vertical screen size.

PATH Contains a list of directories to be searched for the shell command specified

in the ex commands read, write, and shell.

SHELL

Contains the name of the command interpreter for use in !, shell, read,

write, and other ex commands with an operand of the form !string. The

default is the sh utility.

TERM Contains the name of the terminal type.

TERMINFO

Contains the pathname of the terminfo database.

TMPDIR

Contains the pathname that the shell uses as the directory for temporary

files.

TMP_VI

Contains a directory pathname that can be specified by an administrator as

a location for vi’s temporary files. This is useful if the current default

directory for these files (usually /tmp) is implemented as a TFS. In this

case, all vi’s temporary files that the exrecover daemon uses for recovery

would be gone after a system crash.

 We recommend that this environment variable be set by a system

administrator as opposed to a user setting it for their environment. If the

latter occurs, and the user sets the TMP_VI directory to something different

than what exrecover recognizes as TMP_VI, the user will need to run the

exrecover daemon manually to allow the temporary files to be converted to

the recoverable files used by vi (located in /etc/recover/$LOGNAME).

Note: A system administrator should NOT set TMP_VI to

/etc/recover/$LOGNAME. Also, the administrator should not set

TMP_VI to any directory where a pathname component is an

environment variable with a user’s value different than the init

process’s value (eg. $HOME). vi’s temporary files are converted into

a form recoverable by vi when exrecover is run during IPL. Since

exrecover is issued during IPL, it is owned by the init process and

will therefore contain different values for certain environment

variables, if those environment variables are set. Throughout the file

system, there may exist some temporary files that can only be

converted by exrecover. This conversion can be done manually by a

system administrator (to recover files owned by all users) or by a

single user (to recover only their own files).

vi

Chapter 2. Shell command descriptions 785

Localization

vi uses the following localization environment variables:

v LANG

v LC_COLLATE

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Unknown option

v No such command from open/visual

v Missing lhs

v Missing filename

v System does not support job control

v Write forms are w and w>>

v Internal error: bad seek pointer

v Internal error: Line out of range

v Internal error: line too long

v Nonzero address required on this command

v No lines in the buffer

v Nothing to undo

v Cannot escape a newline in global from visual

v Global command too long

v Argument list too long

v File is read only

v No previous command to substitute for !

v Command too long

v No previous regular expression

v Buffers are 1–9, a–z

v Line too long

v System does not support job control

v Digits required after =

v Nothing in buffer

v Missing rhs

v Too many macros

v Recursive map expansion

v Nothing to repeat

v Last repeatable command overflowed the repeat buffer

v Bad tag

v No tags file

v No such tag in tags file

v Negative address—first buffer line is 1

v Not an editor command

v Unimplemented ex command

v Wrong number of addresses for command

v Mark requires following letter

v Undefined mark referenced

v Global within global not allowed

v First address exceeds second

v Cannot use open/visual unless open option is set

vi

786 z/OS V1R9.0 UNIX System Services Command Reference

v Regular expression \ must be followed by / or ?

v No address allowed on this command

v No more files to edit

v No current filename

v Extra characters at end of command

v Not that many lines in buffer

v Insufficient memory

v Restricted environment

v Command too long

v Trailing address required

v Destination cannot straddle source in m and t

v No filename to substitute for %

v No alternate filename to substitute for #

v Filename too long

v Too many filenames

v Argument buffer overflow

v Incomplete shell escape command

v Regular expressions cannot be delimited by letters or digits

v No previous scanning regular expression

v No previous substitute to repeat

v Cannot escape newlines into regular expressions

v Missing [

v Badly constructed regular expression

v No remembered regular expression

v Line overflow in substitute

v Replacement pattern contains \d—cannot use in regular expression

v Replacement pattern too long

v Regular expression too complicated

v Cannot escape newline in visual

v No such set option

v String too long in option assignment

Limits

v Maximum number of lines: 65 279 (64K - 256 - 1).

v Length of longest line: 1K (1024) bytes including \r\n.

v Longest command line: 256 bytes.

v Length of filenames: 128 bytes.

v Length of string options: 64 bytes.

v Length of remembered regular expressions: 256 bytes.

v Number of map, map!, and abbreviate entries: 64 each.

v Number of saved keystrokes for . in vi: 128.

v Length of the lhs of map, map!, or abbreviate: 10 bytes.

v Max number of characters in a tag name: 30.

v Number of characters in a : escape from vi: 128.

v Requires 128K of memory plus the set option maxbuffers K of auxiliary memory.

During startup, maxbuffers is changed to reflect available memory; at least 32K

is required.

v Number of nested source files is 3.

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

vi

Chapter 2. Shell command descriptions 787

Related Information

ed, ex, fg, jobs, mesg, sed, talk, write

For more information about regexp, see Appendix C.

wait — Wait for a child process to end

Format

wait [pid|job-id ...]

tcsh shell: wait

Description

wait waits for one or more jobs or child processes to complete in the background. If

you specify one or more job-id arguments, wait waits for all processes in each job

to end. If you specify pid, wait waits for the child process with that process ID (PID)

to end. If no child process has that process ID, wait returns immediately.

If you specify neither a pid nor a job-id, wait waits for the process IDs known to the

invoking shell to complete.

wait in the tcsh shell

The tcsh shell waits for all background jobs. If the shell is interactive, an interrupt

will disrupt the wait and cause the shell to print the names and job numbers of all

outstanding jobs. See “tcsh — Invoke a C shell” on page 626.

Localization

wait uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Usage notes

wait is a built-in shell command.

Exit Values

If one or more arguments (pid or job-id) are specified, the exit status of wait is the

exit status of the last argument.

If you specified a job-id that has terminated or is unknown by the invoking shell, an

error message and a return code of 127 is returned. If you specified a pid that has

terminated or is unknown to the shell, a return code of 127 is returned. If a signal

ended the process abnormally, the exit status is a value greater than 128 unique to

that signal. Otherwise, possible exit status values are:

0 Successful completion or wait was invoked with no arguments, and all child

processes known to the invoking shell have completed.

1–126 An error occurred

127 A specified pid or job-id has terminated or is unknown by the invoking shell

vi

788 z/OS V1R9.0 UNIX System Services Command Reference

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

sleep, tcsh

wall — Broadcast a message to logged-in users

Format

wall [message]

Description

wall sends a message to all logged-in users. Type each line, pressing Enter after

each. After you finish typing the message, enter End-of-File or an interrupt (typically,

<EscChar-D> for End-of-File or <EscChar-C> for an interrupt, where EscChar is

normally the cent sign; if you use rlogin or telnet to enter the shell, you hold down

the Ctrl key while you press either D or C).

You must be a superuser to ensure permission to write to all the ttys that are

logged in. If you are not a superuser, then writes to all ttys will fail (except your

own) and those users will not receive the message. Superusers can also get

failures if the /etc/utmpx file does not correctly represent the users currently logged

in.

Recipients of the message receive a beep announcing the message. The message

is displayed in this form:

Broadcast Message from SWEHR@AQFT (ttyp0006) at 10:43:54 (EDT5EST)...

This is the text of the message line1.

This is line2.

Exit Values

0 wall successfully sent the message to all users.

1 Failure due to any of the following:

v No message was entered in response to the prompt.

v You do not have permission to write to a user’s terminal.

wc — Count newlines, words, and bytes

Format

wc [–c|–m] [–lw] [file ...]

Description

wc tells you how big a text document is. It counts the number of <newline>s,

words, characters, and bytes in text files. If you specify multiple files, wc produces

counts for each file, plus totals for all files.

Options

–c Prints a byte count. You cannot specify this option with –m.

–l Prints a <newline> count

wait

Chapter 2. Shell command descriptions 789

–m Prints a character count. You cannot specify this option with –c.

–w Prints a word count

The order of options can dictate the order in which wc displays counts. For

example, wc –cwl displays the number of bytes, then the number of words, then

the number of <newline>s. If you do not specify any options, the default is wc –lwc

(<newline> count, then words, then bytes).

A word is considered to be a character or characters delimited by white space.

Note: If you have a file containing doublebyte characters, the byte count is higher

than the character count.

Localization

wc uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure because of an inability to open the input file

2 Failure because of an incorrect command-line option

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The way the order of options –c, –l and –w affects the order of display is an

extension to traditional implementations of wc.

Related Information

awk, ed, vi

whence — Tell how the shell interprets a command name

Format

whence [–v] name ...

Description

whence tells how the shell would interpret each name if used as a command name.

Shell keywords, aliases, functions, built-in commands, and executable files are

distinguished. For executable files, the full pathname is given. If the executable file

is a tracked alias, the string identifies it as cached.

Options

–v Gives a more verbose report.

wc

790 z/OS V1R9.0 UNIX System Services Command Reference

Usage notes

whence is a built-in shell command.

Localization

whence uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Command name could not be found

2 Failure due to an incorrect command-line argument

Portability

POSIX.2.

Related Information

command, sh

who — Display information about current users

Format

 who[–AabdHilmprsTtuw] [file]

 who –q[file]

 who am I|i

Description

who displays information about users who are logged into the system. By default,

the output contains the user’s login name, terminal name, and the time that the user

logged in. Normally, who consults the file /etc/utmpx for information, but you can

use the file argument to specify another accounting file.

When called as:

who am i

or

who am I

who displays your login name, terminal, and login time. This command works only

in the POSIX locale.

Options

–A Displays all accounting entries.

–a Displays all types of entries. This is equivalent to specifying

–AbdHilprTtuw.

–b Displays all entries written at system boot time.

whence

Chapter 2. Shell command descriptions 791

–d Displays entries produced after the death of a process spawned from

/usr/sbin/init.

–H Displays column headings above the output.

–i Displays idle time for users. The idle time is the hours:minutes since the

last activity; a dot (.) means that the terminal has been used in the last

minute, and the string old means that the terminal has not been used in

more than 24 hours, or hasn’t been used since boot time.

–l Displays logged-out user entries.

–m Displays information about current terminal only.

–p Displays entries for processes spawned from /usr/sbin/init.

–q Displays a quick list with the number of users and their names; other

options are ignored.

–r Displays all run-level change entries.

–s Displays only the three fields user name, terminal, and time of entry.

–T Displays the state of each terminal as a plus sign (+) if the terminal allows

write access to other users, and a minus sign (–) if write access is denied.

who displays a question mark (?) if the write access cannot be determined.

–t Displays all time change entries (both old and new time).

–u Displays only entries associated with logged-in users. who enables this

option when you do not provide any options on the command line.

–w Displays the terminal state; this indicates whether the terminal can be

written to.

Files

who uses the following files:

/etc/utmpx

Current status file.

Localization

who uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_TIME

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

2 Failure because of an incorrect command-line option, or because of too

many command-line arguments.

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide.

who

792 z/OS V1R9.0 UNIX System Services Command Reference

The utmpx file format, the options, and the output of who are totally compatible

with UNIX System V.

The –A, –a, –b, –d –i, –l, –p, –r, –s, –t, –w, and am I options are extensions to the

POSIX standard.

Related Information

See the utmpx file format description in Appendix H for more information.

whoami — Display your effective user name

Format

whoami

Description

whoami displays a user name associated with the effective user ID. To display your

login name, use who am i.

For example, if you login as user1, then use the su command to change to user2:

command returned

who am I user1

whoami user2

Exit Values

0 Successful completion

1 Incorrect command line argument

2 Error getting effective username; Displays effective UID

Related Information

who, id

write — Write to another user

Format

write user_name [terminal]

Description

write lets you send a message directly to the terminal of someone else logged in to

the system.

Options

user_name

Specifies the user to whom you want to send your message.

terminal

Is an optional identifier for use when the other user is logged in on more

than one terminal. The format of the terminal name is the same as returned

by who.

who

Chapter 2. Shell command descriptions 793

Usage notes

1. When you issue a write command to send a message to another user, the

other user receives a message of the form:

Message from your_name (terminal) [date] ...

After the system establishes the connection to the other user, it sends two alert

characters (usually beeps) to your terminal to tell you that it is ready to send

your message. You can then type your message, which will appear on the other

user’s terminal. To end your message, enter end-of-file or an interrupt (typically,

<EscChar-D> for end-of-file or <EscChar-C> for an interrupt, where EscChar is

normally the cent sign; if you use rlogin or telnet to enter the shell, you hold

down the Ctrl key while you press either D or C). When write receives an

indication for end-of-message, it tells the other user that the message is over

and breaks the connection.

The other user can reply to your message with:

write your_user_name

However, if both of you are trying to write on each other’s terminal at the same

time, the messages may get interleaved on your screens, making them difficult

to read. For two-way conversations, use talk instead of write.

2. You can add the output of a command to the material that you write. To do this,

start a line with an exclamation mark (!) and put a standard system command

on the rest of that line. write calls your shell to execute the command, and

sends the standard output (stdout) from the command to the other user. The

other user does not see the command itself or any input to the command. For

example, you might write:

Here is what my file contains:

!cat file

3. The mesg command lets you refuse write messages. With:

mesg n

you can tell the system that you don’t want to be interrupted by write

messages. If people try to write to you, they are denied immediately; the

system does not inform you about such attempts. For further details, see mesg.

Localization

write uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 write successfully wrote a message, or the intended recipient used mesg

to refuse messages (either before you start sending a message or as you

are sending the message).

1 Failure due to any of the following:

v user_name is not signed on

v You do not have permission to write on that user’s terminal

v write cannot open the target terminal for writing

write

794 z/OS V1R9.0 UNIX System Services Command Reference

v The command line had an incorrect number of options

Portability

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information

mailx, mesg, talk, who

writedown — Set or display user’s write-down mode

Format

writedown –a | –d | –i [–p]

writedown –p

Description

writedown sets or displays the user’s write-down mode for the current address

space. Setting or querying the write-down mode is only allowed if multilevel security

is active and the user has ″write-down″ privilege. See z/OS Planning for Multilevel

Security and the Common Criteria for more information on multilevel security.

Options

–a Activate write-down mode. This allows the user to write data to a resource

protected by an multilevel security label of lower labeled classification than

the user’s seclabel.

–d Set the write-down mode from the default value in the user’s security

profile.

–i Inactivate write-down mode. This prevents the user from writing data to a

resource protected by a multilevel security seclabel of lower labeled

classification than the user’s seclabel.

–p Print the user’s current write-down mode setting to stdout. The output is

″active″ or ″inactive″. If used with –a, –d, or –i, the new value is displayed.

Usage notes

1. This command is only supported when the user has at least READ access to

the IRR.WRITEDOWN.BYUSER resource in the FACILITY class and SETR

MLS is active.

2. Write-down mode affects the current process’ address space. When the

write-down mode is changed, all processes running in the same address space

will get the new write-down setting, until the shell (where writedown was

invoked) exits.

3. writedown is a built-in shell command in sh and tcsh. It affects the security

setting for commands issued by the current shell, and by child processes, such

as shell scripts.

4. See z/OS Planning for Multilevel Security and the Common Criteria for more

information about write-down mode, multilevel security, and seclabels.

Exit Values

The exit values for /bin/sh are as follows:

0 Successful completion

write

Chapter 2. Shell command descriptions 795

1 Failure due to any of the following:

v SETR MLS is not active

v User does not have at least READ access to

IRR.WRITEDOWN.BYUSER resource in the FACILITY class

2 Command syntax error

The exit values for /bin/tcsh are as follows:

0 Successful completion

1 Failure due to any of the following:

v SETR MLS is not active

v User does not have at least READ access to

IRR.WRITEDOWN.BYUSER resource in the FACILITY class

v Command syntax error

Examples

1. To display your current write-down mode:

> writedown -p

inactive

2. To activate and display your current write-down mode:

> writedown -ap

active

Related Information

id, sh, tcsh

xlc — Compiler invocation using a customizable configuration file

Format

xlc | xlc_x | xlc_64

xlC | xlC_x | xlC_64

xlc++ | xlc++_x | xlc++_64

cc | cc_x | cc_64

c89 | c89_x | c89_64

c99 | c99_x | c99_64

cxx | cxx_x | cxx_64

c++ | c++_x | c++_64

Description

xlc is a utility that uses an external configuration file to control the invocation of the

compiler. xlc and related commands compile C and C++ source files. They also

process assembler source files and object files.

Note: Unless the -c option is specified, xlc calls the binder to produce an

executable module.

All commands accept the following input files with their default z/OS UNIX file

system and host suffixes:

UNIX System Services files:

v filename with .C suffix (C++ source file)

writedown

796 z/OS V1R9.0 UNIX System Services Command Reference

|

v filename with .c suffix (C source file)

v filename with .i suffix (preprocessed C or C++ source file)

v filename with .o suffix (object file for binder/IPA Link)

v filename with .s suffix (assembler source file)

v filename with .a suffix (archive library)

v filename with .p suffix (prelinker output file for the binder/IPA Link)

v filename with .I suffix (IPA Link output file for the binder)

v filename with .x suffix (definition side-file or side deck)

Host files:

v filename with .CXX suffix (C++ source host file)

v filename with .C suffix (C source host file)

v filename with .CEX suffix (preprocessed C or C++ source host file)

v filename with .OBJ suffix (object host file for the binder/IPA Link)

v filename with .ASM suffix (assembler source host file)

v filename with .LIB suffix (host archive library)

v filename with .CPOBJ suffix (prelinker output host file for the binder/IPA Link)

v filename with .IPA suffix (IPA Link output host file for the binder

v filename with .EXP suffix (host definition side-file or side deck)

Note: For host files, the host data set name must by preceded by a double slash

(//). The last qualifier of the data set name is .C instead of a file name with a

.C suffix.

The xlc utility invokes the assembler, the z/OS XL C/C++ compiler, and the binder.

Invocation of the compiler and the binder is described in “Invoking the compiler” on

page 806 and “Invoking the binder” on page 807.

Invocation commands

The xlc utility provides two basic compiler invocation commands, xlc and xlC

(xlc++), along with several other compiler invocation commands to support various

C/C++ language levels and compilation environments. In most cases, you would

use the xlc command to compile C source files and xlC (xlc++) command to

compile C++ source files.

You can however, use other forms of the command if your particular environment

requires it. The various compiler invocation commands for C are:

v xlc

v cc

v c89

v c99

v xlc_x

v cc_x

v c89_x

v c99_x

v xlc_64

v cc_64

v c89_64

v c99_64

xlc and xlC

Chapter 2. Shell command descriptions 797

|

|
|
|

The various compiler invocation commands for C++ are:

v xlC (xlc++)

v cxx

v c++

v xlC_x (xlc++_x)

v c++_x

v cxx_x

v xlC_64 (xlc++_64)

v c++_64

v cxx_64

The two basic compiler invocation commands appear as the first entry of each of

these list items. Select an invocation command using the following criteria:

xlc Invokes the compiler for C source files with a default language level of

ANSI, the compiler option -qansialias to allow type-based aliasing, and the

compiler option -qcpluscmt to allow C++ style comments (//).

xlC (xlc++)

Invokes the compiler so that source files are compiled as C++ language

source code.

 Files with .c suffixes, assuming you have not used the -+ compiler option,

are compiled as C language source code with a default language level of

ANSI, and compiler option -qansialias to allow type-based aliasing.

 If any of your source files are C++, you must use this invocation to link with

the correct run-time libraries.

cc Invokes the compiler for C source files with a default language level of

extended and compiler options -qnoro and -qnoroconst (to provide

placement of string literals or constant values in read/write storage).

 Use this invocation for legacy C code that does not require compliance with

ANSI C. This invocation is intended to provide the same compiler behavior

as when invoked by the cc command name of the c89 utility.

c89 Invokes the compiler for C source files, with a default language level of

ANSI, and specifies compiler options -qansialias (to allow type-based

aliasing) and -qnolonglong (disabling use of long long). Use this invocation

for strict conformance to the ISO/IEC 9899:1990 standard. This invocation

is intended to provide the same compiler behavior as when invoked by the

c89 command name of the c89 utility.

c99 Invokes the compiler for C source files, with a default language level of

STDC99 and specifies compiler option -qansialias (to allow type-based

aliasing). Use this invocation for strict conformance to the ISO/IEC

9899:1999 standard.

cxx/c++

cxx and c++ invoke the compiler for C++ language source code. Both are

intended to provide the same compiler behavior as when invoked using the

cxx and c++ command names of the c89 utility.

 You can combine the previously described command names with the following

suffixes:

_x Command invocations using command names with suffix _x are the same

as invocations using names without suffixes, except the -qxplink option is

xlc and xlC

798 z/OS V1R9.0 UNIX System Services Command Reference

also specified and appropriate XPLINK libraries are used in the link step. If

you are building an XPLINK application, you no longer need to use

command names with suffix _x to link with the correct run-time libraries.

This can be achieved through the new configuration attributes that have

been introduced to enable XPLINK behavior without the use of suffixes.

See “Configuration file attributes” on page 800 for further information.

_64 Command invocations using command names with suffix _64 are the same

as invocations using names without suffixes, except the -q64 option is also

specified and appropriate 64-bit libraries are used in the link step. If you are

building a 64-bit application, you no longer need to use command names

with suffix _64 to link with the correct run-time libraries. This can be

achieved through the new configuration attributes that have been introduced

to enable 64-bit behavior without the use of suffixes. See “Configuration file

attributes” on page 800 for further information.

Notes:

1. Suffixes are used as a naming convention and do not enforce behavior. The

content of the command line will take precedence over the suffixes.

2. When compiling and linking a C++ application using a single command line

invocation, the application will be correctly link edited with any stanza if at least

one C++ source file is specified on the command line. If only object files or a

mix of C sources and C++ object files are specified on the command line, a

C++ stanza must be used to correctly link edit the application.

Setting up the compilation environment

Before you compile your C and C++ programs, you must set up the environment

variables and the configuration file for your application. For more information on the

configuration file, see “Setting up a configuration file” on page 800.

Environment variables

You can use environment variables to specify necessary system information.

Before using the compiler, you must install the message catalogs and set the

environment variables:

LANG Specifies the national language for message and help files.

NLSPATH

Specifies the path name of the message and help files.

 The LANG environment variable can be set to any of the locales provided on the

system. See the description of locales in z/OS XL C/C++ Programming Guide for

more information.

The national language code for United States English may be En_US or C. If the

Japanese message catalog has been installed on your system, you can substitute

Ja_JP for En_US.

To determine the current setting of the national language on your system, see the

output from both of the following echo commands:

v echo $LANG

v echo $NLSPATH

The LANG and NLSPATH environment variables are initialized when the operating

system is installed, and may differ from the ones you want to use.

xlc and xlC

Chapter 2. Shell command descriptions 799

Setting up a configuration file

The configuration file specifies information that the compiler uses when you invoke

it. This file defines values used by the compiler to compile C or C++ programs. You

can make entries to this file to support specific compilation requirements or to

support other C or C++ compilation environments.

A configuration file is a UNIX file consisting of named topics called stanzas. Each

stanza contains keywords called configuration file attributes, which are assigned

values. The attributes are separated from their assigned value by an equal sign. A

stanza can point to a default stanza by specifying the ″use″ keyword. This allows

specifying common attributes in a default stanza and only the deltas in a specific

stanza, referred to as the local stanza.

For any of the supported attributes not found in the configuration file, the xlc utility

uses the built-in defaults. It uses the first occurrence in the configuration file of a

stanza or attribute it is looking for. Unsupported attributes, and duplicate stanzas

and attributes are not diagnosed.

Note: The difference between specifying values in the stanza and relying on the

defaults provided by the xlc utility is that the defaults provided by the xlc

utility will not override pragmas.

Configuration file attributes

A stanza in the configuration file can contain the following attributes:

as Path name to be used for the assembler. The default is /bin/c89.

asopt The list of options for the assembler and not for the compiler. These

override all normal processing by the compiler and are directed to

the assembler specified in the as attribute. Options are specified

following the c89 utility syntax.

asuffix The suffix for archive files. The default is a.

asuffix_host The suffix for archive data sets. The default is LIB.

ccomp The C compiler. The default is usr/lpp/cbclib/xlc/exe/ccndrvr.

cinc A comma separated list of directories or data set wild cards used to

search for C header files. The default for this attribute is:

-I//’CEE.SCEEH.+’. For further information on the list of search

places used by the compiler to search for system header files, see

the note at the end of this list of configuration file attributes.

classversion The USL class library version. The default matches the current

release, as described in the TARGET compiler option description in

z/OS XL C/C++ User’s Guide.

cppcomp The C++ compiler. The default is /usr/lpp/cbclib/xlc/exe/ccndrvr.

cppinc A comma separated list of directories or data set wild cards used to

search for C++ header files. The default for this attribute is:

-I//’CEE.SCEEH.+’,-I//’CBC.SCLBH.+’.For further information on the

list of search places used by the compiler to search for system

header files, see the note at the end of this list of configuration file

attributes.

csuffix The suffix for source programs. The default is c (lowercase c).

csuffix_host The suffix for C source data sets. The default is C (uppercase C).

cversion The compiler version. The default matches the current release, as

xlc and xlC

800 z/OS V1R9.0 UNIX System Services Command Reference

described in the TARGET compiler option description in z/OS XL

C/C++ User’s Guide. The oldest release supported is z/OS V1R6.

cxxsuffix The suffix for C++ source files. The default is C (uppercase C).

cxxsuffix_host

The suffix for C++ source data sets. The default is CXX.

exportlist A colon separated list of data sets with member names indicating

definition side-decks to be used to resolve symbols during the

link-editing phase. This attribute is only used for compatibility with

configuration files that are defined using the z/OS V1R6 release.

Attributes with an appropriate suffix should be used instead (see

descriptions for exportlist attributes with a suffix). The default for

this attribute should match the type of stanza for which it is

specified.

 Suffix-less C stanzas do not have a default.

 The default for suffix-less C++ stanzas is:

CEE.SCEELIB(C128N):CBC.SCLBSID(IOSTREAM,COMPLEX)

The default for C stanzas with an _x suffix is:

CEE.SCEELIB(CELHS003,CELHS001)

The default for C++ stanzas with an _x suffix is:

CEE.SCEELIB(CELHS003,CELHSCPP,CELHS001,C128):CBC.SCLBSID

(IOSTREAM,COMPLEX)

The default for C stanzas with a _64 suffix is:

CEE.SCEELIB(CELQS003)

The default for C++ stanzas with a _64 suffix is:

CEE.SCEELIB(CELQS003,CELQSCPP,C64):CBC.SCLBSID(IOSQ64)

exportlist_c A colon separated list of data sets with member names indicating

definition side-decks to be used to resolve symbols during the

link-editing phase of non-XPLINK C applications. The default for this

attribute is NONE.

exportlist_cpp

A colon separated list of data sets with member names indicating

definition side-decks to be used to resolve symbols during the

link-editing phase of non-XPLINK C++ applications. The default for

this attribute is:

CEE.SCEELIB(C128n):CBC.SCLBSID(IOSTREAM,COMPLEX)

exportlist_c_x

A colon separated list of data sets with member names indicating

definition side-decks to be used to resolve symbols during the

link-editing phase of XPLINK C applications. The default for this

attribute is:

CEE.SCEELIB(CELHS003,CELHS001)

exportlist_cpp_x

A colon separated list of data sets with member names indicating

definition side-decks to be used to resolve symbols during the

link-editing phase of XPLINK C++ applications. The default for this

attribute is:

xlc and xlC

Chapter 2. Shell command descriptions 801

CEE.SCEELIB(CELHS003,CELHSCPP,CELHS001,C128):CBC.SCLBSID

(IOSTREAM,COMPLEX)

exportlist_c_64

A colon separated list of data sets with member names indicating

definition side-decks to be used to resolve symbols during the

link-editing phase of 64-bit C applications. The default for this

attribute is:

CEE.SCEELIB(CELQS003)

exportlist_cpp_64

A colon separated list of data sets with member names indicating

definition side-decks to be used to resolve symbols during the

link-editing phase of 64-bit C++ applications. The default for this

attribute is:

CEE.SCEELIB(CELQS003,CELQSCPP,C64):CBC.SCLBSID(IOSQ64)

isuffix The suffix for C preprocessed files. The default is i.

isuffix_host The suffix for C preprocessed data sets. The default is CEX.

ilsuffix The suffix for IPA output files. The default is I.

ilsuffix_host The suffix for IPA output data sets. The default is IPA.

ixxsuffix The suffix for C++ preprocessed files. The default is i.

ixxsuffix_host

The suffix for C++ preprocessed data sets. The default is CEX.

ld The path name to be used for the binder. The default is /bin/c89.

ld_c The path name to be used for the binder when only C sources

appear on the command line invoked with a C stanza. The default

is: /bin/c89.

ld_cpp The path name to be used for the binder when at least one C++

source appears on the command line, or when a C++ stanza is

used. The default is: /bin/cxx.

libraries libraries specifies the default libraries that the binder is to use at

bind time. The libraries are specified using the -llibname syntax,

with multiple library specifications separated by commas. The

default is empty.

libraries2 libraries2 specifies additional libraries that the binder is to use at

bind time. The libraries are specified using the -llibname syntax,

with multiple library specifications separated by commas. The

default is empty.

options A string of option flags, separated by commas, to be processed by

the compiler as if they had been entered on the command line.

osuffix The suffix for object files. The default is .o.

osuffix_host The suffix for object data sets. The default is OBJ.

psuffix The suffix for prelinked files. The default is p.

psuffix_host The suffix for prelinked data sets. The default is CPOBJ.

pversion The run-time library version. The default matches the current

release, as described in the TARGET compiler option description in

z/OS XL C/C++ User’s Guide.

ssuffix The suffix for assembler files. The default is .s.

xlc and xlC

802 z/OS V1R9.0 UNIX System Services Command Reference

||
|
|
|

||
|
|
|

ssuffix_host The suffix for assembler data sets. The default is ASM.

steplib A colon separated list of data sets or keyword NONE used to set

the STEPLIB environment variable. The default is NONE, which

causes all programs to be loaded from LPA or linklist.

syslib A colon separated list of data sets used to resolve run-time library

references. Data sets from this list are used to construct the

SYSLIB DD for the IPA Link and the binder invocation for

non-XPLINK applications. For compatibility with configuration files

defined using the z/OS V1R6 release, this attribute is also used

with XPLINK applications as a fallback when the syslib_x attribute

is not specified. When the syslib_x attribute is not specified, the

default for this attribute should match the type of stanza for which it

is specified. When the syslib_x attribute is specified, the default for

this attribute matches the default for suffix-less stanzas.

 The default for suffix-less stanzas is:

CEE.SCEELKEX:CEE.SCEELKED:CBC.SCCNOBJ:SYS1.CSSLIB

The default for stanzas with _x and _64 suffixes is:

CEE.SCEEBND2:CBC.SCCNOBJ:SYS1.CSSLIB

syslib_x A colon separated list of data sets used to resolve run-time library

references. Data sets from this list are used to construct the

SYSLIB DD for the IPA Link and the binder invocation when

building XPLINK applications (31-bit and 64-bit).

 The default for this attribute is:

 CEE.SCEEBND2:CBC.SCCNOBJ:SYS1.CSSLIB

sysobj A colon separated list of data sets containing object files used to

resolve run-time library references. Data sets from this list are used

to construct the LIBRARY control statements and the SYSLIB DD

for the IPA Link and the binder invocation. This attribute is ignored

for XPLINK and 64-bit applications.

 The default is:

CEE.SCEEOBJ:CEE.SCEECPP

use Values for attributes are taken from the named stanza and from the

local stanza. For single-valued attributes, values in the use stanza

apply if no value is provided in the local, or default stanza. For

comma-separated lists, the values from the use stanza are added

to the values from the local stanza.

xlC The path name of the C++ compiler invocation command. The

default is /usr/lpp/cbclib/xlc/bin/xlc.

xlCcopt A string of option flags, separated by commas, to be processed

when the xlc command is used for compiling a C file.

xsuffix The suffix for definition side-deck files. The default is x.

xsuffix_host The suffix for definition side-deck data sets. The default is EXP.

Note: When using the xlc utility to invoke the compiler, the compiler uses the

following list of search places to search for system header files:

v If the -qnosearch option is not specified on the command line or in the

configuration file:

xlc and xlC

Chapter 2. Shell command descriptions 803

1. search places defined in the customizable defaults module

(CCNEDFLT)

2. followed by those specified on the command line using the -I flag

option

3. followed by those specified in the configuration file

v If the -qnosearch is specified only in the configuration file:

1. search places specified on the command line using the -I flag option

2. followed by those specified in the configuration file

v If the -qnosearch option is specified on the command line:

1. search places specified on the command line following the last

specified -qnosearch option

2. followed by those specified in the configuration file

Tailoring a configuration file

The default configuration file is installed in /usr/lpp/cbclib/xlc/etc/xlc.cfg.

You can copy this file and make changes to the copy to support specific compilation

requirements or to support other C or C++ compilation environments. The -F option

is used to specify a configuration file other than the default. For example, to make

-qnoro the default for the xlC compiler invocation command, add -qnoro to the xlC

stanza in your copied version of the configuration file.

You can link the compiler invocation command to several different names. The

name you specify when you invoke the compiler determines which stanza of the

configuration file the compiler uses. You can add other stanzas to your copy of the

configuration file to customize your own compilation environment.

Only one stanza, in addition to the one referenced by the ″use″ attribute, is

processed for any one invocation of the xlc utility. By default, the stanza that

matches the command name used to invoke the xlc utility is used, but it can be

overridden using the -F flag option as described in the example below.

Example: You can use the -F option with the compiler invocation command to

make links to select additional stanzas or to specify a stanza or another

configuration file:

xlC myfile.C -Fmyconfig:SPECIAL

would compile myfile.C using the SPECIAL stanza in a myconfig configuration file

that you had created.

Default configuration file

The default configuration file, (/usr/lpp/cbclib/xlc/etc/xlc.cfg.), specifies information

that the compiler uses when you invoke it. This file defines values used by the

compiler to compile C or C++ programs. You can make entries to this file to support

specific compilation requirements or to support other C or C++ compilation

environments. Options specified in the configuration file override the default settings

of the option. Similarly, options specified in the configuration file are in turn

overridden by options set in the source file and on the command line. Options that

do not follow this scheme are listed in “Specifying compiler options” on page 812.

Example: The following example shows a default configuration file:

*

* FUNCTION: z/OS 1.9 XL C/C++ Compiler Configuration file

*

xlc and xlC

804 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|
|

* Licensed Materials - Property of IBM

* 5694-A01 (C) Copyright IBM Corp. 2004, 2006

* All Rights Reserved

* US Government Users Restricted Rights - Use, duplication or

* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

*

* C compiler, extended mode

xlc: use = DEFLT

* XPLINK C compiler, extended mode

xlc_x: use = DEFLT

* 64 bit C compiler, extended mode

xlc_64: use = DEFLT

* C compiler, common usage C

cc: use = DEFLT

* XPLINK C compiler, common usage C

cc_x: use = DEFLT

* 64 bit C compiler, common usage C

cc_64: use = DEFLT

* Strict ANSI C 89 compiler

c89: use = DEFLT

* XPLINK Strict ANSI C 89 compiler

c89_x: use = DEFLT

* 64 bit Strict ANSI C 89 compiler

c89_64: use = DEFLT

* ISO/IEC 9899:1999 Standard Compliant C Compiler

c99: use = DEFLT

* XPLINK ISO/IEC 9899:1999 Standard Compliant C Compiler

c99_x: use = DEFLT

* 64 bit ISO/IEC 9899:1999 Standard Compliant C Compiler

c99_64: use = DEFLT

* ANSI C++ compiler

cxx: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

* XPLINK ANSI C++ compiler

cxx_x: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

* 64 bit ANSI C++ compiler

cxx_64: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

* ANSI C++ compiler

c++: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

* XPLINK ANSI C++ compiler

c++_x: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

xlc and xlC

Chapter 2. Shell command descriptions 805

* 64 bit ANSI C++ compiler

c++_64: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

* C++ compiler, extended mode

xlC: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

* XPLINK C++ compiler, extended mode

xlC_x: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

* 64 bit C++ compiler, extended mode

xlC_64: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

* C++ compiler, extended mode

xlc++: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

* XPLINK C++ compiler, extended mode

xlc++_x: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

* 64 bit C++ compiler, extended mode

xlc++_64: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

* common definitions

DEFLT: cppcomp = /usr/lpp/cbclib/xlc/exe/ccndrvr

 ccomp = /usr/lpp/cbclib/xlc/exe/ccndrvr

 ipacomp = /usr/lpp/cbclib/xlc/exe/ccndrvr

 as = /bin/c89

 ld_c = /bin/c89

 ld_cpp = /bin/cxx

 xlC = /usr/lpp/cbclib/xlc/bin/xlc

 xlCcopt = -D_XOPEN_SOURCE

 sysobj = cee.sceeobj:cee.sceecpp

 syslib = cee.sceelkex:cee.sceelked:cbc.sccnobj:sys1.csslib

 syslib_x = cee.sceebnd2:cbc.sccnobj:sys1.csslib

 exportlist_c = NONE

 exportlist_cpp = cee.sceelib(c128n):cbc.sclbsid(iostream,complex)

 exportlist_c_x = cee.sceelib(celhs003,celhs001)

 exportlist_cpp_x = cee.sceelib(celhs003,celhs001,celhscpp,c128):

cbc.sclbsid(iostream,complex)

 exportlist_c_64 = cee.sceelib(celqs003)

 exportlist_cpp_64 = cee.sceelib(celqs003,celqscpp,c64):cbc.sclbsid(iosx64)

 steplib = NONE

Invoking the compiler

The z/OS XL C/C++ compiler is invoked using the following syntax, where

invocation can be replaced with any valid z/OS XL C/C++ invocation command:

��

invocation

	

command_line_options

input_files

�

xlc and xlC

806 z/OS V1R9.0 UNIX System Services Command Reference

The parameters of the compiler invocation command can be names of input files,

compiler options, and linkage-editor options. Compiler options perform a wide

variety of functions such as setting compiler characteristics, describing object code

and compiler output to be produced, and performing some preprocessor functions.

To compile without binding, use the -c compiler option. The -c option stops the

compiler after compilation is completed and produces as output, an object file

file_name.o for each file_name.c input source file, unless the -o option was used

to specify a different object filename. The binder is not invoked. You can bind the

object files later using the invocation command, specifying the object files without

the -c option.

Notes:

1. Any object files produced from an earlier compilation with the same name as

expected object files in this compilation are deleted as part of the compilation

process, even if new object files are not produced.

2. By default, the invocation command calls both the compiler and the binder. It

passes binder options to the binder. Consequently, the invocation commands

also accept all binder options.

Invoking the binder

All invocation commands invoke the binder using the c89 utility, so all binder

options must follow the syntax supported by the c89 utility. Standard libraries

required to bind your program are controlled by the sysobj, syslib, and exportlist

attributes in the configuration file.

The specified object files are processed by the binder to create one executable file.

Invoking the compiler with one of the invocation commands, automatically calls the

binder unless you specify one of the following compiler options: -E, -c, -P,

-qsyntaxonly, -qpponly, or -#.

All input and output files supported by the c89 utility are valid for all invocation

commands.

Supported options

In addition to -W syntax for specifying keyword options, the xlc utility supports AIX

-q options syntax and several new flag options.

–q options syntax

The following principles apply to the use of z/OS option names with -q syntax:

v Any valid abbreviation of a z/OS option name that matches (in full or in part) the

spelling of the corresponding option on AIX, can be specified using -q syntax. For

example, ATTRIBUTE can be specified as -qatt, -qattr, -qattri, -qattrib,

-qattribu, -qattribut, and -qattribute. This is true even if the AIX option name is

longer, as in the case of -qbitfields, which can be specified as -qbitf, -qbitfi,

-qbitfie, -qbitfiel, -qbitfield, and -qbitfields. This is the common case that

applies to most z/OS options.

v Any z/OS-specific option name and its valid abbreviation can also be specified

using -q syntax; for example, DBRMLIB.

v Any z/OS option name that has a different spelling from the corresponding AIX

option name can not be specified using -q syntax. For example, CHECKOUT,

EXH, ILP32, LP64, SSCOMM, and TEST can not be specified using -q syntax.

Instead use, -qinfo, -qeh, -q32, -q64, -qcpluscmt, and -qdebug=format=isd.

For historical reasons, OBJECTMODEL and PHASEID are exceptions to this

xlc and xlC

Chapter 2. Shell command descriptions 807

principle, as both can be specified using -q syntax. However, -qobjmodel and

-qphsinfo should be used instead to enhance portability with AIX.

Options that do not exist on AIX, and are not required to accomplish a z/OS-specific

task, and their effect can be accomplished by other means, are not supported with

-q syntax. For example, use -D instead of DEFINE, -U instead of UNDEFINE, and

-co instead of OBJECT.

Suboptions with negative forms of -q options are not supported, unless they cause

an active compiler action, as in the case of -qnokeyword=<keyword>.

Compiler options for AIX that do not apply to z/OS are accepted and ignored with a

diagnostic message. For a brief description of the compiler options that can be

specified with xlc, type xlc or any other supported command name. For detailed

descriptions of the compiler options that can be specified with xlc, refer to z/OS XL

C/C++ User’s Guide.

The following syntax diagram shows how to specify keyword options using -q

syntax:

��

	

 -q option_keyword

:

=

suboption

 �

In the diagram, option_keyword is an option name and the optional suboption is a

value associated with the option. Keyword options with no suboptions represent

switches that may be either on or off. The option_keyword by itself turns the switch

on, and the option_keyword preceded by the letters NO turns the switch off. For

example, -qLIST tells the compiler to produce a listing and -qNOLIST tells the

compiler not to produce a listing. If an option that represents a switch is set more

than once, the compiler uses the last setting.

Some keyword options only have values. Keywords which have values are specified

as keyword=value pairs.

Example:

-qfloat=ieee

where ieee is a value.

Some keyword options have suboptions, which in turn have values. Suboptions

which have values are specified as suboption=value pairs.

Example:

-qipa=level=2

where level is a suboption and 2 is a value.

Keyword options and suboptions may appear in mixed case letters in the command

that invokes the xlc utility. Keyword options that have suboptions can also be

preceded by the letters NO in which case they are similar to off switches and do not

allow suboptions. This is a noticeable departure from the z/OS options, which allow

suboptions even if they are preceded by the letters NO. However, the function that

the z/OS behavior provides can easily be emulated by specifying all desired

xlc and xlC

808 z/OS V1R9.0 UNIX System Services Command Reference

suboptions with an option_keyword followed by the same option_keyword that is

preceded by the letters NO. The subsequent specification of the same

option_keyword unlocks all previously specified suboptions.

Example: NODEBUG(FORMAT(DWARF)) is equivalent to -qdebug=format=dwarf

-qnodebug

The compiler recognizes all AIX -q options, but only those that have a matching

z/OS native option are accepted and processed. All other AIX -q options are

ignored with an informational message.

Note: The GENASM compiler option is not supported with -q syntax. Use the -S

flag option instead, which is described in “Flag options syntax.”

Flag options syntax

Except for the -W, -D, and -U flag options, all flag options that are supported by the

c89 utility are supported by the xlc utility with the same semantics as ed in the c89

topic of z/OS XL C/C++ User’s Guide. The xlc utility does not recognize constructs

such as -Wl,I or -Wl,p. All other aspects of the -W flag are the same as with the

c89 utility. -D and -U flag options are not preprocessed by the xlc utility. Instead,

they are converted to the DEFINE and UNDEFINE native options and are passed to

the compiler. The xlc utility also supports several new flag options, which are

described below:

-# Displays language processing commands but does not invoke

them; output goes to stdout.

�� -# �

-B Determines substitute path names for programs such as the

assembler and binder, where program can be:

v a (assembler)

v c (z/OS XL C/C++ compiler)

v l (binder)

v L (IPA Link)

�� -B

prefix

-t

program
 �

Notes:

1. The optional prefix defines part of a path name to the new

programs. The compiler does not add a / between the prefix

and the program name.

2. To form the complete path name for each program, the xlc utility

adds prefix to the program names indicated by the -t option.

The program names can be any combination of z/OS XL C/C++

compiler, assembler, IPA Link and binder.

3. If -Bprefix is not specified, or if -B is specified without the

prefix, the default path (/usr/lpp/cbclib/xlc/bin/) is used.

4. -tprograms specifies the programs for which the path name

indicated by the -B option is to be applied.

xlc and xlC

Chapter 2. Shell command descriptions 809

|
|

5. -Bprefix and -tprograms options override the path names of

the programs that are specified inside the configuration file

indicated by the -Fconfig_file option.

Example: To compile myprogram.c using a substitute compiler

and binder from /lib/tmp/mine/, enter:

xlc myprogram.c -B/lib/tmp/mine/

Example: To compile myprogram.c using a substitute binder

from /lib/tmp/mine/, enter:

xlc myprogram.c -B/lib/tmp/mine/ -tl

-F Names an alternative configuration file (.cfg) for the xlc utility.

 Suboptions are:

v config_file (specifies the name of an xlc configuration file.)

v stanza (specifies the name of the command used to invoke the

compiler. This directs the compiler to use the entries under

stanza in the config_file to set up the compiler environment.)

�� -F config_file

:

stanza

:

stanza

 �

Notes:

1. The default configuration file supplied at installation time is

called /usr/lpp/cbclib/xlc/etc/xlc.cfg. Any file names or stanzas

that you specify on the command line override the defaults

specified in the /usr/lpp/cbclib/xlc/etc/xlc.cfg configuration file.

2. The -B, -t, and -W options override entries in the configuration

file indicated by the -F option.

Example: To compile myprogram.c using a configuration file called

/usr/tmp/mycbc.cfg, enter:

 xlc myprogram.c -F/usr/tmp/mycbc.cfg

-O Optimizes generated code.

�� -O �

-O2 Same as -O.

�� -O2 �

-O3 Performs some memory and compile time intensive optimizations in

addition to those executed with -O2. The -O3 specific optimizations

have the potential to alter the semantics of a user’s program. The

compiler guards against these optimizations at -O2 and the option

-qstrict is provided at -O3 to turn off these aggressive

optimizations.

�� -O3 �

-O4 Equivalent to -O3 -qipa and -qhot.

xlc and xlC

810 z/OS V1R9.0 UNIX System Services Command Reference

�� -O4 �

-O5 Equivalent to -O3 -qipa=level=2 and -qhot.

�� -O5 �

-P Produces preprocessed output in a file that has a suffix that is

defined by isuffix, isuffix_host, ixxsuffix, and ixxsuffix_host.

The default for host files is .CEX and for z/OS UNIX files is .i.

 As with the -E option, the -C option can be combined with the -P

option to preserve the comments.

-S Produces an assembler source file for C source that is compiled

with the METAL compiler option. The -o option can be used to

override the default file name produced by -S. The default file name

is the C source file name with the suffix determined by the ssuffix

and ssuffix_host attributes in the configuration file.

-t Adds the prefix specified by the -B option to the designated

programs, where programs are:

v a (assembler)

v c (z/OS XL C/C++ compiler)

v L (Interprocedural Analysis tool - link phase)

v l (binder)

��

	

-t

a

c

L

l

�

Note: This option must be used together with the -B option.

If -B is specified but the prefix is not, the default prefix is

/usr/lpp/cbclib/xlc/bin/. If -Bprefix is not specified at all, the prefix of

the standard program names is /usr/lib/cbclib/xlc/bin/.

 If -B is specified but -tprograms is not, the default is to construct

path names for all of the standard program names: a, c, L, and l.

 Example: To compile myprogram.c so that the name

/u/new/compilers/ is prefixed to the binder and assembler program

names, enter:

 xlc myprogram.c -B/u/new/compilers/ -tla

-W Passes the listed options to a designated compiler program where

programs are:

v a (assembler)

v c (z/OS XL C/C++ compiler)

v I (Interprocedural Analysis tool - compile phase)

v l (binder)

xlc and xlC

Chapter 2. Shell command descriptions 811

||
|
|
|
|

Note: When used in the configuration file, the -W option requires

the escape sequence back slash comma (\,) to represent a

comma in the parameter string.

��

	

	

-W

a

,

directory

c

I

l

�

Example: To compile myprogram.s so that the option map is

passed to the binder and the option list is passed to the

assembler, enter:

 xlc myprogram.s -Wl,map -Wa,list

Example: In a configuration file, use the \, sequence to

represent the comma (,):

 -Wl\,map,-Wa\,list

Specifying compiler options

Compiler options perform a wide variety of functions, such as setting compiler

characteristics, describing the object code and compiler output to be produced, and

performing some preprocessor functions. You can specify compiler options in one or

more of the following ways:

v On the command line

v In your source program

v In a configuration file

The compiler uses default settings for the compiler options not explicitly set by you

in these listed ways. The defaults can be compiler defaults, installation defaults, or

the defaults set by the c89 or the xlc utility. The compiler defaults are overridden by

installation defaults, which are overridden by the defaults set by the c89 or the xlc

utilities.

When specifying compiler options, it is possible for option conflicts and

incompatibilities to occur. z/OS XL C/C++ resolves most of these conflicts and

incompatibilities in a consistent fashion, as follows:

 Source overrides Command overrides Configuration overrides Default

 file -----------> line ----------> file -----------> settings

Options that do not follow this scheme are summarized in the following table:

 Table 35. Compiler option conflict resolution

Option Conflicting Options Resolution

-qxref -qxref=FULL -qxref=FULL

-qattr -qattr=FULL -qattr=FULL

-E -o -E

-# -v -#

-F -B | -t |-W | -qpath|

configuration file settings

-B| -t | -W |-qpath

xlc and xlC

812 z/OS V1R9.0 UNIX System Services Command Reference

Table 35. Compiler option conflict resolution (continued)

-qpath -B| -t -qpath overrides -B and -t

In general, if more than one variation of the same option is specified (with the

exception of xref and attr), the compiler uses the setting of the last one specified.

Compiler options specified on the command line must appear in the order you want

the compiler to process them.

If a command-line flag is valid for more than one compiler program (for example -B,

-W, or -I applied to the compiler, binder, and assembler program names), you must

specify it in options, or asopt in the configuration file. The command-line flags must

appear in the order that they are to be directed to the appropriate compiler

program.

Three exceptions to the rules of conflicting options are the -Idirectory or

-I//dataset_name, -llibrary, and -Ldirectory options, which have cumulative effects

when they are specified more than once.

Specifying compiler options on the command line

There are two kinds of command-line options:

v -qoption_keyword (compiler-specific)

v Flag options (available to z/OS XL C/C++ compilers in z/OS UNIX System

Service environment)

Command-line options in the -q option_keyword format are similar to on and off

switches. For most -q options, if a given option is specified more than once, the last

appearance of that option on the command line is the one recognized by the

compiler. For example, qsource turns on the source option to produce a compiler

listing, and -qnosource turns off the source option so that no source listing is

produced.

Example: The following example would produce a source listing for both

MyNewProg.C and MyFirstProg.C because the last source option specified

(-qsource) takes precedence:

 xlC -qnosource MyFirstProg.C -qsource MyNewProg.C

You can have multiple -q option_keyword instances in the same command line, but

they must be separated by blanks. Option keywords can appear in mixed case, but

you must specify the -q in lowercase.

Example: You can specify any -q option_keyword before or after the file name:

xlC -qLIST -qnomaf file.c

xlC file.c -qxref -qsource

Some options have suboptions. You specify these with an equal sign following the

-qoption. If the option permits more than one suboption, a colon (:) must separate

each suboption from the next.

Example: The following example compiles the C source file file.c using the option

-qipa to specify the inter procedural analysis options. The suboption level=2 tells

the compiler to use the full inter procedural data flow and alias analysis, map tells

the compiler to produce a report, and the noobj tells the compiler to produce only

an IPA object without a regular object. The option -qattr with suboption full will

produce an attribute listing of all identifiers in the program.

xlc and xlC

Chapter 2. Shell command descriptions 813

xlc -qipa=level=2:map:noobj -qattr=full file.c

Specifying flag options

The z/OS XL C/C++ compilers use a number of common conventional flag options.

Lowercase flags are different from their corresponding uppercase flags. For

example, -c and -C are two different compiler options:

v -c specifies that the compiler should only preprocess, compile, and not invoke

the binder

v -C can be used with -E or -P to specify that user comments should be preserved

Some flag options have arguments that form part of the flag.

Example:

 xlC stem.c -F/home/tools/test3/new.cfg:myc -qflag=w

where new.cfg is a custom configuration file.

You can specify flags that do not take arguments in one string.

Example:

 xlc -Ocv file.c

has the same effect as:

 xlc -O -v -c test.c

Specifying compiler options in a configuration file

The default configuration file, (/usr/lpp/cbclib/xlc/etc/xlc.cfg), specifies information

that the compiler uses when you invoke it. This file defines values used by the

compiler to compile C or C++ programs. You can make entries to this file to support

specific compilation requirements or to support other C or C++ compilation

environments.

Options specified in the configuration file override the default settings of the option.

Similarly, options specified in the configuration file are in turn overridden by options

set in the source file and on the command line.

Specifying compiler options in your program source files

You can specify compiler options within your program source by using #pragma

directives. Options specified with pragma directives in program source files override

all other option settings.

Specifying compiler options for architecture-specific 32-bit or

64-bit compilation

You can use z/OS XL C/C++ compiler options to optimize compiler output for use

on specific processor architectures. You can also instruct the compiler to compile in

either 32-bit or 64-bit mode.

The compiler evaluates compiler options in the following order, with the last

allowable one found determining the compiler mode:

1. Compiler default (32-bit mode)

2. Configuration file settings

3. Command line compiler options (-q32, -q64, -qarch, -qtune)

4. Source file statements (#pragma

options(ARCH(suboption),TUNE(suboption)))

xlc and xlC

814 z/OS V1R9.0 UNIX System Services Command Reference

The compilation mode actually used by the compiler depends on a combination of

the settings of the -q32, -q64, -qarch, and -qtune compiler options, subject to the

following conditions:

v Compiler mode is set according to the last-found instance of the -q32, or -q64

compiler options. If neither of these compiler options is chosen, the compiler

mode is set to 32-bit.

v Architecture target is set according to the last-found instance of the -qarch

compiler option, provided that the specified -qarch setting is compatible with the

compiler mode setting. If the -qarch option is not set, the compiler assumes a

-qarch setting of 5.

v Tuning of the architecture target is set according to the last-found instance of the

-qtune compiler option, provided that the -qtune setting is compatible with the

architecture target and compiler mode settings. If the -qtune option is not set, the

compiler assumes a default -qtune setting according to the -qarch setting in use.

Possible option conflicts and compiler resolution of these conflicts are described

below:

v -q32 or -q64 setting is incompatible with user-selected -qarch option.

Resolution: -q32 or -q64 setting overrides -qarch option; compiler issues a

warning message, sets -qarch to 5, and sets the -qtune option to the -qarch

setting’s default -qtune value.

v -q32 or -q64 setting is incompatible with user-selected -qtune option.

Resolution: -q32 or -q64 setting overrides -qtune option; compiler issues a

warning message, and sets -qtune to the -qarch settings’s default -qtune value.

v -qarch option is incompatible with user-selected -qtune option.

Resolution: Compiler issues a warning message, and sets -qtune to the -qarch

setting’s default -qtune value.

v Selected -qarch and -qtune options are not known to the compiler.

Resolution: Compiler issues a warning message, sets -qarch to 5, and sets

-qtune to the -qarch setting’s default -qtune setting. The compiler mode (32 or

64-bit) is determined by the -q32 or -q64 compiler settings.

xlC — C++ compiler invocation using a customizable configuration file

See xlc.

Note: When working in the shell, to view man page information about xlC, type:

man c89 or man xlc.

xlc++ — C++ compiler invocation using a customizable configuration

file

See xlc.

Note: When working in the shell, to view man page information about xlc++, type:

man c89 or man xlc.

xlc and xlC

Chapter 2. Shell command descriptions 815

|

|

|
|

|
|

|

|

|
|

xargs — Construct an argument list and run a command

Format

xargs [–I placeholder] [–i [placeholder]] [–L number] [–l [number]] [–n number]

[–ptx] [–E [eofstr]] [–e [eofstr]] [–s size] [command [argument ...]]

Description

The xargs command line typically contains the skeleton, or template, of another

command. This template looks like a normal command, except that it lacks some

arguments. xargs adds arguments from standard input (stdin) to complete the

command, then runs the resulting command. If more input remains, it repeats this

process.

In a doublebyte locale, some options may accept a doublebyte string as an

argument. In these cases, an incorrect doublebyte string would be detected during

command-line parsing.

Options

xargs gets the needed arguments from stdin. Different options tell how stdin is to

be interpreted to obtain these arguments.

–I placeholder

Specifies that each line in stdin be considered as a single argument. The

placeholder following the –I is a string that can appear multiple times in the

command template. xargs strips the input line of any leading white-space

characters and inserts it in place of the placeholder string. For example,

with:

xargs –I ’{}’ mv dir1/’{}’ dir2/ ’{}’

stdin should consist of lines giving names of files that you want moved

from dir1 to dir2. xargs substitutes these names for the {} placeholder in

each place that it appears in the command template.

 When xargs creates arguments for the template command, no single

argument can be longer than 255 characters after the input has replaced

the placeholders. The –x option is automatically in effect if –I or –i is used.

If you omit the placeholder string, it defaults to the string { }. Thus we

could write our preceding example as:

xargs –i mv dir1/ ’{}’ dir2/ ’{}’

In a doublebyte locale, placeholder may contain doublebyte characters.

–i placeholder

Behaves like –I, except that the placeholder is optional. If you omit the

placeholder string, it defaults to the string { }. Thus, the previous example

could be written as:

xargs –i mv dir1/ ’{} ’ dir2/’{ } ’

xargs –i /{}/ mv dir1/ ’{}’ dir2/ ’{}

–L number

Specifies that xargs read number lines from stdin and concatenate them

into one long string (with a blank separating each of the original lines).

xargs then appends this string to the command template and runs the

resulting command. This process is repeated until xargs reaches the end of

xargs

816 z/OS V1R9.0 UNIX System Services Command Reference

|

stdin if there are fewer than number lines left in the file the last time the

command is run, xargs just uses what is there.

 With this option, a line must contain at least one nonblank character; blank

lines are skipped and do not count toward the number of lines being added

to the template. xargs considers a line to end at the first newline character,

unless the last character of the line is a blank or a tab; in this case, the

current line is considered to extend to the end of the next non-empty line.

 If you omit the –L or –l option, the default number of lines read from stdin

is 1. The –x option is automatically in effect if –l is used.

–l number

Acts like the –L option, but the number argument is optional. number

defaults to 1.

–n number

Specifies xargs is to read the given number of arguments from stdin and

put them on the end of the command template. For example:

xargs –n 2 diff

obtains two arguments from stdin, appends them to the diff command, and

then runs the command. It repeats this process until stdin runs out of

arguments. When you use this option, xargs considers arguments to be

strings of characters separated from each other by white-space characters

(blanks, horizontal tabs, or newlines). Empty lines are always skipped (that

is, they don’t count as arguments). If you want an input argument to contain

blanks or horizontal tabs, enclose it in double quotes or single quotes. If the

argument contains a double-quote character ("), you must enclose the

argument in single quotes. Conversely, if the argument contains a single

quote (’) (or an apostrophe), you must enclose the argument in double

quotes. You can also put a backslash (\) in front of a character to tell xargs

to ignore any special meaning the character may have (for example,

white-space characters, or quotes).

 xargs reads fewer than number arguments if:

v The accumulated command line length exceeds the size specified by the

–s option (or {LINE_MAX} if you did not specify –s)

v The last iteration has more than zero, but less than number arguments

remaining

If you do not specify the –n option, the default number of arguments read

from stdin is 1.

Typically, an xargs command uses exactly one of the options just described. If you

specify more than one, xargs uses the one that appears last on the command line.

If the command has none of these options, xargs keeps reading input until it fills up

its internal buffer, concatenating arguments to the end of the command template.

When the buffer is full, xargs runs the resulting command, and then starts

constructing a new command. For example:

ls | xargs echo

prints the names of files in the working directory as one long line. When you invoke

xargs this way, the total length of all arguments must be less than the size

specified by the –s option.

xargs

Chapter 2. Shell command descriptions 817

If no command template appears on the command line, xargs uses echo by

default. When xargs runs a command, it uses your search rules to find the

command; this means that you can run shell scripts as well as normal programs.

The command you want to execute should be in your search $PATH.

xargs ends prematurely if it cannot run a constructed command or if an executed

command returns a nonzero status.

If an executed command is a shell program, it should explicitly contain an exit

command to avoid returning a nonzero by accident; see sh for details.

Other Options

You can use the following options with any of the three main options.

–E [eofstr]

Defines eofstr to represent end-of-file on stdin. For example:

–E :::

tells xargs that ::: represents the end of stdin, even if an input file

continues afterward. If there is no –E or –e option, a single underscore (_)

marks the end of the input.

 In a doublebyte locale, eofstr may contain doublebyte characters.

–e [eofstr]

Acts like –E but the eofstr argument is optional. If you specify –e without

eofstr, there is no end-of-file marker string, and _ is taken literally instead of

as an end-of-file marker. xargs stops reading input when it reaches the

specified end-of-file marker or the true end of the file.

–p Prompts you before each command. This turns on the –t option so that you

see each constructed command before it is run. Then xargs displays ?...,

asking if you really want to run this command. If you type a string beginning

with y, xargs runs the command as displayed; otherwise, the command is

not run, and xargs constructs a new command.

–s size

Sets the maximum allowable size of an argument list to size characters

(where size is an integer). The value of size must be less than or equal to

the system variable LINE_MAX; if you omit the –s option, the default

allowable size of an argument list is LINE_MAX. The length of the argument

list is the length of the entire constructed command; this includes the length

of the command name, the length of each argument, plus one blank for

separating each item on the line.

–t Writes each constructed command to stderr just before running the

command.

–x Kills xargs if it creates a command that is longer than the size given by the

–s option (or {LINE_MAX} is –s was not specified). This option comes into

effect automatically if you specify –i or –l.

Example

The following displays filenames in three columns:

ls | xargs –n 3 echo

xargs

818 z/OS V1R9.0 UNIX System Services Command Reference

Localization

xargs uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion of all commands

1–125 Failure due to any of the following:

v xargs could not assemble a command line

v One or more invocations of command returned a nonzero exit status.

v Some other error occurred
126 xargs found command but could not invoke it

127 xargs could not find command

Restriction

The maximum length of a constructed command is LINE_MAX bytes.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –e, –E, –i, –I, –l, –L, and –p options are extensions of the POSIX standard.

Related Information

echo, find, sh

yacc — Use the yacc compiler

Format

yacc [–dhlmqtv] [–b file.prefix] [–D file.h] [–o file.c] [–p prefix] [–P yyparse.c]

[–V stats] gram.y

Description

yacc converts a context-free LALR(1) grammar found in the input file gram.y into a

set of tables that together with additional C code constitute a parser to recognize

that grammar. If you specify an input file named -, yacc reads the grammar from

the standard input. By default, yacc places the parsing tables and associated C

code into the file y.tab.c.

You can find detailed information on writing parsers using yacc in z/OS UNIX

System Services Programming Tools.

xargs

Chapter 2. Shell command descriptions 819

Options

–b file_prefix

Uses file_prefix instead of y as the prefix for all output filenames. For

example, yacc would name the parsing table file_prefix.tab.c rather than

y.tab.c.

–D file.h

Generates the file file.h, which contains the constant definition statements

for token names. This lets other modules of a multimodule program access

these symbolic names. This is the same as –d, except that the user

specifies the include filename.

–d Generates the file y.tab.h, which contains the constant definition statements

for token names. This lets other modules of a multimodule program access

these symbolic names. This is the same as –D, except that the user does

not specify the header filename.

–h Displays a brief list of the options and quits.

–l Disables the generation of #line statements in the parser output file, which

are used to produce correct line numbers in compiler error messages from

gram.y.

–m Displays memory usage, timing, and table size statistics on the standard

output.

–o file.c

Places the generated parser tables into file.c instead of the default y.tab.c.

–P yyparse.c

Indicates that the C parser template is found in the file yyparse.c. If you do

not specify this option, this parser template is located in /etc/yyparse.c.

–p prefix

By default, yacc prefixes all variables and defined parameters in the

generated parser code with the two letters yy (or YY). In order to have more

than one yacc-generated parser in a single program, each parser must

have unique variable names. –p uses the string prefix to replace the yy

prefix in variable names. prefix should be entirely in lowercase because

yacc uses an uppercase version of the string to replace all YY variables. We

recommend a short prefix (such as zz) because some C compilers have

name length restrictions for identifiers. You can also set this identifier with a

%prefix directive in the grammar file.

–q Disables the printing of warning messages.

–t Enables debugging code in the generated parser. yacc does not normally

compile this code because it is under the control of the preprocessor

symbol YYDEBUG.

 This option is therefore equivalent to either setting YYDEBUG on the C

compiler command line or specifying #define YYDEBUG statement in the

first section of the grammar.

–V stats

Writes a verbose description of the parsing tables and any possible conflicts

to the file stats.

 This is the same as -v except that the user specifies the filename.

–v writes a verbose description of the parsing tables and any possible conflicts

to the file y.output.

yacc

820 z/OS V1R9.0 UNIX System Services Command Reference

Files

yacc uses the following files:

/usr/lib/liby.a

yacc function library.

/usr/lib/libyxp.a

yacc archive library with functions compiled with XPLINK. Includes two

versions: 64-bit addressing mode and 31-bit addressing mode.

y.output

Default statistics file when you specify -v.

y.tab.c

Default file for the generated parser.

y.tab.h

Default header file when you specify –d.

/etc/yyparse.c

Default parser template.

Localization

yacc uses the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F for more information.

Usage notes

In a doublebyte environment, yacc can use doublebyte characters, although this

practice is possibly nonportable.

1. Comments and rule names can contain doublebyte characters.

2. Doublebyte characters can be used in symbolic token names (generated by

%token statements only if the C preprocessor and compiler will interpret them

correctly. Symbolic token names are converted directly into #define statements

and are then interpreted by the preprocessor and the compiler.

3. You can use doublebyte characters as literal token definitions (a doublebyte

character surrounded by apostrophes), although this will generate a warning

and may create a conflict with an assigned token name.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v number rules never reduced

v Reduce-reduce conflict

v Shift-reduce conflict

v NAME should have been defined earlier

v \000 not permitted

v EOF encountered while processing %union

v EOF in string or character constant

v EOF inside comment

v Use of $number not permitted

v Nonterminal number, entry at number

v Action does not terminate

yacc

Chapter 2. Shell command descriptions 821

v Bad %start construction

v Bad syntax in %type

v Bad syntax on $<ident> clause

v Bad syntax on first rule

v Inability to find parser

v Inability to open input file

v Inability to open table file

v Inability to open temporary file

v Inability to open y.output

v Inability to place goto

v Inability to reopen action temporary file

v Default action causes potential type clash

v EOF before %}

v %prec syntax not permitted

v \nnn construction not permitted

v Comment not permitted

v Option not permitted

v Incorrect or missing ’ or "

v Incorrect rule: missing semicolon, or |?

v Internal yacc error

v Incorrect escape, or incorrect reserved word

v Item too big

v More than number rules

v Must return a value, since LHS has a type

v Must specify type for name

v Must specify type of $number

v Newline in string.

v No space in action table

v Nonterminal symbol not permitted after %prec

v Nonterminal symbol never derives any token string

v Nonterminal symbol not defined

v Optimizer cannot open temporary file

v Out of space in optimizer

v Out of state space

v Redeclaration of precedence of symbol

v Redeclaration of type of symbol

v Syntax error

v Token incorrect on LHS of grammar rule

v Too many characters in ID’s and literals

v Too many look-ahead sets

v Too many nonterminals

v Too many states

v Too many terminals

v Type redeclaration of nonterminal symbol

v Type redeclaration of token symbol

v Unexpected EOF before %

v Unterminated < ...> clause

v Working set overflow

v yacc state or nolook error

Messages

Possible error messages include:

No input file

You did not specify a grammar file gram.y on the command line.

yacc

822 z/OS V1R9.0 UNIX System Services Command Reference

No parser produced

Analysis of the input grammar shows that it contains inaccessible or

ungrounded nonterminal symbols. Check the preceding report and revise

the grammar.

Out of memory at size bytes

The specified grammar is too complex to process within the memory

resources of the current configuration.

Limits

yacc dynamically allocates all internal tables so that grammar size and complexity

are limited only by available memory.

Portability

POSIX.2, POSIX.2 C-Language Development Utilities Option, X/Open Portability

Guide, UNIX systems.

The –D, –h, –m, –p, –q, –S, –s, and –V options are extensions of the POSIX

standard.

Related Information

lex

z/OS UNIX System Services Programming Tools

zcat — Uncompress and display data

Format

zcat –DVv [file ...]

Description

zcat takes one or more compressed data files as input. The data files should be

compressed with the compress command. If no data files are specified on the

command line, zcat reads standard input (stdin). You can also pass stdin to zcat

by specifying – as one of the files on the command line.

zcat uncompresses the data of all the input files, and writes the result on standard

output (stdout). zcat concatenates the data in the same way cat does.

The names of compressed input files are expected to end in .Z. If a specified input

file name does not end in this suffix, zcat automatically adds the .Z. For example, if

the command line specifies file abc, zcat looks for abc.Z.

zcat is equivalent to:

uncompress -c

Options

–D Uncompresses files that were compressed using the dictionary option of

compress.

–V Prints the version number of uncompress that zcat calls.

–v Prints the name of each file as it is uncompressed.

yacc

Chapter 2. Shell command descriptions 823

Localization

zcat uses the following localization environment variables:

v LANG

v LC_ALL

v LC_MESSAGES

v NLSPATH

See Appendix F for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:

v Unknown command line option

v File is not in compressed format

v File was compressed with a number of bits zcat cannot handle

v There is no space for decompress tables

v The compressed file is corrupt

Portability

UNIX systems.

Related Information

cat, compress, uncompress

zcat

824 z/OS V1R9.0 UNIX System Services Command Reference

Chapter 3. TSO/E commands

This part describes the Time Sharing Option Extensions (TSO/E) OMVS command

that you use to invoke the shell and the TSO/E commands that you can use to work

with the z/OS UNIX file system.

The OMVS command invokes the z/OS shell. You can enter the OMVS command

from TSO/E or from the ISPF command processor panel.

You can use the man command to view descriptions of TSO/E commands. To do

this, you must prefix all commands with tso. For example, to view a description of

the MOUNT command, you would enter:

man tsomount

The commands for working with the file system are:

v BPXBATCH

v ISHELL

v MKDIR

v MKNOD

v MOUNT

v OBROWSE

v OCOPY

v OEDIT

v OGET

v OGETX

v OHELP

v OPUT

v OPUTX

v OSHELL

v OSTEPLIB

v UNMOUNT

You can enter these TSO/E commands from:

v TSO/E

v The Interactive System Productivity Facility (ISPF) command processor panel

(typically, option 6 on the ISPF menu).

Option 6 is usually preferable, because it does not convert into uppercase the

commands that you enter. You should enter a TSO/E command from an ISPF

panel that does not convert all the parameters into uppercase; some panels,

such as the main ISPF panel, convert what you enter into uppercase. z/OS UNIX

System Services is case-sensitive.

v The shell

Notes:

1. The relative pathname is relative to the working directory (usually the HOME

directory) of the TSO/E session, not the shell session.

2. You should use absolute pathnames when entering any TSO/E commands.

3. Avoid using spaces or single quotes within pathnames.

© Copyright IBM Corp. 1996, 2007 825

BPXBATCH — Run shell commands, shell scripts, or executable files

Format

BPXBATCH SH|PGM shell_command|program_name

Description

BPXBATCH makes it easy for you to run, from your TSO/E session, shell scripts or

z/OS C executable files that reside in z/OS UNIX files.

Note: For additional information on using BPXBATCH in order to run shell scripts

and executable files that reside in z/OS UNIX files through the MVS job

control language (JCL), see Appendix D, “Running shell scripts or executable

files under MVS environments.”

With BPXBATCH, you can allocate the MVS standard file stdin only as z/OS UNIX

files for passing input. You can allocate the MVS standard files stdout, stderr or

stdenv as MVS data sets or z/OS UNIX text files. The stdenv file for containing

environment variables or the stderr and stdout files for saving job output can be

allocated as SYSOUT, PDSE, PDS or sequential data sets. If you do not allocate

them, stdin, stdout, stderr, and stdenv default to /dev/null. Allocate the standard

files using the data definition PATH keyword options, or standard data definition

options for MVS data sets, for stdenv, stdout and stderr. For more information

about BPXBATCH, see Appendix D, “Running shell scripts or executable files under

MVS environments.”

In addition to using BPXBATCH, a user who wants to perform a local spawn without

being concerned about environment setup (that is, without having to set specific

environment variables which could be overwritten if they are also set in the user’s

profile) can use BPXBATSL. BPXBATSL provides users with an alternate entry point

into BPXBATCH, and forces a program to run using a local spawn instead of

fork/exec as BPXBATCH does. This ultimately allows a program to run faster.

The following example contains DD statements that are accessible to a program

that was given control from BPXBATSL:

//jobname JOB ...

//stepname EXEC PGM=BPXBATSL,PARM=’PGM program_name’

/* The following 2 DDs are still available in the program which gets

/* control from BPXBATSL.

//DD1 DD DSN=MVSDSN.FOR.APPL1,DISP=SHR

//DD2 DD DSN=MVSDSN.FOR.APPL2,DISP=SHR

/* The following DDs are processed by BPXBATSL to create file descriptors

/* for stdin, stdout, stderr

//STDIN DD PATH=’/stdin-file-pathname’,PATHOPTS=(ORDONLY)

//STDOUT DD PATH=’/stdout-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC

// PATHMODE=SIRWXU

//STDERR DD PATH=’/stderr-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC

// PATHMODE=SIRWXU

BPXBATSL is also useful when the user wants to perform a local spawn of their

program, but also needs subsequent child processes to be fork/exec’ed. Formerly,

with BPXBATCH, this could not be done since BPXBATCH and the requested

program shared the same environment variables.

BPXBATSL is an alias of BPXBATCH.

BPXBATCH

826 z/OS V1R9.0 UNIX System Services Command Reference

BPXBATA2 and BPXBATA8 are provided as APF - authorized alternatives to

BPXBATSL. BPXBATA2 and BPXBATA8 provide the capability for a target APF -

authorized z/OS UNIX Program to run in the same address space as the originating

job, allowing it to share the same allocations and joblog. BPXBATA2 is specifically

intended to provide the capability for a PSW Key 2 APF - authorized z/OS UNIX

program to be started. To insure the target program receives control PSW Key 2, a

PPT entry for BPXBATA2 must be set up that specifies that BPXBATA2 starts up

PSW Key 2. The same restrictions that apply to BPXBATSL apply to BPXBATA2

and BPXBATA8, in addition to the following:

v The PGM keyword is the only invocation type that is supported. The SH keyword

is not supported.

v The interfaces can only be used from Started Task address spaces.

v The z/OS UNIX program that is the target of the BPXBATA2 and BPXBATA8 job

must be marked as an APF - authorized executable file.

Restriction: Any other usage of the BPXBATA8 and BPXBATA2 interfaces than

what is described is not supported and will cause the invoking job to fail.

Parameters

SH|PGM

Specifies whether BPXBATCH is to run a shell script or command, or a z/OS C

executable file located in a z/OS UNIX file.

 If neither SH nor PGM is specified, BPXBATCH assumes that the shell is to be

started in order to run the shell script allocated by stdin.

SH

Specifies that the shell designated in your TSO/E user ID’s security product

profile is to be started and is to run shell commands or scripts provided

from stdin or the specified program_name.

 If SH is specified with no program_name information, BPXBATCH attempts

to run anything read in from stdin.

 SH is the default.

PGM

Specifies that the program identified by the program_name parameter is

invoked directly from BPXBATCH. This is done either via a spawn or a fork

and exec. BPXBATCH creates a process for the program to run in and then

calls the program. If you specify PGM, you must also specify

program_name.

 All environment variables read from the stdenv file are set when the

program is run, if stdenv was allocated. If the HOME and LOGNAME

environment variables are not specified in the stdenv file, or stdenv was not

allocated, then HOME and LOGNAME, if possible, are set when the

program is run.

Note: When using PGM, the program_name cannot contain any shell

specific functions because they will not be resolved. If shell specific

functions must be specified, then SH should be used to avoid

possible errors or unpredictable results.

program_name

Specifies the shell command name or pathname for the shell script or z/OS C

executable file that you want to run. program_name can also contain option

information. program_name is in uppercase and lowercase letters.

BPXBATCH

Chapter 3. TSO/E commands 827

When PGM and program_name are specified and the specified program name

does not begin with a slash character (/), BPXBATCH prefixes the user’s initial

working directory information to the program pathname.

Examples

1. You want to run the shell script you specify with stdin.

ALLOCATE FILE(STDIN) PATH(’/stdin_file_pathname’)

PATHOPTS(ORDONLY)

BPXBATCH SH

2. You want to run the program /usr/bin/payroll.

BPXBATCH PGM /usr/bin/payroll

3. You want to run the script shellscriptA and put its output into the file a.out in a

temporary directory.

BPXBATCH SH /u/usr/joe/shellscriptA > /tmp/a.out

ISHELL — Invoke the ISPF shell

Format

ISHELL [initial_path] [-d]

Note: An alias of ISHELL is:

ISH

Description

ISHELL invokes the z/OS ISPF shell, a panel interface that helps you to set up and

manage z/OS UNIX System Services functions.

You can use the ISHELL command to:

v List files in a directory

v Create, delete, or rename directories, files, and special files

v Browse files

v Edit files

v Copy files

v Display file attributes

v Search files for text strings

v Compare files or directories

v Run executable files

v Display the attributes and contents of a symbolic link (symlink)

v Mount and unmount a z/OS UNIX file system

v Create a z/OS UNIX file system

v Set up character special files

v Set up standard directories for a root file system

v Set up existing users and groups for z/OS UNIX System Services access

For more information on setting up TSO/E users, see z/OS UNIX System

Services Planning.

Some of these tasks require either superuser authority (such as mounting,

unmounting, setting up character special files, setting up existing users and groups

for z/OS UNIX System Services access) or the RACF SPECIAL attribute (such as

setting up existing users and groups for z/OS UNIX access).

BPXBATCH

828 z/OS V1R9.0 UNIX System Services Command Reference

The last UNIX pathname used on the main panel of ISHELL is kept and displayed

again on the next invocation of ISHELL. In order to switch back to the home

directory, erase the pathname shown and press ENTER.

Field level and panel help are available throughout the dialog. For additional

information on ISHELL, see z/OS UNIX System Services User’s Guide and the

online help panels.

Parameters

initial_path

The path that you want to initially appear in ISHELL’s main panel. For example:

ishell /tmp/

-d Prevents ISHELL from suppressing ISPF server dialog errors. This will cause

ISHELL to terminate on errors. This option should only be used at the direction

of IBM Support.

MKDIR — Make a directory

Format

MKDIR ’directory_name’ MODE(directory_permission_bits) STICKY|NOSTICKY

Description

You can use the MKDIR command to create a directory in the file system.

Parameters

directory_name

Specifies the name of the directory to be created. The name can be a relative

pathname or an absolute pathname. You must enclose it in single quotes. A

relative pathname is relative to the working directory of the TSO/E session

(usually the HOME directory). Therefore, you should usually specify an absolute

pathname. The name can be up to 1023 characters long. The name is

case-sensitive; the system stores each character in the case entered.

 All directories in the pathname prior to the specified directory must already

exist. If the specified directory already exists, no new directory is created.

MODE(directory_permission_bits)

Specifies the directory permission bits as three octal numbers, from 0 to 7,

separated by commas or blanks. The octal values represent read (r), write (w),

and search (x) access for: user, group, and other.

 User permission is the permission given to the directory owner. Group

permission is the permission given to the group the owner is a member of.

Other permission is the permission given to any other user.

 The access indicated by each of the numbers 0–7 is:

0 No access

1 Search (x) access

2 Write-only (w) access

3 Write and search (wx) access

4 Read-only (r) access

5 Read and search (rx) access

6 Read and write (rw) access

7 Read, write, and search (rwx) access

ISHELL

Chapter 3. TSO/E commands 829

The default permissions set when a directory is created are 755, representing:

7 User: read, write, and search permission.

5 Group: read and search permission.

5 Other: read and search permission.

STICKY

Specifies that the sticky bit is to be set on for a directory so a user cannot

remove or rename a file in the directory unless one or more of these conditions

are true:

v The user owns the file

v The user owns the directory

v The user has superuser authority

NOSTICKY

Specifies that the sticky bit is to be set off in the directory. NOSTICKY is the

default.

Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

Examples

1. You want to create a directory using an absolute pathname giving read, write,

and search access to the directory owner and no access to the group and other

classes. The new directory name is to be /tmp/bin. The directory /tmp already

exists. You enter:

MKDIR ’/tmp/bin’ MODE(7,0,0)

2. You want to create a new directory under the working directory of your TSO/E

session; therefore you can specify a relative pathname. You want to name the

new directory u2, and to set it up with the default permissions (755). You enter:

MKDIR ’u2’

MKNOD — Create a character special file

Format

MKNOD ’pathname’

 MAJOR(device_major_number)

 MINOR(device_minor_number)

 MODE(file_permission_bits)

Description

MKNOD creates a character special file in a file system.

Note: MKNOD can be used only by a superuser.

Parameters

pathname

Specifies the name of the character special file to be created. The name can be

a relative pathname or an absolute pathname. It must be enclosed in single

quotes. A relative pathname is relative to the working directory of the TSO/E

session (usually the HOME directory). Therefore, you should usually specify an

MKDIR

830 z/OS V1R9.0 UNIX System Services Command Reference

absolute pathname. The name can be up to 1023 characters long. The name is

case-sensitive; the system stores each character in the case entered. This

operand is required.

 All directories in the pathname must exist. If the specified file already exists, no

new file is created.

MAJOR(device_major_number)

Specifies the device major number, which can be a decimal number between 0

and 65 535 (64K minus 1). See z/OS UNIX System Services Planning for

information on specifying the device major number. This operand is required.

MINOR(device_minor_number)

Specifies the device minor number, which can be a decimal number between 0

and 65 535 (64K minus 1). See z/OS UNIX System Services Planning for

information on specifying the device minor number. This operand is required.

MODE(file_permission_bits)

Specifies the file permission bits as three octal numbers, from 0 to 7, separated

by commas or blanks. The octal values represent read (r), write (w), and

execute (x) access for: user, group, and other.

 User permission is the permission given to the file owner. Group permission is

the permission given to the group the owner is a member of. Other permission

is the permission given to any other user.

 The access indicated by each of the numbers 0–7 is:

0 No access

1 Search (x) access

2 Write-only (w) access

3 Write and execute (wx) access

4 Read-only (r) access

5 Read and execute (rx) access

6 Read and write (rw) access

7 Read, write, and execute (rwx) access

 When the MKNOD command is issued in the TSO interactive environment, the

file will be created with default permissions of 666, regardless of the user’s

umask setting, representing:

6 User: read and write access

6 Group: read and write access

6 Other: read and write access

Examples

1. You want to create a character special file using an absolute pathname, giving

read, write, and execute access to the file owner and no access to others. The

filename is tty1 in the existing directory /dev. The device major number is 2; the

minor number is 1. You enter:

MKNOD ’/dev/tty1’ MAJOR(2) MINOR(1) MODE(7,0,0)

2. You want to create a character special file named ptty2 in the existing directory

/dev. The device major number is 1; the device minor number is 457. You want

the default permissions. You enter:

MKNOD ’/dev/ptty2’ MAJOR(1) MINOR(457)

3. You want to create a new tty pair using an absolute pathname. The filename is

ttyp0042 in the existing directory /dev. The device minor number is 42. You

want the default permissions. You enter:

MKNOD ’/dev/ptyp0042’ MAJOR(1) MINOR(42)

MKNOD ’/dev/ttyp0042’ MAJOR(2) MINOR(42)

MKNOD

Chapter 3. TSO/E commands 831

MOUNT — Logically mount a file system

Format

MOUNT FILESYSTEM(file_system_name)

 MOUNTPOINT(pathname)

 TYPE(file_system_type)

 MODE(RDWR|READ)

 PARM(parameter_string)

 TAG(NOTEXT|TEXT,ccsid)

 SETUID|NOSETUID

 WAIT|NOWAIT

 SECURITY|NOSECURITY

 SYSNAME (sysname)

 AUTOMOVE|AUTOMOVE(indicator,sysname1,sysname2,...,sysnameN)|

 NOAUTOMOVE|UNMOUNT

The Indicator is either INCLUDE or EXCLUDE, which can also be abbreviated as I

or E

Description

For hierarchical file systems, you can use the MOUNT command to logically mount,

or add, a mountable file system to the file system hierarchy. You can unmount any

mounted file system using the UNMOUNT command.

Note: For descriptions of the valid zFS MOUNT parameters, see the topic on

MOUNT in z/OS Distributed File Service System z File System

Administration.

Rule: A mount user must have UID (0) or at least have READ access to the

BPX.SUPERUSER resource in the FACILITY class.

filesystem(file_system_name)

Specifies the name of the file system to be added to the file system hierarchy.

file_system_name

For the z/OS UNIX file system, this is the fully qualified name of the z/OS

UNIX file system data set that contains the file system. It cannot be a

partitioned data set member.

 The file system name specified must be unique among previously mounted

file systems. The file system name supplied is changed to all uppercase

characters. You can enclose it in single quotes, but they are not required.

 If file system('''file_system_name''') is specified, the file system name will

not be translated to uppercase.

MOUNTPOINT(pathname)

Specifies the pathname of the mount point directory, the place within the file

hierarchy where the file system is to be mounted. This operand is required.

pathname

Specifies the mount point pathname. The pathname must be enclosed in

single quotes. The name can be a relative pathname or an absolute

pathname. A relative pathname is relative to the working directory of the

TSO/E session (usually the HOME directory). Therefore, you should usually

specify an absolute pathname. It can be up to 1023 characters long.

Pathnames are case-sensitive, so enter the pathname exactly as it is to

appear.

 Rules:

MOUNT

832 z/OS V1R9.0 UNIX System Services Command Reference

|

|
|
|

1. The mount point must be a directory. Any files in that directory are

inaccessible while the file system is mounted.

2. Only one file system can be mounted to a mount point at any time.

TYPE(file_system_type)

Specifies the type of file system that will perform the logical mount request. The

system converts the TYPE operand value to uppercase letters. This operand is

required.

file_system_type

This name must match the TYPE operand of the FILESYSTYPE statement

that activates this physical file system in the BPXPRMxx parmlib member.

The file_system_type value can be up to 8 characters long.

MODE(RDWR|READ)

Specifies the type of access the file system is to be opened for.

RDWR

Specifies that the file system is to be mounted for read and write access.

RDWR is the default if MODE is omitted.

READ

Specifies that the file system is to be mounted for read-only access.

 The z/OS UNIX file system allows a file system that is mounted using the

MODE(READ) option to be shared as read-only with other systems that

share the same DASD.

PARM(parameter_string)

Specifies a parameter string to be passed to the file system type. The format

and content are specified by the physical file system that is to perform the

logical mount. You can specify lowercase or uppercase characters. Enclose the

string in single quotes. The following parameters are HFS specific. For zFS, see

the topic on the MOUNT command in z/OS Distributed File Service System z

File System Administration.

 parameter_string

Specifies a parameter string value that can be up to 1024 characters long.

The parameter string must be enclosed in single quotes; it is case-sensitive.

 For an z/OS UNIX file system, the following can be specified:

PARM(’SYNC(t),NOWRITEPROTECT’)

SYNC(t)

t is a numeric value that specifies the number of seconds that should

be used to override the sync interval default for this file system during a

specific mount. If SYNC is not specified at mount time, then the sync

interval default value will be used (a value of 60 seconds). The same

rules apply to the argument to the SYNC keyword at mount time as

apply to the argument of the SYNCDEFAULT keyword when z/OS UNIX

is initialized. For reference information on the SYNCDEFAULT keyword,

see z/OS MVS Initialization and Tuning Reference.

NOWRITEPROTECT

The z/OS UNIX file system has a Write Protection mechanism that adds

some overhead to z/OS UNIX file system processing. This overhead

can be avoided by turning off the write protection by specifying

NOWRITEPROTECT in the PARM field of the MOUNT command.

NOSPARSE | NOSPARSE(DUMP)

Will cause z/OS UNIX file system to create a dump when either an

attempt is made to read metadata from disk for a file and the subject

MOUNT

Chapter 3. TSO/E commands 833

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

file is sparse or if an application attempts to write to a page beyond the

end of the file causing the file to become sparse. Only one dump will be

created for each of the possible reason codes while a file system is

mounted.

NOSPARSE(LOGREC)

Will cause z/OS UNIX file system to write a LOGREC record instead of

creating a dump for the same conditions as for the Dump case.

TAG(NOTEXT|TEXT,ccsid)

Specifies whether the file tags for untagged files in the mounted file system are

implicitly set. File tagging controls the ability to convert a file’s data during file

reading and writing. Implicit, in this case, means that the tag is not permanently

stored with the file. Rather, the tag is associated with the file during reading or

writing, or when stat() type functions are issued. Either TEXT or NOTEXT, and

ccsid must be specified when TAG is specified.

Note: When the file system is unmounted, the tags are lost.

NOTEXT

Specifies that none of the untagged files in the file system are automatically

converted during file reading and writing.

TEXT

Specifies that each untagged file is implicitly marked as containing pure text

data that can be converted.

ccsid

Identifies the coded character set identifier to be implicitly set for the

untagged file. ccsid is specified as a decimal value from 0 to 65535.

However, when TEXT is specified, the value must be between 0 and 65535.

Other than this, the value is not checked as being valid and the

corresponding code page is not checked as being installed.

SETUID|NOSETUID

Specifies whether the SETUID and SETGID mode bits on executables in this

file system are respected. Also determines whether the APF extended attribute

or the Program Control extended attribute is honored.

SETUID

Specifies that the SETUID and SETGID mode bits be respected when a

program in this file system is run. SETUID is the default.

NOSETUID

Specifies that the SETUID and SETGID mode bits not be respected when a

program in this file system is run. The program runs as though the SETUID

and SETGID mode bits were not set. Also, if you specify the NOSETUID

option on MOUNT, the APF extended attribute and the Program Control

extended attribute are not honored.

WAIT|NOWAIT

Specifies whether to wait for an asynchronous mount to complete before

returning.

WAIT

Specifies that MOUNT is to wait for the mount to complete before returning.

WAIT is the default.

NOWAIT

Specifies that if the file system cannot be mounted immediately (for

MOUNT

834 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|
|

|
|
|

example, a network mount must be done), then the command will return

with a return code indicating that an asynchronous mount is in progress.

SECURITY|NOSECURITY

Specifies whether security checks are to be enforced for files in this file system.

Note: When an z/OS UNIX file system is mounted with the NOSECURITY

option enabled, any new files or directories that are created will be

assigned an owner of UID 0, no matter what UID issued the request.

SECURITY

Specifies that normal security checking will be done. SECURITY is the

default.

NOSECURITY

Specifies that security checking will not be enforced for files in this file

system. A user may access or change any file or directory in any way.

 Security auditing will still be performed if the installation is auditing

successes.

 The SETUID, SETGID, APF, and Program Control attributes may be turned

on in files in this file system, but they will not be honored while it is

mounted with NOSECURITY.

SYSNAME (sysname)

For systems participating in shared file system, SYSNAME specifies the

particular system on which a mount should be performed. This system will then

become the owner of the file system mounted. This system must be IPLed with

SYSPLEX(YES). IBM recommends that you specify SYSNAME(&SYSNAME.)

or omit the SYSNAME parameter. In this case, the system that processes the

mount request mounts the file system and becomes its owner.

sysname

sysname is a 1–8 alphanumeric name of a system participating in shared

file system.

AUTOMOVE(indicator,sysname1,...,sysnameN)|NOAUTOMOVE|UNMOUNT

These parameters apply only in a sysplex where systems are exploiting the

shared file system capability. They specify what is to happens to the ownership

of a file system when a shutdown, PFS termination, dead system takeover, or

file system move occurs. The default setting is AUTOMOVE where the file

system will be randomly moved to another system (no system list used).

 Indicator is either INCLUDE or EXCLUDE, which can also be abbreviated as I

or E

AUTOMOVE

AUTOMOVE indicates that ownership of the file system can be

automatically moved to another system participating in a shared file system.

AUTOMOVE is the default.

AUTOMOVE(INCLUDE,sysname1,sysname2,...,sysnameN) or

AUTOMOVE(I,sysname1,sysname2,...,sysnameN)

The INCLUDE indicator with a system list provides an ordered list of

systems to which the file system's ownership could be moved. sysnameN

may be a system name, or an asterisk (*). The asterisk acts as a wildcard

to allow ownership to move to any other participating system and is only

permitted in place of a system name as the last entry of a system list.

MOUNT

Chapter 3. TSO/E commands 835

AUTOMOVE(EXCLUDE,sysname1,sysname2,...,sysnameN) or

AUTOMOVE(E,sysname1,sysname2,...,sysnameN)

The EXCLUDE indicator with a system list provides a list of systems to

which the file system's ownership should not be moved.

NOAUTOMOVE

NOAUTOMOVE prevents movement of the file system's ownership in some

situations.

UNMOUNT

UNMOUNT allows the file system to be unmounted in some situations.

 Guidelines:

1. You should define your version and sysplex root file systems as

AUTOMOVE, and define your system-specific file systems as

UNMOUNT.

2. Do not define a file system as NOAUTOMOVE or UNMOUNT and a file

system underneath is as AUTOMOVE; in this case, the file system

defined as AUTOMOVE will not be recovered after a system failure until

the failing system is restarted.

For more information about shared file systems and the associated versions

and a sysplex root file systems, as well as details about the behavior of the

AUTOMOVE options, see z/OS UNIX System Services Planning.

Usage notes

1. The directory /samples contain sample MOUNT commands (called mountx).

2. When the mount is done asynchronously (NOWAIT was specified and return

code 4 was returned), you can determine if the mount has completed with one

of the following:

v The df shell command

v The DISPLAY OMVS,F operator command (see z/OS MVS System

Commands)

v The MOUNT table option on the File Systems pulldown in the ISPF Shell

(accessed by the ISHELL command)

3. In order to mount a file system as the system root file system, the caller must

be a superuser. Also, a file system can only be mounted as the system root file

system if the root file system was previously unmounted.

4. If you have previously unmounted the root file system, a ’dummy file system’ or

SYSROOT will be displayed as the current root file system. During the time

when SYSROOT is displayed as the root, any operation that requires a valid file

system will fail. When you subsequently mount a new root file system on

mountpoint /, that new file system will replace SYSROOT. When a new root file

system has been mounted, you should terminate any current dubbed users or

issue a chdir using a full pathname to the appropriate directory. This way, the

users can access the new root file system. Otherwise, an error will occur when

a request is made requiring a valid file system.

5. Systems exploiting shared file system will have I/O to an OMVS couple data

set. Because of these I/O operations to the CDS, each mount request requires

additional system overhead. You will need to consider the affect that this will

have on your recovery time if a large number of mounts are required on any

system participating in shared file system.

6. The TAG parameter is intended for file systems that don’t support storing the file

tag, such as NFS remote file systems.

MOUNT

836 z/OS V1R9.0 UNIX System Services Command Reference

7. Do not use the TAG parameter simultaneously with the NFS Client Xlate option.

If you do, the mount will fail.

8. The UNMOUNT keyword is not available to automounted file systems.

9. The UNMOUNT specification will only be accepted on z/OS V1R3 systems and

later.

File system recovery and TSO MOUNT

File system recovery in a shared file system environment takes into consideration

file system specifications such as AUTOMOVE | NOAUTOMOVE | UNMOUNT, and

whether or not the file system is mounted read-only or read/write.

Generally, when an owning system fails, ownership over its AUTOMOVE mounted

file systems is moved to another system and the file is usable. However, if a file

system is mounted read/write and the owning system fails, then all file system

operations for files in that file system will fail. This is because data integrity is lost

when the file system owner fails. All files should be closed (BPX1CLO) and

re-opened (BPX1OPN) when the file system is recovered. (The BPX1CLO and

BPX1OPN callable services are discussed in z/OS UNIX System Services

Programming: Assembler Callable Services Reference.)

For file systems that are mounted read-only, specific I/O operations that were in

progress at the time the file system owner failed may need to be re-attempted.

Otherwise, the file system is usable.

In some situations, even though a file system is mounted AUTOMOVE, ownership

of the file system may not be immediately moved to another system. This may

occur, for example, when a physical I/O path from another system to the volume

where the file system resides is not available. As a result, the file system becomes

unowned (the system will issue message BPXF213E when this occurs). This is true

if the file system is mounted either read/write or read-only. The file system still

exists in the file system hierarchy so that any dependent file systems that are

owned by another system are still usable.

However, all file operations for the unowned file system will fail until a new owner is

established. The shared file system support will continue to attempt recovery of

AUTOMOVE file systems on all systems in the sysplex that are enabled for shared

file system. Should a subsequent recovery attempt succeed, the file system

transitions from the unowned to the active state.

Applications using files in unowned file systems will need to close (BPX1CLO)

those files and re-open (BPX1OPN) them after the file system is recovered.

File systems that are mounted NOAUTOMOVE will become unowned when the file

system owner exits the sysplex. The file system will remain unowned until the

original owning system restarts or until the unowned file system is unmounted. Note

that since the file system still exists in the file system hierarchy, the file system

mount point is still in use.

An unowned file system is a mounted file system that does not have an owner. The

file system still exists in the file system hierarchy. As such, you can recover or

unmount an unowned file system.

File systems associated with a ’never move’ PFS will be unmounted during dead

system recovery. For example, TFS is a ’never move’ PFS and will be unmounted,

as well as any file systems mounted on it, when the owning system leaves the

sysplex.

MOUNT

Chapter 3. TSO/E commands 837

As stated in “Usage notes” on page 836, the UNMOUNT keyword is not available to

automounted file systems. However, during dead system recovery processing for an

automounted file system (whose owner is the dead system), the file system will be

unmounted if it is not being referenced by any other system in the sysplex.

Return codes

0 Processing successful.

4 Processing incomplete. An asynchronous mount is in progress.

12 Processing unsuccessful. An error message has been issued.

Examples

1. To mount the z/OS UNIX file system data set HFS.WORKDS on the directory

/u/openuser, enter:

MOUNT filesystem(’HFS.WORKDS’) MOUNTPOINT(’/u/openuser’) TYPE(HFS)

2. The following example mounts the z/OS UNIX file system directory

/u/shared_data, which resides on the remote host named mvshost1, onto the

local directory /u/jones/mnt. The command may return before the mount is

complete, allowing the mount to be processed in parallel with other work. The

SETUID and SETGID bits are honored on any executable programs:

MOUNT filesystem(’MVSHOST1.SHARE.DATA’) MOUNTPOINT(’/u/jones/mnt’)

 TYPE(NFSC) PARM(’mvshost1:/hfs/u/shared_data’) NOWAIT SETUID

3. Examples for using the TAG parameter are:

TAG(TEXT,819) identifies text files containing ASCII

(ISO-8859-1) data.

TAG(TEXT,1047) identifies text files containing EBCDIC

(ISO-1047) data.

TAG(NOTEXT,65535) tags files as containing binary or unknown

data.

TAG(NOTEXT,0) is the equivalent of not specifying the TAG

parameter at all.

TAG(NOTEXT,273) tags files with the German code set (ISO-273),

but is ineligible for automatic conversion.

OBROWSE — Browse a z/OS UNIX file

Format

OBROWSE [-r xx] pathname

or

OBROWSE -r xx ’pathname’

or

OBROWSE

(The pathname is optional in the last example.)

Description

The OBROWSE command enables you to browse a file in the z/OS UNIX file

system. This command uses the ISPF/PDF Browse facility.

MOUNT

838 z/OS V1R9.0 UNIX System Services Command Reference

If you enter the OBROWSE command without specifying a pathname, the Browse

Entry panel is displayed. From that panel, you can enter the directory name and

filename of an existing file you want to browse. If you are browsing fixed-length

records, you must also indicate the record length.

Parameters

pathname

Specifies the pathname of the file to be browsed. The pathname can be

absolute or relative. It can be enclosed in single quotes. A relative pathname is

relative to the working directory of the TSO/E session (usually the HOME

directory). Therefore, you should usually specify an absolute pathname. If you

enter the OBROWSE command from the shell, use the absolute pathname.

Avoid using spaces or single quotes within the pathname.

Option

-r xx

Sets the record length to be browsed for fixed length text files. xx is length. If -r

xx is specified, the file will be processed as fixed length records. This lets you

convert a variable length file to fixed length for viewing.

OCOPY — Copy an MVS data set member or z/OS UNIX file to another

member or file

Format

 OCOPY INDD(ddname1) OUTDD(ddname2)

 BINARY | TEXT

 CONVERT(character_conversion_table | YES | NO)

 PATHOPTS (USE|OVERRIDE)

 TO1047 | FROM1047

Description

You can use the OCOPY command to copy data between an MVS data set and the

z/OS UNIX file system. For OCOPY, you would want to use CONVERT for these

two situations:

v Conversion between code pages IBM-037 and IBM-1047

v Conversion between ASCII and code page IBM-1047

The z/OS shell uses code page 1047, and MVS uses a Country Extended Code

Page. You can convert data to or from code page 1047 while it is being copied.

If you are copying a file with doublebyte data, do not use the CONVERT option.

Before using the OCOPY command, you must allocate the data set or file you are

working with. When using the TSO/E ALLOCATE command or a JCL DD statement

to allocate a file or data set, you can specify PATHMODE and PATHOPTS

parameters along with the PATH parameter. For information on the use of these

parameters with the JCL statement, see z/OS MVS JCL Reference. For information

on the TSO/E ALLOCATE command, see z/OS TSO/E Command Reference.

You can use OCOPY to copy:

v A member of an MVS partitioned data set (PDS or PDSE) to a file

v An MVS sequential data set to a file

v A file to a member of an MVS PDS or PDSE

OBROWSE

Chapter 3. TSO/E commands 839

v A file to an MVS sequential data set

v A file to a file

v A member of an MVS PDS or PDSE to another member of an MVS PDS or

PDSE

v A member of an MVS PDS or PDSE to an MVS sequential data set

v An MVS sequential data set to another MVS sequential data set

v An MVS sequential data set to a member of an MVS PDS or PDSE

Both INDD and OUTDD can represent an MVS data set or a file. If the source

(INDD) is an MVS data set and the target (OUTDD) is an z/OS UNIX file system

file, then OCOPY copies an MVS data set to a file; the operation is the same as the

OPUT command. If the source (INDD) is an z/OS UNIX file system file and the

target (OUTDD) is an MVS data set, then OCOPY copies a file to an MVS data set;

the operation is the same as the OGET command.

Both the target and source can be an MVS data set or member of a partitioned

data set, or both can be a file. This function is typically used for code page

conversion.

If PATHMODE, which sets the permission bits for a new file, is specified during

allocation, it is used when creating a new file. If PATHMODE is not specified during

the allocation of a new file, the allocation creates a file with the default permission

of 000, which means the user has no access to it.

Parameters

INDD(ddname1)

Specifies the ddname of the source. The ddname is up to 8 characters long.

OUTDD(ddname2)

Specifies the ddname of the target. The ddname is up to 8 characters long.

BINARY | TEXT

Specifies that the data to be copied is a binary file or text file.

BINARY

Specifies that the data to be copied is a binary file. The default is binary

when copying a data set of undefined record format to a file.

 When you specify BINARY, OCOPY operates without any consideration for

<newline> characters or the special characteristics of DBCS data. For

example, doublebyte characters might be split between MVS data set

records, or a “shift-out” state might span records.

TEXT

Specifies that the data to be copied is a text file. The default is text except

when copying a data set of undefined record format to a file.

 If you are using a DBCS-supported terminal, you should use TEXT. It is

assumed that doublebyte data in the file system includes the <newline>

character in order to delineate line boundaries. Data within these lines that

are delineated by <newline> characters must begin and end in the “shift-in”

state.

CONVERT(character_conversion_table | YES | NO)

Specifies the character conversion table used to convert between the following:

v Code pages IBM-037 and IBM-1047

v The ASCII code page and IBM-1047

OCOPY

840 z/OS V1R9.0 UNIX System Services Command Reference

If this optional operand is omitted, the system copies the data without

conversion.

Use this option for singlebyte data only.

 Specify the CONVERT value as one of the following:

character_conversion_table

Specify one of the following:

v data_set_name(member_name). Specifies the name of the partitioned

data set (library) and the name of the member that contains the

character conversion table.

v data_set_name. Specifies the name of the partitioned data set (library)

that contains the character conversion table as the default member. The

default member name is BPXFX000. (BPXFX000 is an alias; when

shipped by IBM, it points to BPXFX111.) A fully qualified data set name

must be enclosed in single quotes.

v (member_name). Specifies the name of the conversion table to be used.

It is a member of a PDS. Since the data_set_name is omitted, the

standard library concatenation is searched for the table. (The default

library is SYS1.LINKLIB.)

The following list summarizes what you can specify when you want to

convert data to a different code page when copying singlebyte data:

– BPXFX100. Null character conversion table. Use this table if the

square brackets at your workstation are at the same code points as

the square brackets on code page 1047 (it is the default). Also use

this table if you are using a DBCS terminal.

– BPXFX111. Specifies a non-APL conversion table to convert between

code pages IBM-037 and IBM-1047.

– BPXFX211. Specifies an APL conversion table to convert between

code pages IBM-037 and IBM-1047.

– BPXFX311. Specifies an ASCII-EBCDIC conversion table to convert

between code pages ISO8859-1 and IBM-1047.

YES

Specifies that the system is to perform conversion and use the default

conversion table (BPXFX000) in the system library concatenation.

(BPXFX000 is an alias; when shipped by IBM, it points to BPXFX111.)

NO

Specifies that conversion not be done. NO is the same as omitting the

CONVERT operand.

PATHOPTS(USE | OVERRIDE)

Specifies whether the OCOPY should use or override the PATHOPTS value

specified during allocation. If the PATHOPTS is not specified in the allocation,

OCOPY will open the file with the appropriate PATHOPTS.

USE

Specifies that the PATHOPTS value is to be enforced. If a file that was

identified as read-only when it was allocated is identified as the output file

for OCOPY, OCOPY fails. Similarly, if a write-only file is specified as the

input file, OCOPY fails. USE is the default.

OVERRIDE

Specifies that the PATHOPTS value specified during allocation is to be

ignored.

OCOPY

Chapter 3. TSO/E commands 841

TO1047 | FROM1047

TO1047

Specifies that the TO topic of the character conversion table is to be used.

This is usually used to convert from code page IBM-037 or ASCII to code

page IBM-1047.

FROM1047

Specifies that the FROM topic of the conversion table is to be used. This is

usually used to convert from code page IBM-1047 to code page IBM-037 or

ASCII.

 If the CONVERT operand is specified and this operand is omitted,

v Data copied from an MVS data set to a file uses the TO1047 topic of the

table.

v Data copied from a file to an MVS data set uses the FROM1047 topic of

the table.

If the CONVERT operand is specified for a copy from a file to a file or an

MVS data set to an MVS data set, you must specify either TO1047 or

FROM1047.

Usage notes

1. You can use OCOPY to copy a program object from a PDSE to the file system,

and it will be executable there. If you have a load module in a partitioned data

set, however, you must first use the IEBCOPY program to copy the load module

from a partitioned data set to a PDSE and then subsequently use OCOPY to

copy the module into the file system. The IEBCOPY converts the load module to

a program object.

Note: You can use the linkage editor to put the load module directly into the file

system.

2. An executable file copied from the file system into an MVS data set is not

executable under MVS. Some required directory information is lost during the

copy. See z/OS UNIX System Services User’s Guide for a discussion of copying

executable files.

3. Data sets with spanned records are not allowed.

4. When you are copying into an existing file, data is appended to the end of the

file if OAPPEND is specified in PATHOPTS. Otherwise, the existing file is

overwritten.

5. Copying from z/OS UNIX file system text files to MVS data sets:

 For text files, all <newline> characters are stripped during the copy. Each

line in the file ending with a <newline> character is copied into a record of

the MVS data set. You cannot copy a text file to an MVS data set in an

undefined record format.

– For an MVS data set in fixed record format: Any line longer than the

record size is truncated. If the line is shorter than the record size, the

record is padded with blanks.

– For an MVS data set in variable record format: Any line longer than

the largest record size is truncated and the record length is set

accordingly. A change in the record length also occurs if the line is short.

6. Copying from z/OS UNIX file system binary files to MVS data sets:

 For binary files, all data is preserved.

OCOPY

842 z/OS V1R9.0 UNIX System Services Command Reference

– For an MVS data set in fixed record format: Data is cut into chunks of

size equal to the record length. Each chunk is put into one record. The

last record is padded with spaces or blanks.

– For an MVS data set in variable record format: Data is cut into chunks

of size equal to the largest record length. Each chunk is put into one

record. The length of the last record is equal to the length of the data left.

– For an MVS data set in undefined record format: Data is cut into

chunks of size equal to the block size. Each chunk is put into one record.

The length of the last record is equal to the length of the data left.

7. When you copy MVS data sets to z/OS UNIX file system text files, a <newline>

character is appended to the end of each record. If trailing blanks exist in the

record, the <newline> character is appended after the trailing blanks.

8. When you copy MVS data sets to z/OS UNIX file system binary files, the

<newline> character is not appended to the record.

Return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

Examples

1. The following commands copy an MVS sequential data set to an z/OS UNIX file

system file. This is text data, and there is no code page conversion.

v SYSUT1 is the ddname of the source data set, EMPLOYEE.DATA.

v PATHNAME is the ddname of the target, which is the existing file

/u/admin/employee/data.

ALLOCATE FILE(sysut1) DATASET(’employee.data’)

ALLOCATE FILE(pathname) PATH(’/u/admin/employee/data’)

OCOPY INDD(sysut1) OUTDD(pathname) TEXT

2. The following commands copy a binary file into a member of a partitioned data

set:

v BINARY is the ddname of the source file, bin/payroll. This file is in the

working directory.

v MVSPDS is the ddname of the target data set member,

APPL.CODES(PAYROLL)

ALLOCATE FILE(binary) PATH(’/bin/payroll’)

ALLOCATE FILE(mvspds) DATASET(’appl.codes(payroll)’)

OCOPY INDD(binary) OUTDD(mvspds) BINARY

3. The following commands copy system input from the MVS SYSIN data set to

the file system and perform code page conversion:

v SYSIN is the ddname of the source, IBMUSR.EMPLOYEE.DATA.

v PATHNAME is the ddname of the target, /u/admin/employee/data. This file

does not currently exist and is created by ALLOCATE.

v This is text data.

v The character conversion table is the default table, member BPXFX000 of the

SYS1.BPXLATE data set. (BPXFX000 is an alias; when shipped by IBM, it

points to BPXFX111.)

v Because this is a copy from an MVS data set to a file, the topic TO1047 of

the conversion table is used by default.

ALLOCATE FILE(sysin) DATASET(’IBMUSR.EMPLOYEE.DATA’)

ALLOCATE FILE(pathname) PATH(’/u/admin/employee/data’)

OCOPY

Chapter 3. TSO/E commands 843

PATHMODE (sirwxu) PATHOPTS (ocreat, owronly)

OCOPY INDD(sysin) OUTDD(pathname) TEXT CONVERT((BPXFX000))

(BPXFX000 is an alias; when shipped by IBM, it points to BPXFX111.)

4. The following OCOPY command copies data from one MVS sequential data set

to another MVS sequential data set and performs code page conversion. This

example shows just the OCOPY command; the necessary ALLOCATE

commands are not included.

v SYSUT1 is the ddname of the source data set.

v TRANSDD is the ddname of the target data set.

v This is text data.

v The data is converted using the user-specified character conversion table and

the TO1047 topic of the table.

OCOPY INDD(sysut1) OUTDD(transdd) TEXT CONVERT(’sys1.mylib(mytab)’) TO1047

OEDIT — Edit an z/OS UNIX file system file

Format

OEDIT [–r xx] pathname

or

OEDIT [–r xx] ’pathname’

Description

OEDIT enables you to edit a file in the z/OS UNIX file system. This command uses

the ISPF/PDF Edit facility.

If you enter OEDIT without specifying a pathname, the Edit Entry panel is

displayed. From that panel, you can enter the directory name and filename of an

existing file, or you can specify a directory name and filename for a new file. The

Edit Entry panel also lets you specify an edit profile and an initial edit macro.

For an introduction to using ISPF File Edit, see z/OS UNIX System Services User’s

Guide.

Parameters

pathname

Specifies the pathname of the file to be edited. The pathname can be absolute

or relative. It can be enclosed in single quotes. A relative pathname is relative to

the working directory of the TSO/E session (usually the HOME directory).

Therefore, you should usually specify an absolute pathname. If you enter

OEDIT from the shell, use the absolute pathname. Avoid using spaces or single

quotes within pathnames.

Option

–r xx Set the record length to be edited for fixed length text files. xx is the record

length.

 If –r xx is specified, the file will be processed as variable length but loaded

into the editor as fixed length records and saved as fixed length records.

This lets you convert a variable length file to fixed length. If any lines are

OCOPY

844 z/OS V1R9.0 UNIX System Services Command Reference

longer than the specified record length, the edit session will not load the file

and will issue the customary message that a line is too long.

Usage notes

1. OEDIT attempts to load the file into a VB255 session. If this is an ISPF that

supports wide edit (such as ISPF 4.1) and any line exceeds 235 characters, the

width for the new session is the length of the longest line plus 25% to allow for

some expansion.

2. The COPY command cannot copy in files that have records wider than the edit

session.

3. The TSO region size must be large enough to hold the size of the file to be

edited.

4. Two ISPF variables are available to edit macros:

v HFSCWD this variable contains the pathname for the directory in which the

file being edited resides.

v HFSNAME this variable contains the name of the file being edited.

OGET — Copy z/OS UNIX files into an MVS data set

Format

OGET ’pathname’

 mvs_data_set_name | mvs_data_set_name(member_name)

 BINARY | TEXT

 CONVERT(character_conversion_table | YES | NO)

Description

You can use the OGET command to copy an z/OS UNIX system file:

v To a member of an MVS partitioned data set (PDS or PDSE)

v To an MVS sequential data set

and convert the data from code page 1047 to code page IBM-037 or ASCII while it

is being copied. Do not use the CONVERT option when copying files that contain

doublebyte data. This option is used for singlebyte data only, not for doublebyte

data.

Parameters

pathname

Specifies the pathname of the file that is being copied to a data set. This

operand is required. The pathname is:

v A relative or absolute pathname. A relative pathname is relative to the

working directory of the TSO/E session (usually the HOME directory).

Therefore, you should usually specify an absolute pathname.

v Up to 1023 characters long.

v Enclosed in single quotes.

v In uppercase or lowercase characters, which are not changed by the system.

mvs_data_set_name | mvs_data_set_name(member_name)

Specifies the name of an MVS sequential data set or an MVS partitioned data

set member to receive the file that is being copied. One of these two operands

is required. The data set name is:

OEDIT

Chapter 3. TSO/E commands 845

v A fully qualified name that is enclosed in single quotes, or an unqualified

name

v Up to 44 characters long

v Converted to uppercase letters by the system

BINARY | TEXT

Specifies whether the file being copied contains binary data or text.

BINARY

Specifies that the file being copied contains binary data.

 When you specify BINARY, OGET operates without any consideration for

<newline> characters or the special characteristics of DBCS data. For

example, doublebyte characters might be split between MVS data set

records, or a “shift-out” state might span records.

TEXT

Specifies that the file being copied contains text. This is the default.

 If you are using a DBCS-supported terminal, you should use TEXT. It is

assumed that doublebyte data in the file system includes the <newline>

character in order to delineate line boundaries. Data within these lines that

are delineated by <newline> characters must begin and end in the “shift-in”

state.

CONVERT(character_conversion_table | YES | NO)

Specifies that the data being copied is to be converted from IBM-1047 to

IBM-037 or ASCII. This operand is optional. If is omitted, the system copies the

data without conversion.

 Use this option for singlebyte data only.

 Specify the CONVERT value as one of the following:

character_conversion_table

Specify one of the following:

v data_set_name(member_name). Specifies the name of the partitioned

data set (PDS) and the name of the member that contains the character

conversion table.

v data_set_name. Specifies the name of the partitioned data set (PDS)

that contains the character conversion table. The table is the FROM1047

part in member BPXFX000. (This is an alias; when shipped by IBM, it

points to BPXFX111.)

v (member_name). Specifies the name of the conversion table to be used.

It is a member of a PDS. Since the data_set_name is omitted, the

standard library concatenation is searched for the table. (The default

library is SYS1.LINKLIB.)

The following list summarizes what you can specify when you want to

convert data to a different code page when copying singlebyte data:

– BPXFX100. Null character conversion table. Use this table if the

square brackets at your workstation are at the same code points as

the square brackets on code page 1047 (it is the default). Also use

this table if you are using a DBCS terminal.

– BPXFX111. Specifies a non-APL conversion table to convert between

code pages IBM-037 and IBM-1047.

– BPXFX211. Specifies an APL conversion table to convert between

code pages IBM-037 and IBM-1047.

OGET

846 z/OS V1R9.0 UNIX System Services Command Reference

– BPXFX311. Specifies an ASCII-EBCDIC conversion table to convert

between code pages ISO8859-1 and IBM-1047.

YES

Specifies that the system is to perform conversion and use the default

conversion table (BPXFX000) in the standard library concatenation.

(BPXFX000 is an alias; when shipped by IBM, it points to BPXFX111.)

NO

Specifies that conversion not be done. NO is the same as omitting the

CONVERT operand.

Do not use the CONVERT parameter on files containing doublebyte data.

Doublebyte data in the file system is in code page 939. If you need to convert

to a code page other than 939, you use the iconv command.

Usage notes

1. For text files, all <newline> characters are stripped during the copy. Each line in

the file ending with a <newline> character is copied into a record of the MVS

data set. You cannot copy a text file to an MVS data set in an undefined record

format.

v For an MVS data set in fixed record format: Any line longer than the

record size is truncated. If the line is shorter than the record size, the record

is padded with blanks.

v For an MVS data set in variable record format: Any line longer than the

largest record size is truncated; the record length is set to the length of the

line. A change in the record length also occurs if the line is short.

For text mode transfer, if the line is longer than the record size, the line is

truncated (for DBCS, perhaps in the middle of a doublebyte character or in

“shift-in” state). If the line is shorter than the record size, the record is padded

with blanks.

2. For binary files, all data is preserved.

v For an MVS data set in fixed record format: Data is cut into chunks of size

equal to the record length. Each chunk is put into one record. The last record

is padded with spaces or blanks.

v For an MVS data set in variable record format: Data is cut into chunks of

size equal to the largest record length. Each chunk is put into one record.

The length of the last record is equal to the length of the data left.

v For an MVS data set in undefined record format: Data is cut into chunks

of size equal to the block size. Each chunk is put into one record. The length

of the last record is equal to the length of the data left.

For binary mode transfers, doublebyte characters might be split between MVS

data set records, or a “shift-out” state might span records.

3. If the MVS data set does not exist, OGET allocates a new data set, a sequential

data set of variable record format. However, OGET does not allocate a new

partitioned data set. The record length of the new data set is either 255 or the

size of the longest line in the z/OS UNIX file system file, whichever is larger.

Dynamic allocation services determine the block size and space, based on

installation-defined defaults. If the defaults are not sufficient, you should allocate

a new MVS data set and then specify it on OGET.

A simple method of allocating a sufficient size is to specify a primary extent size

and a secondary extent size equal to the number of bytes in the file being

copied.

OGET

Chapter 3. TSO/E commands 847

4. An executable file copied into an MVS data set is not executable under MVS,

because some required directory information is lost during the copy to the

partitioned data set.

5. Data sets with spanned records are not allowed.

6. If you are using a DBCS-supported terminal, the target MVS data set should be

defined or defaulted to variable record format. The record length of the data set

must be greater than or equal to the longest line in the z/OS UNIX file system

file. (OGET can determine how long the longest line is if you ask it to allocate

the target data set.)

7. OGET cannot be used to copy a load module out of a partitioned data set and

into a file system. You have to use a binder to ″flatten″ the load module. For

more information, see ″Copying an Executable Module from a PDS″ in z/OS

UNIX System Services User’s Guide

Return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

Examples

1. The following command copies a text file to an MVS sequential data set,

converting from code page 1047 to code page IBM-037 using the default table

BPXFX000. (BPXFX000 is an alias; when shipped by IBM, it points to

BPXFX111.)

v The pathname of the file is /u/admin/employee/data.

v The unqualified name of the sequential data set is EMPLOYEE.DATA.
OGET ’/u/admin/employee/data’ EMPLOYEE.DATA TEXT CONVERT(YES)

2. The following command copies a text file to an MVS sequential data set,

converting from code page 1047 to code page IBM-037 using conversion table

BPXFX111 in the user’s library data set.

v The pathname of the file is /u/admin/employee/data.

v The fully qualified name of the sequential data set is

IBMUSR.EMPLOYEE.DATA.
OGET ’/u/admin/employee/data’ ’IBMUSR.EMPLOYEE.DATA’

 CONVERT(’MY.LOADLIB(BPXFX111)’)

OGETX — Copy z/OS UNIX files from a directory to an MVS PDS or

PDSE

Format

OGETX hfs_directory | hfs_file_name

 mvs_PDS_name | mvs_data_set_name(member_name)

 ASIS

 BINARY | TEXT

 CONVERT(character_conversion_table | YES | NO)

 LC

 QUIET

 SUFFIX(suffix)

Description

You can use the OGETX command to:

v Copy files in a z/OS UNIX system directory to a member of an partitioned data

set (PDS) or PDSE

OGET

848 z/OS V1R9.0 UNIX System Services Command Reference

v Copy an individual file to a sequential data set or member of a partitioned data

set

and convert the data from code page 1047 to code page IBM-037 or ASCII while it

is being copied.

Do not use the CONVERT option when copying files that contain doublebyte data.

This option is used for singlebyte data only, not for doublebyte data.

Parameters

hfs_directory | hfs_file_name

Specifies the path name of the z/OS UNIX directory or file name that is being

copied to an MVS PDS or PDSE. The files are copied into members of the PDS

or PDSE.

 Use hfs_directory when a PDS is specified. When a sequential data set or

PDS member is specified, then the file name must be used.

 These limitations apply to an MVS data set name:

v It can use uppercase alphabetic characters A through Z, but not lowercase

letters.

v It can use numeric characters 0 through 9, and the special characters @, #,

and $.

v It cannot begin with a numeric character.

v The member name cannot be more than 8 characters. If a file name is longer

than 8 characters or uses characters that are not allowed in an MVS data set

name, the file is not copied.

The LC operand lets you copy z/OS UNIX system file names that are

lowercase, mixed case, or uppercase.

 Single quotes around the directory name or file name are optional.

mvs_PDS_name | mvs_data_set_name(member_name)

mvs_PDS_name specifies the name of an MVS PDS or PDSE to receive the

z/OS UNIX system files that are being copied.

mvs_data_set_name(member_name) specifies the name of an MVS partitioned

data set member to receive the file that is being copied. The name is:

v A fully qualified name that is enclosed in single quotes, or an unqualified

name

v Up to 44 characters long, with an additional 8 characters for the member

name

v Converted to uppercase letters

ASIS

Specifies that the _ character in path names not be translated to the @

character in member names. (It is a common convention to use @ symbols in

PDS member names to correspond with the _ symbol in path names.)

BINARY | TEXT

Specifies whether the files in the directory being copied contains binary data or

text. For more information, see Note 7 on page 851.

BINARY

Specifies that the files in the directory being copied contains binary data.

 When you specify BINARY, OGET operates without any consideration for

<newline> characters or the special characteristics of DBCS data. For

OGETX

Chapter 3. TSO/E commands 849

example, doublebyte characters might be split between MVS data set

records, or a “shift-out” state might span records.

TEXT

Specifies that the files in the directory being copied contains text. This is the

default.

 If you are using a DBCS-supported terminal, you should use TEXT. It is

assumed that doublebyte data in the file system includes the <newline>

character in order to delineate line boundaries. Data within these lines that

are delineated by <newline> characters must begin and end in the “shift-in”

state.

CONVERT(character_conversion_table | YES | NO)

Specifies that the data being copied is to be converted from code page 1047 to

code page IBM-237 or ASCII; that is,the FROM1047 part of the specified

character conversion table is used. This operand is optional. If it is omitted, the

system copies the data without conversion.

 Use this option for singlebyte data only.

 Specify the CONVERT value as one of the following:

character_conversion_table

Specify one of the following:

v data_set_name(member_name). Specifies the name of the partitioned

data set (PDS) and the name of the member that contains the character

conversion table.

v data_set_name. Specifies the name of the partitioned data set (PDS)

that contains the character conversion table. The table is the FROM1047

part in member BPXFX000. (This is an alias; when shipped by IBM, it

points to BPXFX111.)

v (member_name). Specifies the name of the conversion table to be used.

It is a member of a PDS. Since the data_set_name is omitted, the

standard library concatenation is searched for the table. (The default

library is SYS1.LINKLIB.)

The following list summarizes what you can specify when you want to

convert data to a different code page when copying singlebyte data:

– BPXFX100. Null character conversion table. Use this table if the

square brackets at your workstation are at the same code points as

the square brackets on code page 1047 (it is the default). Also use it

if you are using a DBCS terminal.

– BPXFX111. Specifies a non-APL conversion table to convert between

code pages IBM-037 and IBM-1047.

– BPXFX211. Specifies an APL conversion table to convert between

code pages IBM-037 and IBM-1047.

– BPXFX311. Specifies an ASCII-EBCDIC conversion table to convert

between code pages ISO8859-1 and IBM-1047.

YES

Specifies that the system is to perform conversion and use the default

conversion table (BPXFX000) in the standard library concatenation.

(BPXFX000 is an alias; when shipped by IBM, it points to BPXFX111.)

NO

Specifies that conversion not be done. NO is the same as omitting the

CONVERT operand.

OGETX

850 z/OS V1R9.0 UNIX System Services Command Reference

Do not use the CONVERT parameter on files containing doublebyte data.

Doublebyte data in the file system is in code page 939. If conversion to a

code page other than 939 is required, you should use the iconv command.

LC

Specifies that the z/OS UNIX system file names can be lowercase, uppercase,

or mixed. If LC is not specified, the z/OS UNIX system file names must be

uppercase. File names are converted to uppercase member names.

QUIET

Turns off the echoing of the OGET command before a file is copied.

SUFFIX(suffix)

Specifies that files with the files created by (suffix) be copied and the suffix be

dropped from the z/OS UNIX system file name when the PDS members are

created.

 A suffix is an optional additional file identifier that is appended to the file name

following the first period (.). It is usually used to identify the type of file.

Usage notes

1. Avoid using OGETX with path names containing single quotes or spaces.

2. For text files, all <newline> characters are stripped during the copy. Each line in

the file ending with a <newline> character is copied into a record of the MVS

data set. You cannot copy a text file to an MVS data set in an undefined record

format.

v For an MVS data set in fixed record format: Any line longer than the

record size is truncated. If the line is shorter than the record size, the record

is padded with blanks.

v For an MVS data set in variable record format: Any line is longer than the

largest record size is truncated; the record length is set accordingly. A change

in the record length also occurs if the line is short.

3. For binary files, all data is preserved.

v For an MVS data set in fixed record format: Data is cut into chunks of size

equal to the record length. Each chunk is put into one record. The last record

is padded with spaces or blanks.

v For an MVS data set in variable record format: Data is cut into chunks of

size equal to the largest record length. Each chunk is put into one record.

The length of the last record is equal to the length of the data left.

v For an MVS data set in undefined record format: Data is cut into chunks

of size equal to the block size. Each chunk is put into one record. The length

of the last record is equal to the length of the data left.

4. Data sets with spanned records are not allowed.

5. Before the copy, the OGET command for a file is echoed, unless you specify

the QUIET option. If you did not specify QUIET and if the command is not

echoed for a file, it has not met the copy criteria and is not copied.

6. If more than one file name is the same, the file is overwritten on each

subsequent copy. For example, if you specify a copy of Pgma and pgma and

use LC, the first file copied is overwritten. Or if you copy pgma.h and pgma.c

and specify SUFFIX, the first file copied is overwritten.

7. If the target data set is a PDS with an undefined record format, the files may be

treated as load modules. A load module is copied by link-editing it into the target

library. For the program to be able to execute, the entry point must be at the

beginning of the load module.

OGETX

Chapter 3. TSO/E commands 851

For OGETX to treat the file as a load module, do not specify either TEXT nor

BINARY.

8. If the source for the copy is a file, the target can be specified as a PDS. The

member name used is the file name, which is in uppercase and has had any

suffixes removed. Any remaining characters in the member name that are not

valid in member names cause the copy to fail. You do not have to specify a file

as a target with a sequential data set, or a directory as a target with a PDS. The

ASIS option is not affected.

Examples

1. The following command copies the files in the z/OS UNIX system directory

/usr/sbllib to the MVS PDS named DATAFILE, removing any suffixes appended

to the z/OS UNIX system files and accepting lowercase file names.

OGETX /usr/sbllib/ DATAFILE LC SUFFIX

The members /usr/sbllib/program1.c, /usr/sbllib/list.prg, and

usr/sbllib/program2.c become DATAFILE(PROGRAM1), DATAFILE(LIST), and

DATAFILE(PROGRAM2).

2. The following command copies the files with the suffix of c in the z/OS UNIX

system directory /usr/sbllib to the MVS PDS named DATAFILE, removing the .c

suffix appended to the z/OS UNIX system files and accepting lowercase file

names.

OGETX /usr/sbllib/ DATAFILE LC SUFFIX(c)

The members /usr/sbllib/program1.c, /usr/sbllib/list.prg, and

usr/sbllib/program2.c become DATAFILE(PROGRAM1) and

DATAFILE(PROGRAM2).

OHELP — Display online z/OS UNIX System Services publications

Format

OHELP ref_id name

Description

The OHELP command displays online reference information about shell commands,

TSO/E commands, C functions, callable services, and messages issued by the shell

and dbx.

Requirements: Before you can use this online help facility, the following

requirements must be met:

1. Your system must have the BookManager READ product installed. The help

information is displayed in a BookManager session, and you cannot work in the

shell while viewing the information.

2. Books and a bookshelf must be set up as described in z/OS Migration. The

IBM-supplied /samples/ohelp.ENU file contains the book and bookshelf names.

After the installation copies it to /etc/ohelp.ENU, it can define the list of books

that OHELP searches. To obtain a complete list of books and their numbers,

type OHELP without any operands.

The list of books that OHELP searches is defined by the installation.

OGETX

852 z/OS V1R9.0 UNIX System Services Command Reference

Parameters

ref_id

Specifies the number that identifies the information you want to search. The

default is ref_id=1.

name

Specifies the name of the function you want information about. If you omit this

operand, OHELP displays the table of contents of the information that contains

the type of function specified by ref_id.

 You can also specify a text string enclosed in double quotes. See Example 2.

Examples

1. To look at the description of the kill shell command, enter:

OHELP 1 kill

2. To search for all occurrences of the phrase environment variable in the OHELP

bookshelf, enter:

OHELP * "environment variable"

OMVS — Invoke the z/OS shell

Format

OMVS ALARM | NOALARM

 AUTOSCROLL | NOAUTOSCROLL

 CONVERT(character_conversion_table)

 DBCS | NODBCS

 DEBUG(NO | YES | EVENT | DATA)

 ECHO | NOECHO

 ENDPASSTHROUGH(ATTN | CLEAR | CLEARPARTITION |

 ENTER | NO | PA1 | PA3 | PF1 | PF2 | PF3 ... PF24 | SEL)

 ESCAPE(’escape-characters’)

 LINES(n)

 PFn

 (ALARM | NOALARM |

 AUTOSCROLL | NOAUTOSCROLL |

 BACKSCR |

 BOTTOM |

 CLOSE |

 CONTROL |

 ECHO | NOECHO |

 FWDRETR |

 HALFSCR

 HELP |

 HIDE | NOHIDE |

 NEXTSESS |

 NO |

 OPEN |

 PFSHOW | NOPFSHOW |

 PREVSESS |

 QUIT |

 QUITALL |

 REFRESH |

 RETRIEVE

 RETURN |

 SCROLL |

 SUBCOMMAND |

 TOP |

 TSO)

 PFSHOW | NOPFSHOW

OHELP

Chapter 3. TSO/E commands 853

RUNOPTS(’LE/370-runtime-options’)

 SESSIONS(n)

 SHAREAS | NOSHAREAS

 WRAPDEBUG(n)

Description

Use the OMVS command to invoke the z/OS shell. You can select options on the

OMVS command to customize aspects of the shell interface, such as the function

keys.

After you are working in a shell session, you can switch to subcommand mode,

return temporarily to TSO/E command mode, or end the session by exiting the

shell.

Parameters

ALARM | NOALARM

Controls the sounding of the 3270 alarm to alert you to particular events. The

default is ALARM.

ALARM

Causes the 3270 alarm to sound when the <alert> character is encountered

in data being sent to the workstation.

NOALARM

Prevents the 3270 alarm from sounding when the <alert> character is

encountered in data being sent to the workstation.

AUTOSCROLL | NOAUTOSCROLL

Controls the setting of the autoscroll function. The default is AUTOSCROLL.

AUTOSCROLL

Specifies automatic scrolling of input and output written to the screen.

NOAUTOSCROLL

Specifies that there not be automatic scrolling.

CONVERT(character_conversion_table)

Specifies the z/OS UNIX System Services character conversion table used to

convert between the z/OS code page and the code page used in the shell.

data_set_name(member_name)

Specifies the name of the partitioned data set (PDS) and the name of the

member that contains the character conversion table.

data_set_name

Specifies the name of the partitioned data set containing the character

conversion table to be used.

(member_name)

Specifies the name of the character conversion table to be used. It is the

name of a member in a partitioned data set.

 If both the member_name and data_set_name are omitted, member

FSUMQ000 in the default module search order is used as the character

conversion table. Table 36 on page 855 lists the various formats of the

OMVS CONVERT command:

OMVS

854 z/OS V1R9.0 UNIX System Services Command Reference

Table 36. Various Formats of the OMVS CONVERT Command (OMVS command)

Command Format What It Does

OMVS CONV((BPXFX111)) See Note 1.

OMVS CONV('SYS1.XXXX') Looks for SYS1.XXXX(FSUMQ000).

See Note 2.

OMVS CONV('SYS1.XXXX(BPXFX111)') Looks for SYS1.XXXX(BPXFX111)

OMVS CONV(XXXX) Looks for prefix.XXXX(FSUMQ000)

OMVS CONV(XXXX(BPXFX111)) Looks for prefix.XXXX(BPXFX111)

Notes:

1. If the data_set_name is omitted, z/OS locates member_name using the default search

order for modules in the system library concatenation. The located member_name is

used as the character conversion table. For example, if you specify:

OMVS CONVERT((BPXFX111))

the character conversion table is BPXFX111 in the default module search order in the

system library concatenation.

If the member name is omitted, the OMVS command looks in the specified

data_set_name for member FSUMQ000, to use it as the character conversion table. For

example, if you specify:

OMVS CONVERT('SYS1.XLATE') ...

OMVS uses SYS1.XLATE(FSUMQ000) as the character conversion table.

2. FSUMQ000 is an alias; when shipped by IBM, it points to BPXFX100, the default null

character conversion table.

Table 37 lists the character conversion tables supplied with the OMVS

command. It shows the locale name, the conversion table to specify, and the

default escape character for that table. If you are using the De_CH.IBM-500

locale, you must specify BPXFX450 as the conversion table, and the default

escape character for that particular table is the topic sign, §. To specify

BPXFX450 as the conversion table, issue:

CONVERT((BPXFX450))

 Table 37. Locales, Their Conversion Tables, and Default Escape Characters (OMVS

command)

Shell and Utilities

Locale

3270 Code

Page

Shell Code

Page Conversion Table

Default Escape

Character

De_CH.IBM-500 IBM-500 IBM-500 BPXFX450 §

De_DE.IBM-273 IBM-273 IBM-273 BPXFX473 §

De_DK.IBM-277 IBM-277 IBM-277 BPXFX477 ¤

En_GB.IBM.285 IBM-285 IBM-285 BPXFX485 ‾

En_JP.IBM-1027 IBM-1047 IBM-1047 BPXFX100 ¢

En_US.IBM-037 IBM-037 IBM-037 BPXFX437 ¢

En_US.IBM-1047(For

APL terminals) IBM-037 IBM-1047 BPXFX211 ¢

En_US.IBM-1047 IBM-037 IBM-047 BPXFX111 ¢

Es_ES.IBM-284 IBM-284 IBM-284 BPXFX484 }

Fi_FI.IBM-278 IBM-278 IBM-278 BPXFX478 §

OMVS

Chapter 3. TSO/E commands 855

Table 37. Locales, Their Conversion Tables, and Default Escape Characters (OMVS

command) (continued)

Shell and Utilities

Locale

3270 Code

Page

Shell Code

Page Conversion Table

Default Escape

Character

Fr_BE.IBM-500 IBM-500 IBM-500 BPXFX450 §

Fr_CA.IBM-037 IBM-037 IBM-037 BPXFX437 ¢

Fr_CA.IBM-1047 IBM-037 IBM-1047 BPXFX111 ¢

Fr_CH.IBM-500 IBM-500 IBM-500 BPXFX450 §

Fr_FR.IBM-297 IBM-297 IBM-297 BPXFX497 §

Is_IS.IBM-871 IBM-871 IBM-871 BPXFX471 }

It_IT.IBM-280 IBM-280 IBM-280 BPXFX480 §

Ja_JP.IBM-939 IBM-939 IBM-939 BPXFX100 ¢

Ja_JP.IBM-1027 IBM-1027 IBM-1027 BPXFX100 ¢

Nl_BE.IBM-500 IBM-500 IBM-500 BPXFX450 §

Nl_NL.IBM-037 IBM-037 IBM-037 IBM-037 ¢

Nl_NL.IBM-1047 IBM-037 IBM-1047 BPXFX111 ¢

No_NO.IBM-277 IBM-277 IBM-277 BPXFX477 ¤

Pt_PT.IBM-037 IBM-037 IBM-037 BPXFX437 ¢

Pt_PT.IBM-1047 IBM-037 IBM-1047 BPXFX111 ¢

Sv_SE.IBM-278 IBM-278 IBM-278 BPXFX478 §

Xx_XX.IBM-1047 IBM-1047 IBM-1047 BPXFX100 ¢

DBCS | NODBCS

Specifies whether to use DBCS on 3270-type terminals. The default is DBCS

processing.

DBCS

Causes OMVS to automatically determine whether the terminal supports

DBCS. If so, DBCS processing takes place. It also enables the OMVS

command to handle doublebyte data in translated messages. This operand

is ignored if you’re not using a DBCS terminal.

 Doublebyte data, including escape character strings, cannot be supplied for

any of the OMVS command operands. The following data strings used by

OMVS must contain singlebyte characters only:

v Escape characters

v Conversion table data set name

v Conversion table member name

v Password used to access the conversion table, if one is required

Note: OMVS supports only code pages 939, 1027, and 1047 on DBCS.

The null character conversion table (BPXFX100) should be used with

DBCS terminals. (It is the default.)

NODBCS

Specifies that OMVS operate in SBCS mode only. If you are logged on to a

terminal that supports DBCS, this operand allows you to bypass DBCS

processing.

DEBUG(NO | YES | EVENT | DATA)

Controls the collection and output of debugging information. The default is NO;

change the default setting only if IBM requests it.

OMVS

856 z/OS V1R9.0 UNIX System Services Command Reference

NO

Indicates that no debugging information is to be written.

YES

Indicates that debugging information is collected while the OMVS command

runs.

EVENT

Causes additional debugging information to be written whenever certain

internal events occur in the OMVS command.

DATA

Causes any data received from or sent to the workstation to be written.

Also, debug information for internal events is recorded.

 Also, the ddname for the OMVS debug data set is always SYSFSUMO.

ECHO | NOECHO

Enables OMVS to control the visibility of the input area. The default is

NOECHO.

ECHO

Allows OMVS to hide or unhide the input area.

NOECHO

Prevents OMVS from hiding and unhiding the input area.

ENDPASSTHROUGH(ATTN | CLEAR | CLEARPARTITION | ENTER | NO | PA1 |

PA3 | PF1 | PF2 | PF3 ... PF24 | SEL)

Specifies a 3270 key that ends TSO/3270 passthrough mode and forces OMVS

to return to the shell session. Because this key would be used only during

application development, the default is ENDPASSTHROUGH(NO); all 3270

keys can be used by the 3270 application.

ATTN

Specifies the 3270 <Attention> key. In some 3270 applications, this key may be

changed to <PA1> before it is seen by the TSO/E OMVS command. If so,

OMVS will never see the <Attention> key; specify <PA1>instead of <ATTN>.

 With some terminal connections, the <ATTN> key may not be available.

CLEAR

Specifies the 3270 CLEAR key. In some TS0/3270 applications, the TSO/E

OMVS command will not see <CLEAR> when the CLEAR key is pressed. In

these cases, specifying ENDPASSTHROUGH(CLEAR) will have no effect.

CLEARPARTITION

Specifies the 3270 <Clear Partition> key. This key is effective only if the

application is using explicit 3270 partitions.

ENTER

Specifies the 3270 ENTER key. This key is useful only if the 3270 application is

completely driven by PF or PA keys.

NO

No breakout key; this is the default.

PA1

Specifies the 3270 <PA1>key. For some TSO/3270 applications, <PA1> is

changed to <ATTN> before OMVS sees it. In these cases, you should specify

ENDPASSTHROUGH(ATTN).

OMVS

Chapter 3. TSO/E commands 857

In general, the provider of the TSO/3270 application needs to tell the user

whether <PA1>, <ATTN>, or <CLEAR> can be used for ENDPASSTHROUGH.

PA3

Specifies the 3270 <PA3> key. The <PA3> key may not be available on some

keyboards.

PFn

Specifies the 3270 function keys 1–9.

PFnn

Specifies the 3270 function keys 10–24.

SEL

Specifies the 3270 Cursor Select key. This key is useful only when the 3270

application creates fields on the 3270 screen that can be selected by a light

pen.

ESCAPE('escape-characters')

Specifies an escape character as the first character in a two-character

sequence that is the EBCDIC equivalent of an ASCII control character (for

example, the EBCDIC “ød” is the equivalent of the ASCII “Ctrl-D”). When an

escape character is typed in the input area, the next character typed is

converted into a special character before it is passed to the shell.

 You can enter a string up to eight escape characters, enclosed in single quotes

with no space between them. (Do not use nonprintable EBCDIC characters.)

 The default escape character depends on the character conversion table being

used. (See Table 37 on page 855 for a list of default characters and the

conversion tables they are used with.) To enter <Ctrl-D>, for example, type in ød

or øD in the input area.

 If the last character in the input area is one of the escape characters, the

<newline> character normally appended to the input data is suppressed. For

example, to enter only a <Ctrl-Q> with no final <newline>, type the string øQø in

the input area, and press <Enter>.

LINES(n)

Controls the amount of output data the OMVS command keeps for scrolling.

The default is roughly four screenfuls. You can specify that between 25 and

3000 lines should be kept in the output buffer.

PFn(ALARM | NOALARM | AUTOSCROLL | NOAUTOSCROLL | BACKSCR |

BOTTOM | CLOSE | CONTROL | ECHO | NOECHO FWDRETR | HALFSCR |

HELP | HIDE | NOHIDE NEXTSESS | NO | OPEN | PFSHOW | NOPFSHOW |

PREVSESS | QUIT | QUITALL | REFRESH | RETRIEVE | RETURN | SCROLL |

SUBCOMMAND | TOP | TSO)

Customizes the settings for the function keys that you use while working in the

z/OS shell or in subcommand mode. in <PFn> The n is a one- or two-digit

function key number from 1 to 24. Do not use a leading zero for a one-digit

number. More than one function key can be assigned the same function. For

example, both <PF1> and <PF13> are assigned the Help function by default.

 All PF keys can be abbreviated using the usual TSO/E rules. For example,

v OPEN can be abbreviated as O, OP, or OPE.

v NEXTSESS can be abbreviated as NE, NEX, NEXT, NEXTS, NEXTSE, or

NEXTSES.

v PFSHOW can be abbreviated as PF, and NOPFSHOW can be abbreviated

as NOPF.

OMVS

858 z/OS V1R9.0 UNIX System Services Command Reference

ALARM | NOALARM

A toggle key used to turn on and off the 3270 alarm that sounds when an

<alert> character is written to the output area (also available in

subcommand mode).

 The label for this PF key (in the PF key lines at the bottom of the screen)

shows up as either ALARM or NOALARM, depending on the current toggle

setting. If it is ALARM, pressing this PF key turns the alarm on. If it is

NOALARM, pressing this PF key turns the alarm off.

AUTOSCROLL | NOAUTOSCROLL

A toggle key used to turn the autoscroll function on and off (also available

in subcommand mode). The screen automatically scrolls forward when new

input is written to the screen.

 The label for this PF key (in the PF key lines at the bottom of the screen)

shows up as either AUTOSCROLL or NOAUTOSCROLL, depending on the

current toggle setting. If it is AUTOSCROLL, pressing this PF key turns the

autoscroll function on. If it is NOAUTOSCROLL, pressing this PF key turns

the autoscroll function off.

BACKSCR

Scrolls the screen backward one full screen, redisplaying previously

displayed output lines. The scrolling ends when the oldest available saved

line is reached. (This option is also available in subcommand mode.)

 If you first move the cursor into the output area, the line with the cursor

becomes the top line.

BOTTOM

Scrolls help information forward to the last panel of information, and scrolls

output forward the last full screen (also available in subcommand mode).

CLOSE

Ends the displayed session and switches to another one, or returns to

TSO/E if the only session was closed (also available in subcommand

mode).

CONTROL

Treats all characters in the input area as if they were preceded by an

escape character. Also, no trailing <newline> is appended to the data.

ECHO | NOECHO

A toggle key used to control whether the shell command can hide or unhide

the OMVS command input area.

 The label for this PF key (in the PF key lines at the bottom of the screen)

shows up as either ECHO or NOECHO, depending on the current toggle

setting. If it is ECHO, pressing this PF key allows the current shell

command to hide or unhide the OMVS command input area. If it is

NOECHO, pressing this PF key prevents the current shell command from

hiding or unhiding the OMVS input area.

FWDRETR

Retrieves the oldest available input line from a stack of saved input lines,

starting with the oldest and moving up to the most recent line (also

available in subcommand mode).

HALFSCR

Scrolls half the displayed screen forward, allowing room for more output

data. If the output area on the screen is not full, half the displayed lines are

OMVS

Chapter 3. TSO/E commands 859

scrolled off the screen. If you first move the cursor into the output area, the

line with the cursor becomes the middle line. (This option is also available

in subcommand mode.)

HELP

Temporarily suspends the session and displays the help information for the

OMVS command. The scrolling function keys can be used to look at the

help information. To exit the help information, press the Return function key.

(This option is also available in subcommand mode.)

HIDE | NOHIDE

Temporarily hides or unhides the input data you type on the shell command

line. If you press this PF key while the input area is hidden, the input area

is made visible. If it is not hidden, the input area is hidden.

 The input area stays hidden or unhidden until:

v You press <Enter>.

v You press the HIDE | NOHIDE PF key.

v You switch to another session, escape to TSO/E and return, or enter

subcommand mode and return.

If OMVS is running in NOECHO mode, the input area will be visible after

you take one of these actions. If OMVS is running in ECHO mode, the

visibility of the input area depends on the shell command you are running.

NEXTSESS

Switches to the next (higher-numbered) session (also available in

subcommand mode).

NO

Deactivates a function key so that it doesn’t do anything (also available in

subcommand mode).

OPEN

Starts a new shell session and switches to it (also available in subcommand

mode).

PFSHOW | NOPFSHOW

Toggles on and off the display of the active function key settings at the

bottom of the screen (also available in subcommand mode, and can be

used as PF and NOPF).

PREVSESS

Switches to the previous (lower-numbered) session (also available in

subcommand mode).

QUIT

Ends the displayed session and switches to another one, or returns to

TSO/E if the only session was closed (also available in subcommand

mode).

QUITALL

Ends all shell sessions and causes OMVS to end and to return to TSO/E

(also available in subcommand mode).

REFRESH

Updates the screen with the latest output data. Use this function key if the

display of output is incomplete, but the session is now displaying INPUT

status. For more information on the status field, see z/OS UNIX System

Services User’s Guide. (This option is also available in subcommand

mode.)

OMVS

860 z/OS V1R9.0 UNIX System Services Command Reference

RETRIEVE

Retrieves the most recently entered input line from a stack of saved input

lines, starting with the most recent and moving down to the oldest available

line (also available in subcommand mode).

RETURN

If help information is displayed, returns you to the session you were in. If

you are in subcommand mode, returns you to the shell. (This option is also

available in subcommand mode.)

SCROLL

Scrolls the last line of output data to the top of the screen, making room for

more output data. If Help information is displayed, its data is scrolled. If you

first move the cursor into the output area, the line with the cursor becomes

the top line. (This option is also available in subcommand mode.)

SUBCOMMAND

If you press this key when the command line is blank, it leaves the shell

session and enters subcommand mode.

 To run a subcommand without switching to subcommand mode, type the

subcommand at the command line and then press the function key. You can

enter the OMVS subcommands at the command line when you are in

subcommand mode.

TOP

Scrolls help information backward to the first panel, and scrolls output

backward to a screen full of the oldest available output (also available in

subcommand mode).

TSO

If you press this key when the command line is blank, it temporarily

suspends a shell session or subcommand mode, and you are in a TSO/E

session. You can enter TSO/E commands. Press <PA1> or the <Attention>

key to exit TSO/E command mode and return to the session you were in.

(This option is also available in subcommand mode.)

 To run a TSO/E command without suspending the shell session or

subcommand mode, type the command at the command line and then

press the function key. When the command completes, you can continue

working in the shell session or subcommand mode.

 Function Key Defaults:

PF1(HELP)

PF2(SUBCOMMAND)

PF3(RETURN)

PF4(TOP)

PF5(BOTTOM)

PF6(TSO)

PF7(BACKSCR)

PF8(SCROLL)

PF9(NEXTSESS)

PF10(REFRESH)

PF11(FWDRETR)

PF12(RETRIEVE)

PF13(HELP)

PF14(SUBCOMMAND)

PF15(RETURN)

OMVS

Chapter 3. TSO/E commands 861

PF16(TOP)

PF17(BOTTOM)

PF18(TSO)

PF19(BACKSCR)

PF20(SCROLL)

PF21(NEXTSESS)

PF22(REFRESH)

PF23(FWDRETR)

PF24(RETRIEVE)

PFSHOW | NOPFSHOW

Specifies that the PF keys be shown at the bottom of the screen. The default is

PFSHOW.

PFSHOW

Specifies that PF keys be shown at the bottom of the screen.

NOPFSHOW

Specifies that PF keys not be shown at the bottom of the screen.

RUNOPTS(’LE/370–runtime-options’)

Specifies a string containing LE/370 runtime options, which are passed to

LE/370 when the TSO/E OMVS command starts up, and to the initial login shell

program in the _CEE_RUNOPTS environment variable. These options are the

same as those passed to other LE/370 programs run from the TSO READY

prompt.

 The options string can be from 1 to 1000 characters in length, and should

contain valid LE/370 runtime options. It should not contain options such as

POSIX(OFF), TRAP(OFF), TRAP(ON,NOSPIE), or MSGFILE(), or characters

such as slashes, unbalanced parentheses or quotes, or imbedded NULL

characters. Specifying such options or using these characters will cause

unpredictable problems when the TSO/E OMVS command runs.

 If the RUNOPTS operand is omitted, OMVS uses the RUNOPTS string defined

in the BPXPRMxx SYS1.PARMLIB member that is active for the OMVS kernel.

If no RUNOPTS string was defined in BPXPRMxx, no LE/370 runtime options

are used when the TSO/E OMVS command starts up.

 For more information, refer to z/OS Language Environment Programming Guide

which contains a discussion about restrictions on _CEE_RUNOPTS

environment variable setttings.

SESSIONS(n)

Specifies the initial number of sessions to be started. The default is 1, and the

allowed range is 1 to 100; most users will use two or three sessions.

Note: You can specify a number from 1 to 100 without getting a syntax error

on the command. Normally, you cannot start more than several sessions

before getting an error message. If you try to start too many sessions

(the limit depends on the size of your TSO/E address space), your

TSO/E user ID runs out of storage and various unpredictable errors may

occur. You may have to log off your TSO/E user ID before you can

continue.

SHAREAS | NOSHAREAS

Specifies whether to run the shell program in a separate address space. Both

OMVS and the shell will run in the TSO/E address space when OMVS is

invoked with the SHAREAS parameter.

OMVS

862 z/OS V1R9.0 UNIX System Services Command Reference

OMVS will use SHAREAS as the default if the shell program is not a SETUID

or SETGID program and the owning UID or GID is not the same as the current

user.

SHAREAS

Runs the shell program in the same TSO/E address space as OMVS.

SETUID and SETGID shell programs cannot be run with the SHAREAS

option unless your UID or GID owns the shell program.

Note: If you end OMVS while in SHAREAS mode, the shell process ends

immediately. (It may get killed, but it will usually end by itself when

the TTY is closed.)

NOSHAREAS

Runs the shell program in a separate address space. SETUID and SETGID

shell programs usually require this option.

WRAPDEBUG(n)

Controls how many lines of debug data OMVS writes out before wrapping

around to the top of the debug data set. This option is effective only if the

DEBUG(YES) DEBUG(EVENT), or DEBUG(DATA) options are used.

 The WRAPDEBUG(n) value specifies how many lines of debug data OMVS

writes out before wrapping around to the top of the debug data set. The default

number of lines is 10 000. The value of n must be between 100 and

1 000 000 000. The debug data set must be large enough to hold n 80-byte

lines of debug data. If the debug data set is too small, debug recording stops

when the data set fills up.

Subcommands

When the shell is active, you can enter subcommand mode by pressing the

Subcommand function key. While in subcommand mode, you can enter

subcommands on the command line or use function keys.

ALARM

Turns on the 3270 alarm which sounds when an <alert> character is written to

the output area.

AUTOSCROLL

Activates automatic forward scrolling of output as new input is written to the

screen.

BACKSCR

Scrolls the screen backward one full screen, redisplaying previously deleted

output lines. The scrolling ends when the oldest available saved line is reached.

BOTTOM

If the help information is displayed, it is scrolled forward to the last panel of

information. If output is displayed, it is scrolled forward to the last screen of

output.

CLOSE

Ends the displayed session and switches to another one, or returns to TSO/E if

the only session was closed.

ECHO

Allows the current shell command to control whether the OMVS input area is

visible or hidden. The HIDE subcommand, NOHIDE subcommand, and HIDE |

NOHIDE PF keys can temporarily override the input area visibility set by the

current shell command.

OMVS

Chapter 3. TSO/E commands 863

HALFSCR

Scrolls half the displayed screen forward, allowing room for more output data.

HELP

Displays help information for the OMVS command. To view the help information,

use the scrolling function keys. To return from Help to the session, press the

Return function key.

 ? is a short form for the Help subcommand.

HIDE

Temporarily hides the input data you type on the shell command line. The input

area stays hidden until:

v You press <Enter>.

v You press the HIDE | NOHIDE PF key.

v You switch to another session, escape to TSO and return, or enter

subcommand mode and return.

If OMVS is running in NOECHO mode, the input area will be visible after you

take one of these actions. If it is running in ECHO mode, whether you can see

the input area depends on the shell command you are running.

NEXTSESS

Switches to the next (higher-numbered) session.

NOALARM

Prevents the 3270 alarm from sounding when the <alert> character is

encountered in data being sent to the workstation.

NOAUTOSCROLL

Turns off the automatic scrolling (AUTOSCROLL) function.

NOECHO

Causes the OMVS input area to remain visible regardless of the current shell

command. You can use the HIDE subcommand and the PF key to temporarily

hide the input area.

NOHIDE

Temporarily unhides the input data you type on the shell command line. The

input area remains visible until:

v You press <Enter>.

v You press the HIDE | NOHIDE PF key.

v You switch to another session, escape to TSO and return, or enter

subcommand mode and return.

If OMVS is running in NOECHO mode, the input area remains visible after you

take one of these actions. If OMVS is running in ECHO mode, the visibility of

the input area depends on the shell command you are running.

NOPFSHOW

Turns off the display of the function key settings and escape characters at the

bottom of the screen.

OPEN

Starts a new shell session and switches to it.

PFSHOW

Displays the current function key settings and escape characters on the bottom

two lines of the display screen. A maximum of two screen lines is used. If some

function key settings do not fit on the two lines, they are not displayed.

OMVS

864 z/OS V1R9.0 UNIX System Services Command Reference

PREVSESS

Switches to the previous (lower-numbered) session.

QUIT

Ends the displayed session and switches to another one, or returns to TSO/E if

the only session was closed.

QUITALL

Ends all shell sessions and causes OMVS to end and to return to TSO/E.

RETURN

Returns from subcommand mode to the shell session. If help information is

being displayed, the session returns to subcommand mode and you must enter

the RETURN command again to return to the shell.

SCROLL

Scrolls forward the data displayed on the screen, approximately one full screen.

TOP

Scrolls help information backward to the first panel. Scrolls output backward to

a screenful of the oldest available output.

TSO

Invokes TSO/E command mode. In this mode, you can enter TSO/E

commands. Press <PA1>or the <Attention> key to return to subcommand

mode.

Usage notes

1. The OMVS command is a Language Environment application. OMVS overrides

the default Language Environment; MSGFILE ddname (SYSOUT) and uses

ddname SYSFSUMM.

Normally, any Language Environment; error messages from the OMVS

command are displayed on the TSO/E terminal. If you want to redirect these

messages, you need to allocate the SYSFSUMM ddname instead of the

SYSOUT ddname, as is usual with Language Environment; applications.

2. The language of the OMVS command messages is determined by the PROFILE

PLANGUAGE setting when OMVS is invoked. Do not change PROFILE

PLANGUAGE while OMVS is running

Return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

Examples

These examples explain how to use the multi-session capability of OMVS:

1. To start 2 sessions automatically when starting OMVS, enter:

OMVS SESSIONS(2)

2. To assign the NEXTSESS function to a PF key, enter:

OMVS PF1(NEXTSESS)

OMVS

Chapter 3. TSO/E commands 865

OPUT — Copy an MVS data set member into a z/OS UNIX system file

Format

OPUT mvs_data_set_name | mvs_data_set_name(member_name)

 ’pathname’

 BINARY | TEXT

 CONVERT(character_conversion_table | YES | NO)

Description

You can use the OPUT command to:

v Copy a member of an MVS partitioned data set (PDS or PDSE) to a file

v Copy an MVS sequential data set to a file

and convert the data from code page IBM-037 or ASCII to code page IBM-1047.

Do not use the CONVERT option when copying files that contain doublebyte data.

This option is used for singlebyte data only, not for doublebyte data.

Parameters

mvs_data_set_name | mvs_data_set_name(member_name)

Specifies the name of an MVS sequential data set or an MVS partitioned data

set member that is being copied.

 v A fully qualified name that is enclosed in single quotes, or an unqualified

name (an unqualified name is not enclosed in single quotes)

v Up to 44 characters long, with an additional 8 characters for the member

name

v Converted to uppercase characters by the system

pathname

Specifies the path name of the file to receive the data set member that is being

copied. The target file cannot be a directory. All directories in the path name

prior to the file name directory must already exist. The path name is:

v A relative or absolute path name. A relative path name is relative to the

working directory of the TSO/E session (usually the HOME directory).

Therefore, you should usually specify an absolute path name.

v Up to 1023 characters long.

v Enclosed in single quotes.

v In uppercase or lowercase characters, which are not changed by the system.

BINARY | TEXT

specifies that the data set being copied contains binary data or text.

BINARY

Specifies that the data set being copied contains binary data. This is the

default for a data set of undefined record format.

TEXT

Specifies that the data set being copied contains text. This is the default for

a data set of fixed record format or variable record format.

CONVERT(character_conversion_table | YES | NO)

Specifies that the data being copied is to be converted from IBM-037 or ASCII

to EBCDIC Latin 1/Open Systems Interconnection code page 01047—that is,

OPUT

866 z/OS V1R9.0 UNIX System Services Command Reference

that the TO1047 part of the specified character conversion table will be used.

This operand is optional. If this operand is omitted, the system copies the data

without conversion.

 You can use this option for singlebyte data, but not for doublebyte data.

 Specify the CONVERT value as one of the following:

character_conversion_table

Specify one of the following:

v data_set_name(member_name). Specifies the name of the partitioned

data set (PDS) and the name of the member that contains the character

conversion table.

v data_set_name. Specifies the name of the partitioned data set (PDS)

that contains the character conversion table. The table is the FROM1047

part in member BPXFX000. (This is an alias; when shipped by IBM, it

points to BPXFX111.)

v (member_name). Specifies the name of the conversion table to be used.

It is a member of a PDS. Since the data_set_name is omitted, the

standard library concatenation is searched for the table. (The default

library is SYS1.LINKLIB.)

The following list summarizes what you can specify when you want to

convert data to a different code page when copying singlebyte data:

– BPXFX100. Null character conversion table. Use this table if the

square brackets at your workstation are at the same code points as

the square brackets on code page 1047 (it is the default). Also use it

if you are using a DBCS terminal.

– BPXFX111. Specifies a non-APL conversion table to convert between

code pages IBM-037 and IBM-1047.

– BPXFX211. Specifies an APL conversion table to convert between

code pages IBM-037 and IBM-1047.

– BPXFX311. Specifies an ASCII-EBCDIC conversion table to convert

between code pages ISO8859-1 and IBM-1047.

YES

The system will perform conversion and use the default conversion table

(BPXFX000) in the system library concatenation. (BPXFX000 is an alias;

when shipped by IBM, it points to BPXFX111.)

NO

Specifies no conversion. NO is the same as omitting the CONVERT

operand.

Usage notes

1. If the specified file does not exist, OPUT creates a new file. For a new text file,

the mode (permission bits) is 600. When the mode is 600, the user has read

and write access; others have nothing. For a new binary file, the mode

(permission bits) is 700. When the mode is 700, the user has read, write, and

execute access; others have nothing.

2. If the specified file exists, the new data overwrites the existing data. The mode

of the file is unchanged.

3. You can use OPUT to copy a program object from a PDSE to the file system,

and it will be executable there. If you have a load module in a partitioned data

set, however, you must first use the IEBCOPY program to copy the load module

from a partitioned data set to a PDSE and then subsequently use OPUT to copy

OPUT

Chapter 3. TSO/E commands 867

the module into the file system. IEBCOPY converts load modules to a program

object. See z/OS UNIX System Services User’s Guide for a discussion of

copying executable files.

4. Data sets with spanned record lengths are not allowed.

5. When you copy MVS data sets to z/OS UNIX file system text files, a <newline>

character is appended to the end of each record. If trailing blanks exist in the

record, the <newline> character is appended after the trailing blanks.

6. When you copy MVS data sets to z/OS UNIX file system binary files, the

<newline> character is not appended to the record.

Return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

Examples

1. This command copies an MVS sequential data set to a file, converting from

code page IBM-037 to code page 1047.

v The unqualified name of the sequential data set is EMPLOYEE.DATA.

v The path name of the file is /u/admin/employee/data.
OPUT EMPLOYEE.DATA ’/u/admin/employee/data’ TEXT CONVERT(YES)

2. This command copies an MVS sequential data set to a file converting to code

page 1047 using the conversion table BPXFX000 in the user’s library data set.

v The fully qualified name of the sequential data set is

IBMUSR.EMPLOYEE.DATA.

v The path name of the file is /u/admin/employee/data.
OPUT ’IBMUSR.EMPLOYEE.DATA’ ’/u/admin/employee/data’

 TEXT CONVERT(MY.LOADLIB(BPXFX000))

3. This command copies a binary file from a PDSE to a file in the file system.

v APPL.LOADLIB(PAYROLL) is the fully qualified name of the member of the

PDSE.

v bin/payroll is the path name of the file; the directory bin is in the working

directory.

v There is no code page conversion.
OPUT ’APPL.LOADLIB(PAYROLL)’ ’/bin/payroll’ binary

OPUTX — Copy members from an MVS PDS or PDSE to an z/OS UNIX

system directory

Format

OPUTX mvs_PDS_name | mvs_data_set-name(member_name)

 hfs_directory | hfs_file_name

 ASIS

 BINARY | TEXT

 CONVERT(character_conversion_table | YES | NO)

 LC

 MODE

 QUIET

 SUFFIX(suffix)

Description

You can use the OPUTX command to:

OPUT

868 z/OS V1R9.0 UNIX System Services Command Reference

v Copy members from an MVS partitioned data set (PDS) or PDSE to an z/OS

UNIX system directory

v Copy a sequential data set or member of a PDS to a file

and convert the data from code page IBM-037 or ASCII to code page IBM-1047

while it is being copied.

Do not use the CONVERT option when copying files that contain doublebyte data.

This option is used for singlebyte data only, not for doublebyte data.

Parameters

hfs_directory | HFS_file_name

Specifies the directory name or file name of the z/OS UNIX file system files to

receive the PDS members that are being copied. The name can be up to 1023

characters long. Single quotes around the directory name or file name are

optional.

 Use hfs_directory when a PDS is specified. When a sequential data set or

PDS member is specified, then the file name must be used.

mvs_PDS_name | mvs_data_set_name(member_name)

Specifies the name of an MVS partitioned data set or an MVS partitioned data

set member that is being copied into an z/OS UNIX file system. The data set

name is:

v A fully qualified name that is enclosed in single quotes, or an unqualified

name (an unqualified name is not enclosed in single quotes)

v Up to 44 characters long, with an additional 8 characters for the member

name

v Converted to uppercase letters

ASIS

Specifies that the @ character in member names not be translated to the _

character in path names. (It is a common convention to use @ symbols in PDS

member names to correspond with the _ symbol in path names.)

BINARY | TEXT

Specifies whether the data set being copied contains binary data or text.

BINARY

Specifies that the data set being copied contains binary data. This is the

default for a data set of undefined record format.

TEXT

Specifies that the data set being copied contains text. This is the default for

a data set of fixed record format or variable record format.

CONVERT(character_conversion_table | YES | NO)

Specifies that the data being copied be converted from code page IBM-037 to

EBCDIC Latin 1/Open Systems Interconnection code page 01047—that is, that

the TO1047 part of the specified character conversion table is used. This

operand is optional. If this operand is omitted, the system copies the data

without conversion.

 You can use this option for singlebyte data, but not for doublebyte data.

 Specify the CONVERT value as one of the following:

character_conversion_table

Specify one of the following:

OPUTX

Chapter 3. TSO/E commands 869

v data_set_name(member_name). Specifies the name of the partitioned

data set (PDS) and the name of the member that contains the character

conversion table.

v data_set_name. Specifies the name of the partitioned data set (PDS)

that contains the character conversion table. The table is the FROM1047

part in member BPXFX000. (This is an alias; when shipped by IBM, it

points to BPXFX111.)

v (member_name). Specifies the name of the conversion table to be used.

It is a member of a PDS. Since the data_set_name is omitted, the

standard library concatenation is searched for the table. (The default

library is SYS1.LINKLIB.)

The following list summarizes what you can specify when you want to

convert data to a different code page when copying singlebyte data:

– BPXFX100. Null character conversion table. Use this table if the

square brackets at your workstation are at the same code points as

the square brackets on code page 1047 (it is the default). Also use it

if you are using a DBCS terminal.

– BPXFX111. Specifies a non-APL conversion table to convert between

code pages IBM-037 and IBM-1047.

– BPXFX211. Specifies an APL conversion table to convert between

code pages IBM-037 and IBM-1047.

– BPXFX311. Specifies an ASCII-EBCDIC conversion table to convert

between code pages ISO8859-1 and IBM-1047.

YES

Specifies that the system is to perform conversation and use the default

conversion table (BPXFX000) in the standard library concatenation.

(BPXFX000 is an alias; when shipped by IBM, it points to BPXFX111.)

NO

Specifies that conversion not be done. NO is the same as omitting the

CONVERT operand.

LC

Specifies that the member name be converted to a lowercase file name.

MODE

Specifies the file mode for any members copied into the z/OS UNIX file system.

The mode can be specified as three or four octal digits. (The digits can be

separated by commas.) Invalid mode specifications are ignored.

 If the specified file does not exist, OPUTX creates a new file. For a new text

file, the mode (permission bits) is 600. When the mode is 600, the user has

read and write access; others have none. For a new binary file, the mode

(permission bits) is 700. When the mode is 700, the user has read, write, and

search access; others have none.

 For more information, see z/OS UNIX System Services User’s Guide.

QUIET

Turns off the echoing of the OPUTX commands before the member or data set

is copied.

SUFFIX(suffix)

Specifies that a suffix specified by (suffix) be appended to the member names

in creating the z/OS UNIX system file names.

 A suffix is an optional additional file identifier that is appended to the file name

following a period (.). It is usually used to identify the type of file. For example,

OPUTX

870 z/OS V1R9.0 UNIX System Services Command Reference

.c usually indicates a C language source file and .h indicates a C language

header file. Suffixes can be any length and you can append as many as you

want, but the file name, including suffixes, cannot exceed 255 characters for

z/OS UNIX System Services.

Usage notes

1. Avoid using OPUTX with path names containing quotes or spaces.

2. If the specified file does not exist, OPUTX creates a new file. For a new text file,

the mode (permission bits) is 600. When the mode is 600, the user has read

and write access; others have nothing. For a new binary file, the mode

(permission bits) is 700. When the mode is 700, the user has read, write, and

search access; others have nothing.

3. If the specified file exists, the new data overwrites the existing data. The mode

of the file is unchanged.

4. Data sets with spanned records are not allowed.

5. When you copy MVS data sets to z/OS UNIX file system text files, a <newline>

character is appended to the end of each record. If trailing blanks exist in the

record, the <newline> character is appended after the trailing blanks.

6. When you copy MVS data sets to z/OS UNIX file system binary files, the

<newline> character is not appended to the record.

7. Prior to the copy, the OPUTX command for a data set or member is echoed,

unless you specify the QUIET option. If you did not specify QUIET and if the

command is not displayed, the data set or member is not copied.

8. If the source data set is a PDS with an undefined record format, the members

may be treated as load modules. A load module is copied by link-editing it into

the target file in the file hierarchy. For the program to be able to run from the file

hierarchy, the entry point must be at the beginning of the load module.

For OPUTX to treat the file as a load module, neither BINARY or TEXT can be

specified.

9. If the source for the copy is a sequential data set or a PDS member and the

target is a directory, the file name used is the last qualifier of the data set name

or the member name. You do not have to specify a file as the target with a

sequential data set, or a directory as the target with a PDS. The LC and ASIS

options are not affected.

Examples

The following command copies files in a PDS into a z/OS UNIX file system directory

and specifies that:

v The name of the partitioned data set (PDS) is DATAFILE

v The z/OS UNIX file system directory is /usr/sbllib

v The files are given a suffix of .c
OPUTX DATAFILE ’/usr/sbllib/’ LC SUFFIX(c)

Assuming the PDS has members PROGRAM1, PROGRAM2, and PROGRAM3,

these members are copied as /usr/sbllib/program1.c, /usr/sbllib/program2.c, and

/usr/sbllib/program3.c.

OSHELL — Invokes BPXBATCH from TSO/E

Format

OSHELL

OPUTX

Chapter 3. TSO/E commands 871

Description

OSHELL uses BPXBATCH to run the shell command or shell script:

oshell shell_command

For example, to display process information, enter:

oshell ps –ej

When you use OSHELL, do not use an & to run a shell command in the

background. For more information about BPXBATCH, see Appendix D, “Running

shell scripts or executable files under MVS environments,” on page 891

Some examples of using the OSHELL command are:

v List files in a directory

v Create, delete, or rename directories, files, and special files

v Display contents of a file

v Copy files

v Display file attributes

v Search files for text strings

v Compare files or directories

v Run executable files

v Display the attributes and contents of a symbolic link (symlink)

v Set up character special files

v Set up standard directories for a root file system

Some of these tasks may require superuser authority.

OSTEPLIB — Build a list of files

Format

OSTEPLIB pathname

Description

Use the OSTEPLIB command to build a list of files that are sanctioned by your

installation as valid step libraries for programs that have the set-user-ID or

set-group-ID bit set. This permission setting allows a program to have temporary

access to files that are not normally accessible to other users. Step libraries have

many uses; for example, selected users can test new versions of runtime libraries

before the new versions are made generally available.

You must have superuser authority to issue OSTEPLIB.

The sanctioned list is valid if it conforms to the following rules:

v You can include comment lines in the list. Each comment line must start with /*

and end with */.

v You must follow standard MVS data set naming conventions in naming the files

in the list.

v Each data set name must be fully qualified and cannot be enclosed in quotation

marks.

v Each data set name must be on a line by itself, with no comments.

v You can put blanks before and after each data set name. Entirely blank lines in

the list are ignored.

OSHELL

872 z/OS V1R9.0 UNIX System Services Command Reference

v You can use the * character to specify multiple files that begin with the same

characters. For example, if you list SYS1.*, you are sanctioning any file that

begins with SYS1. as a step library.

Following is an example of a file that contains a correctly formatted list of

sanctioned step libraries:

 /***/

 /* */

 /*Name: Sample Sanctioned List for set-user-ID and set-group-ID */

 /* files */

 /* */

 /*Updated by: May only be updated by OSTEPLIB TSO/E command */

 /* */

 /*Description: Contains a list of data set names that may */

 /* be used as STEPLIB libraries for SETUID */

 /* programs */

 /* */

 /* Wild cards may be used to specify multiple */

 /* data set names that have the same prefix */

 /* characters. */

 /* */

 /***/

 /***/

 /*Sanction all data set names beginning with SYS1.CEE */

 /***/

 SYS1.CEE*

 /***/

 /*Sanction data set containing vers. 2 of the C run time library */

 /***/

 ADMIN.CEE.RTLV2

Parameters

pathname

Specifies the pathname of the file to contain the list of sanctioned step libraries.

The pathname can be absolute or relative to the root. Avoid using the space

character or single quotation mark (apostrophe) within the pathname. The

pathname cannot be enclosed in single quotes.

 If you omit the pathname operand, the new sanctioned list file is created with

the same filename as the old one and replaces it when it has been validated.

UNMOUNT — Remove a file system from the file hierarchy

Format

UNMOUNT FILESYSTEM(file_system_name)

 DRAIN | FORCE | IMMEDIATE | NORMAL | REMOUNT(RDWR | READ) | RESET

Description

The UNMOUNT command removes a file system from the file system hierarchy.

The alias for this command is UMOUNT.

Rule: An UNMOUNT user must have UID (0) or at least have READ access to the

BPX.SUPERUSER resource in the FACILITY class.

OSTEPLIB

Chapter 3. TSO/E commands 873

Parameters

FILESYSTEM(file_system_name)

Specifies the name of the file system to be removed from the file system. The

name supplied is changed to all uppercase characters. This operand is

required.

file_system_name

The fully qualified name of the data set that contains the file system. The

file system name supplied is changed to all uppercase characters.

 Specify the name of file system exactly as it was specified when the file

system was originally mounted. You can enclose it in single quotes, but

they are not required.

 If FILESYSTEM('''file_system_name''') is specified, the file system name will

not be translated to uppercase.

DRAIN

Specifies that an unmount drain request is to be made. The system will wait for

all use of the file system to be ended normally before the unmount request is

processed or until another UNMOUNT command is issued.

Note: UNMOUNT can be specified with IMMEDIATE to override a previous

UNMOUNT DRAIN request for a file system. If this is used in the

foreground, your TSO/E session waits until the UNMOUNT request has

completed. <ATTN> (or <PA1>) does not terminate the command.

UNMOUNT DRAIN is not supported in a sysplex environment. If an UNMOUNT

DRAIN is issued in a sysplex, the following behavior is exhibited:

v If there is no activity in the file system, UNMOUNT DRAIN will perform the

unmount, but it will behave like an UNMOUNT NORMAL.

v If there is activity in the file system, UNMOUNT DRAIN will return a

Return_value of -1 with Return_code EINVAL and Reason_code

JrNotSupInSysplex.

FORCE

Specifies that the system is to unmount the file system immediately. Any users

accessing files in the specified file system receive failing return codes. All data

changes to files in the specified file system are saved, if possible. If the data

changes to the files cannot be saved, the unmount request continues and data

is lost.

Note: An UNMOUNT IMMEDIATE request must be issued before you can

request a UNMOUNT FORCE of a file system. Otherwise, UNMOUNT

FORCE fails.

IMMEDIATE

Specifies that the system is to unmount the file system immediately. Any users

accessing files in the specified file system receive failing return codes. All data

changes to files in the specified file system are saved. If the data changes to

files cannot be saved, the unmount request fails.

NORMAL

Specifies that if no user is accessing any of the files in the specified file system,

the system processes the unmount request. Otherwise, the system rejects the

unmount request. This is the default.

REMOUNT(RDWR|READ)

Specifies that the specified file system be remounted, changing its mount mode.

UNMOUNT

874 z/OS V1R9.0 UNIX System Services Command Reference

REMOUNT takes an optional argument of RDRW or READ. If you specify either

argument, the filesystem is remounted in that mode if it is not already in that

mode. If you specify REMOUNT without any arguments, the mount mode is

changed from RDWR to READ or READ to RDWR.

Note: REMOUNT is supported in a sysplex.

RESET

A reset request stops a previous UNMOUNT DRAIN request.

Note: UNMOUNT RESET is not supported in a sysplex since UNMOUNT

DRAIN is unsupported in a sysplex environment (see the description for

DRAIN).

Usage notes

1. The directory /samples contain sample UNMOUNT commands (called

unmountx).

2. If you unmount a TFS file system, all data stored in that file system is

discarded. For more information on TFS, see z/OS UNIX System Services

Planning.

3. If desired, the root file system can be umounted. If this is done, the IMMED

operand must be specified. Unmounting the root will force all file system activity

to be halted. Therefore, if this is done, a subsequent mount of a root file system

should be done as soon as possible.

4. While the root file system is unmounted, a ’dummy file system’ root named

SYSROOT will be displayed as the current root file system. During this time,

any operation that requires a valid file system will fail. When the new root file

system is subsequently mounted, you should terminate any currently dubbed

users or issue a chdir using a full pathname to the appropriate directory so that

the users can access the new root file system.

5. If the file system that you are unmounting is an NFS-supported file system, the

UNMOUNT command may receive an EAGAIN return code if the request was

made before an internal caching clock has expired. That is, there is a

60-second delay from last use before termination is possible. Try the request

again.

6. A file system that has file systems mounted on it cannot be unmounted. Any

children file systems must be unmounted first.

7. Currently a move of a filesystem that has open FIFOs causes all FIFOs to be

marked stale. They must be closed and re-opened. Rather than do this on a

remount, a remount attempt of a filesystem with open FIFOs will be rejected

with EINVAL, JrFIFOInFileSys. FIFOs break on move or remount because

FIFOs are always function-shipped to the filesystem owner, regardless of the

mount mode. For remount, although the owner does not change, the

vfs_umounts on all systems in the sysplex result in the XPFS control blocks

(XFS, Xnodes) being released. These blocks contain owner information.

Rejecting remount if open FIFOs is not expected to impact customers, since

remount is typically done on a READ-ONLY filesystem to switch it to RDWR,

and then back to READ, and FIFOs are not useful in a READ-ONLY filesystem.

Return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

UNMOUNT

Chapter 3. TSO/E commands 875

Examples

1. The following command specifies a normal unmount by default:

UNMOUNT FILESYSTEM(’HFS.WORKDS’)

2. Before you request a forced unmount of a file system, you must issue an

immediate unmount request:

UNMOUNT FILESYSTEM(’HFS.WORKDS’) IMMEDIATE

UNMOUNT FILESYSTEM(’HFS.WORKDS’) FORCE

3. To unconditionally change the mount mode of a file system:

UNMOUNT FILESYSTEM(HFS.OMVS.BIN) REMOUNT

4. To change the mount mode of a file system to read/write, provided it is currently

read-only:

UNMOUNT FILESYSTEM(HFS.OMVS.BIN) REMOUNT(RDWR)

UNMOUNT

876 z/OS V1R9.0 UNIX System Services Command Reference

Appendix A. z/OS UNIX Shell Command Summary

The following list presents z/OS shell commands and utilities grouped by the task a

user might want to perform. Similar tasks are organized together. Stub commands

(cancel, cu and lpstat) are not listed because their functions are not supported by

z/OS UNIX System Services.

The list also shows the command name, the standard or specification it satisfies,

and its function. XPG4.2 refers to “X/Open CAE Issue 4 Version 2 Specifications”.

XPG5.0 refers to “X/Open CAE Issue 5 Specifications”.

General Use

 at POSIX.2 XPG4.2 Run a command at a specified time

batch POSIX.2 XPG4.2 Run commands when the system is not busy

bpxmtext — — Display reason code text

ceebldtx — — Transform message source files into loadable message text files

clear — — Clear the screen of all previous output

command POSIX.2 XPG4.2 Run a simple command

confighfs — — Invoke vfs_pfsctl HFS functions

date POSIX.2 XPG4.2 Display the date and time

echo POSIX.2 XPG4.2 Write arguments to standard output

edcmtext — — Display errnojr reason code text

exec POSIX.2 XPG4.2 Run a command and open, close, or copy the file descriptors

man POSIX.2 XPG4.2 Print sections of the online reference manual

nice POSIX.2 XPG4.2 Run a command at a different priority

passwd — — Change user passwords

print — — Return arguments from the shell

printf POSIX.2 XPG4.2 Write formatted output

sh POSIX.2 XPG4.2 Invoke a shell (command interpreter)

tcsh — — Invoke a tcsh shell

time POSIX.2 XPG4.2 Display processor and elapsed times for a command

uptime — — Report how long the system has been running

wall — — Broadcast a message to logged-in users

whence — — Tell how the shell interprets a command name

whoami — — Display your effective username

xlc — — Compiler invocation using a customizable configuration file

xlC — — C++ compiler invocation using a customizable configuration file

xlc++ — — C++ compiler invocation using a customizable configuration file

Controlling Your Environment

 alias POSIX.2 XPG4.2 Display or create a command alias

asa POSIX.2 XPG4.2 Interpret ASA/Fortran carriage control

automount — — Configure the automount facility

cal — XPG4.2 Display a calendar for a month or year

calendar — XPG4.2 Display all current appointments

captoinfo — — Prints terminal entries in the termcap file

chcp — — Set or query ASCII/EBCDIC code pages for the terminal

configstk — — Configure the AF_UENT stack

env POSIX.2 XPG4.2 Display environments, or set an environment for a process

export POSIX.2 XPG4.2 Set the export attributes for variables, or show currently exported

variables

fc POSIX.2 XPG4.2 Process a command history list

hash — XPG4.2 Create a tracked alias

© Copyright IBM Corp. 1996, 2007 877

||||

||||

||||
||||

history — — Process a command history list

id POSIX.2 XPG4.2 Return the user identity

infocmp — — Compare and print the terminal description

ipcrm — — Remove message queue, semaphore set, or shared memory identifiers

ipcs — — Report status of the interprocess communication facility

lm — — Start the login monitor for OCS support

locale POSIX.2 XPG4.2 Get locale-specific information

localedef POSIX.2 XPG4.2 Define the locale environment

logger POSIX.2 XPG4.2 Log messages

logname POSIX.2 XPG4.2 Return a user’s login name

newgrp POSIX.2 XPG4.2 Change to a new group

ocsconfig — — Configure, unconfigure, or query an OCS object

printenv — — Display the value of environment variables

r — — Process a command history list

readonly POSIX.2 — Mark a variable as read-only

return POSIX.2 XPG4.2 Return from a shell function or . (dot) script

set POSIX.2 XPG4.2 Set or unset command options and positional parameters

shift POSIX.2 XPG4.2 Shift positional parameters

stty POSIX.2 XPG4.2 Set or display terminal options

su — — Change the user ID connected with a session

sysvar — — Display static system symbols

tic — — Compile term descriptions into terminfo database entries

touch POSIX.2 XPG4.2 Change the file access and modification times

tput POSIX.2 XPG4.2 Change characteristics of terminals

tso — — Run a TSO command from the shell

tty POSIX.2 — Return the user’s terminal name

uconvdef — — Create binary conversion tables

unalias POSIX.2 XPG4.2 Remove alias definitions

uname POSIX.2 XPG4.2 Display the name of the current operating system

unset POSIX.2 XPG4.2 Unset values and attributes of variables and functions

who POSIX.2 XPG4.2 Display information about current users

Daemons

 cron — — Run commands at specified dates and times

inetd — — Handle login requests

rlogind — — Validate rlogin requests

uupd — — Invoke uucico for TCP/IP connections from remote UUCP systems

Managing Directories

 basename POSIX.2 XPG4.2 Return the nondirectory components of a pathname

cd POSIX.2 XPG4.2 Change the working directory

chgrp POSIX.2 XPG4.2 Change the group owner of a file or directory

chmod POSIX.2 XPG4.2 Change the mode of a group or directory

chown POSIX.2 XPG4.2 Change the owner or group of a file or directory

chroot — — Change the root directory for the execution of a command

dircmp — XPG4.2 Compare directories

dirname POSIX.2 XPG4.2 Return the directory components of a pathname

ls POSIX.2 XPG4.2 List file and directory names and attributes

mkdir POSIX.2 XPG4.2 Make a directory

mount — — Logically mount a file system

mv POSIX.2 XPG4.2 Rename or move a file or directory

pathchk POSIX.2 XPG4.2 Check a pathname

pwd POSIX.2 XPG4.2 Return the working directory name

rm POSIX.2 XPG4.2 Remove a directory entry

878 z/OS V1R9.0 UNIX System Services Command Reference

rmdir POSIX.2 XPG4.2 Remove a directory

unlink — XPG5.0 Removes a directory entry

Managing Files

 cat POSIX.2 XPG4.2 Concatenate or display text files

chaudit — — Change audit flags for a file

chlabel — — Set the multilevel security label to files and directories

cksum POSIX.2 XPG4.2 Calculate and write checksums and byte counts

cmp POSIX.2 XPG4.2 Compare two files

col — XPG4.2 Remove reverse line feeds

comm POSIX.2 XPG4.2 Show and select or reject lines common to two files

compress — XPG4.2 Lempel-Ziv file compression

cp POSIX.2 XPG4.2 Copy a file

csplit POSIX.2 XPG4.2 Split text files

ctags POSIX.2 XPG4.2 Create tag files for ex, more, and vi

dot or . — XPG4.2 Run a shell file in the current environment

cut POSIX.2 XPG4.2 Cut out selected fields of each line of a file

dd POSIX.2 XPG4.2 Convert and copy a file

df POSIX.2 XPG4.2 Display the amount of free space in the file system

diff POSIX.2 XPG4.2 Compare two text files and show the differences

du POSIX.2 XPG4.2 Summarize usage of file space

ed POSIX.2 XPG4.2 Use the ed line-oriented text editor

egrep — XPG4.2 Search a file for a specified pattern

ex POSIX.2 XPG4.2 Use the ex text editor

exrecover — — vi file recovery daemon

extattr — — Set, reset, or display extended attributes for files

expand POSIX.2 XPG4.2 Expand tabs to spaces

fgrep — XPG4.2 Search a file for a specified pattern

file POSIX.2 XPG4.2 Determine file type

filecache — — Manage file caches

find POSIX.2 XPG4.2 Find a file meeting specified criteria

fold POSIX.2 XPG4.2 Break lines into shorter lines

head POSIX.2 XPG4.2 Display the first part of a file

iconv — XPG4.2 Convert characters from one code set to another

join POSIX.2 XPG4.2 Join two sorted, textual relational databases

line — XPG4.2 Copy one line of standard input

link — XPG5.0 Create a hard link to a file

ln POSIX.2 XPG4.2 Create a link to a file

mkfifo POSIX.2 XPG4.2 Make a FIFO special file

mknod — — Make a FIFO or character special file

mount — — Logically mount a file system

more POSIX.2 XPG4.2 Display files on a page-by-page basis

mv POSIX.2 XPG4.2 Rename or move a file or directory

nl — XPG4.2 Number lines in a file

nm POSIX.2 XPG4.2 Display symbol table of object, library, and executable files

obrowse — — Browse an HFS file

od POSIX.2 XPG4.2 Dump a file in a specified format

oedit — — Edit an HFS file

pack — XPG4.2 Compress files by Huffman coding

paste POSIX.2 XPG4.2 Merge corresponding or subsequent lines of a file

patch POSIX.2 XPG4.2 Change a file using diff output

pcat — XPG4.2 Display Huffman-packed lines on standard output

pg — XPG4.2 Display files interactively

sed POSIX.2 XPG4.2 Start the sed noninteractive stream editor

sort POSIX.2 XPG4.2 Start the sort-merge utility

spell — XPG4.2 Detect spelling errors in files

split POSIX.2 XPG4.2 Split a file into manageable pieces

Appendix A. z/OS UNIX Shell Command Summary 879

strings POSIX.2 XPG4.2 Display printable strings in binary files

sum — XPG4.2 Compute checksum and block count for file

tabs POSIX.2 XPG4.2 Set tab stops

tail POSIX.2 XPG4.2 Display the last part of a file

tee POSIX.2 XPG4.2 Duplicate the output stream

tr POSIX.2 XPG4.2 Translate characters

tsort — XPG4.2 Sort files topologically

umask POSIX.2 XPG4.2 Set or return the file mode creation mask

uncompress — XPG4.2 Undo Lempel-Zev compression of a file

unexpand POSIX.2 XPG4.2 Compress spaces into tabs

uniq POSIX.2 XPG4.2 Report or filter out repeated lines in a file

unmount — — Remove a file system from the file hierarchy

unpack — XPG4.2 Decode Huffman packed files

uudecode POSIX.2 XPG4.2 Decode a transmitted binary file

uuencode POSIX.2 XPG4.2 Encode a file for safe transmission

vi POSIX.2 XPG4.2 Use the display-oriented interactive text editor

wc POSIX.2 XPG4.2 Count newlines, words, and bytes

zcat — XPG4.2 Uncompress and display data

Printing Files

 cancel — — Cancel print queue requests (stub command)

infocmp — — Compare and print the terminal description

lp POSIX.2 XPG4.2 Send a file to a printer

lpstat — — Show status of print queues (stub command)

pr POSIX.2 XPG4.2 Format a file in paginated form and send it to standard output

Computing and Managing Logic

 bc POSIX.2 XPG4.2 Use the arbitrary-precision arithmetic calculation language

break POSIX.2 XPG4.2 Exit from a for, while, or until loop in a shell script

colon or : POSIX.2 XPG4.2 Do nothing, successfully

continue POSIX.2 XPG4.2 Skip to the next iteration of a loop in a shell script

dot or . POSIX.2 XPG4.2 Run a shell file in the current environment

eval POSIX.2 XPG4.2 Construct a command by concatenating arguments

exec POSIX.2 XPG4.2 Run a command and open, close, or copy the file descriptors

exit POSIX.2 XPG4.2 Return to the parent process from which the shell was called or to TSO/E

expr POSIX.2 XPG4.2 Evaluate arguments as an expression

false POSIX.2 XPG4.2 Return a nonzero exit code

grep POSIX.2 XPG4.2 Search a file for a specified pattern

left bracket or [— XPG4.2 Test for a condition

let — — Evaluate an arithmetic expression

test POSIX.2 XPG4.2 Test for a condition

trap POSIX.2 XPG4.2 Intercept abnormal conditions and interrupts

true POSIX.2 XPG4.2 Return a value of 0

Controlling Processes

 bg POSIX.2 XPG4.2 Move a job to the background

crontab POSIX.2 XPG4.2 Schedule regular background jobs

fg POSIX.2 XPG4.2 Bring a job into the foreground

fuser — XPG5.0 List process IDs of processes with open files

jobs POSIX.2 XPG4.2 Return the status of jobs in the current session

kill POSIX.2 XPG4.2 End a process or job, or send it a signal

nohup POSIX.2 XPG4.2 Start a process that is immune to hangups

880 z/OS V1R9.0 UNIX System Services Command Reference

ps POSIX.2 XPG4.2 Return the status of a process

renice POSIX.2 XPG4.2 Change priorities of a running process

sleep POSIX.2 XPG4.2 Suspend execution of a process for an interval of time

stop POSIX.2 XPG4.2 Suspend a process or job

suspend POSIX.2 XPG4.2 Send a SIGSTOP to the current shell

time POSIX.2 XPG4.2 Display processor and elapsed times for a command

times — XPG4.2 Get process and child process times

wait POSIX.2 XPG4.2 Wait for a child process to end

ulimit — XPG4.2 Set process limits

Writing Shell Scripts

 autoload — — Indicate function name not defined

dspmsg — — Display selected messages from message catalogs

functions — — Display or assign attributes to functions

getconf POSIX.2 XPG4.2 Get configuration values

getopts POSIX.2 XPG4.2 Parse utility options

integer — — Mark each variable with an integer value

read POSIX.2 XPG4.2 Read a line from standard input

type — XPG4.2 Tell how the shell interprets a name

typeset — — Assign attributes and values to variables

xargs POSIX.2 XPG4.2 Construct an argument list and run a command

Developing or Porting Application Programs

 ar POSIX.2 XPG4.2 Create or maintain library archives

awk POSIX.2 XPG4.2 Process programs written in the awk language

c89 POSIX.2 XPG4.2 Compile, link-edit, and assemble Standard C source code and create an

executable file on z/OS

c++/cxx — — Compile, link-edit, and assemble C++ and Standard C source code and

create an executable file on z/OS

cc — XPG4.2 Compile, link-edit, and assemble Common Usage C source code and

create an executable file on z/OS

dbx — — Use the debugger

dspcat — — Display all or part of a message catalog

gencat — XPG4.2 Create or edit message catalogs

lex POSIX.2 XPG4.2 Generate a program for lexical tasks

make POSIX.2 XPG4.2 Maintain program-generated and interdependent files

mkcatdefs — — Preprocess a message source file

runcat — — Pipe output from mkcatdefs to gencat

strip POSIX.2 XPG4.2 Remove unnecessary information from an executable file

yacc POSIX.2 XPG4.2 Use the yacc compiler

Communicating with the System or Other Users

 mail — XPG4.2 Read and send mail messages

mailx POSIX.2 XPG4.2 Send or receive electronic mail

mesg POSIX.2 XPG4.2 Allow or refuse messages

talk POSIX.2 XPG4.2 Talk to another user

write POSIX.2 XPG4.2 Write to another user

Working with Archives

 ar POSIX.2 XPG4.2 Create or maintain library archives

Appendix A. z/OS UNIX Shell Command Summary 881

cpio — XPG4.2 Copy in/out file archives

pax POSIX.2 XPG4.2 Interchange portable archives

tar — XPG4.2 Manipulate the tar archive files to copy or back up a file

Working with UUCP

 uucc — — Compile UUCP configuration files

uucico — — Process UUCP file transfer requests

uucp — XPG4.2 Copy files between remote UUCP systems

uucpd — — Invoke uucico for TCP/IP connections from remote UUCP systems

uulog — XPG4.2 Display log information about UUCP events

uuname — XPG4.2 Display list of remote UUCP systems

uupick — XPG4.2 Manage files sent by uuto and uucp

uustat — XPG42 Display status of pending UUCP transfers

uuto — XPG42 Copy files to users on remote UUCP systems

uux — XPG42 Request command execution on remote UUCP systems

uuxqt — — Carry out command requests from remote UUCP systems

882 z/OS V1R9.0 UNIX System Services Command Reference

Appendix B. tcsh Shell Command Summary

The following list presents the built-in tcsh shell commands, grouped by the task a

user might want to perform, and their functions. Similar tasks are organized

together.

General Use

 alloc — — Show the amount of dynamic memory acquired

builtins — — Print the names of all built-in commands

bye — — Terminate the login shell

echo — — Write arguments to standard output

echotc — — Exercise the terminal capabilities in args

exec — — Run a command and open, close, or copy the file

descriptors

glob — — Write each word to standard output

hashstat — — Print a statistic line on hash table effectiveness

login — — Terminate a login shell

logout — — Terminate a login shell

nice — — Run a command at a different priority

notify — — Notify user of job status changes

repeat — — Execute command count times

source — — Read and execute commands from name

time — — Display processor and elapsed times for a command

where — — Report all instances of command

which — — Display next executed command

Controlling Your Environment

 @ (at) — — Print the value of tcsh shell variables, or assign a value

alias — — Display or create a command alias

bindkey — — List all bound keys, or change key bindings

complete — — List completions

history — — Display a command history list

hup — — Run command so it exits on a hang-up signal

newgrp — — Change to a new group

onintr — — Control the action of the tcsh shell on interrupts

printenv — — Display the values of environment variables

rehash — — Recompute internal hash table

sched — — Print scheduled event list

set — — Set or unset command options and positional

parameters

setenv — — Set environment variable name to value

settc — — Tell tcsh shell the terminal capability cap value

setty — — Control tty mode changes

shift — — Shift positional parameters

telltc — — List terminal capability values

unalias — — Remove alias definitions

uncomplete — — Remove completions whose names match pattern

unhash — — Disable use of internal hash table

unlimit — — Remove resource limitations

unset — — Unset values and attributes of variables and functions

unsetenv — — Remove environment variables that match pattern

© Copyright IBM Corp. 1996, 2007 883

watchlog — — Report on users who are logged in.

Managing Directories

 cd — — Change the working directory

chdir — — Change the working directory

dirs — — Print the directory stack

popd — — Pop the directory stack

pushd — — Make exchanges within directory stack

Computing and Managing Logic

 break — — Exit from a loop in a shell script

breaksw — — Cause a break from a switch

continue — — Skip to the next iteration of a loop in a shell script

default — — Label default case in a switch statement

eval — — Construct a command by concatenating arguments

exec — — Run a command and open, close, or copy the file

descriptors

exit — — Return to the shell’s parent process or to TSO/E

filetest — — Apply a file inquiry operator to a file

Managing Files

 ls-F — — List files

Controlling Processes

 bg — — Move a job to the background

fg — Bring a job into the foreground

jobs — — Return the status of jobs in the current session

kill — — End a process or job, or send it a signal

limit — — Limit consumption of processes

nohup — — Start a process that is immune to hangups

stop — — Suspend a process or job

suspend — — Send a SIGSTOP to the current shell

time — — Display processor and elapsed times for a command

wait — Wait for a child process to end

884 z/OS V1R9.0 UNIX System Services Command Reference

Appendix C. Regular Expressions (regexp)

Many z/OS shell commands match strings of text in text files using a type of pattern

known as a regular expression. A regular expression lets you find strings in text files

not only by direct match, but also by extended matches, similar to, but much more

powerful than the filename patterns described in sh.

The newline character at the end of each input line is never explicitly matched by

any regular expression or part thereof.

expr and ed take basic regular expressions; all other shell commands accept

extended regular expressions. grep and sed accept basic regular expressions, but

will accept extended regular expressions if the –E option is used.

Regular expressions can be made up of normal characters or special characters,

sometimes called metacharacters. Basic and extended regular expressions differ

only in the metacharacters they can contain.

The basic regular expression metacharacters are:

¬ $. * \(\) [\{ \} \

The extended regular expression metacharacters are:

| ¬ $. * + ? () [{ } \

These have the following meanings:

. A dot character matches any single character of the input line.

¬ The ¬ character does not match any character but represents the beginning

of the input line. For example, ¬A is a regular expression matching the letter

A at the beginning of a line. The ¬ character is only special at the beginning

of a regular expression, or after a (or |.

$ This does not match any character but represents the end of the input line.

For example, A$ is a regular expression matching the letter A at the end of

a line. The $ character is only special at the end of a a regular expression,

or before a) or |.

[bracket-expression]

A bracket expression enclosed in square brackets is a regular expression

that matches a single character, or collation element. This bracket

expression applies not only to regular expressions, but also to pattern

matching as performed by the fnmatch() function (used in filename

expansion).

v If the initial character is a circumflex (o), then this bracket expression is

complemented. It matches any character or collation-element except for

the expressions specified in the bracket expression. For pattern

matching, as performed by the fnmatch function, this initial character is

instead ! (the exclamation mark).

v If the first character after any potential circumflex is either a dash (-), or

a closing square bracket (]), then that character matches exactly that

character—that is, a literal dash or closing square bracket.

v You can specify collation sequences by enclosing their name inside

square brackets and periods. For example, [.ch.] matches the

multicharacter collation sequence ch (if the current language supports

© Copyright IBM Corp. 1996, 2007 885

that collation sequence). Any single character is itself. Do not give a

collation sequence that is not part of the current locale.

v Equivalence classes can be specified by enclosing a character or

collation sequence inside square bracket equals. For example, [=a=]

matches any character in the same equivalence class as a. This normally

expands to all the variants of a in the current locale—for example, a,

\(a:, \(a’, ... On some locales it might include both the uppercase and

lowercase of a given character. In the POSIX locale, this always expands

to only the character given.

v Within a character class expression (one made with square brackets),

the following constructs can be used to represent sets of characters.

These constructs are used for internationalization and handle the

different collation sequences as required by POSIX.

[:alpha:]

Any alphabetic character.

[:lower:]

Any lowercase alphabetic character.

[:upper:]

Any uppercase alphabetic character.

[:digit:]

Any digit character.

[:alnum:]

Any alphanumeric character (alphabetic or digit).

[:space:]

Any white-space character (blank, horizontal tab, vertical tab).

[:graph:]

Any printable character, except the blank character.

[:print:]

Any printable character, including the blank character.

[:punct:]

Any printable character that is not white space or alphanumeric.

[:cntrl:]

Any nonprintable character.

For example, given the character class expression:

[:alpha:]

you need to enclose the expression within another set of square

brackets, as in:

/[[:alpha:]]/

v Character ranges are specified by a dash (–), between two characters, or

collation sequences. These indicates all character or collation sequences

that collate between two characters or collation sequences. It does not

refer to the native character set. For example, in the POSIX locale, [a-z]

means all the lowercase alphabetics, even if they don’t agree with the

binary machine ordering. However, since many other locales do not

collate in this manner, use of ranges are not recommended, and are not

used in strictly conforming POSIX.2 applications. An endpoint of a range

may explicitly be a collation sequence; for example, [[.ch.]-[.ll.]] is

valid. However, equivalence classes or character classes are not:

[[=a=]-z] is not permitted.

regexp

886 z/OS V1R9.0 UNIX System Services Command Reference

\ This character turns off the special meaning of metacharacters. For

example, \. only matches a dot character. Note that \\ matches a literal \

character. Also note the special case of “\d” described in the following

paragraph.

\d For d representing any single decimal digit (from 1 to 9), this pattern is

equivalent to the string matching the dth expression enclosed within the ()

characters (or \(\) for some commands) found at an earlier point in the

regular expression. Parenthesized expressions are numbered by counting (

characters from the left.

 Constructs of this form can be used in the replacement strings of

substitution commands (for example, the sub function of awk), to stand for

constructs matched by parts of the regular expression.

regexp*

A regular expression regexp followed by * matches a string of zero or more

strings that would match regexp. For example, A* matches A, AA, AAA and

so on. It also matches the null string (zero occurrences of A).).

regexp+

A regular expression regexp followed by + matches a string of one or more

strings that would match regexp.

regexp?

A regular expression regexp followed by ? matches a string of one or zero

occurrences of strings that would match regexp.

char{n} | char\{n\}

In this expression (and the ones to follow), char is a regular expression that

stands for a single character—for example, a literal character or a period

(.). Such a regular expression followed by a number in brace brackets

stands for that number of repetitions of a character. For example, X\{3\}

stands for XXX. In basic regular expressions, in order to reduce the number

of special characters, { and } must be escaped by the \ character to make

them special, as shown in the second form (and the ones to follow).

char{min,} | char\{min,\}

When a number, min, followed by a comma appears in braces following a

single-character regular expression, it stands for at least min repetitions of a

character. For example, X\{3,\} stands for at least three repetitions of X.

char{min,max} | char\{min,max\}

When a single-character regular expression is followed by a pair of

numbers in braces, it stands for at least min repetitions and no more than

max repetitions of a character. For example, X\{3,7\} stands for three to

seven repetitions of X.

regexp1 | regexp2

This expression matches either regular expression regexp1 or regexp2.

(regexp) | \(regexp\)

This lets you group parts of regular expressions. Except where overridden

by parentheses, concatenation has the highest precedence. In basic regular

expressions, in order to reduce the number of special characters, (and)

must be escaped by the \ character to make them special, as shown in the

second form.

Several regular expressions can be concatenated to form a larger regular

expression.

regexp

Appendix C. Regular Expressions (regexp) 887

Summary

The commands that use basic and extended regular expressions are as follows:

Basic ed, expr, grep, sed

Extended awk, grep with -E option, sed with the -E option.

Table 38 summarizes the features that apply to which shell commands:

 Table 38. Regular Expression Features (regexp)

Notation awk ed grep -E expr sed

. Yes Yes Yes Yes Yes

^ Yes Yes Yes No Yes

$ Yes Yes Yes Yes Yes

[...] Yes Yes Yes Yes Yes

[::] Yes Yes Yes Yes Yes

re* Yes Yes Yes Yes Yes

re+ Yes No Yes No No

re? Yes No Yes No No

re|re Yes No Yes No No

\d Yes Yes Yes Yes Yes

(...) Yes No Yes No No

\(...\) No Yes No Yes Yes

\< No No No No No

\> No No No No No

\{ \} Yes No Yes No Yes

Examples

The following patterns are given as illustrations, along with descriptions of what they

match:

abc Matches any line of text containing the three letters abc in that order.

a.c Matches any string beginning with the letter a, followed by any character,

followed by the letter c.

^.$ Matches any line containing exactly one character (the newline is not

counted).

a(b*|c*)d

Matches any string beginning with a letter a, followed by either zero or more

of the letter b, or zero or more of the letter c, followed by the letter d.

.* [a–z]+ .*

Matches any line containing a word, consisting of lowercase alphabetic

characters, delimited by at least one space on each side.

(morty).*\1

regexp

888 z/OS V1R9.0 UNIX System Services Command Reference

morty.*morty

These expressions both match lines containing at least two occurrences of

the string morty.

[[:space:][:alnum:]]

Matches any character that is either a white-space character or

alphanumeric.

regexp

Appendix C. Regular Expressions (regexp) 889

regexp

890 z/OS V1R9.0 UNIX System Services Command Reference

Appendix D. Running shell scripts or executable files under

MVS environments

This information describes the IBM-supplied BPXBATCH program.

BPXBATCH

BPXBATCH makes it easy for you to run shell scripts and executable files that

reside in z/OS UNIX files through the MVS job control language (JCL). If you do

most of your work from TSO/E, using BPXBATCH saves you the trouble of going

into the shell to run your scripts and executable files. REXX execs can also use

BPXBATCH to run shell scripts and executable files.

In addition to using BPXBATCH, a user who wants to perform a local spawn without

being concerned about environment setup (that is, without having to set specific

environment variables which could be overwritten if they are also set in the user’s

profile) can use BPXBATSL. BPXBATSL provides users with an alternate entry point

into BPXBATCH, and forces a program to run using a local spawn instead of

fork/exec as BPXBATCH does. This ultimately allows a program to run faster.

BPXBATSL is also useful when the user wants to perform a local spawn of their

program but also needs subsequent child processes to be fork/exec’ed. Formerly,

this could not be done since BPXBATCH and the requested program shared the

environment variables. Failure to meet the following conditions will result in a failure

when BPXBATSL is invoked. For more details about these restrictions, see the

descriptions of the spawn() function and BPX1SPN callable service in z/OS UNIX

System Services Programming: Assembler Callable Services Reference:

v The invoker must have an UID of 0 to issue a SH request

v The child process is not setuid or setgid to a value different from the parent

v The spawned file name is not an external link or a sticky bit file

v The parent has enough resources to allow the child process to reside in the

same address space

BPXBATSL is an alias of BPXBATCH.

BPXBATA2 and BPXBATA8 are provided as APF authorized alternatives to

BPXBATSL. BPXBATA2 and BPXBATA8 provide the capability for a target APF

authorized z/OS UNIX program to run in the same address space as the originating

job, allowing it to share the same allocations, joblog, and so on. BPXBATA2 is

specifically intended to provide the capability for APF Authorized z/OS UNIX

program to be started in a PSW Key 2 . To insure the target program receives

control PSW Key 2, a PPT entry for BPXBATA2 must be set up that specifies that

BPXBATA2 starts up PSW Key 2.

The same restrictions that apply to BPXBATSL apply to BPXBATA2 and

BPXBATA8, in addition to, the following:

v The PGM keyword is the only invocation type that is supported. The SH keyword

is not supported.

v The interfaces can only be used from Started Task address spaces.

v The z/OS UNIX program that is the target of the BPXBATA2 and BPXBATA8 job

must be marked as an APF Authorized executable file.

© Copyright IBM Corp. 1996, 2007 891

Any other usage of the BPXBATA8 and BPXBATA2 interfaces than what is

described is not supported and will cause the invoking job to fail.

Format

JCL:

EXEC PGM=BPXBATCH,PARM=’SH|PGM program_name’

TSO/E:

BPXBATCH SH|PGM program_name

Description

The BPXBATCH program allows you to submit MVS batch jobs that run shell

commands or scripts, or z/OS C executable files You can invoke BPXBATCH from a

JCL job or from TSO/E (as a command, through a CALL command, or from a

CLIST or REXX EXEC).

With BPXBATCH, you can allocate the MVS standard file stdin only as z/OS UNIX

files for passing input. You can allocate the MVS standard files stdout, stderr or

stdenv as MVS data sets or z/OS UNIX text files. The stdenv file for containing

environment variables or the stderr and stdout files for saving job output can be

allocated as SYSOUT, PDSE, PDS or sequential data sets. If you do not allocate

them, stdin, stdout, stderr, and stdenv default to /dev/null. Allocate the standard

files using the data definition PATH keyword options, or standard data definition

options for MVS data sets, for stdenv, stdout and stderr.

For MVS data sets use the standard data definition options for MVS data sets.

For JCL jobs, you specify PATH keyword options on DD statements:

//jobname JOB ...

//stepname EXEC PGM=BPXBATCH,PARM=’SH|PGM program_name’

//STDIN DD PATH=’/stdin-file-pathname’,PATHOPTS=(ORDONLY)

//STDOUT DD PATH=’/stdout-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU

//STDERR DD PATH=’/stderr-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU ...

Your application in the executable file can also allocate stdin, stdout, stderr, and

stdenv dynamically through the use of SVC 99.

For TSO/E, you specify PATH keyword options on the ALLOCATE command:

ALLOCATE FILE(STDIN) PATH(’/stdin-file-pathname’) PATHOPTS(ORDONLY)

ALLOCATE FILE(STDOUT) PATH(’/stdout-file-pathname’)

 PATHOPTS(OWRONLY,OCREAT,OTRUNC) PATHMODE(SIRWXU)

ALLOCATE FILE(STDERR) PATH(’/stderr-file-pathname’)

 PATHOPTS(OWRONLY,OCREAT,OTRUNC) PATHMODE(SIRWXU)

BPXBATCH SH|PGM program_name

stdin and stdenv must always be allocated as read. stdout and stderr must

always be allocated as write.

As previously stated, a user who wants to perform a local spawn without being

concerned about environment setup (that is, without having to set specific

environment variables which could be overwritten if they are also set in the user’s

BPXBATCH

892 z/OS V1R9.0 UNIX System Services Command Reference

profile) can use BPXBATSL. BPXBATSL provides users with an alternate entry point

into BPXBATCH, and forces a program to run using a local spawn instead of

fork/exec as BPXBATCH does. This ultimately allows a program to run faster.

The following example contains DD statements that are accessible to a program

that was given control from BPXBATSL:

//jobname JOB ...

//stepname EXEC PGM=BPXBATSL,PARM=’PGM program_name’

/* The following 2 DDs are still available in the program which gets

/* control from BPXBATSL.

//DD1 DD DSN=MVSDSN.FOR.APPL1,DISP=SHR

//DD2 DD DSN=MVSDSN.FOR.APPL2,DISP=SHR

/* The following DDs are processed by BPXBATSL to create file descriptors

/* for stdin, stdout, stderr

//STDIN DD PATH=’/stdin-file-pathname’,PATHOPTS=(ORDONLY)

//STDOUT DD PATH=’/stdout-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC

// PATHMODE=SIRWXU

//STDERR DD PATH=’/stderr-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC

// PATHMODE=SIRWXU

Parameters

BPXBATCH accepts one parameter string as input, the combination of SH|PGM and

program_name. At least one blank character must separate the parts of the

parameter string. The total length of the parameter string will now support up to

32754 characters.

Tips:

v BPXBATCH was first created for use with JCL, which had a max parm length of

100. Now, BPXBATCH can also be called form CLIST, REXX, and TSO. These

additional environments do not have the 100 character parameter limit. From a

TSO command environment the parameter string itself will now support up to

32754 characters.

v Parameters to BPXBATCH can also be supplied via the STDPARM DD up to a

limit of 65,536 characters. When the STDPARM DD is allocated BPXBATCH will

use the data found in the z/OS UNIX file or MVS data set associated with this

DD rather than what is found on the parameter string or in the STDIN DD. An

informational message BPXM079I will be displayed indicating that this is

occurring, as a warning to the user. The STDPARM DD will allow either a z/OS

UNIX file, or a MVS SYSIN, PDS or PDSE member or a sequential data set.

If neither SH nor PGM is specified as part of the parameter string, BPXBATCH

assumes that the shell is to be started to run the shell script allocated by STDIN.

SH|PGM

Specifies whether BPXBATCH is to run a shell script or command or a z/OS C

executable file located in an z/OS UNIX file.

SH

Specifies that the shell designated in your TSO/E user ID’s security product

profile is to be started and is to run shell commands or scripts provided

from stdin or the specified program_name.

 If SH is specified with no program_name information, BPXBATCH attempts

to run anything read in from stdin.

PGM

Specifies that the program identified by the program_name parameter is

invoked directly from BPXBATCH. This is done either via a spawn or a fork

BPXBATCH

Appendix D. Running shell scripts or executable files under MVS environments 893

and exec. BPXBATCH creates a process for the program to run in and then

calls the program. If you specify PGM, you must also specify

program_name.

 All environment variables read from the stdenv file are set when the

program is run if stdenv was allocated. If the HOME and LOGNAME

variables are not specified in the stdenv file, or stdenv was not allocated,

then HOME and LOGNAME, if possible, are set when the program is run.

 Refer to Usage notes for more information on environment variable

processing.

Note: When using PGM, the program_name cannot contain any shell

specific functions because they will not be resolved. If shell specific

functions must be specified, then SH should be used to avoid

possible errors or unpredictable results.

program_name

Specifies the shell command name or the z/OS UNIX path name for the shell

script or z/OS C executable file to be run. In addition, program_name can

contain option information.

 The program_name is interpreted as case-sensitive.

Note: When PGM and program_name are specified and the specified program

name does not begin with a slash character (/), BPXBATCH prefixes the

user’s initial working directory information to the program path name.

Usage notes

 1. BPXBATCH is an alias for the program BPXMBATC, which resides in the

SYS1.LINKLIB data set.

 2. BPXBATCH must be invoked from a user address space running with a

program status word (PSW) key of 8.

 3. BPXBATCH does not translate characters on the supplied parameter

information. You should supply parameter information, including z/OS UNIX

path names, using only the POSIX portable character set. For information on

the POSIX portable character set, see z/OS UNIX System Services

Programming Tools.

 4. If your BPXBATCH job returns ABEND 4093 reason code 0000001c, you need

to expand the region size. For example:

//SHELLCMD EXEC PGM=BPXBATCH,REGION=8M,PARM=’SH shell_cmd’

 5. BPXBATCH does not support any ddnames other than stdin, stdout, stderr,

stdenv or stdparm . Attempting to allocate or reference any other ddnames

will result in enqueue failures or unpredictable results. To use an MVS data set

in your batch UNIX application, use ″dynamic allocation″, such as SVC99 or

the TSO ALLOC command. Also, you must remove all ″static allocations″

(ddnames referring to the MVS data set in question) from all steps in the batch

job.

 6. If you define an MVS data set for stdout or stderr consider the following:

v It must be a sequential data set, a partitioned data set (PDS) member, a

partitioned data set extended (PDSE) member, or SYSOUT.

v The data set must have a nonzero logical record length (LRECL) and a

defined record format (RECFM); otherwise, BPXBATCH will fail with error

message BPXM012I indicating an open failure for the affected ddname.

BPXBATCH

894 z/OS V1R9.0 UNIX System Services Command Reference

v If the LRECL of the target STDOUT or STDERR data set is not large

enough to hold a line of output, the data will be truncated and message

BPXM080I will be put out indicating this has occurred. This can happen for

both fixed and variable blocked data sets. For variable block data sets, the

first four bytes of each record, record segment, or block make up a

descriptor word containing control information. You must allow for these

additional 4 bytes in the specified LRECL if you intend to avoid truncation of

the output to the STDOUT and STDERR DDs.

v If you use two members of the same partitioned data set for the STDOUT

and STDERR ddnames, then you must use a PDSE (not a PDS). Using a

PDS instead of a PDSE can result in a 213 abend (and, if running in a

batch job, an abnormal end for the job step) or the output not appearing in

the members as expected.

v When you specify an MVS data set for either the STDOUT or STDERR

ddnames, a child process will be created to run the target z/OS UNIX

program. In some cases, the child process will run in a separate address

space from the BPXBATCH job. In such cases, the job log messages for the

child will not appear in the job log of the BPXBATCH job. To capture the

child's job log messages, set the _BPXK_JOBLOG=STDERR environment

variable. This will cause the child's job log messages to be written to the

STDERR data set specified in the BPXBATCH job.

v In prior releases of z/OS, if a MVS data set is specified on STDOUT or

STDERR, BPXBATCH ignores the data set and defaults to /dev/null. To

remain compatible with this behavior, this new support will do the same

defaulting if the MVS data set type is not supported (e.g. DD Dummy,

Terminal, SYSIN, and so on), or if the MVS data set cannot be opened by

BPXBATCH. A new message BPXM081I will be displayed indicating when

this default behavior is being taken by BPXBATCH.

v If STDOUT or STDERR are allocated as a PDS or PDSE member and

overwriting of the output is expected from multiple runs of the same job or

command, the data set should not be allocated with a disposition of NEW

but rather as SHR or OLD. If the data set is allocated as NEW, the member

will be created on the 1st run, but subsequent runs will cause i/o errors

when attempting to write to the member.

v If STDOUT or STDERR are allocated as a sequential data set and

appending of the output is expected from multiple runs of the same job or

command, the data set should be allocated with a disposition of MOD.

v In general, any I/O errors that occur with an MVS data set defined to the

STDOUT or STDERR (or STDPARM or STDENV, described below)

ddnames will result in an abend (x13 or x37, for instance) and, if running in

a batch job, an abnormal end for the job step. For example: If the user does

not have security access to the data set defined to STDOUT, then when

BPXBATCH attempts to open the data set, a 913 abend will occur and

message IEC150I will provide details about the error.

 7. BPXBATCH now supports a parameter string up to 32754 characters when

called from a TSO command environment. Also from both a batch and TSO

environment, up to 65,536 characters can now be supplied via the a new input

DD named stdparm. When the stdparm DD is allocated BPXBATCH will use

the data found in the z/OS UNIX file or MVS data set associated with this DD

rather that what is found on the parameter string or in the stdin DD. As a

warning to the user, an informational message BPXM079I will be displayed

indicating that this is occurring.

BPXBATCH

Appendix D. Running shell scripts or executable files under MVS environments 895

The stdparm DD will allow either a z/OS UNIX file, or a MVS SYSIN PDS,

PDSE or Sequential data set. The following are characteristics of the

parameter data that can be supplied in the stdparm DD, if a z/OS UNIX file is

specified:

v It must be a text file defined with read access only

v Specify one argument per line

v The file cannot have sequence numbers in it.

Tip: If you use the ISPF editor to create the file, set the sequence numbers

off by typing number off on the command line before you begin typing data.

If sequence numbers already exist, type UNNUM to remove them and then

type number off.

If a MVS data set is specified:

v Specify one argument per line. If the parameter string for an argument

spans more than one line of a data set or file, this string will be divided into

two or more arguments that are passed to the corresponding shell script or

program.

v The maximum length of a single argument supplied to the program is

32,760, which is the same as the maximum LRECL for an unspanned

non-VSAM data set.

v The record format of the data set can fixed or variable (unspanned).

v The data set cannot have sequence numbers in it. If you use the ISPF

editor to edit the data set, set the sequence numbers off by typing number

off on the command line before you begin typing in the data. If sequence

numbers already exist, type UNNUM to remove them and set number mode

off.

v Trailing blanks are truncated for SYSIN and variable block data sets, but not

for fixed block data sets. For a fixed block data set, trailing blanks will be

included in the parameter text for a given argument up to the end of the

record.

 8. BPXBATCH does not close file descriptors other than 0–2. Other file

descriptors that are open and not defined as “marked to be closed” remain

open when you call BPXBATCH and BPXBATCH runs the specified script or

executable file.

 9. BPXBATCH uses write-to-operator (WTO) routing code 11 to write error

messages to either the JCL job log or your TSO/E terminal. Your TSO/E user

profile must specify WTPMSG so that messages can be displayed at the

terminal.

10. BPXBATCH (with the SH parameter) must not be used to run an executable

file, shell command, or shell script in the background (by specifying the shell &

symbol) unless the shell nohup command is also used. If the shell ampersand

(&) symbol is used without nohup, the results are unpredictable.

11. BPXBATCH, when used with the PGM parameter, sets up environment

variables for the program to be run. If the stdenv file is not allocated, the

HOME and LOGNAME environment variables are set. If stdenv is allocated,

the environment variables read from the file it represents are set, with HOME

or LOGNAME or both environment variables added if they are not specified in

the stdenv file. The following types of files can be allocated to stdenv:

v z/OS UNIX text file

v Sequential format MVS data set (including SYSIN data set)

v Member of a partitioned data set (PDS)

Other forms of MVS data sets, such as DUMMY, TERMINAL, SYSOUT, or

PDS/E, are not supported for stdenv.

BPXBATCH

896 z/OS V1R9.0 UNIX System Services Command Reference

The stdenv file consists of one or more records, where record is defined as a

string terminated with a <newline> character (X'15') in an z/OS UNIX file, or a

fixed or variable (nonspanned) format record in an MVS data set. Other MVS

record formats are not supported for stdenv. The following rules apply to the

specification of environment variables in stdenv files:

v Only one environment variable can be specified per record.

v Each environment variable is specified as variable=value.

v Environment variable names must begin in column 1, unless names

beginning with blanks are used.

v Environment variable records should not be terminated with null characters

(X'00'). BPXBATCH automatically appends a null character to the end of

each environment variable, and the lengths of environment variables as

seen by the program include the null characters.

v Trailing blanks (X'40') are truncated for MVS SYSIN data sets, but are not

truncated for any other type of file.

v Be careful that sequence numbers are not present in MVS data sets,

because they will be treated as part of the environment variables. ISPF edit

users should always set number mode off when creating environment

variables, including JCL data sets with environment variables specified as

SYSIN.

Some environment variables are release-dependent. If BPXBATCH is executed

on a system that does not support the environment variable, you will not get an

error message and the variable will be ignored. Use the uname shell

command to determine the release number of the operating system that

BPXBATCH is running on.

Environment variables (including PATH) are established at the start of the

executable program, not for BPXBATCH itself. Thus, PATH is not searched to

locate the program, but instead is used if the program invokes other

executable programs. In the following example, someprogram may be found

only in the initial working directory defined by the user’s profile, not by the

PATH environment variable:

//jobname JOB ...

//stepname EXEC PGM=BPXBATCH,PARM=’PGM someprogram parm1 parm2’

//STDOUT DD PATH=’/tmp/pgmout’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU

//STDENV DD *

PATH=/bin:/u/usr/joeuser

STEPLIB=SYS1.JOE.STEPLIB

/*

12. BPXBATCH uses two more environment variables for execution that are

specified by STDENV:

v _BPX_BATCH_UMASK=0755

v _BPX_BATCH_SPAWN=YES|NO

_BPX_BATCH_UMASK allows the user the flexibility of modifying the

permission bits on newly created files instead of using the default mask (when

PGM is specified).

Note: This variable will be overridden by umask (usually set from within

/etc/profile) if BPXBATCH is invoked with the ’SH’ option (SH is the

default). SH causes BPXBATCH to execute a login shell which runs the

/etc/profile script (and runs the user’s .profile) and which may set the

umask before execution of the intended program.

BPXBATCH

Appendix D. Running shell scripts or executable files under MVS environments 897

_BPX_BATCH_SPAWN causes BPXBATCH to use SPAWN instead of

fork/exec and allows data definitions to be carried over into the spawned

process. When _BPX_BATCH_SPAWN is set to YES, spawn will be used. If it

is set to NO, which is equivalent to the default behavior, fork/exec will be used

to execute the program.

If _BPX_BATCH_SPAWN is set to YES, then you must consider two other

environment variables that affect spawn (BPX1SPN):

v _BPX_SHAREAS = YES|NO|REUSE|MUST

When YES or REUSE, the child process created by spawn will run in the

same address space. Failure to meet these conditions will result in a spawn

failure when MUST is used. For more detail about these restrictions see the

descriptions of the spawn() function and BPX1SPN callable service in z/OS

UNIX System Services Programming: Assembler Callable Services

Reference:

– The invoker must have an UID of 0 to issue a SH request

– The child process is not setuid or setgid to a value different from the

parent

– The spawned file name is not an external link or a sticky bit file

– The parent has enough resources to allow the child process to reside in

the same address space

– The NOSHAREAS extended attribute is not set

When no, the child and parent run in separate address spaces.

v _BPX_SPAWN_SCRIPT=YES

Spawn will recognize a header in the first line of a z/OS UNIX file that

indicates the file to be executed and its first set of arguments. This header

will only be recognized when a z/OS UNIX file is not found in an executable

format. The format of the header is as follows:

#! Path String

where #! is the file magic number. The magic number indicates that the first

line of a file is a special header that contains the name of the program to be

executed and any argument data to be supplied to it.

When _BPX_SPAWN_SCRIPT=yes, spawn will first recognize the file magic

number and will process the file accordingly. If the file magic number is not

found in the file’s first line, spawn will treat the specified file as a shell script

and will invoke the shell to run the shell script.

For more information about spawn, see BPX1SPN in z/OS UNIX System

Services Programming: Assembler Callable Services Reference.

13. When using BPXBATCH with the SH parameter, environment variables

specified in the STDENV DD are overridden by those specified in /etc/profile

and .profile (which overrides /etc/profile). This is because SH causes

BPXBATCH to execute a login shell which runs the /etc/profile script and runs

the user’s .profile.

Files

v SYS1.LINKLIB(BPXMBATC) is the BPXBATCH program location.

v The stdin default is /dev/null.

v The stdout default is /dev/null.

v The stderr default is the value of stdout. If all defaults are accepted, stderr is

/dev/null.

v stdenv default is /dev/null.

BPXBATCH

898 z/OS V1R9.0 UNIX System Services Command Reference

Return codes

0 Processing successful.

254 Processing unsuccessful. BPXBATCH requires OMVS to be started.

255 Processing unsuccessful. An error message has been issued.

4095 Processing unsuccessful. An error message has been issued.

32000 BPXBATCH invoked the BPX1FRK (fork) callable service. This is usually

invoked only by a TSO/E user. One of the following conditions may have

resulted:

v BPXBATCH failed to open specified files after the program fork. Files are

normally opened and closed prior to a fork. Try running BPXBATCH

again.

v The program_name or the shell exited with an exit status of 125.

32512 One of the following conditions may have resulted:

v The PGM keyword was specified for BPXBATCH and no program_name

could be found.

Message BPXM008I was written to the job log or stderr.

v The SH keyword was specified for BPXBATCH and either /bin/login or

the shell did not exist.

v The SH keyword was specified with a program_name value for

BPXBATCH and no program_name could be found. The shell exited with

an exit status of 127. stdout contains a shell message indicating the

program was not found.

v The program_name or the shell exited with an exit status of 127.

other multiples of 256

A return code greater than 255, unless explicitly documented as a return

code from BPXBATCH (32000 or 32512), is actually an exit status being

returned from the program that was invoked by BPXBATCH. The exit status

can be determined by dividing the value of BPXYWAST by 256.

BPXYWAST

BPXBATCH invoked the BPX1FRK (fork) callable service. This is usually

invoked only by a TSO/E user. Processing was successful with wait() status

containing a nonzero value. The wait status was mapped by BPXYWAST

and returned by BPX1WAT (wait).

 No error messages were issued by BPXBATCH.

Using OSHELL to run shell commands and scripts from MVS

You can use the OSHELL REXX exec to run a shell command or shell script from

the TSO/E READY prompt and display the output to your terminal. This exec uses

BPXBATCH to run the shell command or shell script:

oshell shell_command

For example, to display process information, enter:

oshell ps –ej

Note: With this exec, do not use an & to run a shell command in the background.

BPXBATCH

Appendix D. Running shell scripts or executable files under MVS environments 899

BPXBATCH

900 z/OS V1R9.0 UNIX System Services Command Reference

Appendix E. BPXCOPY: Copying a sequential or partitioned

data set or PDSE member into an HFS file

This information describes the BPXCOPY program.

BPXCOPY

BPXCOPY allows you to copy an HFS file, a sequential data set, or a partitioned

data set or a PDSE member into a hierarchical file system (HFS) file.

Format

JCL:

EXEC PGM=BPXCOPY,PARM='ELEMENT HEADID LINK TYPE PATHMODE SYMLINK

SYMPATH APF | NOAPF PROGCTL | NOPROGCTL SHAREAS | NOSHAREAS UID GID

SHARELIB | NOSHARELIB

Description

BPXCOPY can copy an HFS file, a sequential data set, or partitioned data set or

PDSE member into an HFS file. You can invoke BPXCOPY in several ways:

v From JCL using EXEC PGM=BPXCOPY. BPXCOPY does not need the Terminal

Monitor Program (TMP) to be started when it is invoked from JCL.

v From LINK, XCTL, ATTACH, a TSO/E CALL command with the asis option, or by

a CALL after a LOAD.

BPXCOPY provides similar function to the OPUT command, but differs from OPUT

in these ways:

v There is no code page conversion available.

v The specified filename cannot be longer than 8 characters.

v The pathname of the directory specified cannot be longer than 255 characters.

v You can define hard links to the file.

v You can define symbolic links to the file.

v You can set the permission access bits of the file.

v You can set the extended attributes of the file.

v You can set the owning UID and GID of the file.

v Do not specify PATHOPTS when using the TSO/E ALLOCATE command or a

JCL DD statement. It will be ignored.

A DD statement allocates a data set or file and sets up a ddname. For BPXCOPY:

v The input ddname can specify a MVS data set (either a sequential data set or a

member of a partioned data set or PDSE) or the input ddname can be the full

pathname of the HFS file. When you invoke BPXCOPY from JCL, you must use

SYSUT1 as the input ddname. If BPXCOPY is invoked from LINK, XCTL, or

ATTACH, a TSO/E CALL command with the asis option, or by a call after a

LOAD, you can specify an alternative ddname.

v The output ddname is associated with the pathname of the directory in which the

HFS file resides. The absolute pathname for the HFS file is this pathname

combined with the name specified with the ELEMENT parameter. When you

invoke BPXCOPY from JCL, you must use SYSUT2 as the output ddname. If

BPXCOPY is invoked from LINK, XCTL, or ATTACH, a TSO/E CALL command

with the asis option, or by a CALL after a LOAD, you can specify an alternative

ddname.

© Copyright IBM Corp. 1996, 2007 901

v The message output ddname is associated with an MVS data set. The default

ddname is SYSTSPRT, which typically directs messages to SYSOUT. When you

invoke BPXCOPY from JCL, you must use SYSTSPRT as the message output

ddname. SYSTSPRT’s default LRECL is 137, with a BLKSIZE of 3155. If

BPXCOPY is invoked from LINK, XCTL, or ATTACH, a TSO/E CALL command

with the asis option, or by a CALL after a LOAD, you can specify an alternative

ddname.

v BPXCOPY invokes IKJTSOEV, and will always have an allocation for ddname

SYSTSIN. Please see z/OS TSO/E Programming Services for more information

about the IKJTSOEV service.

Parameters

You can specify the following keyword parameters with BPXCOPY. The parameters

can be separated by any delimiter (space, comma, tab, or comment (/*)).

ELEMENT(element_name)

element_name is a simple 1-to-8-character filename of the output file. The

element_name specified is converted to uppercase characters.

 The directory pathname for the output file is specified with the PATH keyword

on a JCL DD statement.

 The pathname of the output file consists the directory pathname appended with

the element_name.

 This parameter is required.

HEADID('character_string')

An 8-byte character string, enclosed in single quotes, that will appear on the

header of each page of output created.

 This optional parameter is provided for SMP/E usage, not for a typical user.

LINK('linkname','linkname',...)

The names of hard links to the file. Each linkname is concatenated with the

output directory pathname. On the JCL DD statement for the directory, the

maximum length for a pathname (before concatenation) is 255 characters.

Pathnames with a length of up to 1023 characters can be specified only if

BPXCOPY is invoked from LINK, XCTL, or ATTACH, a TSO/E CALL command,

or by a CALL after a LOAD.

 If you specify this parameter, you create one or more hard links to the file when

the data is copied into a file. The linkname must be enclosed in single quotes.

You can specify up to 64 linknames, and each must be enclosed in single

quotes. Specifying LINK is optional.

SYMLINK('linkname','linkname',...)

The names of symbolic links to the file. Each linkname is concatenated with the

output directory pathname. On the JCL DD statement for the directory, the

maximum length for a pathname (before concatenation) is 255 characters.

Pathnames with a length of up to 1023 characters (after concatenation) can be

specified if BPXCOPY is involved from LINK, XCTL, or ATTACH, a TSO/E CALL

command, or by a CALL after a LOAD.

 If you specify this parameter, you create one or more symbolic links to the file.

The linkname must be enclosed in single quotes. You can specify up to 64

linknames, and each must be enclosed in single quotes. Specifying SYMLINK is

optional. If you specify SYMLINK, you must also specify SYMPATH.

SYMPATH('pathname','pathname',...)

The pathnames of the file for which the symbolic link is created. Each

BPXCOPY

902 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|

pathname may be an absolute pathname (beginning with a slash) or a relative

pathname (not beginning with a slash). When an absolute pathname is used,

the symbolic link will be resolved starting at the root directory. When a relative

pathname is used, the symbolic link will be resolved starting at the parent

directory of the symbolic link.

 For JCL, the maximum length for a pathname is limited by the 100 character

limit on the entire PARM string (including other parameters) on the EXEC

statement. Pathnames with a length of up to 1023 characters can be specified if

BPXCOPY is invoked from LINK, XCTL, or ATTACH, a TSO/E CALL command,

or by a CALL after a LOAD.

 Specifying SYMPATH is optional, but if you specify SYMPATH, you must also

specify SYMLINK. Each SYMLINK linkname must be matched with a

corresponding SYMPATH pathname. The first linkname will define a symbolic

link to the first pathname, the second linkname will define a symbolic link to the

second pathname, etc. If there are fewer pathnames than linknames, the last

pathname will be used for the remaining linknames.

PATHMODE (mode_bits)

Changes the access permissions, or modes, of the specified file or directory.

Modes determine who can read, write, or search a directory. The bits are used

to set execution and permission access of the output file. On BPXCOPY, you

can specify PATHMODE as an absolute mode; it must consist of four octal

numbers separated by commas or blanks.

 Absolute modes are four octal numbers specifying the complete list of attributes

for the files; you specify attributes by ORing together the bits for each octal

number.

4,0,0,0 Set-user-ID bit

2,0,0,0 Set-group-ID bit

1,0,0,0 Sticky bit

0,4,0,0 Individual read

0,2,0,0 Individual write

0,1,0,0 Individual execute (or list directory)

0,0,4,0 Group read

0,0,2,0 Group write

0,0,1,0 Group execute

0,0,0,4 Other read

0,0,0,2 Other write

0,0,0,1 Other execute

Specifying PATHMODE is optional.

 For more information on permission bits, see the chmod command.

TYPE (TEXT|BINARY)

The format for the HFS file. The default is BINARY for U-format data sets and

TEXT for all others. (U-format means undefined-length records.) Specifying

TYPE is optional.

APF|NOAPF

Specifies whether the APF extended attribute is set or unset. When this

attribute is set (APF) on an executable program file (load module), it behaves

as if loaded from an APF-authorized library. For example, if this program is

exec()ed at the job step level and the program is linked with the AC = 1

attribute, the program will be executed as APF-authorized.

 To be able to set APF, you must have at least READ access to the

BPX.FILEATTR.APF resource in the FACILITY class. For more information, see

z/OS UNIX System Services Planning.

BPXCOPY

Appendix E. BPXCOPY: Copying a sequential or partitioned data set or PDSE member into an HFS file 903

Specifying APF or NOAPF is optional. If not specified, the attribute will be

defined as NOAPF.

PROGCTL|NOPROGCTL

Specifies whether the PROGCTL extended attribute is set or unset. When this

is set (PROGCTL) on an executable program file (load module), it causes the

program to behave as if an RDEFINE had been done for the load module to the

PROGRAM class. When this program is brought into storage, it does not cause

the enviroment to be marked dirty.

 To be able to set PROGCTL, you must have at least READ access to the

BPX.FILEATTR.PROGCTL resource in the FACILITY class . For more

information, see z/OS UNIX System Services Planning.

 Specifying PROGCTL or NOPROGCTL is optional. If not specified, the attribute

will be defined as NOPROGCTL.

SHAREAS | NOSHAREAS

Specifies whether the SHAREAS extended attribute is set or unset. When this

attribute is set (SHAREAS) on an executable program file (load module), the

_BPX_SHAREAS environment variable is honored when the file is spawn()ed.

When this attribute is not set (NOSHAREAS), the _BPX_SHAREAS

environment variable is ignored when the file is spawn()ed.

 Specifying SHAREAS or NOSHAREAS is optional. If not specified, the attribute

will be defined as SHAREAS.

SHARELIB | NOSHARELIB

Specifies whether the st_ShareLib extended attribute is set or unset in the

target file.

Note: In order to use BPXCOPY with this keyword parameter, you must have

at least READ access to the BPX.FILEATTR.SHARELIB resource in the

FACILITY class.

UID(owner)

Specifies the owner of the file. Owner can be a user name or a numeric user ID

(UID). However, if a numeric owner exists as a user name in the user data

base, the UID number associated with that user name is used.

 If a mixed case user name is specified, it must be enclosed in single quotes.

 To be able to set the UID of the file, the user must have UID 0 or have at least

READ access to the BPX.SUPERUSER resource in the FACILITY class.

 Specifying UID is optional. If not specified, the UID of the user running

BPXCOPY will be used.

GID(group)

Specifies the group owner of the file. group can be a group name or a numeric

group ID (GID). However, if a numeric group exists as a group name in the

group data base, the GID number associated with that group name is used.

 If a mixed case group name is specified, it must be enclosed in single quotes.

 To be able to set the GID of the file, the user must have UID 0 or have at least

READ access to the BPX.SUPERUSER resource in the FACILITY class.

 Specifying GID is optional. If not specified, the GID of the directory pathname

will be used.

BPXCOPY

904 z/OS V1R9.0 UNIX System Services Command Reference

Return codes

0 Processing successful

12 Processing unsuccessful. An error message has been issued.

Examples

1. JCL and BPXCOPY are used to copy a PDSE member into a directory.

Known:

v The name of the PDSE member is REGEREX.

v The directory name is /u/turbo/llib.

v Output messages are to be directed to SYSOUT.

v Type of data: binary.
//TEST JOB MSGLEVEL=(1,1)

//STEP EXEC PGM=BPXCOPY,

// PARM=’ELEMENT(REGEREX) LINK("../erex") TYPE(BINARY)’

//SYSUT1 DD DSN=TURBO.LOADLIB(REGEREX),DISP=SHR

//SYSUT2 DD PATH=’/u/turbo/llib’

//SYSTSPRT DD SYSOUT=*

The LINK name is concatenated with the directory name from SYSUT2, yielding

/u/turbo/llib/../erex. The file system treats this as /u/turbo/erex, making this an

alias for /u/turbo/llib/REGEREX.

2. JCL and BPXCOPY are used to copy a PDS member into a directory.

Known:

v The name of the PDS member is TABLE1.

v The directory name is /u/carbon/data.

v Output messages are to be directed to SYSOUT.

v Type of data: text.
//TEST JOB MSGLEVEL=(1,1)

//STEP EXEC PGM=BPXCOPY,

// PARM=’ELEMENT(TABLE1) TYPE(TEXT) PATHMODE(0,7,6,4)’

//SYSUT1 DD DSN=CARBON.DATA(TABLE1),DISP=SHR

//SYSUT2 DD PATH=’/u/carbon/data’

//SYSTSPRT DD SYSOUT=*

This results in a file /u/carbon/data/TABLE1 with read, write, and execute

authority for the user; read and write authority for the group; and read authority

for other users.

3. A member of an MVS partitioned data set is copied to an HFS file from a

program using the LINK macro.

Known:

v The ddname of the source: INDD. INDD can be any sequential data set and

is defined by an ALLOCATE command issued outside the program.

v The ddname of the directory to copy into: OUTDD. OUTDD can be any

directory name and is defined by an ALLOCATE command issued outside the

program.

v Three link names—DATA, link1, and link2—for the target file.

v Output messages are directed to SYSOUT.

v Type of data: text.
*

COPYEX CSECT

 STM 14,12,12(13) Entry linkage

 LR 12,15

 USING COPYEX,12

 LA 10,SAVEAREA

BPXCOPY

Appendix E. BPXCOPY: Copying a sequential or partitioned data set or PDSE member into an HFS file 905

ST 10,8(13)

 ST 13,SAVEAREA+4

 LR 13,10

*

 LINK EP=BPXCOPY,PARAM=(OPT_LIST,DD_LIST),VL

*

 L 13,SAVEAREA+4 Exit linkage

 L 14,12(13)

 LM 0,12,20(13)

 BR 14

*

SAVEAREA DS 18F

*

OPT_LIST DC H’80’ Length of option string

 DC CL80’ELEMENT(DATA) HEAD(’’0001’’) TYPE(TEXT) X

 LINK(’link1’’, ’’link2’’)’

*

DD_LIST DC H’72’ Length of DDNAME list

 DC XL56’0’

 DC CL8’INDD’ Logical SYSUT1 input

 DC CL8’OUTDD’ Logical SYSUT2 output directory

*

 END COPYEX

4. JCL and BPXCOPY are used to copy a HFS file to another HFS file.

//TEST JOB MSGLEVEL=(1,1)

//STEP EXEC PGM=BPXCOPY,

// PARM=’ELEMENT(PROGINFO) TYPE(TEXT) PATHMODE(0,7,4,4)’

//SYSUT1 DD PATH=’/u/dept/data/proginfo’

//SYSUT2 DD PATH=’/u/program’

//SYSTSPRT DD SYSOUT=*

There will be no inheritance of file attributes, pathmode, links or symlinks. This

information will be determined from the input parameter to BPXCOPY, not from

the source file.

BPXCOPY

906 z/OS V1R9.0 UNIX System Services Command Reference

Appendix F. Localization

Internationalization enables you to work in a cultural context that is comfortable for

you through locales, character sets, and a number of special environment variables.

The process of adapting an internationalized application or program, particular to a

language or cultural milieu, is termed localization.

A locale is the subset of your environment that deals with language and cultural

conventions. It is made up of a number of categories, each of which is associated

with an environment variable and controls a specific aspect of the environment. The

following list shows the categories and their spheres of influence:

LC_COLLATE

Collating (sorting) order.

LC_CTYPE

Character classification and case conversion.

LC_MESSAGES

Formats of informative and diagnostic messages and interactive responses.

LC_MONETARY

Monetary formatting.

LC_NUMERIC

Numeric, nonmonetary formatting.

LC_TIME

Date and time formats.

LC_SYNTAX

EBCDIC-variant character encodings used by some C functions and

utilities.

To give a locale control over a category, set the corresponding variable to the name

of the locale. In addition to the environment variables associated with the

categories, there are two other variables which are used in conjunction with

localization, LANG and LC_ALL. All of these variables affect the performance of

the shell commands. The general effects apply to most commands, but certain

commands such as sort, with its dependence on LC_COLLATE, require special

attention to be paid to one or more of the variables; this discusses such cases in

the Localization topic of the command. The effects of each environment variable is

as follows:

LANG Determines the international language value. Utilities and applications can

use the information from the given locale to provide error messages and

instructions in that locale’s language. If LC_ALL variable is not defined, any

undefined variable is treated as though it contained the value of LANG.

LC_ALL

Overrides the value of LANG and the values of any of the other variables

starting with LC_.

LC_COLLATE

Identifies the locale that controls the collating (sorting) order of characters

and determines the behavior of ranges, equivalence classes, and

multicharacter collating elements.

LC_CTYPE

Identifies the locale that defines character classes (for example, alpha, digit,

© Copyright IBM Corp. 1996, 2007 907

blank) and their behavior (for example, the mapping of lowercase letters to

uppercase letters). This locale also determines the interpretation of

sequences of bytes as characters (such as singlebyte versus doublebyte

characters).

LC_MESSAGES

Identifies the locale that controls the processing of affirmative and negative

responses. This locale also defines the language and cultural conventions

used when writing messages.

LC_MONETARY

Determines the locale that controls monetary-related numeric formatting (for

example, currency symbol, decimal point character, and thousands

separator).

LC_NUMERIC

Determines the locale that controls numeric formatting (for example,

decimal point character and thousands separator).

LC_TIME

Identifies the locale that determines the format of time and date strings.

LC_SYNTAX

Identifies the locale that defines the encodings for the variant characters in

the portable character set.

The NLSPATH localization variable specifies where the message catalogs are to be

found.

For example,

NLSPATH="/system/nlslib/%N.cat"

specifies that the z/OS shell is to look for all message catalogs in the directory

/system/nlslib, where the catalog name is to be constructed from the name

parameter passed to the z/OS shell with the suffix .cat.

Substitution fields consist of a % symbol, followed by a single-letter keyword. These

keywords are currently defined:

%N The value of the name parameter

%L The value of the LC_MESSAGES category, or LANG, depending on how

the catopen() function that opens this catalog is coded. For more

information, refer to catopen() in z/OS XL C/C++ Run-Time Library

Reference.

%l The language element from the LC_MESSAGES category

%t The territory element from the LC_MESSAGES category

%c The codeset element from the LC_MESSAGES category

Templates defined in NLSPATH are separated by colons (:). A leading colon or two

adjacent colons (::) are equivalent to specifying %N. For example:

NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

specifies that the z/OS shell should look for the requested message catalog in

name, name.cat, and /nlslib/category/name.cat, where category is the value of the

LC_MESSAGES or LANG category of the current locale.

Do not set the NLSPATH variable unless you need to override the default system

path. Otherwise the commands may behave unpredictably.

Localization

908 z/OS V1R9.0 UNIX System Services Command Reference

Appendix G. Stub Commands

z/OS UNIX has some stub commands. Stub commands are those commands that

are recognized by z/OS UNIX but whose functions are not supported.

They are:

v cancel

v cu

v lpstat

© Copyright IBM Corp. 1996, 2007 909

910 z/OS V1R9.0 UNIX System Services Command Reference

Appendix H. File Formats

This information gives more detailed information on the formats of the files used by

the shell commands. The file formats are:

v cpio

v magic

v pax

v queuedefs

v tags

v tar

v utmpx

v uucp

cpio — Format of cpio archives

You can use the cpio command to back up or restore files. The cpio command

reads and writes either a compact binary format header or an ASCII format header.

The tar command reads and writes headers in either the original TAR format from

UNIX systems or the USTAR format defined by the POSIX 1003.1 standard.

The pax command reads and writes headers in any of the cpio formats.

Description

A cpio archive consists of one or more concatenated member files. Each member

file contains a header optionally followed by file contents as indicated in the header.

The end of the archive is indicated by another header describing an (empty) file

named TRAILER!!.

There are two types of cpio archives, differing only in the style of the header:

v ASCII archives have totally printable header information; thus, if the files being

archived are also ASCII files, the whole archive is ASCII.

v By default, cpio writes archives with binary headers. However, binary archive

files cannot usually be ported to other operating systems, so you should not use

these.

The information in an ASCII archive header is stored in fixed-width, octal (base 8)

numbers padded with zeros on the left. Table 39 gives the order and field width for

the information in the ASCII header:

 Table 39. Archive File: ASCII Header

Field Width Field Name Meaning

6 magic Magic number 070707

6 dev Device where file resides

6 ino I-number of file

6 mode File mode

6 uid Owner user ID

6 gid Owner group ID

6 nlink Number of links to file

6 rdev Device major/minor for special file

11 mtime Modify time of file

6 namesize Length of filename

11 filesize Length of file

© Copyright IBM Corp. 1996, 2007 911

|

|

After the header information, namesize bytes of pathname are stored. namesize

includes the null byte of the end of the pathname. After this, filesize bytes of the file

contents are recorded.

Binary headers contain the same information in 2-byte (short) and 4-byte (long)

integers as follows:

Bytes Field Names

2 magic

2 dev

2 ino

2 mode

2 uid

2 gid

2 nlink

2 rdev

2 mtime

2 namesize

2 filesize

After the header information comes the filename, with namesize rounded up to the

nearest 2-byte boundary. Then the file contents appear as in the ASCII archive. The

byte ordering of the 2- and 4-byte integers in the binary format is

machine-dependent and thus portability of this format is not easily guaranteed.

Related Information

The compress, cpio, pax, and tar commands

magic — Format of the /etc/magic file

Description

The file command uses the /etc/magic file in its attempt to identify the type of a

binary file. Essentially, /etc/magic contains templates showing what different types

of files look like.

The magic file contains lines describing magic numbers, which identify particular

types of files. Lines beginning with a > or & character represent continuation lines

to a preceding main entry:

> If the file command finds a match on the main entry line, these additional

patterns are checked. Any pattern that matches is used. This may generate

additional output; a single blank separates each matching line’s output if

any output exists for that line.

& If the file command finds a match on the main entry line, and a following

continuation line begins with this character, that continuation line’s pattern

must also match, or neither line is used. Output text associated with any

line beginning with the & character is ignored.

Each line consists of four fields, separated by one or more tabs:

(a) The first field is a byte offset in the file, consisting of an optional offset

operator and a value. In continuation lines, the offset immediately follows a

continuation character.

 If no offset operator is specified, then the offset value indicates an offset

from the beginning of the file.

cpio

912 z/OS V1R9.0 UNIX System Services Command Reference

|

The * offset operator specifies that the value located at the memory location

following the operator be used as the offset. Thus, *0x3C indicates that the

value contained in 0x3C should be used as the offset.

 The + offset operator specifies an incremental offset, based on the value of

the last offset. Thus, +15 indicates that the offset value is 15 bytes from the

last specified offset.

 If the byte offset has passed the file length limit, the test will not match.

(b) The second field is the type of the value.

 The valid specifiers are listed below:

d signed decimal

u unsigned decimal

s string

u and d can be followed by an optional unsigned decimal integer that

specifies the number of bytes represented by the type. The numbers of

bytes supported are refined to the byte length of the C-language type char,

short, int,long. u and d can also be followed by an optional size specifiers

listed below:

C char

S short

I int

L long

The C, S, I, or L specifiers are correspond to the number of bytes in the

C-language types char, short, int, or long.

 All type specifiers, except for s, can be followed by a mask specifier of the

form &number. The mask value will be bitwise AND ’ed with the value of

the input file before the comparison with the value field of the line is made.

By default the mask will be interpreted as an unsigned decimal number.

With a leading 0x or 0X, the mask will be interpreted as an unsigned

hexadecimal number; otherwise, with a leading 0, the mask will be

interpreted as an unsigned octal number.

 The long format of type specifiers is supported. The valid specifiers, and

their interpretation, are listed below:

 Specifier _UNIX03=YES _UNIX03 is not YES

byte dC uC

short dS uS

long dL uL

string s s

(c) The next field is a value, preceded by an optional operator.

 If the specifier from the type field is s or string, then interpret the value as a

string. Otherwise, interpret it as a number. If the value is a string, then the

magic

Appendix H. File Formats 913

|

||

|

||

||

||

|
|
|
|
|

||

||

||

||

|
|

|
|
|
|
|
|
|

|
|

||||

|||

|||

|||

|||
|

|

|
|

test will succeed only when a string value exactly matches the bytes from

the file. The string value field can contain at most 127 characters per magic

line.

 If the value is a string, it can contain the following sequences:

 \character

The backslash-escape sequences as specified in the Base Definitions

volume of IEEE Std 1003.1-2001, Table 5-1, Escape Sequences and

Associated Actions (’\\’, ’\a’, ’\b’, ’\f’, ’\n’, ’\r’, ’\t’, ’\v’). In addition, the

escape sequence ’\ ’ (the <backslash> character followed by a <space>

character) will be recognized to represent a <space> character.

 \octal

Octal sequences that can be used to represent characters with specific

coded values. An octal sequence will consist of a backslash followed by

the longest sequence of one, two, or three octal-digit characters

(01234567).

By default, any value that is not a string will be interpreted as a signed

decimal number. Any such value, with a leading 0x or 0X, will be interpreted

as an unsigned hexadecimal number; otherwise, with a leading zero, the

value will be interpreted as an unsigned octal number. To maintain

compatibility with other systems, numeric values are not subject to bounds

checking. Use numeric values that match the specified type.

 Operators only apply to nonstring types: byte, short and long. The default

operator is = (exact match). The operators are:

= Equal.

! Not equal.

> Greater than.

< Less than.

& All bits in pattern must match.

^ At least one bit in pattern must not match.

x or ? Any value matches (must be the only character in the field). ? is an

extension to traditional implementations of magic.

(d) The rest of the line is the message string to be printed if the particular file

matches the template. Note that the contents of this field is ignored if the

line begins with the & continuation character. The fourth field may contain a

printf ()-type format indicator to output the magic number (see printf for

more details on format indicators). If the field contains a printf ()-type

format indicator, the value read from the file will be the argument to printf.

Usage Notes

1. Characters from a code page other than IBM-1047 should not be added to the

/etc/magic file (the default magic file).

2. Characters from a code page other than IBM-1047 can be used in alternate

magic files that are specified by the –m or -M option on the file command.

These characters should only be used in the third field of the magic file

template when the field type is string. They will only match files containing

these characters when the file command is invoked in the non-IBM-1047 locale.

Examples

Here are some sample entries:

 0 short 0x5AD4 DOS executable

magic

914 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|

|

|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

*0x18 Short 0x40

>*0x3c Short 0x6584C OS/2 linear

executable

>*0x3C Short 0x454e

>+54byte 1 OS/2 format

>+54byte 2 Windows format

0 short 0xFDF0 DOS library

0 string AH Halo bitmapped font file

0 short 0x601A Atara ST contiguous

executable

>14 long >0 – not stripped

0 byte 0X1F

>1 byte 0x1E Packed file

>1 byte 0x9D Compressed file

Related Information

The file command. Also, see ″Enabling the file Utility″ in z/OS UNIX System

Services Planning.

pax — Format of pax archives and special header summary files

USTAR archive format

Description

pax uses the USTAR archive format described in the tar file format description.

(For more information about the tar file format, see “tar — Format of tar archives”

on page 922.)

Special Header Summary File: example format:

#00

#IBMOS390_USTAR_VERS=1

Archive Name: /tmp/spec.pax

This file was created by the IBM z/OS pax or tar utility.

'# During the process of creating the archive from which this

file was extracted, one or more of the source files to be

stored in the archive was determined to have names or

attributes that are not supported by the standard USTAR

format (as described by POSIX.2 IEEE std 1003.2-1992).

To preserve these files or these characteristics,

one or more special header files (having the same name as

this file) were inserted into the archive. Those files

are recognized by z/OS pax and tar utilities and are

used during extraction to restore the files to their

original state.

Figure 1. Example of a Special Header Summary File (Part 1 of 3)

magic

Appendix H. File Formats 915

Portability

POSIX.2, X/Open Portability Guide.

Related Information

The cpio, pax, and tar commands.

pax interchange format

Description

A pax archive tape or file produced in the -x pax format shall contain a series of

blocks. The physical layout of the archive shall be identical to the USTAR format

described in USTAR Interchange Format. Each file archived shall be represented by

the following sequence:

The purpose of this file is to summarize the information

described by all z/OS special header files stored in

the archive so that users with versions of pax or tar

that do not support these special header files can

manually restore some or all of the files and file

attributes described by them. Note that some file

attributes are specific to z/OS and cannot be restored

on other platforms.

The remainder of this file consists of a set of records

corresponding to each special header file stored in the

archive. Each set consists of a record describing the

pathname, one or more reasons explaining why the file or

attribute could not be stored, and the UNIX command,

or commands, that would be used to restore the file or

attribute. Note that these commands use the pathnames

of the file as they existed when archived and may not

correspond to the current pathnames on your system.

Figure 1. Example of a Special Header Summary File (Part 2 of 3)

Pathname: level0/longsymlink

Reason: 1. FSUMF076 target of symbolic link

("level1/level2/level3/level4/level5/level6/level7/level8/

level9/level10/level11/level12/level13/level14/linkbase")

exceeds 100 chars.

Unix restore commands:

ln -s level1/level2/level3/level4/level5/level6/level7/

level8/level9/level10/level11/level12/level13/level14/

linkbase level0/longsymlink

Pathname: level0/level1/level2/level3/level4/level5/

level6/level7/level8/level9/level10/level11/level12/

level13/level14/longhardlink

Reason: 1. FSUMF076 target of hard link ("level0/level1/

level2/level3/level4/level5/level6/level7/level8/level9/

level10/level11/level12/level13/level14/linkbase")

exceeds 100 chars.

Unix restore commands: ln level0/level1/level2/level3/

level4/level5/level6/level7/level8/level9/level10/level11/

level12/level13/level14/linkbase level0/level1/level2/

level3/level4/level5/level6/level7/level8/level9/level10/

level11/level12/level13/level14/longhardlink

Figure 1. Example of a Special Header Summary File (Part 3 of 3)

pax

916 z/OS V1R9.0 UNIX System Services Command Reference

v An optional header block with extended header records. This header block is of

the form described in pax Header Block , with a typeflag value of x or g. The

extended header records, described in pax Extended Header , shall be included

as the data for this header block.

v A header block that describes the file. Any fields in the preceding optional

extended header shall override the associated fields in this header block for this

file.

v Zero or more blocks that contain the contents of the file.

At the end of the archive file there shall be two 512-byte blocks filled with binary

zeros, interpreted as an end-of-archive indicator.

A schematic of an example archive with global extended header records and two

actual files is shown in pax Format Archive Example. In the example, the second

file in the archive has no extended header preceding it, presumably because it has

no need for extended attributes.

 Table 40. Example of a format archive for pax

USTAR Header [typeflag=g] Global Extended Header

Global Extended Header Data

USTAR Header [typeflag=x] File 1: Extended Header is included

Extended Header Data

USTAR Header [typeflag=0]

Data for File 1

USTAR Header [typeflag=0] File 2: No Extended Header is included

Data for File 2

Block of binary zeroes End of Archive Indicator

Block of binary zeroes

pax header block

Description

The pax header block shall be identical to the USTAR header block described in

USTAR Interchange Format , except that two additional typeflag values are defined:

x Represents extended header records for the following file in the archive

(which shall have its own USTAR header block). The format of these

extended header records shall be as described in pax Extended Header.

g Represents global extended header records for the following files in the

archive. The format of these extended header records shall be as described

in pax Extended Header. Each value shall affect all subsequent files that do

not override that value in their own extended header record and until

another global extended header record is reached that provides another

value for the same field. The typeflag g global headers should not be used

with interchange media that could suffer partial data loss in transporting the

archive.

For both of these types, the size field shall be the size of the extended header

records in octets. The other fields in the header block are not meaningful to this

version of the pax utility. However, if this archive is read by a pax utility conforming

to the ISOPOSIX-2:1993 standard, the header block fields are used to create a

pax

Appendix H. File Formats 917

regular file that contains the extended header records as data. Therefore, header

block field values should be selected to provide reasonable file access to this

regular file.

A further difference from the USTAR header block is that data blocks for files of

typeflag 1 (the digit one) (hard link) may be included, which means that the size

field may be greater than zero. Archives created by pax -o linkdata shall include

these data blocks with the hard links.

pax extended header

Description

A pax extended header contains values that are inappropriate for the USTAR

header block because of limitations in that format: fields requiring a character

encoding other than that described in the ISO/IEC646:1991 standard, fields

representing file attributes not described in the USTAR header, and fields whose

format or length do not fit the requirements of the USTAR header. The values in an

extended header add attributes to the following file (or files; see the description of

the typeflag g header block) or override values in the following header blocks, as

indicated in the following list of keywords.

An extended header shall consist of one or more records, each constructed as

follows:

"%d %s=%s\n", <length>, <keyword>, <value>

The extended header records shall be encoded according to the

ISO/IEC10646-1:2000 standard (UTF-8). The <length> field, <blank>, equals sign,

and <newline> shown shall be limited to the portable character set, as encoded in

UTF-8. The <keyword> and <value> fields can be any UTF-8 characters. The

<length> field shall be the decimal length of the extended header record in octets,

including the trailing <newline.

The field shall be one of the entries from the following list or a keyword provided as

an implementation extension. Keywords consisting entirely of lowercase letters,

digits, and periods are reserved for future standardization. A keyword shall not

include an equals sign. (In the following list, the notations ″files″ or ″blocks″ is used

to acknowledge that a keyword affects the following single file after a typeflag x

extended header, but possibly multiple files after typeflag g. Any requirements in the

list for pax to include a record when in write or copy mode shall apply only when

such a record has not already been provided through the use of the -o option.

When used in copy mode, pax shall behave as if an archive had been created with

applicable extended header records and then extracted.)

atime The file access time for the following files, equivalent to the value of the

st_atime member of the stat structure for a file, as described by the stat()

function. The access time shall be restored if the process has the

appropriate privilege required to do so. The format of the <value> shall be

as described in pax Extended Header File Times.

charset

The name of the character set used to encode the data in the following

files. The entries in this table are defined to refer to known standards and

the charset value used to represent each:

 The encoding is included in an extended header for information only; when

pax is used as described, it does not translate the file data into any other

encoding. The BINARY entry indicates unencoded binary data.

pax

918 z/OS V1R9.0 UNIX System Services Command Reference

Table 41. Charset standards

<value> Formal Standard

ISO-IR 646 1990 ISO/IEC 646:1990

ISO-IR 8859 1 1998 ISO/IEC 8859-1:1998

ISO-IR 8859 2 1999 ISO/IEC 8859-2:1999

ISO-IR 8859 3 1999 ISO/IEC 8859-3:1999

ISO-IR 8859 4 1998 ISO/IEC 8859-4:1998

ISO-IR 8859 5 1999 ISO/IEC 8859-5:1999

ISO-IR 8859 6 1999 ISO/IEC 8859-6:1999

ISO-IR 8859 7 1987 ISO/IEC 8859-7:1987

ISO-IR 8859 8 1999 ISO/IEC 8859-8:1999

ISO-IR 8859 9 1999 ISO/IEC 8859-9:1999

ISO-IR 8859 10

1998

ISO/IEC 8859-10:1998

ISO-IR 8859 13

1998

ISO/IEC 8859-13:1998

ISO-IR 8859 14

1998

ISO/IEC 8859-14:1998

ISO-IR 8859 15

1999

ISO/IEC 8859-15:1999

ISO-IR 10646 2000 ISO/IEC 10646:2000

ISO-IR 10646 2000

UTF-8

ISO/IEC 10646, UTF-8 encoding

BINARY None

comment

A series of characters used as a comment. All characters in the value field

are ignored by pax.

gid The group ID of the group that owns the file, expressed as a decimal

number using digits from ISO/IEC 646. This record overrides the gid field in

the following header blocks. When used in write or copy mode, pax

includes a gid extended header record for each file whose group ID is

greater than 2097151 (octal 7777777).

gname

The group of the following files, formatted as a group name in the group

database. This record overrides the gid and gname fields in the following

header blocks, and any gid extended header record. When used in read,

copy, or list mode, pax translates the name from the UTF-8 encoding in the

header record to the character set appropriate for the group database on

the receiving system. If any of the UTF-8 characters cannot be translated,

and if the -o invalid=UTF-8 option is not specified, the results are

undefined as if -o invalid=bypass were specified. When used in write or

copy mode, pax includes a gname extended header record for each file

whose group name cannot be represented entirely with the letters and digits

of the portable character set.

pax

Appendix H. File Formats 919

linkpath

The pathname of a link being created to another file, of any type, previously

archived. This record overrides the linkname field in the following USTAR

header blocks.

 The following USTAR header block determines the type of link created,

whether hard or symbolic. In the latter case, the linkpath value is the

contents of the symbolic link. pax translates the name of the link (contents

of the symbolic link) from the UTF-8 encoding to the character set

appropriate for the local file system.

 When used in write or copy mode, pax includes a linkpath extended

header record for each link whose pathname cannot be represented entirely

with the members of the portable character set other than NULL.

mtime The file modification time of the following files, equivalent to the value of the

st_mtime member of the stat structure for a file. This record overrides the

mtime field in the following header blocks. The modification time is restored

if the process has the appropriate privilege to do so. The format of the

<value> shall be as descrided in pax extended header file times.

path The pathname of the following files. This record overrides the name and

prefix fields in the following header blocks. pax translates the pathname of

the file from the UTF-8 encoding to the character set appropriate for the

local file system.

 When used in write or copy mode, pax includes a path extended header

record for each file whose pathname cannot be represented entirely with

the members of the portable character set other than NULL.

realtime.any

The keywords prefixed by realtime. are reserved for future POSIX realtime

standardization. pax recognizes but silently ignores them.

security.any

The keywords prefixed by security. are reserved for future POSIX security

standardization. pax recognizes but silently ignores them.

size The size of the file in octets, expressed as a decimal number using digits

from ISO/IEC 646. This record overrides the size field in the following

header blocks. When used in write or copy mode, pax automatically

includes a size of extended header record for each file with a size value

greater than 8589934591 (octal 77777777777).

uid The user ID of the user that owns the file, expressed as a decimal number

using digits from ISO/IEC 646.. This record overrides the uid field in the

following header blocks. When used in write or copy mode, pax includes a

uid extended header record for each file whose owner ID is greater than

2097151 (octal 7777777).

uname

The owner of the following files, formatted as a user name in the user

database. This record overrides the uid and uname fields in the following

header blocks, and any uid extended header record. When used in read,

copy, or list mode, pax translates the name from the UTF-8 encoding in the

header record to the character set appropriate for the user database on the

receiving system. If any of the UTF-8 characters cannot be translated, and

if the -o invalid=UTF-8 option is not specified, the results are as if -o

invalid=bypass were specified. When used in write or copy mode, pax

pax

920 z/OS V1R9.0 UNIX System Services Command Reference

includes a uname extended header record for each file whose user name

cannot be represented entirely with the letters and digits of the portable

character set.

 If the <value> field is zero length, it shall delete any header block field, previously

entered extended header value, or global extended header value of the same

name.

If a keyword in an extended header record (or in a -o option-argument) overrides or

deletes a corresponding field in the USTAR header block, pax shall ignore the

contents of that header block field.

Unlike the USTAR header block fields, NULLs shall not delimit <value>s; all

characters within the <value> field shall be considered data for the field. None of

the length limitations of the USTAR header block fields in USTAR Header Block

shall apply to the extended header records.

queuedefs — Queue description for at, batch, and cron

Description

The queudefs file describes the characteristics of the queues managed by the

clock daemon cron. Each line in the file that is not a comment uses the following

format to describe a queue:

q . [njobj] [nicen] [nwaitw]

where the fields are:

q Specifies the name of the queue. Jobs started by at default to queue a;

jobs started by batch default to queue b, and crontab files default to queue

c. Queue names can be any singlebyte character except a space, tab,

newline, null, or number sign (#).

njob Specifies the maximum number of jobs that can be run in the queue

simultaneously. If more than njob jobs are ready to run, cron runs the first

njob jobs immediately, and runs the others as current jobs terminate. The

default value is 100.

nice Specifies the nice value (see nice) that cron assigns to all jobs in the

queue that are not run by a user ID with appropriate privileges. The default

value is 2.

nwait Specifies the number of seconds that cron is to wait before it reschedules a

job that was deferred because there were more than njob jobs running in

that job’s queue, or because more than 25 jobs were running in all queues.

The default value is 60.

Lines beginning with a number sign (#) are comments, and are ignored.

Examples

Here is a sample queudefs file:.

Sample queuedefs file

a.5j3n

b.3j1n90w

pax

Appendix H. File Formats 921

This file indicates that the a queue, for at jobs, can have a maximum of five jobs

running simultaneously. crontab runs the jobs with a nice value of 3. Because

there is no nwait field for this queue, if cron cannot run a job because too many

other jobs are running, it waits 60 seconds before trying to run it again.

This file also states that the b queue, for batch jobs, can have a maximum of three

jobs running simultaneously. cron runs the jobs with a nice value of 1. If cron

cannot run a job because too many other jobs are running, it waits 90 seconds

before trying to run it again. All other queues can run up to 100 jobs simultaneously;

cron runs these jobs with a nice value of 2 and, if it cannot run a job because too

many other jobs are running, it waits 60 seconds before trying to run it again.

Related Information

The at, batch, and crontab commands.

tags — Format of the tags file

Description

When you use the vi :tag or ex :tag command, or the ex –t, more –5, vi –t, option,

that utility looks for a file called tags in the current directory. This lets you quickly

locate various points of interest in a C program which may span more than one

source file. These points of interest are tags.

The tags file contains tags for function definitions, preprocessor macro definitions,

and typedef definitions.

For each tag, the tags file contains one line in the following form:

tagname sourcefile address

The tagname field is the name of the C function, macro, or typedef. The sourcefile

field has the name of the source file containing the tag named tagname. The

address field is an editor address within sourcefile to reach the tag definition. This

is either a line number in the file or a regular expression (enclosed in ? or /

characters) that uniquely matches the line of source code where the tag appears. A

tab character separates each field.

For vi or more to use the tags file correctly, it must be sorted by tagname using the

POSIX locale’s collation sequence.

Related Information

The more, sort, and vi commands.

tar — Format of tar archives

Description

tar reads and writes headers in either the original TAR format from UNIX systems

or the USTAR format defined by the POSIX 1003.1 standard.

The pax command reads and writes headers in any of the tar formats.

The tar command supports both the older UNIX-compatible tar formats and the

extended USTAR format. The –X option needs to be used to enable extended

queuedefs

922 z/OS V1R9.0 UNIX System Services Command Reference

USTAR format. The extended USTAR format allows more information to be stored

and supports longer pathnames. There is also a non-portable OS390 format (–S

option) which also allows storing of additional file attributes and longer pathnames.

A tar archive, in either format, consists of one or more blocks, which are used to

represent member files. Each block is 512 bytes long; you can use the –b option

with tar to indicate how many of these blocks are read or written (or both) at once.

Each member file consists of a header block, followed by zero or more blocks

containing the file contents. The end of the archive is indicated by two blocks filled

with binary zeros. Unused space in the header is left as binary zeros.

The header information in a block is stored in a printable ASCII form, so that tar

archives are easily ported to different environments. If the contents of the files on

the archive are all ASCII, the entire archive is ASCII.

Table 42 shows the UNIX format of the header block for a file:

 Table 42. Archive File: UNIX-Compatible Format

Field Width Field Name Meaning

100 name Name of file

8 mode File mode

8 uid Owner user ID

8 gid Owner group ID

12 size Length of file in bytes

12 mtime Modify time of file

8 chksum Checksum for header

1 link Indicator for links

100 linkname Name of linked file

v A directory is indicated by a trailing /(slash) in its name.

v The link field is: 1 for a linked file, 2 for a symbolic link, 0 otherwise.

tar determines that the USTAR format is being used by the presence of the

null-terminated string USTAR in the magic field. All fields before the magic field

correspond to those of the UNIX format, except that typeflag replaces the link field.

 Table 43. Archive File: USTAR Format

Field Width Field Name Meaning

100 name Name of file

8 mode File mode

8 uid Owner user ID

8 gid Owner group ID

12 size Length of file in bytes

12 mtime Modify time of file

8 chksum Checksum for header

1 typeflag Type of file

100 linkname Name of linked file

6 magic USTAR indicator

2 version USTAR version

32 uname Owner user name

32 gname Owner group name

8 devmajor Device major number

8 devminor Device minor number

155 prefix Prefix for filename

tar

Appendix H. File Formats 923

Description of the Header Files

In the headers:

v The name field contains the name of the archived file. On USTAR format archives,

the value of the prefix field, if non-null, is prefixed to the name field to allow

names longer than 100 characters.

v The magic, uname, and gname fields are null-terminated character strings

v The name, linkname, and prefix fields are null-terminated unless the full field is

used to store a name (that is, the last character is not null).

v All other fields are zero-filled octal numbers, in ASCII. Trailing nulls are present

for these numbers, except for the size, mtime, and version fields.

v prefix is null unless the filename exceeds 100 characters.

v The size field is zero if the header describes a link.

v The chksum field is a checksum of all the bytes in the header, assuming that the

chksum field itself is all blanks.

v For USTAR, the typeflag field is a compatible extension of the link field of the

older tar format. The following values are recognized:

Flag File Type

0 or null Regular file

1 Link to another file already archived

2 Symbolic link

3 Character special file

4 Block special file (not supported)

5 Directory

6 FIFO special file

7 Reserved

S z/OS extended USTAR special header

T z/OS extended USTAR special header summary (S and T are

z/OS extensions. See “z/OS extended USTAR support” on page

498 for more information.)

A–Z Available for custom usage

v In USTAR format, the uname and gname fields contain the name of the owner and

group of the file, respectively.

Compressed tar archives are equivalent to the corresponding archive being passed

to a 14-bit compress command.

Related Information

The cpio and tar commands

utmpx — Format of login accounting files

Description

Login accounting information is stored in two files:

v /etc/utmpx holds the current state of each item being accounted

v /etc/wtmp maintains the history of changes to each accounting item

tar

924 z/OS V1R9.0 UNIX System Services Command Reference

Both files are arrays of the following binary records described in the form of a C

data structure:

 #include <sys/types.h>

struct utmpx

 {

 char ut_user[9] ; /* user login name */

 char ut_id[34] ; /* unspecified initialization process ID */

 char ut_line[33] ; /* device name */

 pid_t ut_pid ; /* process id */

 short int ut_type ; /* type of entry */

 short int ut_version; /* LE runtime level when boot record is written */

 #ifndef _LP64

 struct timeval ut_tv; /* time entry was made */

 #else

 struct __timeval32 ut_tv32; /* time entry was made */

 #endif

 struct ut_exit_status {

 short ut_e_termination; /* Process termination status */

 short ut_e_exit ; /* Process exit status */

 }

 ut_exit ; /* The exit status of a process marked as DEAD_PROCESS.*/

 unsigned short ut_reserved1; /* Reserved for future use */

 char ut_host[1024] ; /* host name, if remote */

 #ifdef _LP64

 struct timeval ut_tv; /* time entry was made */

 #else

 struct __timeval64 ut_tv64; /* time entry was made */

 #endif

 } ;

#define EMPTY 0 /* Unused */

#define RUN_LVL 1 /* Set new run level */

#define BOOT_TIME 2 /* System boot */

#define OLD_TIME 3 /* Time of date change - delta */

#define NEW_TIME 4 /* Time of date change + delta */

#define INIT_PROCESS 5 /* Process started by &[.ETCDIR]/init */

#define LOGIN_PROCESS 6 /* Login process */

#define USER_PROCESS 7 /* User process */

#define DEAD_PROCESS 8 /* Contains exit status */

#define ACCOUNTING 9 /* Other accounting */

Files

/etc/utmpx

Reflects the current state of the accounting entries; for example, who is

logged in, when the date was last set, and so on.

/etc/wtmp

Contains a history of changes to any of the accounting entries.

Related Information

The who command

uucp — Format of UUCP working files

Description

UUCP uses three kinds of working files when handling UUCP requests, command,

data, and execute.

utmpx

Appendix H. File Formats 925

All three files are stored in a subdirectory for each specific site, named after the

site’s name. For example, because the UUCP spool directory is /usr/spool/uucp,

then the directory /usr/spool/uucp/south is used for all the command, data, and

execute files associated with the remote site south.

Command Files

Command files are created by the mail routing agents uucp and uux. On UUCP

sites, command files have names such as C.targetA28B9, where target is the

name of the destination site, A is the job grade (as set by the –g option to uucp,

and 28B9 is the sequence number or job identification number. (You can use the –j

option on uucp and uux, as well as uustat to find the job identification number.)

In a command file, each line records one file transfer request. The fields are defined

as follows:

type The type field can be one of the following:

R Receive a file from remote to local site.

S Send a file from local to remote site.

source The name of the source file.

destination

The name of the file after the transfer completes, whether to the remote site

(S request) or the local site (R request).

 Special characters such as the tilde (~) are still present, because they are

expanded on the destination site.

sender The login name of the user who issued the command. This is normally your

login name, though some programs (such as mail programs) use a different

login name for their requests.

options

The command options, which correspond to options of the uucp and uux

commands.

C Use the data file name as the source for the copy; this can only be

used with the S request.

c Use the source file name as the source for the copy.

d Create intermediate target directories as required. This is the

default.

m Send mail to the user when the transfer is complete.

n Send mail to the user specified by the notification name when the

transfer is complete.

datafile

The temporary file to be used if the source file was copied into the spool

directory; it is only used with the S request. If C is one of the options, the

data file is the name of the copy in the destination site’s data spool

directory. Otherwise, the placeholder name D.0 is used.

file mode

The UNIX-style permission mode of the source file. It is only used with the

S request. All files sent have mode 0666, plus whatever execute permissions

the original file had. (For an explanation of the modes, see chmod.)

uucp

926 z/OS V1R9.0 UNIX System Services Command Reference

notification

The login name of the person to be notified after the job request completes.

It is used only with the S request if n is one of the options.

Examples

1. The command

uucp –m /memos.001 /memos.002 south!~/

copies the files /memos.001 and /memos.002 root directory to the public UUCP

directory on south. Assuming your user name is eve, a command file containing

these lines is created in the UUCP spool directory /usr/spool/uucp/south:

S /memos.001 ~/memos.001 eve –mcd D.0 0777

S /memos.002 ~/memos.002 eve –mcd D.0 0777

2. The command

uucp south!~/index ~/

generates a command file on your site in the UUCP spool directory

/usr/spool/uucp/south containing this line:

R ~ /index ~/index eve –cd

Data Files

Data files contain data to be transferred to the remote site. They are created by

uucp if the –C option is used, and by uux and mail programs.

On UUCP sites, data files have names like D.source9B73001, where source is the

name of the site that the data file originated from (the local site for an S request, or

the remote site for an R request), 98B3 is the sequence number, and 001 is the

subsequence number, used when a request generates more than one data file.

Data files created by uucp contain files to be copied. Data files created by uux

which contain commands for the remote site become execute files at their

destination.

Mail sites typically create two data files, one containing the message and the other

containing the command to run the mail routing agent on the remote site.

Examples

UUCP data files contain data to be copied. The contents of uux data files and

commands that generate remote commands are execute files intended for other

sites. For example, a mail message to north generates two data files in the UUCP

spool directory /usr/spool/uucp/north

D.north000A001

X.northX000A002

These working files are created:

D.north000A001 Text of mail message

X.northX000A002 Execute file

The execute file contains the uux request for the mail routing program to be run on

north.

uucp

Appendix H. File Formats 927

Execute Files

Execute files are data files containing commands that are created on other sites

and copied to your site. The files are treated as execute files when they arrive at

your site, where the commands are run by uuxqt.

On UUCP sites, execute files are named as:

X.remotX28A3003

where remot is the first five characters of the destination site’s name, X is the job

grade (execute files always have the grade X), and 28A3 is the sequence number.

Each execute file contains one command, and the necessary information to run the

command. The type of information on each line is identified by the first character in

the line. Not all lines are used in all files, and not all UUCP implementations support

all of these lines. The first line in an execute file must be a U line, and the last line

must be a C line.

Indicates a comment. Comments and unrecognized commands are ignored.

C command

Requests that command be run. command is a string that includes the

program and arguments. This line must be present and must be the last line

in the execute file.

E Processes the command with execve(). If the E line is present, uuxqt runs

a fork()/ecec() sequence, unless the command contains a shell

metacharacter. In that case, uuxqt invokes a shell to run the command.

e Processes the command by the POSIX shell. It is intended to handle

commands that require special processing. If the e line is present, uuxqt

invokes the defined shell to run the command.

F filename [xqtname]

Names filename, a file required for the command to be run. This is usually

a file that is transferred from the site that uux was executed from, but it can

also be a file from the local site or some other site. If filename is not from

the local site, then it is usually a file in the spool directory. Multiple F lines

are allowed. Any file other than the standard input file requires the xqtname

argument and is copied to the execution directory as xqtname. If the

standard input file is not from the local site, it appears in both an F

command and an I command.

I stdin Names the file that supplies standard input to the command. If the standard

input file is not from the site running the command, the file is also in an F

command. If there is no standard input file, behavior depends on the site

implementation. uuxqt rejects the command; some UNIX implementations

use /dev/null as the standard input. Only one I line can be present in an

execute file; the corresponding F line must precede the file.

N No mail message should be sent, even if the command failed.

n Requests a mail message be sent if the command succeeded. Normally a

message is sent only if the command failed.

O stdout [site]

Names the standard output file. The optional second argument names the

site to which the file should be sent. If there is no second argument, the file

should be created on the executing site. Only one O line can be present in

an execute file; the corresponding F line must precede the O line.

uucp

928 z/OS V1R9.0 UNIX System Services Command Reference

U user site

Names the user who requested the command and the site that the request

came from. This line must be present and must be the first line in the

execute file.

Z Specifies that a mail message should be sent if the command failed. This is

the default for uuxqt.

 Not all these commands may be implemented at your site. For a list of the

commands not supported by uuxqt, see uuxqt.

 Although most execute files are generated on other sites, complex uux

commands that retrieve files from multiple sites can generate execute

commands in the local spool directory, where local is the name of your site.

Examples

The following is an example of an execute file to run rmail on the site south. The

data file containing the mail message is D.south49Z3. This is an execute file that

might be created by the mailx command:

U eve north

F D.south49Z3

I D.south49Z3

C rmail bob

This command originated with user eve on north. It requests that rmail be run with

the argument bob on the target site. The file D.south49Z3 is required to run the

command and is used as standard input for the command.

Portability

X/Open Portability Guide

Related Information

uucico, uucp, uux, uuxqt

uucp

Appendix H. File Formats 929

uucp

930 z/OS V1R9.0 UNIX System Services Command Reference

Appendix I. Setting the Local Time Zone with the TZ

Environment Variable

This information discusses how to use the TZ environment variable when setting

the local time zone.

TZ Environment Variable

Format

TZ= standardHH[:MM[:SS]] [daylight[HH[:MM[:SS:]]] [,startdate[/starttime],enddate[/
endtime]]]

Description

All commands assume that times stored in the file system and returned by the

operating system are stored using Universal Time Coordinated (UTC), hereafter

referred to as the universal reference time. The mapping from the universal

reference time to local time is specified by the TZ (time zone) environment variable.

The value of the TZ environment variable has the following five fields (two required

and three optional):

standard

An alphabetic abbreviation for the local standard time zone (for example,

(GMT, EST, MSEZ).

HH[:MM[:SS]]

The time offset westwards from the universal reference time. A leading

minus sign (−) means that the local time zone is east of the universal

reference time. An offset of this form must follow standard and can also

optionally follow daylight. An optional colon (:) separates hours from

optional minutes and seconds.

 If daylight is specified without a daylight offset, daylight savings time is

assumed to be one hour ahead of the standard time.

[daylight]

The abbreviation for your local daylight savings time zone. If the daylight

field is missing, Daylight Saving Time conversion is disabled. The number of

hours, minutes, and seconds your local Daylight Savings Time is offset from

UTC when Daylight Savings Time is in effect. If the Daylight Savings Time

abbreviation is specified, and the offset omitted, the offset of one hour is

assumed.

[,startdate[/starttime],enddate[/endtime]]

A rule that identifies the start and end of Daylight Savings Time, specifying

when Daylight Savings Time should be in effect. Both the startdate and

enddate must be present, and must either take the form Jn, n, or Mm.n.d..

v Jn is the Julian day n (1 <= n <=365) and does not account for leap

days.

v n is the zero-based Julian day (0 <= n <= 365). Leap days are counted;

therefore, you can refer to February 29th.

v Mm.w.d defines the day (0 <= d <= 6) of week w (1 <= w <= 5) of month

m (1 <= 12) of the year. Week 5 has the last day (d) in month m, which

© Copyright IBM Corp. 1996, 2007 931

may occur in either the fourth or fifth week). Week 1 is the first week in

which the dth day occurs. Day zero is Sunday.

Neither starttime nor endtime are required. If they are omitted, their values

default to 02:00:00. If this Daylight Savings Time rule is omitted altogether,

the values in the rule default to the standard American Daylight Savings

Time rules starting at 02:00:00 the first Sunday in April and ending at

02:00:00 the last Sunday in October.

 When the TZ variable is not set, time conversions behave as if TZ were set

to TZ=GMT0.

Portability

This interpretation of the TZ environment variable is a superset of that supported by

UNIX System V.

Related Information

The date and touch commands.

TZ Environment Variable

932 z/OS V1R9.0 UNIX System Services Command Reference

Appendix J. Environment Variables

This information contains a partial list of environment variables.

v For the c89/cc/c++ environment variables, refer to the c89/cc/c++ command for

descriptions of the environment variables used.

v For the c89/cc/c++ environment variables, refer to the c89 — Compiler

invocation using host environment variables command for description of the

environment variables used.

v For the xlc environment variables, refer to the xlc — Compiler invocation using a

customizable configuration file command for description of the environment

variables used.

v For the mailx environment variables, refer to the mailx — Send or receive

electronic mail command for descriptions of the environment variables used.

v For the tcsh environment variables, refer to the tcsh — Invoke a C

shellcommand for descriptions of the environment variables used.

v For the tso environment variables, refer to the tso — Run a TSO/E command

from the shell command for descriptions of the environment variables used.

v For the vi environment variables, refer to the vi — Use the display-oriented

interactive text editor command for descriptions of the environment variables

used.

v For a list of built-in environment variables, refer to Table 28. (Built-in environment

variables are predefined variables that are set up with default values when you

start the shell.)

v A list of commonly used environment variables has been put in z/OS UNIX

System Services Planning.

© Copyright IBM Corp. 1996, 2007 933

Environment Variables

934 z/OS V1R9.0 UNIX System Services Command Reference

Appendix K. Specifying MVS data set names in the shell

environment

Several utilities allow the user to specify an MVS data set name in place of an HFS

filename. See Utilities supporting MVS data set names for the current list. This topic

describes the syntax for specifying an MVS data set name. Because MVS data set

names generally contain single quotes and parenthesis which can be misinterpreted

by the shell, care needs to be taken to correctly escape these characters.

What follows are general rules for specifying MVS data set names. Consult the

description of each utility for more specific instructions or exceptions.

v MVS data sets are distinguished from HFS files by preceding them with two

slashes (//). For example, to specify the MVS data set name

PROGRAM.OUTPUT, enter:

//PROGRAM.OUTPUT

If the double slashes were not used, the name would be interpreted as the HFS

pathname PROGRAM.OUTPUT in the current working directory.

v Unless a utility specifically provides an option to disable uppercasing, the default

approach is to uppercase all MVS data set names before processing. For

example, the following are all equivalent methods for specifying the MVS data set

PROGRAM.OUTPUT:

//program.output

//ProGram.OutPut

//PROGRAM.OUTPUT

v The single quote (’) and parenthesis (()) metacharacters are typically used to

specify fully-qualified MVS names and PDS/PDSEs, respectively. These

characters, however, are metacharacters that will be incorrectly interpreted by the

shell. To prevent this, they must be escaped. The simplest approach is to place

the entire name within double-quotes (″). Alternatively, these characters can be

escaped by preceding each with a backslash (\). Some examples are:

To specify the fully qualified MVS data set ’SMITH.PROGRAM.OUTPUT’:

"//’smith.program.output’"

 //\’smith.program.output\’

To specify the fully qualified partitioned data set

’SMITH.PROGRAM.SOURCE(FILE1)’:

"//’smith.program.source(file1)’"

 //\’smith.program.source\(file1\)\’

To specify the non-qualified partitioned data set PROGRAM.SOURCE(FILE1):

"//program.source(file1)"

 //smith.program.source\(file1\)

Utilities supporting MVS data set names

The following utilities currently support the use of MVS filenames. Consult the

description for each utility for limitations and exceptions:

v cp

v mv

v pax

v tar

v c89

© Copyright IBM Corp. 1996, 2007 935

MVS data sets

936 z/OS V1R9.0 UNIX System Services Command Reference

Appendix L. Automatic Codeset Conversion: Default Status

for Specific Commands

Most commands that perform file I/O allow automatic codeset conversion of files

tagged as text with a codeset. For example, a file with ISO8859-1 (ASCII) content

that is tagged with TXT, ISO8859-1, may be converted to IBM-1047 (EBCDIC) for

processing by UNIX shells and utilities. Automatic conversion is controlled by

configuration parameters and environment variables. For more information about

automatic conversion, see z/OS UNIX System Services Planning.

Table 44 lists commands which allows automatic codeset conversion by default, but

use the –B option to disable it:

 Table 44. Commands that Allow Automatic Conversion by Default

cmp

file

head

tail

strings

pack

Table 45 lists commands that expect binary data, so they prevent automatic

conversion:

 Table 45. Commands that Disallow Automatic Conversion by Default

Command Special Behavior

cksum Will allow automatic conversion with –T.

compress v Allow conversion on the file being read.

v Disable conversion on the compressed

file and allow the automatic tagging of

the file as binary.

Note: Because file tag information can’t be

preserved in the compressed file, you can

lose data if translation does not occur on

input. If you really do want translation to

occur, change the file tag, or disable

automatic conversion with the

_BPXK_AUTOCVT environment variable.

dd v Prevents automatic conversion.

v If you specify conv=ascii, conv=ebcdic,

or conv=ibm, and the input is tagged as

text, dd will issue a warning message if

the file tag does not match the expected

output.

gencat Prevents automatic conversion.

mkcatdefs Prevents automatic conversion.

od Will allow automatic conversion with –T.

© Copyright IBM Corp. 1996, 2007 937

Table 45. Commands that Disallow Automatic Conversion by Default (continued)

uncompress and zcat v Disable conversion on the compressed

file being read.

v Allow conversion on the uncompressed

file being written.

Note: Because the compressed file should

always be binary, IBM recommends that

you do not provide the option to allow

translation of a compressed file on input.

However, if you need to do this, you must

perform it manually using iconv.

unpack and pcat Prevents automatic conversion

uudecode Prevents automatic conversion

uuencode Prevents automatic conversion

938 z/OS V1R9.0 UNIX System Services Command Reference

Appendix M. Additional dbx Documentation

The following topics are dbx help texts that are not particular to a specific

command. They can be viewed within dbx via the help command, or as man pages,

using the traditional man syntax, with ″dbx″ and the topic title in the place of a

command name. For example, man dbxexecution would display the execution page.

Within dbx, help execution would display the same page.

execution: Controlling Execution

Usage Note

The dbx utility allows you to set breakpoints (stopping places) in the target program.

After entering dbx, you can specify which lines or addresses are to be breakpoints

and then run the program with dbx. When the program reaches a breakpoint, it

halts and reports that it has reached a breakpoint. You can then use dbx

subcommands to examine the state of your program.

Related Information

For execution controlling commands, see: run, rerun, stop, status, catch, ignore,

cont, step, next, and return commands.

files: Accessing Source Files

Usage Note

Accessing source files:

/<regular-expression>[/]

?<regular-expression>[?]

Search forwards or backwards, respectively, in the current source file for the given

regular-expression. Both forms of search wrap around. The previous regular

expression is used if no regular expression is given to the current command.

Related Information

See also: edit, file, func, list, and use commands.

scope: Scope

Usage Note

When displaying variables and expressions, dbx resolves names first using the

static scope of the current function. The dynamic scope is used if the name is not

defined in the first scope. If static and dynamic searches do not yield a result, an

arbitrary symbol is chosen and the system prints the message [using

<module.variable>]. The <module.variable> is the name of an identifier qualified

with a block name. You can override the name resolution procedure by qualifying an

identifier with a block name. Source files are treated as modules named by the file

name without the language suffix (such as, the .c suffix on a C language program).

© Copyright IBM Corp. 1996, 2007 939

threads: Thread Display and Control

Usage Note

If execution is stopped for any one thread, the entire process and all other threads

in the process also stop. The dbx events such as breakpoints are not specific to

any one thread. If one thread hits a breakpoint, all threads and the process stop. An

automatic way to ensure that other threads do not hit breakpoints set by next(i) or

step(i) is to set the variable $hold_next. dbx will then hold all threads except the

current thread during those operations, then unhold all threads after the operation is

complete. Holding all threads, or holding a thread that may release a mutex will

cause the user program to deadlock. Conditional breakpoints can be used to

specify breakpoints for any one particular thread by checking the execution state of

the thread.

Example

’stop at 42 if $t2==$current’ will set a breakpoint at line 42 only for thread two.

Related Information

For thread display and control, see the condition, mutex, readwritelock, and

thread commands. For manipulation of thread-oriented dbx variables ($c<n>,

$t<n>, $l<n>, $current, $hold_next, $cv_events, $mv_events, $tv_events, and

$lv_events), see the assign, print, set, and whatis commands.

usage: Basic Command Usage

Usage Note

Basic dbx command usage:

run begin or restart execution of the program

print <exp>

print the value of the expression

where print currently active functions (stack trace)

stop at <line>

set a breakpoint at the line

stop in <proc>

set a breakpoint when a particular function is called

cont continue execution

step single step one line

next step to next line (skip over calls)

trace <line#>

trace execution of the line

trace <proc>

trace calls to the procedure

trace <var>

trace changes to the variable

trace <exp> at <line#>

print <exp> when <line> is reached

dbx: threads

940 z/OS V1R9.0 UNIX System Services Command Reference

status print trace/stop’s in effect

delete <number>

remove trace or stop of given number

whatis <name>

print the declaration of the name

list <line>, <line>

list source lines

registers

display register set

quit exit dbx

variables: ″Set″ Variables

Usage Note

The following ″set″ variables have special meanings:

$asciichars, $asciistrings

When set any dbx operation that displays the value of a character or string

will interpret the binary representation of the character or string as ASCII.

$c<n>, $m<n>, $t<n>, $l<n>

Condition, mutex, thread and readwrite lock type variables.

$catchbp

When set, allows for the catching of breakpoints during a next command.

$charset=″destCodePage,srcCodePage″

When set, convert character strings prior to displaying them. Strings will be

converted from the codepage srcCodePage to destCodePage. Note that

destCodePage must be IBM-1047. The default setting is not to convert

character strings.

$current

Defined as a constant with the value of the current thread.

$cv_events, $mv_events, $tv_events, $lv_events

When set, will notify the user when a condition variable object, mutex

object, thread object or readwrite lock type event is processed.

$dll_loads

Causes dbx to recognize that a DLL has been loaded and read the

symbolics for the DLL.

$dll_loadstop

Causes dbx stop in the function that caused the DLL to be loaded, or in the

case of a DLL variable reference, the next source line in the current

function.

$expandunions

Causes dbx to display values of each part of variant records or unions.

$fl_precison

Sets the amount of precision, in bytes, to use when displaying a floating

point value. Possible values are 4, 8, and 16.

$frame

Setting this variable to an address alters dbx’s idea of the current stack

frame.

dbx: usage

Appendix M. Additional dbx Documentation 941

$hexchars $hexints $hexstrings

When set, dbx prints characters, integers or character pointers in

hexadecimal.

$hexin $octin

When set, dbx interprets input in hexadecimal or octal. The $hexin and

$octin dbx set variables are only supported in dbx command-line mode and

will not affect the interpretation of GUI input. If the user of the GUI

debugger desires input to be interpreted as octal or hexidecimal, the input

must be prefixed with ″0″ or ″0x″ respectively.

$historywindow

Specifies the number of commands to display and retain in the history list.

$hold_next

When set, dbx automatically holds all threads except the current thread

during next, nexti, step or stepi command execution. When not set, all

threads resume execution and may hit the breakpoint set by the next, nexti,

step, or step command execution.

$listwindow

Specifies the number of lines to list and listi commands.

$maxstring

When set, specifies the maximum number of characters to be displayed

when printing a string. String printing will halt when $maxstring characters

are printed. Set to zero to completely display strings. The default value is

zero.

$noflbregs

When set, DO NOT display IEEE floating point registers with the registers

command.

$noflregs

When set, DO NOT display floating point registers with the registers

command.

$octints

When set, dbx prints integers in octal.

$r_precision

Sets the amount of precision, in bytes, to use when displaying an integer

value. Possible values are 4 and 8.

$repeat

When set, dbx executes the previous command if none is entered.

$showbases

When set dbx will show base class data when a derived class is printed.

$sigblock

When set, all signals intended for the debugee program will be blocked.

$sticky_debug

When set dbx will recognize sticky bit programs and DLLs in the loadmap.

$unsafeassign $unsafegoto $unsafebounds

Turn off type checking for assignments, goto and array bounds checking.

dbx: variables

942 z/OS V1R9.0 UNIX System Services Command Reference

|
|
|
|
|

Appendix N. UNIX shell commands changed for UNIX03

UNIX is UNIX95 conformant, with z/OS extensions to commands using formats

(such as uppercase option letters) to avoid conflicts with subsequent UNIX

standards. The specification of new options and changed command behavior by

SUSv3 (also known as UNIX03) has resulted in conflicts with IBM’s extensions.

The _UNIX03 shell variable was introduced in z/OS 1.8 as a means of controlling

whether certain shell commands behave according to Single UNIX Specifications,

version 3 (SUSv3). _UNIX03=YES is only needed when an option or behavior

conflicts with an existing z/OS implementation, and the SUSv3 behavior is desired.

Additional command changes introduced in z/OS 1.9 have behavior conflicts

controlled by the _UNIX03 variable. If _UNIX03 is not set (or set to ″NO″), the z/OS

1.9 commands will maintain compatibility with prior releases.

Therefore, system programmers should make sure that _UNIX03 is not set in

system-wide profiles (or setup scripts), including:

 /etc/profile

 /etc/csh.cshrc

 /etc/csh.login

 /etc/rc

Users who want the SUSv3 conformant behavior can set _UNIX03=YES in their

own profile files, or in specific scripts or command invocations where it is needed.

This table lists the commands changed for UNIX03. (It is not a complete list of

changes to shell commands.) For more detail, see the specific command

description.

 Table 46. UNIX Shell Commands and _UNIX03

Command

z/OS

release

introduced Affected option or behavior _UNIX03 =YES _UNIX03 is unset or not YES

awk 1.9 Stricter rules on a

command-line argument

being treated as a variable

assignment

Handling of break or

continue statements outside

of a loop

No effect No effect

bc 1.9 /usr/lib/lib.b

improved cos() and sin()

performance

No effect No effect

cp 1.8 Options added or changed:

-H | L | P

-W seqparms

-P specifies symbolic

link handling

-P params specifies

sequential data set

parameters

© Copyright IBM Corp. 1996, 2007 943

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|

|

|

|

|

|
|

|
|
|

||

|

|
|
||||

|||
|
|
|
|
|
|
|

||

|||
|
|

||

|||
|
|

|
|
|
|
|

Table 46. UNIX Shell Commands and _UNIX03 (continued)

Command

z/OS

release

introduced Affected option or behavior _UNIX03 =YES _UNIX03 is unset or not YES

ed 1.9 Minor changes in subcommands

c, i, g, G, v, V,

l (lowercase L), s

c and i subcommands:

accept address 0 as 1

g, G, v, V subcommands:

unmark changed lines

l (lowercase L) subcommand

writes $ as \$

s subcommand: % without

prior s subcommand

is an error

c and i subcommands:

reject address 0

g, G, v, V subcommands:

leave lines marked

l (lowercase L), subcommand

does not escape $ characters

s subcommand: % without

prior s subcommand

is accepted

file 1.9 Options added or changed:

-d -M -i

New magic file format

-h handling of link

to a non-existent file

-m magic tested before

/etc/magic

magic file (byte, short,

long) format are signed

-h is the default

Output separator char

is a space

-m magic tested

instead of /etc/magic

magic file (byte, short,

long) format are unsigned

-h is not the default

(The default is to follow

symbolic links)

Output separator char is a

tab

mailx 1.9 Default command-mode

subcommand

Followup

command-mode subcommand

Honors TZ environment

variable

Use tilde (~) as the escape

character when escape

variable is unset

Default subcommand is

next

Followup overrides

the record variable

Default subcommand is

print

Followup does not

override the record variable

od 1.9 Output of signed single-byte

values

No effect No effect

pax 1.8 Options added or changed:

-H

-x pax (new format)

-o keyword=value

 (new keywords)

pax -r restore of access

permission bits, when

neither -p p or -p e

is specified

-o multiple

keyword/value pairs must

be separated by commas

 (with whitespace allowed

before a keyword)

Files are restored with

 permissions 0666

modified by umask.

-o multiple keyword/value

pairs may be separated

by commas or spaces

Files are restored with

saved permissions

modified by umask.

944 z/OS V1R9.0 UNIX System Services Command Reference

|

|

|
|
||||

|||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|||
|
||

|||
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

Table 46. UNIX Shell Commands and _UNIX03 (continued)

Command

z/OS

release

introduced Affected option or behavior _UNIX03 =YES _UNIX03 is unset or not YES

sed 1.9 Subcommand preceded by !

s subcommand with w

specified

y subcommand with \n

in a specified set of

characters

One or more !

characters are allowed

w and file must be

separated by blank(s)

\n is treated as a

newline

Only one ! character is

allowed

wfile is allowed or may be

separated by blank(s)

\n is treated as a character

‘n’

tr 1.9 Option added:

-C

-c complements the

set of binary values in

binary order

-c complements the set of

characters in LC_COLLATE

order (like the new -C

behavior)

uudecode 1.9 Option added:

-o outfile

/dev/stdout

No effect No effect

uuencode 1.9 Option added

-m

/dev/stdout

No effect No effect

Appendix N. UNIX shell commands changed for UNIX03 945

|

|

|
|
||||

|||
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|||
|
|
|
|

|
|
|
|

|||
|
|
|

||

|||
|
|
|

||

|
|

946 z/OS V1R9.0 UNIX System Services Command Reference

Appendix O. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1996, 2007 947

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

948 z/OS V1R9.0 UNIX System Services Command Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the products and/or the programs described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2007 949

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming Interface Information

This publication documents intended Programming Interfaces that allow the

customer to write programs that use z/OS UNIX System Services (z/OS UNIX).

Standards

In the following statement, the phrase “this text” refers to portions of the system

documentation.

Portions of this text are reprinted and reproduced in electronic form in the z/OS,

from IEEE Std 1003.1, 2004 Edition, Standard for Information Technology --

Portable Operating System Interface (POSIX), The Open Group Base Specifications

Issue 6, copyright 2001-2004 by the Institute of Electrical and Electronics

Engineers, Inc., and The Open Group. In the event of any discrepancy between

these versions and the original IEEE and The Open Group Standard, the original

IEEE and The Open Group Standard is the referee document. The original

Standard can be obtained online at http://www.opengroup.org/unix/online.html.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 AIX RACF

BookManager Redbooks

C/MVS RISC System/6000

C++/MVS SOM

C/370 SOMobjects

ESCON SP

IBMLink SP2

Infoprint S/390

Language Environment Sysplex Timer

Library Reader System/370

950 z/OS V1R9.0 UNIX System Services Command Reference

http://www.opengroup.org/unix/online.html

LookAt TalkLink

MVS/ESA VTAM

Open Class z/OS

OS/2 zSeries

OS/390 z/VM

Parallel Sysplex

IBM, the IBM logo, ibm.com and DB2 are registered trademarks of International

Business Machines Corporation in the United States, other countries, or both.

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Acknowledgments

InterOpen Shell and Utilities is a source code product providing POSIX.2 (Shell and

Utilities) functions to the z/OS UNIX services offered with MVS. InterOpen/POSIX

Shell and Utilities is developed and licensed by Mortice Kern Systems (MKS) Inc. of

Waterloo, Ontario, Canada.

Notices 951

952 z/OS V1R9.0 UNIX System Services Command Reference

Index

Special characters
_ environment variable

description of 570

_BPX_BATCH_SPAWN environment variable
description of 892

_BPX_BATCH_UMASK environment variable
description of 892

_BPX_SPAWN_SCRIPT environment variable
description of 892

magic number
#! 892

_BPX_TERMPATH environment variable
used by chcp 119, 120

_TAG_REDIR_ERR = BIN tcsh environment variable
description of 670

_TAG_REDIR_ERR = TXT tcsh environment variable
description of 670

_TAG_REDIR_ERR=BIN environment variable
description of 574

_TAG_REDIR_ERR=TXT environment variable
description of 574

_TAG_REDIR_IN=BIN environment variable
description of 574

_TAG_REDIR_IN=BIN tcsh environment variable
description of 670

_TAG_REDIR_IN=TXT environment variable
description of 573

_TAG_REDIR_IN=TXT tcsh environment variable
description of 670

_TAG_REDIR_OUT = TXT environment variable
description of 574

_TAG_REDIR_OUT=BIN environment variable
description of 574

_TAG_REDIR_OUT=BIN tcsh environment variable
description of 670

_TAG_REDIR_OUT=TXT tcsh environment variable
description of 670

-
explanation of 1

: (colon) shell command 140

? subcommand for dbx 188

/ subcommand for dbx 189

/bin directory
setting up special files in the 828

/bin/mail file
used by calendar 107

/dev/mt/0m file
used by tar 620

/dev/tty 510

/etc/auto.master file
used by automount 27

/etc/csh.cshrc
used by tcsh login 627

/etc/csh.login
used by tcsh login 627

/etc/inetd.conf file
used by the inetd daemon 313

/etc/inetd.pid file
used by the inetd daemon 315

/etc/magic file
explanation of 912

used by file 278

/etc/mailx.rc file
configuration settings 170

used by mailx 373, 384, 390

/etc/profile file 574

used by the login shell 549

/etc/rc file
used by automount 26

/etc/recover file
used by exrecover 268

/etc/recover/$LOGNAME/VIn* file
used by exrecover 268

/etc/recover/$LOGNAME/VIt* file
used by exrecover 269

/etc/startup.mk file
used by make 410

/etc/suid_us.profile
used by sh 574

/etc/utmpx file
used by who 792

/etc/yylex file
used by lex 345

/etc/yylex.c file
used by lex 343

/etc/yyparse.c file
used by yacc 821

/tmp file
used by ar 16

used by fc, history, r 274

/tmp/e* file
used by ed 253

/tmp/sh* file
description of 574

/tmp/stm* file
used by sort 591

/tmp/VIl* file
used by exrecover 268

/tmp/VIn* file
used by exrecover 268

/tmp/VIt* file
used by exrecover 268

/usr/lib file
used by spell 595

/usr/lib/config file
used by uucc 735

/usr/lib/cron/at.allow file
used by cron 170

/usr/lib/cron/at.deny file
used by cron 170

/usr/lib/cron/cron.allow
used by cron 170

/usr/lib/cron/cron.deny file
used by cron 170

© Copyright IBM Corp. 1996, 2007 953

/usr/lib/cron/queuedefs file
used by cron 170

/usr/lib/hash file
used by spell 594, 595

/usr/lib/hashb file
used by spell 594, 595

/usr/lib/lib.b file
used by bc 64

/usr/lib/libl.a file
used by lex 345

/usr/lib/liblxp.a file
used by lex 345

/usr/lib/lwords file
used by spell 594, 595

/usr/lib/uucp file
used by uucc 735

/usr/lib/uucp/config
used by uucc 734

used by uuto 752

/usr/lib/uucp/config file
used by uucico 736

used by uucp 735, 740

used by uulog 745

used by uuname 746

used by uupick 748

used by uustat 751

used by uux 755

used by uuxqt 757

/usr/lib/uucp/devices file
used by uucp 735

/usr/lib/uucp/dialcodes file
used by uucp 735

/usr/lib/uucp/dialers file
used by uucp 735

/usr/lib/uucp/permissions file
used by uucp 735

/usr/lib/uucp/systems file
used by uucp 735

/usr/man/%L/man¬0–9|/*.book file
used by man 422

/usr/man/%L/whatis file
used by man 422

/usr/spool/cron file
used by cron 170

/usr/spool/cron/atjobs file
used by cron 170

/usr/spool/cron/crontabs file
used by cron 170

/usr/spool/cron/log file
used by cron 170

/usr/spool/cron/pid
used by cron 170

/usr/spool/locks
used by uucico 737

/usr/spool/uucp
used by uustat 751

/usr/spool/uucp file
used by uulog 745

/usr/spool/uucp spool directory 926

/usr/spool/uucp/.Sequence file
used by uucp 740

/usr/spool/uucp/.Sequence file (continued)
used by uux 756

used by uuxqt 757

/usr/spool/uucp/.Status file
used by uustat 751

/usr/spool/uucp/.STATUS file
used by uucico 737

/usr/spool/uucp/.Xqtdir
used by uuxqt 757

/usr/spool/uucp/.Xqtdir directory 754

/usr/spool/uucp/LOGFILE
used by uulog 745

/usr/spool/uucp/LOGFILE file
used by uucico 736

used by uucp 740

used by uux 755

/usr/spool/uucp/site
used by uuxqt 757

/usr/spool/uucp/site file
used by uux 755

/usr/spool/uucp/south directory 926

/usr/spool/uucppublic file
used by uucp 740

used by uuto 752

/usr/spool/uucpublic file
used by uupick 748

/usr/spool/uucpublic/receive file
used by uupick 748

/var/man/%L/entry.¬0–9|/*.bookname file
used by man 422

. (dot) script
returning from 529

. (dot) shell command 242

... (ellipsis)
explanation of 2

.dbxinit file
used by dbx 183

.dbxsetup file
used by dbx 183

.exrc file
used by vi 784

.profile file 574

$HOME / .sh_history file
used by fc, history, r 273

$HOME/.exrc file
used by vi 784

$HOME/mbox file
used by mail 372

used by mailx 390

$MAILDIR file
used by mailx 390

$MAILRC file
used by mailx 390

$TMPDIR/pg* file
used by pg 508

[(left bracket) shell command 334

[]
explanation of 1

–q options syntax 807

|& shell operator 552

& shell operator 552

954 z/OS V1R9.0 UNIX System Services Command Reference

#!
magic number 898

Numerics
3270 alarm

controlling the 854, 859, 863

3270 passthrough mode
used to invoke the TSO/E OBROWSE

command 459

3270 terminals
specifying the use of DBCS 856

A
a.out file

used by dbx 186

abnormal condition
trapping 707

abnormal interrupt
trapping 707

absolute movement command (for vi) 760

absolute movement commands
list of 761

access control list (ACL)
updating 544

access permission
changing 124

access time
resetting 166

setting, for destination files 154

accessibility 947

ACL primary operators
test shell command 694

action
explanation of 42

address
removing breakpoints from 192

AF_UENT stack
configuring the 147

ALARM function key for OMVS command 859

ALARM option of OMVS command 854

ALARM subcommand of OMVS command 863

alias
creating 11

tracked aliases 306

detecting 722

removing
definitions 722

those specified by the name argument 226

alias shell command 11, 790

alias subcommand for dbx command 189

allnet environment variable
used by mailx 387, 391

alloc tcsh shell command 674

allocate
MVS standard files as z/OS UNIX files

using the BPXBATCH program 892

standard files
using the BPXBATCH command 826

using the BPXBATCH program 892

allocate (continued)
stdenv as z/OS UNIX files

using the BPXBATCH command 826

using the BPXBATCH program 892

stderr as z/OS UNIX files
using the BPXBATCH command 826

using the BPXBATCH program 892

stdin as z/OS UNIX files
using the BPXBATCH command 826

using the BPXBATCH program 892

stdout as z/OS UNIX files
using the BPXBATCH command 826

using the BPXBATCH program 892

z/OS standard files as z/OS UNIX files
using the BPXBATCH command 826

ALLOCATE TSO/E command 839

allocating data sets 28

allocating file systems 28

allow
messages 423

American Daylight Savings time
used in the TZ environment variable 932

ampm shell variable
description of 656

append
user’s commands to a file

of given identifiers 212

application program
displaying

list of mutex objects 223

appointment
displaying 106

ar shell command 14

arbitrary-precision arithmetic calculation language
using the 50

archive
copying files from directory 165

creating 165

extracting
components from the 475

contents 165

tapes 619

archive file
cpio format 911

manipulating 619

reading 474, 619

tar format 922

writing 474, 619

archive library
creating 14

displaying symbol table 455

maintaining 14

ARGC (built-in variable for awk) 37

args subcommand for the dbx command 190

argument
changing dates for 700

concatenating in the current shell environment 258

evaluating
as an expression 265

in the current shell environment 258

obtaining from a list of parameters 301

Index 955

argument (continued)
printing 511

removing 531

returning from the shell 511

writing to standard output 246

argv shell variable 656

description of 656

arithmetic calculation
calculating to arbitrary precision 50

arithmetic expression
evaluating 342

arrange
items on command line 3

options 1

array element (awk variable) 33

as shell command
options 18

asa shell command 21

ASA/FORTRAN carriage control
interpreting 21

ASCII code pages for the terminal
setting, resetting, or querying 119

ASCII to EBCDIC conversion 230

ask environment variable
used by mailx 387

askbcc environment variable
used by mailx 387

asksub environment variable
used by mailx 387

assemble
z/OS C and z/OS C++ source files 70

assign
aliases for dbx subcommands 189

attributes to variables 716

values to variables 190, 716

assign subcommand for dbx command 190

at shell command 22

submitting jobs to cron 172

attribute of files
listing 362

audit attribute
changing 117

audit flag
changing 117

autoconversion
ls 362

od 459

autocorrect shell variable
description of 656

autoexpand shell variable
description of 656

autolist shell variable
description of 656

autoloaded functions
description of 557

autologout shell variable
description of 656

automatic conversion 618, 650, 694

ls 362

od 459

pax 474

automatic conversion (continued)
tcsh shell 670

automatic scrolling
controlling 859, 863, 864

turning off 864

Automatic, Periodic, and Timed Events 651

automount
allocating data sets 28

allocating file systems 28

automount facility
configuring the 26

automount shell command 26

AUTOMOVE 835

autoprint environment variable
used by mailx 374, 381, 387

AUTOSCROLL function key for OMVS command 859

AUTOSCROLL function of OMVS command
setting the 854

AUTOSCROLL option of OMVS command 854, 859

AUTOSCROLL subcommand of OMVS command 863

awk shell command 32

action 42

ARGC built-in variable 37

arrays 34

BEGIN 41

built-in arithmetic functions 39

built-in string functions 39

built-in variables
FILENAME 38

FNR 38

NF 38

NR 38

comments 33

conditions 42

END 41

ENVIRON environment 35

examples 43

FILENAME file being read 38

FNR number of records read from file 38

FS field separator string 37

functions 41

getline 38

NF field in current record 38

NR number of records read 38

OFMT output number format 43

OFS output field separator 43

operators 35

ORS output record separator 43

patterns 41

processing programs 32

RLENGTH built-in variable 39

RS record separator character 37

RSTART built-in variable 39

statements 42

SUBSEP 34

SYMTAB symbol table 35

system functions 41

variables 33

956 z/OS V1R9.0 UNIX System Services Command Reference

B
background job

scheduling 171

backquoting 563

BACKSCR function key for OMVS command 859

BACKSCR subcommand of OMVS command 863

backslash shell variable
description of 656

backup files 619

backward retrieve function of OMVS command 861

bang environment variable
used by mailx 384, 387

basename shell command 48

basic regular expression
explanation of 885

list of commands using 888

meaning of metacharacters used 885

batch environment
running shell commands, shell scripts, and

C/MVS 826

running shell scripts and z/OS C applications under

MVS 891

batch job
submitting

using the BPXBATCH command 826

using the BPXBATCH program 891

batch shell command 49

submitting jobs to cron 172

bc shell command 50

built-in functions 61

built-in variables 52

dynamic scoping 60

specifying numbers in different bases 53

between-rule circular dependency 398

bg shell command 66

binary file
decoding 742

encoding for transmission 743

bindkey tcsh sell command 674

blind carbon copy 374

bold typeface
explanation of 1

BOTTOM function key for OMVS command 859

BOTTOM subcommand of OMVS command 863

Bourne shell 549

BPXACOPY program
automatic setting of permission bits during

installation 903

BPXBATCH program 891, 901

invoked in the OSHELL REXX exec 899

invoking
with OSHELL 871

BPXBATCH TSO/E command 826

BPXBATSL
run program using local spawn 826, 891

BPXCOPY program 901, 907

invoking 901

bpxmtext shell command 67

bracket expression 885

brackets
explanation of 1

break
lines 289

break shell command 67

break up
files 596

text file 173

breakpoint
removing from addresses 192

broadcast message 789

browse
files, with BPXBATCH 871

files, with the ISPF shell 828

HFS files
with the obrowse shell command 459

z/OS UNIX file system files
with the OBROWSE TSO/E command 838

build
argument lists before running a command 816

list of files 872

built-in functions
for the bc shell command 61

built-in shell commands 568

: (colon) 140

[334

alias 11

bg 66

break 67

cd 111

colon (:) 140

description of 557

echo 246

exit 262

false 272

fc 273

getopts 301

hash 306

jobs 327

kill 331

let 342

print 511

pwd 523

read 524

test 694

time 698

times 699

true 709

type 715

typeset 716

ulimit 719

umask 723

unalias 722

wait 788

whence 790

built-in variable
for the bc command 52

builtins tcsh shell command 675

byte count
calculating

with the cksum command 135

with the sum command 611

Index 957

byte count (continued)
displaying

with the cksum command 135

with the sum command 611

bytes
counting 789

swapping 167

C
C escape sequences 468

C functions
displaying online 852

C/MVS executable file
running

using the BPXBATCH command 826

c++ 68

c++ shell command 68

c++_64 797

c++_x 797

c89 68

c89_64 797

c89_x 797

c89/cc/c++ environment variable
_ACCEPTABLE_RC 84

_ASUFFIX 84

_ASUFFIX_HOST 84

_CCMODE 84

_CLASSLIB_PREFIX 85

_CLASSVERSION 85

_CLIB_PREFIX 85

_CMEMORY 86

_CMSGS 86

_CNAME 86

_CSUFFIX 86

_CSUFFIX_HOST 86

_CSYSLIB 86

_CVERSION 87

_CXXSUFFIX 87

_CXXSUFFIX_HOST 87

_DAMPLEVEL 87

_DAMPNAME 87

_DCB121M 88

_DCB133M 88

_DCB137 88

_DCB137A 88

_DCB3200 88

_DCB80 88

_DCBF2008 87

_DCBU 87

_DEBUG_FORMAT 88

_ELINES 88

_EXTRA_ARGS 88

_IL6SYSIX 89

_ILCTL 89

_ILMSGS 89

_ILNAME 89

_ILSUFFIX 89

_ILSUFFIX_HOST 89

_ILSYSIX 89

_ILSYSLIB 89

c89/cc/c++ environment variable (continued)
_ILXSYSIX 90

_ILXSYSLIB 90

_INCDIRS 90

_INCLIBS 90

_ISUFFIX 90

_ISUFFIX_HOST 90

_IXXSUFFIX 90

_IXXSUFFIX_HOST 90

_L6SYSIX 90

_L6SYSLIB 91

_LIBDIRS 91

_LSYSLIB 91

_LXSYSIX 91

_LXSYSLIB 91

_MEMORY 91

_NEW_DATACLAS 92

_NEW_DSNTYPE 92

_NEW_MGMTCLAS 92

_NEW_SPACE 92

_NEW_STORCLAS 92

_NEW_UNIT 92

_NOCMDOPTS 92

_OPERANDS 92

_OPTIONS 92

_OSUFFIX 92

_OSUFFIX_HOST 92

_OSUFFIX_HOSTQUAL 92

_OSUFFIX_HOSTRULE 93

_PMEMORY 94

_PMSGS 94

_PNAME 94

_PSUFFIX 94

_PSUFFIX_HOST 94

_PSYSIX 94

_PSYSLIB 94

_PVERSION 95

_SLIB_PREFIX 95

_SNAME 95

_SSUFFIX 95

_SSUFFIX_HOST 95

_SSYSLIB 95

_STEPS 95

_SUSRLIB 96

_TMPS 96

_WORK_DATACLAS 96

_WORK_DSNTYPE 97

_WORK_MGMTCLAS 97

_WORK_SPACE 97

_WORK_STORCLAS 97

_WORK_UNIT 97

_XSUFFIX 97

_XSUFFIX_HOST 97

IL6SYSLIB 89

c89/cc/c++ shell command
–W option

compiler, prelinker, IPA linker and link editor

options 77

DLL and IPA extensions 77

environment variables 84

options 70

958 z/OS V1R9.0 UNIX System Services Command Reference

c89/cc/c++ shell command (continued)
specifying

system and operational information to

c89/cc/c++/cxx 84

c99 797

c99 shell command 105

c99_64 797

c99_x 797

cal shell command 105

calculate
checksum for each input file

with the cksum command 135

with the sum command 611

number of bytes in each input file
with the cksum command 135

with the sum command 611

calendar
displaying 105

calendar file 107

calendar shell command 106

call up
other systems 178

callable services
displaying online 852

cancel
print queue requests 108

cancel shell command 108

captoinfo shell command 108

carriage control
interpreting 21

case of letters 1

case shell command 555

case subcommand for dbx command 191

catch subcommand for dbx command 191

Caution section
explanation of 6

cc 68

cc shell command 111, 180

cc_64 797

cc_x 797

cd shell command 111

CDPATH environment variable
description of 570

used by cd 112

used by vi 780, 784

cdpath shell variable
description of 656

ceebldtx shell command 114

change
audit attributes 117

audit flags 117

crontab entries 171

dates for arguments 700

dbx command prompts 210

file access times 700

file modification times 700

file tag information 132

files
using diff output 469

functions 199

group owners 122

change (continued)
groups 450

groups of directories 129

groups of files 129

mount mode 873

next line to be displayed 204

owners of directories 129

owners of files 129

priorities of running processes 527

program counter address 200

root directory 130

source files 199

terminal characteristics 703

user ID
connected with sessions 607

working directories 111

change ACLs
setfacl 544

character
counting 789

escaping 558

translating 704

character class expression 886

character conversion table
specifying the 854

character special files
creating 830

characters
converting from one codeset to another 310

chaudit shell command 117

chcp shell command 119

check
conditions 694

for spelling errors 594

pathnames 473

checksum
calculating 135, 611

displaying 135

with the sum command 611

chgrp shell command 122

child process
waiting for it to end 788

child process time
displaying time accumulated 699

child shell environment 567

chlabel shell command 123

chmod shell command 124

chmount
change file system mount attributes 127

chmount shell command 127

chown shell command 129

chroot shell command 130

chtag shell command 132

circular dependencies 398

cksum shell command 135

clear breakpoints at addresses 192

clear shell command 136

clear subcommand for dbx command 192

cleari subcommand for dbx command 192

clock daemon (cron) 168

clocks 698

Index 959

clone output streams 693

close 566

file descriptors 260

shell sessions 859, 863

standard output (stdout) 566

CLOSE function of OMVS command 859

CLOSE subcommand of OMVS command 863

cmd environment variable
used by mailx 379, 387

cmp shell command 137

codeset
converting characters to another codeset 310

col shell command 139

collation sequence 885

collect
debugging information 856

colon (:) shell command 140

COLUMNS environment variable 570

description of 570

used by ed 253

used by ls 367

used by more 432

used by pg 505, 508

used by ps 523

used by sed 538

used by shedit 577

used by vi 785

COLUMNS tcsh environment variable
description of 669

comand shell variable
description of 656

comm shell command 141

command
aliases

creating or displaying 11

built-in 568

changing prompts, for dbx 210

constructing
in the current shell environment 258

with templates 816

conventions 1

creating aliases 11

descriptions
reading 1

displaying 273

aliases 11

elapsed time 698

online 852

process IDs 291

suppressing command numbers 274

editing 273, 577

executing 130

interpreting names 790

names
interpreting 790

numbers
suppressing 274

options
setting 540

unsetting 540

passing to shell for execution 219

command (continued)
processing history lists 273

prompts, changing for dbx 210

reading descriptions 1

reentering 273

remote execution
displaying information about 744

running
after constructing an argument list 816

at a different priority 452

at a specified time 22

from the shell 709

simple 142

using the OMVS interface 709

using the TSO/E service routine 709

when system is not busy 49

setting options 540

specifying command lines for another

command 260

substituting 563

suppressing numbers 274

sysvar 613

template 816

TSO/E
ALLOCATE 839

BPXBATCH 826

ISHELL 828

MKDIR 829

MKNOD 830

MOUNT 832

OBROWSE 838

OCOPY 839

OEDIT 844

OGET 845

OGETX 848

OHELP 852

OMVS 854

OPUT 866

OPUTX 868

OSHELL 871

OSTEPLIB 872

UNMOUNT 873

unsetting options 540

command aliases
displaying 11

command interpreter 392

command line
specifying for another command 260

command mode 374, 758

command shell command 142

command substitution 563

command summary
vi mode 760

commands
nonfunctional

cancel 108

cu 178

lpstat 362

running
on remote sites 753

960 z/OS V1R9.0 UNIX System Services Command Reference

communicate
with other users 793

compare
directories

with the dircmp command 240

with the ISHELL command 828

with the OSHELL command 871

files
with the cmp command 137

with the diff command 235

with the ISHELL command 828

with the OSHELL command 871

terminfo database entries 315

compile
link-edit object file 70

terminfo database entries 697

UUCP configuration files 734

z/OS C and z/OS C++ source file 70

compiler
yacc 819

complete shell variable
description of 656

component directory 474, 618

component file 474, 618

compress
files

using Huffman coding 465

using Lempel-Ziv compression 143

spaces into tabs 725

compress shell command 143

concatenate
arguments in the current shell environment 258

corresponding or subsequent lines of files 467

files 110

lines 467

lines of input files 467

regular expressions 887

condition
explanation of 42

testing for 694

trapping abnormal 707

condition subcommand for dbx command 193

condition variable
displaying list of 193

confighfs shell command 145

configstk shell command 147

configstrm shell command 149

configuration file for xlc 800

default name 804

configuration files
/usr/lib/config

used by uucc 735

Devices 734

Dialcodes 734

Dialers 734

Permissions 734

reading and compiling contents of UUCP 734

Systems 734

configuration variable
writing values to standard output 295

configure
AF_UEINT stacks 147

automount facility, the 26

conflicting pathname 348

connect to
other systems 178

connecting to
remote systems, with the uucico daemon 735

console log
saving messages in 358

construct
argument lists before running a command 816

commands in the current shell environment 258

cont subcommand of for command 193

context diff file 470

context-dependent movement commands (for vi) 760

continuation prompt 572

continue shell command 150

control
3270 alarms 854, 859, 863

automatic scrolling 859, 863, 864

AUTOSCROLL function of OMVS command 854

display of function key settings 860

control character
processing 139

CONTROL function of OMVS command 859

control operator 556

conv environment variable
used by mailx 373, 391

conventions for command descriptions 1

conversion buffer 232

convert
characters from one codeset to another 310

files 229

from ASCII to EBCDIC 230

from EBCDIC to ASCII 230

from lowercase to uppercase 231

from uppercase to lowercase 231

from variable to fixed records 231

source definitions for locale categories 356

CONVERT option of OMVS command 854

copy
archive files, with the tar command 619

data read from standard input to standard

output 704

data sets into files, with BPXCOPY 901

data with format conversion 229

file descriptors 260

files
between UUCP systems 737

from one directory to another 165

selectively 178

to MVS partitioned data set 848

to target named by the last argument on

command line 152

to users on remote systems 752

with BPXBATCH 871

with data conversion 229

with the ISPF shell 828

in/out file archive 165

lines 346

Index 961

copy (continued)
MVS data sets

members into z/OS UNIX file system

directories 868

members into z/OS UNIX file system files 866

to another member or file 839

one line of standard input 346

standard input to each output file 693

z/OS UNIX file system
directories to MVS partitioned data set 848

files into MVS data sets 845

files to another member or file 839

copy mode 475

copytree REXX sample 151

correct shell variable
description of 657

count
bytes 789

characters 789

lines 789

newlines 789

words 789

cp shell command 152

cpio archive
reading and writing 165

cpio archive format 911

cpio file format 911

cpio shell command 165

CPU time 699

create
aliases for dbx subcommands 189

archives 165

character special files 830

command aliases 11

crontab entries 171

directories
for each named directory argument 426

with the MKDIR command 829

FIFO special files 427

hard link 347

libraries 409

library archives 14

link to files 348

message catalogs 292

tag files 176

tracked aliases 306

z/OS UNIX file system 828

create executable files 70

cron
submitting jobs to 172

cron daemon 171

crontab
changing entries 171

creating entries 171

editing entries 172

obtaining output of entries 172

crontab shell command 171

submitting jobs to cron 172

crt environment variable
used by mailx 380, 388

csplit shell command 173

ctags shell command 176

cu shell command 178

current appointment
displaying 106

current mail message 375

current operating system
displaying name of the 723

current position pointer 759

current users
displaying information about 791

current working directory
changing to previous working directory 112

displaying pathname of the 523

setting to value of the HOME environment

variable 112

customize
settings for function keys 858

cwd shell variable
description of 657

cxx 68

cxx_64 797

cxx_x 797

D
daemons

cron 168

exrecover 267

inetd 313

uucico 735

uucpd 741

uuxqt 756

dash
explanation of 1

data
displaying after uncompressing 823

manipulating 32

reading 229

refreshing 860

removing from executable files 599

transferring to remote sites 927

writing 229

data file 927

data set
copying

between two files 839

BPXCOPY program, with the 901

data set names
specifying in the shell 935

database
joining two 328

date
displaying the 180

date shell command 180

DBCS mode
specifying 856

DBCS option of OMVS command 856

dbx debug program
defining values for variables 214

searching for source files 227

dbx shell command 183

962 z/OS V1R9.0 UNIX System Services Command Reference

dbx shell command (continued)
creating aliases for subcommands 189

displaying synopsis of 200

reading subcommands from file 220

subcommands
? 188

/ 189

alias 189

args 190

assign 190

case 191

catch 191

clear 192

cleari 192

condition 193

cont 193

delete 194

detach 194

display memory 195

down 197

dump 197

edit 198

file 199

func 199

goto 199

gotoi 200

help 200

history 200

ignore 201

list 201

listfiles 202

listi 203

map 204

move 204

multproc 205

next 206

nexti 207

object 207

onload 208

print 210

prompt 210

quit 210

record 212

registers 212

rerun 213

return 213

run 214

set 214

sh 219

skip 219

source 220

status 220

step 220

stepi 221

stop 221

stopi 222

trace 224

tracei 225

unalias 226

unset 226

up 227

dbx shell command (continued)
subcommands (continued)

use 227

whatis 227

where 228

whereis 229

which 229

dbx shell command prompt
changing 210

dd shell command 229

deactivate
function key 860

dead.letter file
used by mail 370, 371

used by mailx 382

DEBUG option of OMVS command 856

debug programs
changing interpretation of symbols 191

with the dbx command 183

debug session
enabling or disabling multiprocess 205

ending 210

debugger
using the 183

debugging information
collecting 856

writing 856

decode
files packed by using Hoffman coding 731

Huffman-packed files 504

transmitted binary files 742

default
function key 861

define
local environments 356

values for dbx variables 214

delay program execution 585

delete
alias definitions 722

aliases 226

arguments 531

attributes of variables and functions 732

breakpoints at addresses 192

directories 533

directory entries 531, 728

information from executable files 599

stops
from programs 194

from source lines 192

traces from program 194

trailing part of filenames 241

values of variables and functions 732

variables 226

delete subcommand of the for command 194

Description section
explanation of 3

destination file
setting

destination time 154

modification time 154

detach subcommand for dbx command 194

Index 963

detect
aliases 722

spelling errors 594

determine
file types 276

devtty 510

dextract shell variable
description of 657

df
in a sysplex 235

df shell command 233

diff output
used when changing files 469

diff shell command 236

dircmp shell command 240

directory
/usr/spool/uucp 926

/usr/spool/uucp/.Xqtdir 754

/usr/spool/uucp/south 926

changing
access permission of 124

audit attributes 117

audit flags 117

group owners 122

modes 124

owners and groups 129

comparing 240

with the ISHELL command 828

with the OSHELL command 871

copying files 165

creating
for each named directory argument 426

with BPXBATCH 871

with the ISPF shell 828

with the MKDIR command 829

deleting, with BPXBATCH 871

deleting, with the ISPF shell 828

listing files in a
with ISHELL 828

with OSHELL 871

moving files to a different 437

naming, with BPXBATCH 871

naming, with the ISPF shell 828

removing
entries 531, 728

with the rmdir command 533

searching 227

setting owners and groups 129

setting up special files in the /bin 828

directory (UUCP)
searching public 747

directory substitution 559

dirname shell command 241

dirsfile shell variable
description of 657

dirstack shell variable
description of 657

disability 947

disable multiprocess debugging 205

display 203

active stop subcommands 220

display (continued)
active trace subcommands 220

aliases for dbx subcommands 189

amount of free space on file system 233

appointments 106

arguments
of programs 190

attributes and contents of symlink 828, 871

C functions online 852

calendars 105

callable services online 852

changing next line to be displayed 204

checksum for each input file
with the cksum command 135

with the sum command 611

command aliases 11

commands
suppressing command numbers 274

with the fc command 273

commands in history list 200

commands online 852

compressed files 504

crontab entries 172

current appointments 106

currently exported variables 264

data after uncompressing 823

dates 180

DBCS characters 9

declaration of program components 227

differences between two files 236

elapsed time for a command 698

environment variables 257, 540

errnojr_value 114, 255

extended attributes for files 271

file attributes 828, 871

files 110

page by page 429

files interactively 505

first part of files 307

information about current users 791

information about locales 352

information about the OMVS command 864

input files 505

instructions in program 203

last part of files 615

lines common to two files 141

list of active condition variables 193

list of active mutex objects 206, 223

list of active program and functions 228

list of active read/write lock objects 211

list of files
of module 202

list of functions associated with a program file 203

list of UUCP systems 746

load characteristics of program 204

log information about UUCP events 744

login information 791

memory 195

message catalogs 243

messages from message catalogs 243

964 z/OS V1R9.0 UNIX System Services Command Reference

display (continued)
names of

current operating systems 723

shell variables 540

variables in procedures 197

number of bytes in each input file
with the cksum command 135

with the sum command 611

pathname of working directories 523

piped files 505

process status 516

processors 698

qualifications
of given identifiers 229

of symbols 229

reason_code text 67

shell messages 852

specified number of lines in source files 201

status of pending UUCP transfers 749

status of print queues 362

strings in a binary file 598

synopsis of dbx commands 200

system time accumulated by commands 699

terminal names 715

terminal options 600

times 180

unprintable characters 110

user time accumulated by the shell 699

values of
floating-point registers 212

general-purpose registers 212

instruction registers 212

program status words (PSW) 212

shell variables 540

system control registers 212

variables in procedures 197

values of environment variables 513

z/OS UNIX System Services publications

online 852

Display
static system symbols 613

display ACL entries
getfacl 299

display memory subcommand for dbx command 195

DISPLAY tcsh environment variable
description of 669

display-oriented text editor
vi 758

displaying
man pages 420

displays
errnojr_value 114, 255

reason_code text 67

DLL (dynamic link library)
description of 78

link-editing 77

dot (.) script
returning from 529

dot (.) shell command 242

dot environment variable
used by mailx 388

double-spacing 509

doublebyte character set 856

displaying characters 9

locales
switching 9

strings 8

using the 7

doublebyte characters
converting 310

down subcommand for dbx command 197

dspcat shell command 243

dspmsg shell command 243

du shell command 244

dump file to standard output 459

dump subcommand for dbx command 197

dunique shell variable
description of 657

duplicate output stream 693

dynamic link library (DLL)
description of 78

link-editing 77

dynamic scoping
used in the bc shell command 60

E
EBCDIC to ASCII. conversion 230

ECHO function key for OVMS command 859

ECHO option of OMVS command 857

echo shell command 246

echo shell variable
description of 657

ECHO subcommand of OMVS command 863

echo_style shell variable
description of 658

ed shell command 247

ed text editor
using the 247

ed.hup file
used by ed 253

edcmtext shell command 255

edit
commands 273

crontab entries 172

files, with BPXBATCH 871

files, with the ISPF shell 828

HFS files
with the oedit shell command 463

message catalogs 292

z/OS UNIX file system files
with the OEDIT TSO/E command 844

edit shell variable
description of 658

edit subcommand for dbx command 198

editing subcommands
starting 534

editor
invoking 198

editor environment variable
used by mailx 377, 382

Index 965

EDITOR environment variable
description of 570

used by crontab 172

used by shedit 577

editor initialization 784

EDITOR tcsh environment variable
description of 669

egrep shell command 304

electronic mail
sending and receiving 372

elif shell subcommand 556

ellipsis
explanation of 2

ellipsis shell variable
description of 658

else shell subcommand 556

emacs
enabling, with the EDITOR environment

variable 570

enable multiprocess debugging 205

encode
binary files for transmission 743

files
using Huffman coding 465

end
dbx debugging sessions 210

jobs 331

processes 331

shell sessions 860, 865

shells 262

end of file 615

ENDPASSTHROUGH option of OMVS command 857

ENV environment variable
description of 570

used by sh 550, 552

used by vi 785

env shell command 257

environment
defining local 356

environment variable
_ 570

_ACCEPTABLE_RC
used by c89/cc/c++ 84

_ASUFFIX
used by c89/cc/c++ 84

_ASUFFIX_HOST
used by c89/cc/c++ 84

_BPX_BATCH_SPAWN
description of 892

_BPX_BATCH_UMASK
description of 892

_BPX_SPAWN_SCRIPT
description of 892

_BPX_TERMPATH
used by chcp 119, 120

_CCMODE
used by c89/cc/c++ 84

_CLASSLIB_PREFIX
used by c89/cc/c++ 85

_CLASSVERSION
used by c89/cc/c++ 85

environment variable (continued)
_CLIB_PREFIX

used by c89/cc/c++ 85

_CMEMORY
used by c89/cc/c++ 86

_CMSGS
used by c89/cc/c++ 86

_CNAME
used by c89/cc/c++ 86

_CSUFFIX
used by c89/cc/c++ 86

_CSYSLIB
used by c89/cc/c++ 86

_CVERSION
used by c89/cc/c++ 87

_CXXSUFFIX
used by c89/cc/c++ 87

_CXXSUFFIX_HOST
used by c89/cc/c++ 87

_DAMPLEVEL
used by c89/cc/c++ 87

_DAMPNAME
used by c89/cc/c++ 87

_DCB121M
used by c89/cc/c++ 88

_DCB133M
used by c89/cc/c++ 88

_DCB137
used by c89/cc/c++ 88

_DCB137A
used by c89/cc/c++ 88

_DCB3200
used by c89/cc/c++ 88

_DCB80
used by c89/cc/c++ 88

_DCBF2008
used by c89/cc/c++ 87

_DCBU
used by c89/cc/c++ 87

_DEBUG_FORMAT
used by c89/cc/c++ 88

_ELINES
used by c89/cc/c++ 88

_EXTRA_ARGS
used by c89/cc/c++ 88

_IL6SYSIX
used by c89/cc 89

_IL6SYSLIB
used by c89/cc 89

_ILCTL
used by c89/cc 89

_ILMSGS
used by c89/cc 89

_ILNAME
used by c89/cc/c++ 89

_ILSUFFIX
used by c89/cc 89

_ILSUFFIX_HOST
used by c89/cc 89

_ILSYSIX
used by c89/cc/c++ 89

966 z/OS V1R9.0 UNIX System Services Command Reference

environment variable (continued)
_ILSYSLIB

used by c89/cc/c++ 89

_ILXSYSIX
used by c89/cc/c++ 90

_ILXSYSLIB
used by c89/cc/c++ 90

_INCDIRS
used by c89/cc/c++ 90

_INCLIBS
used by c89/cc/c++ 90

_ISUFFIX
used by c89/cc/c++ 90

_ISUFFIX_HOST
used by c89/cc/c++ 90

_IXXSUFFIX
used by c89/cc/c++ 90

_L6SYSIX
used by c89/cc/c++ 90

_L6SYSLIB
used by c89/cc/c++ 91

_LD_ACCEPTABLE_RC
used by ld 336

_LD_ASUFFIX
used by ld 336

_LD_ASUFFIX_HOST
used by ld 336

_LD_DAMPLEVEL
used by ld 336

_LD_DAMPNAME
used by ld 337

_LD_DCB80
used by ld 337

_LD_DCBU
used by ld 337

_LD_DEBUG_DUMP
used by ld 337

_LD_DEBUG_TRACE
used by ld 337

_LD_ENTRY_POINT
used by ld 337

_LD_EXTRA_SYMBOL
used by ld 337

_LD_LIBDIRS
used by ld 338

_LD_NEW_DATACLAS
used by ld 338

_LD_NEW_DSNTYPE
used by ld 338

_LD_NEW_MGMTCLAS
used by ld 338

_LD_NEW_SPACE
used by ld 338

_LD_NEW_STORCLAS
used by ld 338

_LD_NEW_UNIT
used by ld 338

_LD_OPERANDS
used by ld 338

_LD_OPTIONS
used by ld 338

environment variable (continued)
_LD_ORDER

used by ld 338

_LD_OSUFFIX
aused by ld 338

_LD_OSUFFIX_HOST
used by ld 338

_LD_SYSIX
used by ld 339

_LD_SYSLIB
used by ld 339

_LD_XSUFFIXHOST
used by ld 339

_LD_XSUFFUX
used by ld 339

_LIBDIRS
used by c89/cc/c++ 91

_LSYSLIB
used by c89/cc/c++ 91

_LXSYSIX
used by c89/cc/c++ 91

_LXSYSLIB
used by c89/cc/c++ 91

_MEMORY
used by c89/cc/c++ 91

_NEW_DATACLAS
used by c89/cc/c++ 92

_NEW_DSNTYPE
used by c89/cc/c++ 92

_NEW_MGMTCLAS
used by c89/cc/c++ 92

_NEW_SPACE
used by c89/cc/c++ 92

_NEW_STORCLAS
used by c89/cc/c++ 92

_NEW_UNIT
used by c89/cc/c++ 92

_NOCMDOPTS
used by c89/cc/c++ 92

_OPERANDS
used by c89/cc/c++ 92

_OPTIONS
used by c89/cc/c++ 92

_OSUFFIX
used by c89/cc/c++ 92

_OSUFFIX_HOST
used by c89/cc/c++ 92

_OSUFFIX_HOSTQUAL
used by c89/cc/c++ 92

_OSUFFIX_HOSTRULE
used by c89/cc/c++ 93

_PLIB_PREFIX
used by c89/cc/c++ 93

_PMEMORY
used by c89/cc/c++ 94

_PMSGS
used by c89/cc/c++ 94

_PNAME
used by c89/cc/c++ 94

_PSUFFIX
used by c89/cc/c++ 94

Index 967

environment variable (continued)
_PSUFFIX_HOST

used by c89/cc/c++ 94

_PSYSIX
used by c89/cc/c++ 94

_PSYSLIB
used by c89/cc/c++ 94

_PVERSION
used by c89/cc/c++ 95

_SLIB_PREFIX
used by c89/cc/c++ 95

_SNAME
used by c89/cc/c++ 95

_SSUFFIX
used by c89/cc/c++ 95

_SSUFFIX_HOST
used by c89/cc/c++ 95

_SSYSLIB
used by c89/cc/c++ 95

_STEPS
used by c89/cc/c++ 95

_SUSRLIB
used by c89/cc/c++ 96

_TAG_REDIR_ERR=BIN
description of 574

_TAG_REDIR_ERR=TXT
description of 574

_TAG_REDIR_IN=BIN
description of 574

_TAG_REDIR_IN=TXT
description of 573

_TAG_REDIR_OUT=BIN
description of 574

_TAG_REDIR_OUT=TXT
description of 574

_TMPS
used by c89/cc/c++ 96

_WORK_DATACLAS
used by c89/cc/c++ 96

_WORK_DSNTYPE
used by c89/cc/c++ 97

_WORK_MGMTCLAS
used by c89/cc/c++ 97

_WORK_SPACE
used by c89/cc/c++ 97

_WORK_STORCLAS
used by c89/cc/c++ 97

_WORK_UNIT
used by c89/cc/c++ 97

_XSUFFIX
used by c89/cc/c++ 97

_XSUFFIX_HOST
used by c89/cc/c++ 97

allnet
used by mailx 387, 391

append
used by mailx 380

ask
used by mailx 387

askbcc
used by mailx 387

environment variable (continued)
asksub

used by mailx 387

autoprint
used by mailx 374, 381, 387

bang
used by mailx 384, 387

CDPATH
description of 570

used by cd 112

used by vi 780, 784

cmd
used by mailx 379, 387

COLUMNS
description of 570

used by ed 253

used by ls 367

used by more 432

used by pg 505, 508

used by ps 523

used by sed 538

used by shedit 577

used by vi 785

conv
used by mailx 373, 391

crt
used by mailx 380, 388

description of 570

displaying 257, 540

displaying the value of a 513

dot
used by mailx 388

editor
used by mailx 382

EDITOR
description of 570

used by crontab 172

used by shedit 577

ENV
description of 550, 570

used by sh 552

used by vi 785

ERRNO
description of 570

escape
used by mailx 382, 388

EXINIT
used by vi 784, 785

FCEDIT
description of 570

used by fc, history, r 274

flipr
used by mailx 380, 388

folder
used by mailx 377, 380, 388

FPATH
description of 571

header
used by mailx 388

HISTFILE
description of 571

968 z/OS V1R9.0 UNIX System Services Command Reference

environment variable (continued)
HISTFILE (continued)

used by fc, history, r 273, 274

HISTSIZE
description of 571

used by fc, history, r 273, 274

hold
used by mailx 374, 388

HOME
description of 571

used by cd 112

used by crontab 172

used by mail 370

used by mailx 385

used by vi 781, 784, 785

IFS
description of 571

used by read 524, 525

used by sh 551

ignore
used by mailx 373, 388

ignoreeof
used by mailx 388

indent
used by mailx 388

indentprefix
used by mailx 383, 388

keep
used by mailx 388

keepsave
used by mailx 374, 389

LANG
description of 571

LIBPATH
description of 571

used by c89/cc/c++ 78

LINENO
description of 571

LINES
description of 571

used by more 432

used by pg 505, 508

used by vi 783

LOCPATH
description of 571

LOGNAME
description of 571

used by crontab 172

used by logname 360

used by mailx 385

LPDEST
used by lp 361, 362

MAIL
used by mailx 386

MAILCHECK
description of 571

MAILDIR
used by mailx 386

MAILER
used by calendar 107

environment variable (continued)
MAILPATH

description of 572

MAILRC
used by mailx 386

mailserv
used by mailx 389, 391

MAKEFLAGS
used by make 407, 410

MAKESTARTUP
used by make 392, 408, 410

MANPAGER
used by man 422, 423

MANPATH
description of 572

used by man 422

MBOX
description of 572

metoo
used by mailx 389

MORE
used by more 432

NLSPATH
description of 572

OLDPWD
description of 572

used by cd 112

onehop
used by mailx 389, 391

OPTARG
used by getopts 303

OPTIND
used by getopts 303

outfolder
used by mailx 389

page
used by mailx 379, 389

pager
used by mailx 380

PAGER
used by man 422

PATH
description of 572

used by awk 46

used by crontab 172, 173

used by vi 785

PPID
description of 572

PRINTER
used by lp 361, 362

prompt
used by mailx 389

PS1
description of 572

PS2
description of 572

used by read 525

PS3
description of 572

PS4
description of 572

Index 969

environment variable (continued)
PWD

description of 572

used by cd 112

quiet
used by mailx 389

RANDOM
description of 572

record
used by mailx 372, 378, 380, 389

REPLY
used by read 525

replyall
used by mailx 389, 391

save
used by mailx 389

screen
used by mailx 378, 389

SECONDS
description of 572

sendmail
used by mailx 389, 391

sendwait
used by mailx 390, 391

setting 257

SHELL
description of 573

used by at 25

used by awk 49

used by crontab 172

used by ed 253

used by mailx 381

used by make 410

used by vi 778, 785

showto
used by mailx 390

sign
used by mailx 382, 390

Sign
used by mailx 390

STEPLIB
description of 573

SYSEXEC
used by tso 711

SYSPROC
used by tso 711

TERM
used by at 137

used by more 432

used by tabs 614

used by talk 617

used by touch 704

used by vi 759, 783, 785

terminfo 319, 698

TERMINFO
used by tabs 614

used by talk 617, 704

used by vi 785

TMOUT
description of 573

environment variable (continued)
TMP

used by exrecover 268

TMP_VI
used by vi 785

TMPDIR
description of 573

used by ar 16

used by ed 253

used by man 422

used by pg 508

used by sort 591

used by vi 785

toplines
used by mailx 381, 390

TSOALLOC
used by tso 711

tsoout
used by tso 711

TSOPREFIX
used by tso 711

TSOPROFILE
used by tso 711

TZ 931

description of 573

used by at 25

used by cron 169

used by crontab 173

used by date 182

used by ls 367

used by mail 370

used by pr 510

used by touch 701

used by uulog 745

used by uustat 751

used by mailx 377

used to specify system and operational information to

c89/cc/c++/cxx 84

used to specify system and operational information to

xlc/xlC 799

VISUAL
description of 573

used by mailx 382, 383

used by shedit 577

Environment Variables section
explanation of 4

equivalence class 886

ERRNO environment variable
description of 570

errnojr_value
displaying 114, 255

escape character
displaying current settings 864

specifying the 858

turning off display for settings 864

escape environment variable
used by mailx 382, 388

ESCAPE option of OMVS command 858

escape sequences 558

escaping characters 558

eval shell command 258

970 z/OS V1R9.0 UNIX System Services Command Reference

evaluate
arguments as expression 265

arguments in the current shell environment 258

arithmetic expression 342

shell expressions 140

ex commands
special characters 779

ex mode
commands issued from 769

current position pointer 759

entering 769

starting session in 758

ex shell command 259

creating tag files for the 176

ex text editor
using the 259

Examples section
explanation of 3

exception condition
trapping 707

exec shell command 260

executable
reentrant 103

executable file
creating 70

displaying symbol table 455

execute
commands on remote sites 753

execute files 928

EXINIT environment variable
used by vi 784, 785

exit code
returning a nonzero 272

exit shell command 262

exit shell subcommand 575

exit status
returning values of 0 709

Exit Values section
explanation of 6

expand
compressed data written by Lempel-Ziv

compression 724

tabs to spaces 263

expand shell command 263

export
aliases 12

environment variables 264

export shell command 264

expr operators 265

expr shell command 265

expression 885

bracket 885

character class 886

evaluating 265, 342

handling, for the dbx command 185

printing tracing information 224

expression values
printing 210

exrecover shell daemon 267

extattr shell command 271

extended ACL entries 366

extended attributes
APF | NOAPF 903

PROGCTL|NOPROGCTL 904

SHAREAS | NOSHAREAS 904

SHARELIB | NOSHARELIB 904

extended regular expression
explanation of 885

list of commands using 888

external link
creating 348

identifying 363, 365

ln 349

extract
components from archives 475

contents of archive files 165

F
false shell command 272

fc shell command 273

FCEDIT environment variable
description of 570

used by fc, history, r 274

fg shell command 275

fgrep shell command 304

Fibonacci sequence 569

field (awk variable) 33

FIFO special files
creating 427, 429

fignore shell variable
description of 658

file
allocating

using the BPXBATCH command 826

using the BPXBATCH program 892

backing up
archive files 619

backup 619

binary
decoding transmitted 742

encoding for transmission 743

browsing, with BPXBATCH 871

browsing, with the ISPF shell 828

calculating
byte counts 135, 611

checksum 135, 611

changing
access permission of 124

access times 700

audit attributes 117

audit flags 117

group owners 122

groups 129

modes 124

modification times 700

owners 129

source 199

using diff output 469

comparing two 236

with the cmp command 137

with the diff command 235

Index 971

file (continued)
comparing two (continued)

with the ISHELL command 828

with the OSHELL command 871

with the sum command 611

compressed
displaying 504

compressing
using Lempel-Ziv compression 143

concatenating lines into standard output 467

converting 229

from ASCII to EBCDIC 230

from EBCDIC to ASCII 230

copying
archive files 619

between sites 737

between two files 839

to target named by the last argument on

command line 152

to users on remote systems 752

with BPXBATCH 871

with data conversion 229

with the ISPF shell 828

creating
character special files for file systems 830

directories for 829

FIFO special 429

links to 348

with BPXBATCH 871

with the ISPF shell 828

deleting
information from 599

with BPXBATCH 871

with the ISPF shell 828

displaying 203

attributes of 828, 871

compressed 504

first part 307

interactively 505

last part of the 615

lines common to two files 141

names 715

page by page 429

specified number of lines in source 201

dumping to standard output 459

editing, with BPXBATCH 871

editing, with the ISPF shell 828

expanding compressed files 724

finding one that meets specified criteria 281

formatting in paginated form 508

instructions in a source 203

lines
numbering 453

list of
building, with the OSTEPLIB command 872

listing
attributes 362

names 362

maintaining
interdependent 391

program-generated 391

file (continued)
manipulating repeated lines 726

merging corresponding or subsequent lines of

files 467

misspelled words
looking for 594

mounting file systems 832

moving 437

names
displaying 715

naming, with BPXBATCH 871

naming, with the ISPF shell 828

object
displaying symbol table of an 455

output tags
used by ctags 177

used by uptime 734

passing small amounts to 246

processing 32

reading dbx subcommands from 220

removing
information from 599

renaming 437

running
object files, with previous arguments 213

with the ISHELL command 828

with the OSHELL command 871

searching
backward for patterns 188

for specified patterns 304

for text strings 828, 871

forward for patterns 189

given file hierarchies 281

hierarchy 281

sending
paginated files to printer 508

to other users 793

setting
destination time 154

groups 129

modification time 154

owners 129

showing differences between two 236

sorting
in topological order 714

splitting 596

summarizing use of space 244

text
comparing two 235

concatenating 110

counting items in 789

displaying 110

finding information in 32

finding strings in 885

retrieving information from 32

splitting 173

transfers
displaying information about 744

uncompressing
Huffman-coded 504

972 z/OS V1R9.0 UNIX System Services Command Reference

file (continued)
words

looking for misspelled 594

file descriptor
closing 260

copying 260

opening 260

file formats
cpio 911

list of 911

magic 912

pax 915

queuedefs 921

tags 922

tar 922

utmpx 924

file hierarchy
copying, with copytree 151

file mode creation mask
setting or returning 721

file owner
group

GID(group) 904

UID(owner) 904

file recovery daemon for vi (exrecover) 267

file shell command 276

using the magic file 912

file space
summarizing use of 244

file subcommand for dbx command 199

file system recovery 838

file systems
hierarchical

mounting 832

unmounting 875

TFS
mounting 836

unmounting 875

file tag 650, 694

automount 26

df shell command 233

find 136, 138, 278, 287, 307, 465, 599, 615

iconv 309

ls 362

mount shell command 433

MOUNT TSO/E command 832

od 459

pax 474

tar 618

tcsh shell 670

file tag information
chtag 132

file tags
chtag 132

file transfer
daemon for (uucico) 735

requests
processing, with the uucico daemon 735

file type
determining the 276

file-creation permission-code mask
setting or returning 721

filec shell variable
description of 658

filename
deleting trailing parts 241

expanding on command line 246

generation 566

FILENAME built-in variable for awk 38

files 278

/bin/mail
used by calendar 107

/dev/mt/0m
used by tar 620

/dev/tty 510

/etc/auto/master
used by automount 27

/etc/csh.cshrc
used by tcsh login 627

/etc/csh.login
used by tcsh login 627

/etc/inetd.conf
used by the inetd daemon 313

/etc/inetd.pid
used by the inetd daemon 315

/etc/magic
used by file 278

/etc/mailx.rc
configuration settings 170

used by mailx 373, 384, 390

/etc/profile 574

used by the login shell 549

/etc/recover
used by exrecover 268

/etc/recover/$LOGNAME/VIn*
used by exrecover 268

/etc/recover/$LOGNAME/VIt*
used by exrecover 269

/etc/startup.mk
used by make 410

/etc/suid_us.profile
used by sh 574

/etc/utmpx
used by who 792

/etc/yylex
used by lex 345

/etc/yylex.c
used by lex 343

/etc/yyparse.c
used by yacc 821

/tmp
used by ar 16

used by fc, history, r 274

/tmp/e*
used by ed 253

/tmp/sh*
description of 574

/tmp/stm*
used by sort 591

/tmp/VIl*
used by exrecover 268

Index 973

files (continued)
/tmp/VIn*

used by exrecover 268

/tmp/VIt*
used by exrecover 268

/usr/lib
used by spell 595

/usr/lib/config
used by uucc 735

/usr/lib/cron/at.allow
used by cron 170

/usr/lib/cron/at.deny file
used by cron 170

/usr/lib/cron/cron.allow
used by cron 170

/usr/lib/cron/cron.deny
used by cron 170

/usr/lib/cron/queuedefs
used by cron 170

/usr/lib/hash
used by spell 594, 595

/usr/lib/hashb
used by spell 594, 595

/usr/lib/lib.b
used by bc 64

/usr/lib/libl.a
used by lex 345

/usr/lib/liblxp.a
used by lex 345

/usr/lib/lwords
used by spell 594, 595

/usr/lib/uucp
used by uucc 735

/usr/lib/uucp/config
used by uucc 734, 735

used by uucico 736

used by uucp 740

used by uulog 745

used by uuname 746

used by uupick 748

used by uustat 751

used by uuto 752

used by uux 755

used by uuxqt 757

/usr/lib/uucp/devices
used by uucc 735

/usr/lib/uucp/dialcodes
used by uucc 735

/usr/lib/uucp/dialers
used by uucc 735

/usr/lib/uucp/permissions
used by uucc 735

/usr/lib/uucp/systems
used by uucc 735

/usr/man/%L/man¬0–9|/*.book
used by man 422

/usr/man/%L/whatis
used by man 422

/usr/spool/.Sequence
used by uucp 740

files (continued)
/usr/spool/cron

used by cron 170

/usr/spool/cron/atjobs
used by cron 170

/usr/spool/cron/crontabs
used by cron 170

/usr/spool/cron/log
used by cron 170

/usr/spool/cron/pid
used by cron 170

/usr/spool/locks
used by uucico 737

/usr/spool/uucp
used by uulog 745

used by uustat 751

/usr/spool/uucp/.Sequence
used by uux 756

used by uuxqt 757

/usr/spool/uucp/.Status
used by uucico 737

used by uustat 751

/usr/spool/uucp/.Xqtdir
used by uuxqt 757

/usr/spool/uucp/LOGFILE 736

used by uucico 736

used by uucp 740

used by uulog 745

used by uux 755

/usr/spool/uucp/site
used by uux 755

used by uuxqt 757

/usr/spool/uucppublic
used by uucp 740

used by uuto 752

/usr/spool/uucpublic
used by uupick 748

/usr/spool/uucpublic/receive
used by uupick 748

/var/man/%L/entry.¬0–9|/*.bookname
used by man 422

.dbxinit
used by dbx 183

.dbxsetup
used by dbx 183

.exrc
used by vi 784

.profile 574

$HOME / .sh_history
used by fc, history, r 273

$HOME/.exrc
used by vi 784

$HOME/mbox
used by mailx 390

used by make 372

$MAILRC
used by mailx 390

$TMPDIR/pg*
used by pg 508

a.out
used by dbx 186

974 z/OS V1R9.0 UNIX System Services Command Reference

files (continued)
calendar 107

dead.letter
used by mail 370, 371

used by mailx 382

ed.hup
used by ed 253

extended attributes
displaying 271

HOME/.profile
used by tcsh login 627

used by the login shell 549

l.output
used by lex 344, 345

lex.yy.c
used by lex 345

liby.a
used by yacc 821

libyxp.a
used by yacc 821

MAILDIR
used by mailx 390

mailrc
used by mailx 384

MapName
used by automount 27

mbox
used by mail 371

used by mailx 373

pk$*
used by unpack 732

queuedefs
used by cron 168

remove old 586

rsh
used by the sh command 549

sh_history 574

terminfo.src
used by tic 698

y.output
used by yacc 821

y.tab.c
used by yacc 821

y.tab.h
used by yacc 821

Files section
description of 5

filex
/etc/rs

used by automount 26

filter
numbering lines in a file 453

passing small amounts to 246

filter out
repeated lines in a file 726

find 885

files that match specified criteria 281

group affiliation of invoking processes 311

identical lines within files 141

patterns, using regular expressions 885

spelling errors 594

find (continued)
strings, using regular expressions 885

user identity of invoking processes 311

find shell command 281

fixed records
converting from variable records 231

fixed to variable-record conversion 231

flag options syntax 809

flipr environment variable
used by mailx 380, 388

FLOAT
C/C++ programs 72

floating-point numbers 72

select format of floating-point numbers 72

floating-point registers
displaying values of 212

FNR built-in variable for awk 38

fold shell command 289

folder environment variable
used by mailx 377, 380, 388

for loop
exiting from, in a shell script 67

for shell subcommand 551

format files in paginated form 508

Format section
explanation of 1

formatted output
writing 514

forward retrieve function of OMVS command 859

FPATH environment variable
description of 571

fpath search 557

free space
displaying amount of 233

fullword
definition of, for vi 762

func subcommand for dbx command 199

function
changing 199

explanation of 59

listing 228

moving down the stack 197

moving up the stack 227

printing tracing information for 224

unsetting values and attributes of 732

function key
customizing settings for 858

deactivating 860

displaying current settings 864

list of defaults 861

setting
controlling display of 860

setting up
to control display of the function key settings 860

to enter subcommand mode 861

to enter TSO/E command mode 861

to return from subcommand mode to shell 861

to scroll data backward 861

turning off display of 864

function shell subcommand 557

fuser shell command 291

Index 975

FWDRETR function key for OMVS command 859

FWDRETR option of OMVS command 859

G
gencat shell command 292

preprocessing message source files for 424

general-purpose registers
displaying values of 212

generate
filenames 566

programs for lexical tasks 343

generate source dependency information
makedepend 413

get
configuration values 295

contents of archive files 165

messages 423

getconf shell command 295

getfacl shell command 299

getopts shell command 301

gid shell variable
description of 658

glob characters 566

glob patterns 566

gmacs 541

enabling, with the EDITOR environment

variable 570

GMT (Greenwich Mean time)
used by the TZ environment variable 931

GONUMBER
C/C++ programs 73

debugging 73

improved performance 73

gotoi subcommand for dbx command 200

Greenwich Mean Time (GMT)
used by the TZ environment variable 931

grep shell command 304

group
changing 450

setting 828

group affiliation
finding 311

returning 311

group owner
changing 122

setting 122

group recipe
explanation of 392

group shell variable
description of 658

GROUP tcsh environment variable
description of 669

H
HALFSCR function key for OMVS command 859

HALFSCR subcommand of OMVS command 864

hangup 576

hash shell command 306

head shell command 307

header environment variable
used by mailx 388

header line 374

HELP function key for OMVS command 860

help information
refreshing 860

scrolling
backward 859, 863

forward 859, 861, 863, 865

half a screen forward 859, 864

help subcommand for dbx command 200

HELP subcommand of OMVS command 864

here document 565

HFS
invoking

vfs_pfsctl HFS functions 145

mounting
from the shell 433

unmounting
from the shell 729

HFS (hierarchical file system) 459

hide
data entered on the shell command line 860, 864

OMVS command input area 859, 863

HIDE function key for OMVS command 860

HIDE subcommand of OMVS command 864

hierarchical file system (HFS)
browsing files in the

with the obrowse shell command 459

editing files
with the oedit shell command 463

hierarchical file system (z/OS UNIX)
running

C/MVS executable files from TSO/E

sessions 826

histchars shell variable
description of 658

histdup shell variable
description of 659

HISTFILE environment variable
description of 571

used by fc, history, r 273, 274

histfile shell variable
description of 659

histlit shell variable
description of 659

history
editing 577

history file
processing 273

truncating the 273

history list
displaying commands in a 200

processing for commands 273

history shell variable
description of 659

history storage file (sh_history) 574

history subcommand for dbx command 200

HISTSIZE environment variable
description of 571

used by fc, history, r 273, 274

976 z/OS V1R9.0 UNIX System Services Command Reference

hold buffer 534

hold environment variable
used by mailx 374, 388

home directory 571

HOME environment variable
description of 571

used by cd 112

used by crontab 172

used by mail 370

used by mailx 385

used by vi 781, 784, 785

home shell variable
description of 659

HOME tcsh environment variable
description of 669

HOME/.profile file
used by tcsh login 627

used by the login shell 549

HOST tcsh environment variable
description of 669

HOSTTYPE tcsh environment variable
description of 669

HPATH tcsh environment variable
description of 669

Huffman coding
compressing files with 465, 731

uncompressing files 504

hyphen
explanation of 1

I
iconv shell command 310

id shell command 311

identifier
displaying qualifications of 229

identifier (awk variable) 33

identify shell names 715

if shell subcommand 551

IFS environment variable
description of 571

used by read 524, 525

used by sh 551

ignore environment variable
used by mailx 373, 388

ignore subcommand for dbx command 201

ignoreeof shell variable
description of 659

ignoreof environment variable
used by mailx 388

illegal byte sequence
in DBCS strings 8

implicitcd shell variable
description of 659

improved debugging
GONUMBER 73

improved performance
XPLINK 80

in shell subcommand 555, 556

in/out file archives
copying 165

indent environment variable
used by mailx 388

indentprefix environment variable
used by mailx 383, 388

inetd daemon 313

handling of requests by uucpd 741

infocmp shell command 315

input
passing small amounts to filter or file 246

input file
concatenating lines 467

displaying 505

printing 361

input mode 374

inputmode shell variable
description of 659

insert mode 758

instruction
displaying 203

running 221

instruction register
displaying values of 212

interactive shell 550, 627

Interactive System Productivity Facility 459, 838

interactive text editor (vi) 758

intercept
abnormal conditions and interrupts 707

signals 707

interdependent file
maintaining 391

internal field separator 571

internationalization
explanation of 907

interpret
ASA/FORTRAN carriage control 21

interpret command names 790

Interprocedural Analysis (IPA) optimization
explanation of 78

interprocess communication facility status
reporting the 321

interrupt
trapping abnormal 707

invalid byte sequence
in DBCS strings 8

invoke
BPXBATCH

with OSHELL 871

editor 198

HFS functions 145

ISPF shell
with ISHELL 828

shell 549, 626

TSO/E command mode 865

utilities, ignoring the SIGHUP signal 457

z/OS shell 854

invokes
vfs_pfsctl HFS functions 145

IPA
enabling 77, 417

explanation of 77, 417

Index 977

IPA (Interprocedural Analysis) optimization
explanation of 78

ipcrm shell command 319

ipcs shell command 321

ISHELL TSO command 828

ISPF (Interactive System Productivity Facility)
browsing files

with the obrowse shell command 459

with the OBROWSE TSO/E command 838

editing files
with the oedit shell command 463

with the OEDIT TSO/E command 844

entering TSO/E commands from 825

invoking the shell
with ISHELL 828

italic typeface
explanation of 1, 2

J
JCL (job control language)

example of, using the BPXCOPY program 905

job
ending 331

moving
from background to foreground 275

to background 66

restarting a suspended 275

returning list of, in current session 327

running in background 66

scheduling background 171

waiting for it to end 788

jobs shell command 327

join shell command 328

join two databases 328

K
keep environment variable

used by mailx 388

keepsave environment variable
used by mailx 374, 389

key
sorting 590

keyboard 947

kill shell command 331

L
l.output file

used by lex 344, 345

LALR(1) grammar
converting 819

LANG environment variable 4, 907

description of 571

LANG tcsh environment variable
description of 669

large format data set
restriction in z/OS UNIX 11

last lines of file 615

LC_ALL environment variable 4, 907

LC_COLLATE environment variable 907

LC_CTYPE environment variable 907

LC_CTYPE tcsh environment variable
description of 669

LC_MESSAGES environment variable 4, 907

LC_MONETARY environment variable 907

LC_NUMERIC environment variable 907

LC_SYNTAX environment variable 907

LC_TIME environment variable 907

ld environment variable
_LD_ACCEPTABLE_RC 336

_LD_ASUFFIX 336

_LD_ASUFFIX_HOST 336

_LD_DAMPLEVEL 336

_LD_DAMPNAME 337

_LD_DCB80 337

_LD_DCBU 337

_LD_DEBUG_DUMP 337

_LD_DEBUG_TRACE 337

_LD_ENTRY_POINT 337

_LD_EXTRA_SYMBOL 337

_LD_LIBDIRS 338

_LD_NEW_DATACLAS 338

_LD_NEW_DSNTYPE 338

_LD_NEW_MGMTCLAS 338

_LD_NEW_SPACE 338

_LD_NEW_STORCLAS 338

_LD_NEW_UNIT 338

_LD_OPERANDS 338

_LD_OPTIONS 338

_LD_ORDER 338

_LD_OSUFFIX 338

_LD_OSUFFIX_HOST 338

_LD_SYSIX 339

_LD_SYSLIB 339

_LD_XSUFFIX 339

_LD_XSUFFIXHOST 339

ld shell command 334

environment variables 336

specifying 336

ld utility
starting the 334

Lempel-Ziv compression 167, 488

compressing data with 143

uncompressing data 724

let shell command 342

lex shell command 343

lex.yy.c file 345

lexical analyzer 343

lexical syntax
reading description of 343

lexical tasks
generating programs for 343

LIBPATH environment variable
description of 571

used by c89/cc/c++ 78

library
creating 14

maintaining 14

making 409

978 z/OS V1R9.0 UNIX System Services Command Reference

library of objects
displaying symbol table 455

liby.a file
used by yacc 821

libyxp.a file
used by yacc 821

Limits section
explanation of 6

line
breaking into shorter lines 289

changing next line to be displayed 204

numbering, in a file 453

reading from standard input 524

line editor (ex) 758

line shell command 346

LINENO environment variable
description of 571

lines
counting 789

LINES environment variable
description of 571

used by more 432

used by pg 505, 508

used by vi 783

LINES option of OMVS command 858

LINES tcsh environment variable
description of 669

link
creating, for files 348

link shell command 347, 348

link-edit
z/OS C and z/OS C++ object files 70

links
creating 347

list
active procedures and functions 228

file attributes 362

filenames 362

files in directories
with ISHELL 828

with OSHELL 871

instructions in program 203

process IDs 291

variables and their attributes 716

list mode 475

list subcommand for dbx command 201

listfiles subcommand for the dbx command 202

listflags shell variable
description of 660

listfuncs subcommand for dbx command 203

listi subcommand for dbx command 203

listjobs shell variable
description of 660

listlinks shell variable
description of 660

listmax shell variable
description of 660

listmaxrows shell variable
description of 660

load characteristics
displaying 204

local environment
defining 356

local spawn
BPXBATSL 826, 891

locale 4, 345

converting source definitions for categories 356

displaying information about 352

giving it control over a category 907

switching 9

locale shell command 352

localedef shell command 356

localization
categories of 907

explanation of 907

Localization section
explanation of 4

locate identical lines within files 141

LOCPATH environment variable
description of 571

log information
displaying about UUCP events 744

log messages 358

logger shell command 358

logging in 549, 626

login accounting information
storing 924

login information
displaying 791

login name
returning 360

login password
changing the 467

login shell
description of 549, 626

system profile for the 574

truncating history files 273

user profile for the 574

loginsh shell variable 660

LOGNAME environment variable
description of 571

used by crontab 172

used by logname 360

used by mailx 385

logname shell command 360

logout shell variable
description of 660

LookAt message retrieval tool xvii

loop
exiting from, in a shell script 67

skipping to the next iteration of a 150

lowercase
converting to uppercase 231

lowercase letters 1

lp shell command 361

LPDEST environment variable
used by lp 361, 362

lpstat shell command 362

ls
in a sysplex 367

ls shell command 362

Index 979

M
MACHTYPE tcsh environment variable

description of 669

macro definitions 394

macro modifiers 395

magic file format 912

used by the file command 276

magic number
#! 898

mail
reading 369

sending 369

sending and receiving 372

MAIL environment variable
used by mailx 386

mail shell command 369

mail shell variable
description of 660

MAILCHECK environment variable
description of 571

MAILDIR environment variable
used by mailx 386

MAILER environment variable
used by calendar 107

MAILPATH environment variable
description of 572

MAILRC environment variable
used by mailx 386

mailrc file
used by mailx 384

mailserv environment variable
used by mailx 389, 391

mailx environment variable
used by mailx 380

mailx shell command 372

maintain
library archives 14

program-generated and interdependent files 391

make
directories

for each named directory argument 426

with the MKDIR command 829

FIFO special files 427

libraries 409

make shell command 391

makedepend
generate source dependency information 413

makedepend shell command 413

makefile 394

contents of 397

MAKEFLAGS environment variable
used by make 407, 410

MAKESTARTUP environment variable
used by make 392, 408, 410

man page
displaying 420

man shell command 420

manipulate
dates 32

repeated lines 726

tar archive files 619

manipulation command (for vi) 760

MANPAGER environment variable
used by man 422, 423

MANPATH environment variable
description of 572

used by man 422

map subcommand for dbx command 204

MapName file
used by automount 27

mark name 762

master mode 736

match
strings of text in text file 885

matchbeep shell variable
description of 660

matching strings
searching for 304

MBOX environment variable
description of 572

mbox file
used by mail 371

used by mailx 373

memory
displaying 195

merge
corresponding or subsequent lines of files 467

mesg shell command 423

message
allowing 423

broadcasting a 789

header line 374

logging 358

receiving 423

refusing 423

sending to other users 793

message catalog
creating 292

displaying 243

displaying messages from 243

editing 292

modifying 292

piping from mkcatdefs to gencat 534

message queue
removing 319

message retrieval tool, LookAt xvii

message source file
preprocessing 424

metacharacter
used in regular expressions 885

metarules
used by make 399

metoo environment variable
used by mailx 389

mkcatdefs shell command 424

mkdir shell command 426

MKDIR TSO/E command 829

mkfifo shell command 427

MKNOD TSO/E command 830

mode
changing 124

command 374

980 z/OS V1R9.0 UNIX System Services Command Reference

mode (continued)
input 374

modification time 363

setting for destination files 154

modify
message catalogs 292

MORE environment variable
used by more 432

more shell command 429

creating tag files for the 176

mount
a file system 433

TFS file systems 832

z/OS UNIX file system 828, 832

mount attributes
changing

from the shell 127

mount mode
changing the 873

mount shell command 433

MOUNT TSO/E command 832

move
current function down the stack 197

current function up the stack 227

files 437

jobs from background to foreground 275

positional parameters 584

move subcommand for dbx command 204

movement commands (for vi) 760

MsgFile.h
mkcatdef output file 424

multihop name 737

multinode name 737

multiple volume support 167, 486

multiprocess debugging
enabling or disabling 205

multproc subcommand for dbx command 205

mutex object
display list of 223

displaying list of 206

mutex subcommand for dbx command 206

mv shell command 437

MVS (Multiple Virtual Storage)
batch environment

running shell scripts and z/OS C applications

under 891

running shell scripts, shell commands and z/OS C

applications under 826

copying
data sets into z/OS UNIX file system

directories 868

data sets into z/OS UNIX file system files 866

data sets to another member or file 839

sequential data sets into z/OS UNIX file system

directories 868

sequential data sets into z/OS UNIX file system

files 866

z/OS UNIX file system files to MVS data

sets 845

N
name of files

listing 362

name, user
displaying your 793

named pipe 429

Native Language System Report 652

newgrp shell command 450

newline
counting 789

next subcommand for dbx command 206

nexti subcommand for dbx command 207

NEXTSESS function key for OMVS command 860

NEXTSESS subcommand of OMVS command 864

NF built-in variable for awk 38

nice shell command 452

nickname
creating 11

nl shell command 453

NLSPATH environment variable 4

description of 572

nm shell command 455

NO function key for OMVS command 860

NOALARM function key for OMVS command 859

NOALARM option of OMVS command 854

NOALARM subcommand of OMVS command 864

NOAUTOMOVE 835

NOAUTOSCROLL function key for OMVS

command 859

NOAUTOSCROLL option of OMVS command 854

NOAUTOSCROLL subcommand of OMVS

command 864

nobeep shell variable
description of 661

noclobber shell variable
description of 661

NODBCS option of OMVS command 856

NOECHO function key for OVMS command 859

NOECHO option of OMVS command 857

NOECHO subcommand of OMVS command 864

nogob shell variable
description of 661

NOHIDE function key for OMVS command 860

NOHIDE subcommand of OMVS command 864

nohup shell command 457

nokanji shell variable
description of 661

nonfunctional commands 178

cancel 108

lpstat 362

nonomatch shell variable
description of 661

nonsupported commands
cu 178

nonzero exit code
returning 272

NOPFSHOW function key for OMVS command 860

NOPFSHOW option of OMVS command 862

NOPFSHOW subcommand of OMVS command 864

NOREBIND tcsh environment variable
description of 669

Index 981

NOSHAREAS option of OMVS command 862, 863

nostat shell variable
description of 661

Notices 949

notify shell variable
description of 661

NR built-in variable for awk 38

null command 140

number
lines in a file 453

O
object file

displaying the symbol table of an 455

loading for execution 207

managing 391

running with previous arguments 213

object library
displaying symbol table 455

object manipulator commands (for vi) 764

object subcommand for dbx command 207

obrowse shell command 458

OBROWSE TSO/E command 838

obtain
crontab entries 171

obtain options and their arguments 301

OCOPY TSO/E command 839

octal dump 459

od shell command 459

oedit shell command 463

OEDIT TSO/E command 844

OGET TSO/E command 845

OGETX TSO/E command 848

OHELP TSO/E command 852

OLDPWD environment variable
description of 572

used by cd 112

OMVS command
list of subcommands 863

OMVS command input area
hiding 863

hiding or unhiding 859

unhiding 864

OMVS interface
running commands from the shell using the 709

onehop environment variable
used by mailx 389, 391

online reference manual
printing entries 420

searching for entries 420

onload subcommand for dbx command 208

open file descriptors 260

OPEN function key for OMVS command 860

OPEN subcommand of OMVS command 864

OpenSSH xv

operator
control 556

description of 556

redirection 556

OPTARG environment variable
used by getopts 303

OPTIND environment variable
used by getopts 303

optional features 70

options
explanation of 1

obtaining from a list of parameters 301

order of 1

Options section
explanation of 3

OPUT TSO/E command 866

OPUTX TSO/E command 868

order of items on command line 3

order of options 1

OSHELL REXX exec 899

OSHELL TSO command 871

OSTYPE tcsh environment variable
description of 669

outfolder environment variable
used by mailx 389

output file
copying standard input to each 693

output stream
cloning 693

output tags file
used by ctags 177

used by uptime 734

output, formatted
writing 514

overlay commands 260

owd shell variable
description of 661

P
pack shell command 465

page environment variable
used by mailx 379, 389

pager environment variable
used by mailx 380

PAGER environment variable
used by man 422

paginated file
formatting 508

printing 508

parameter
positional

description of 559

setting 540

shifting 584

unsetting 540

special
description of 559

parameter substitution 559, 652

parent process
returning to the 262

parse
utility options 301

partitioned data set (PDS) 848

partitioned data set extended (PDSE) 848

982 z/OS V1R9.0 UNIX System Services Command Reference

pass
command to shell for execution 219

small amounts of input to filter or file 246

passwd shell command 467

password
changing the 467

paste shell command 467

patch shell command 469

PATH environment variable
description of 572

used by awk 46

used by crontab 172, 173

used by vi 785

path search 557

path shell variable
description of 661

PATH tcsh environment variable
description of 669

pathchk shell command 473

pathname
checking for validity and portability 473

displaying 523

returning
directory components of 241

nondirectory components of 48

pattern
finding, using regular expressions 885

rules for 555

searching 304

backward for a 188

forward for a 189

pattern buffer 534

pax file format 915

pax shell command 474

pcat shell command 504

PDS (partitioned data set)
copying

members from MVS to files 868

members to files 866

z/OS UNIX file system directories or file to a 848

PDSE (partitioned data set extended)
copying

members from MVS to files 868

members to files 866

z/OS UNIX file system directories or files to

a 848

performance
C/C++ programs

FLOAT 72

XPLINK 80

Perl xv

permission bits
of files, setting 903

permissions 366

PF keys
showing at the bottom of the screen 862

PFSHOW function key for OMVS command 860

PFSHOW option of OMVS command 862

PFSHOW subcommand of OMVS command 864

pg shell command 505

pipe
creating 552

output from mkcatdefs to gencat 534

piped file
displaying 505

pipeline 552

pk$* file
used by unpack 732

placeholder information in commands 2

Portability section
explanation of 6

positional parameter 584

POSIX.1 standard parameter names 295

POSIX.2 standard parameter names 297

PPID environment variable
description of 572

pr shell command 508

preprocess
message source files 424

prevent changes to values of the name argument 526

PREVSESS function key for OMVS command 860

PREVSESS subcommand of OMVS command 865

print
arguments 511

expression values 210

formatted output 514

input files 361

paginated files 508

sections of online reference manuals 420

terminal entries in the terminfo database 108

terminfo database entries 315

tracing information 224

print queue
requests

canceling 108

displaying status of 362

print shell command 511

print subcommand of for command 210

printenv shell command 513

printer
sending files to 361

PRINTER environment variable
used by lp 361, 362

printexitvalue shell variable
description of 661

printf shell command 514

priorities of running processes
changing 527

priority
running commands at a different 452

procedure
listing 228

printing tracing information for 224

process
changing priorities of running 527

displaying
status of 516

time accumulated 699

ending 331

returning
file-creation permission-code masks 721

Index 983

process (continued)
returning (continued)

status of 516

sending signals to 331

setting
file-creation permission-code masks 721

resource limits 719

process IDs
displaying 291

process list
returning 327

processes IDs 291

processing
awk programs 32

command history list 273

processor
displaying 698

processor time 699

program
continuing execution 193

from stopping point 219

continuing execution without dbx control 194

debugging 183

delaying execution of 585

deleting stops and traces from 194

displaying
declarations of components 227

instructions 203

load characteristics 204

generating, for lexical tasks 343

managing 391

printing tracing information 224

running
object files 214

program instructions 221

source lines 220

to next instruction 207

to next source line 206

until return is reached 213

with previous arguments 213

stopping
at a specific location 222

when certain conditions are met 221

writing printouts created by 21

program counter address
changing 200

program file
displaying

list of functions 203

program-generated file
maintaining 391

prompt
continuation 572

string 572

prompt environment variable
used by mailx 389

prompt shell variable
description of 665

prompt subcommand of for command 210

prompt2 shell variable
description of 661

prompt3 shell variable
description of 662

promptchars shell variable
description of 662

ps shell command 516

PS1 environment variable
description of 572

PS2 environment variable
description of 572

used by read 525

PS3 environment variable
description of 572

PS4 environment variable
description of 572

public directories (UUCP)
searching 747

publications
on CD-ROM xv

softcopy xv

pushdsilent shell variable
description of 662

pushdtohome shell variable
description of 662

PWD environment variable
description of 572

used by cd 112

pwd shell command 523

PWD tcsh environment variable
description of 669

Q
query

ASCII/EBCDIC code pages for the terminal 119

STREAM physical file system 149

queuedefs file
used by cron 168

queuedefs file format 921

quiet environment variable
used by mailx 389

quiet mode
turning on 759

quit
sessions

ending 860

shell sessions 860, 865

QUIT function key for OMVS command 860

QUIT subcommand of OMVS command 865

quit subcommand of the for command 210

QUITALL function key for OMVS command 860

QUITALL option of OMVS command 865

QUITALL subcommand of OMVS command 865

quoting 558

R
RACF (Resource Access Control Facility) 11

RANDOM environment variable
description of 572

read
archive files 474, 619

984 z/OS V1R9.0 UNIX System Services Command Reference

read (continued)
contents of UUCP configuration files 734

cpio archives 165

data 229

dbx subcommands from file 220

description of lexical syntax 343

electronic mail 372

lines from standard input 524

mail 369

read mode 475

read shell command 524

read/write lock objects
displaying list of 211

readonly shell command 526

readonly variable
used by vi 759, 777

readwritelock subcommand for dbx command 211

reason_code text
displaying 67

receive
electronic mail 372

messages 423

recexact shell variable
description of 662

recipe line
explanation of 392

recipes 398

explanation of 394

recognize_only_executables shell variable
description of 662

record environment variable
used by mailx 372, 378, 380, 389

record separator character 37

record subcommand for the dbx command 212

recovery daemon
for vi 267

redirection 3, 564

redirection operator 556

reenter commands 273

reentrancy 103

reference manual
online

printing entries 420

searching for entries 420

refresh
data 860

help information 860

REFRESH function key for OMVS command 860

refuse
messages 423

regexp 885

registers subcommand for dbx 212

regular expression 770

composition of 885

concatenating to form a larger regular

expression 887

examples 888

explanation of 885

features that apply to z/OS shell commands 888

matching 304

supported by awk 35

regular expression (continued)
used in vi 770

used to find patterns in files 885

used when finding strings in files 885

regular expression summary 770

reject lines common to two files 141

Related Information section
explanation of 6

remote site
running commands on 753

transferring data to 927

remote system
copying files to users on 752

remote systems
connecting to, with the uucico daemon 735

REMOTEHOST tcsh environment variable
description of 670

remount
specified file systems 873

remove
alias definitions 722

aliases 226

arguments 531

attributes of shell variables 732

attributes of variables and functions 732

breakpoints at addresses 192

crontab entries 172

directories 533

directory entries 531

duplicate files 726

files 531, 728

information from executable files 599

message queues 319

old files 586

reverse line feeds 139

semaphore sets 319

shared memory identifiers 319

stops from programs 192, 194

traces from program 194

trailing part of filenames 241

values of variables and functions 732

variables 226

remove ACLs
setfacl 544

removes
directory entries 728

rename files 437

renice shell command 527

replacement pattern summary 771

REPLY environment variable
used by read 525

replyall environment variable
used by mailx 389, 391

report
interprocess communication facility status 321

repeated lines in a file 726

request (file transfer)
processing, with the uucico daemon 735

rerun subcommand for dbx command 213

reset
ASCII/EBCDIC code pages for the terminal 119

Index 985

reset access time 166

Resource Access Control Facility (RACF) 11

restart suspended jobs 275

restricted shell 549, 550

restriction in z/OS UNIX
large format data set 11

retrieve
saved input lines by going backward 861

saved input lines by going forward 859

RETRIEVE function key for OMVS command 861

return
arguments from the shell 511

directory components of pathnames 241

file mode creation masks 721

from . (dot) scripts 529

from shell functions 529

from subcommand mode to shell session 865

group affiliation of invoking processes 311

list of jobs in current session 327

login names 360

nonzero exit codes 272

pathname of working directories 523

process status 516

to shell mode from TSO/3270 passthrough

mode 857

to the parent process 262

to TSO/E 262

user ID of person who entered commands 360

user identity of invoking processes 311

user’s terminal name 715

RETURN function key for OMVS command 861

return shell command 529

return subcommand for dbx command 213

return values of 0 709

reverse line feed
removing the 139

REXX
OSHELL 899

RLENGTH (awk built-in variable) 39

rlogin requests
handling 313

rlogind program 313, 529

rm shell command 531

rmdir shell command 533

rmstar shell variable
description of 662

root directory
changing 130

root file system
setting up directories for the 828

rprompt shell variable
description of 662

rsh file
description of 549

RSTART (awk built-in variable_ 39

run
C/MVS executable files

with the BPXBATCH command 826

with the BPXBATCH program 891

commands
after building an argument list 816

run (continued)
commands (continued)

at a different priority 452

at a specified time 22

at specified dates and times 168

on remote sites 753

simple 142

when system is not busy 49

with the exec command 260

debug programs 183

files, with the ISHELL command 828

files, with the OSHELL command 871

from TSO/E sessions
C/MVS executable files 826

shell commands 826

shell scripts 826

object files with previous arguments 213

program instructions 221

programs 214

shell commands
with the BPXBATCH command 826

shell scripts
with the BPXBATCH command 826

with the BPXBATCH program 891

simple commands 142

source lines 199, 220

run subcommand for dbx 214

runcat shell command 534

running processes
changing priorities of 527

runtime macros 395

S
save environment variable

used by mailx 389

save messages 358

saved input line
retrieving by going backward 861

retrieving by going forward 859

savedirs shell variable
description of 662

savehist shell variable
description of 662

SBCS mode
specifying the 856

scale value 52

sched tcsh shell variable
description of 662

schedule
background jobs 171

screen editor (vi) 758

screen environment variable
used by mailx 378, 389

scroll
automatic

controlling 859, 863, 864

data 865

data backward 859, 861, 863

data forward 859, 863

data half a screen forward 859, 864

986 z/OS V1R9.0 UNIX System Services Command Reference

scroll (continued)
help information backward 859, 863

help information forward 859, 861

help information half a screen forward 859

SCROLL function key for OMVS command 861

SCROLL subcommand of OMVS command 865

scrolling commands (for vi) 760

search
backward for patterns 188

directories 227

files for text strings 828, 871

for entries in online reference manuals 420

for strings 304

forward for patterns 189

given file hierarchies 281

public UUCP directories 747

search path 558, 790

search rules 558, 790

SECONDS environment variable
description of 572

sections
meaning of, in command descriptions 1

sed noninteractive stream editor
starting the 534

sed shell command 534

select format of floating-point numbers
FLOAT 72

select loop
exiting from, in a shell script 67

select shell subcommand 556

semaphore set
removing 319

send
electronic mail 372

files to printer 361

mail 369

messages
to other users 793

paginated files to printer 508

signals to processes 331

sendmail environment variable
used by mailx 389, 391

sendwait environment variable
used by mailx 390, 391

sequential data set
copying to files 866, 868

serviceability
C/C++ programs

GONUMBER 73

session
specifying number to be started 862

starting
in ex mode 758

in vi mode 758

switching
to the next higher-numbered one 860, 864

to the previous (lower-numbered) session 860,

865

SESSION option of OMVS command 862

session, returning list of jobs in 327

set
ASCII/EBCDIC code pages for the terminal 119

command options 540

commands to be run at a specified time 22

export attributes for variables 264

file mode creation masks 721

group owners 122

positional parameters 540

priorities of running processes 527

process limits 719

STREAM physical file system 149

terminal options 600

terminal tab stops 613

timezones with the TZ environment variable 931

set ACLs
setfacl 544

set option variables 779

set shell command 540

set subcommand for dbx command 214

set up
directories for the root file system 828

existing groups 828

existing users 828

special files in the /bin directory 828

setfacl shell command 544

sh shell command 549

rsh file 549

sh subcommand for dbx command 219

sh_history file 574

SHAREAS option of OMVS command 862, 863

shared file system
changing file system mount attributes 127

displaying amount of free space 233

mounting a file system 433

using df 235

using ls 367

shared memory identifier
removing 319

shedit shell command 577

shell 826

access to, giving users 828, 871

alias command, and the 11

archive 569

arguments
evaluating 258

returning 511

arrays 567

command lines 11

command syntax 551

commands 551

running from TSO/E sessions 826, 899

running from TSO/E sessions, with OSHELL 899

using extended regular expressions 885

using regular expressions 885

comments 551

displaying variables 716

editing
interactive 577

ending 262

entering TSO/E commands from 825

Index 987

shell (continued)
evaluating

arguments 258

expressions 140

execution environment 567

removing aliases from 722

expressions
evaluating 140

functions
returning from 529

giving TSO/E users access to 828, 871

identifying names 715

interpreting command names 790

invoking 549, 626

keywords 11

messages
displaying online 852

program
running in a separate address space 863

running in the TSO/E address space 863

removing attributes of shell variables 732

reserved word commands 552

returning
arguments from 511

functions 529

running
programs in a separate address space 863

programs in a TSO/E address space 863

TSO/E commands from the 709

scripts
exits from loops in a 67

running from TSO/E sessions, with

BPXBATCH 826

running from TSO/E sessions, with OSHELL 899

running, with the . (dot) command 242

running, with the BPXBATCH program 891

skipping to the next iteration of a loop 150

sessions 860

closing 859, 863

ending 865

returning from subcommand mode 865

starting 860, 864

variables
displaying 716

removing attributes of 732

rules for 567

z/OS UNIX
giving TSO/E users access to 871

z/OS UNIX System Services
giving TSO/E users access to 828

shell command
chmount 127

mount 433

skulker 586

unmount 729

shell command line
hiding data so secure data can be entered 860,

864

SHELL environment variable
description of 573

used by at 25

SHELL environment variable (continued)
used by awk 49

used by crontab 172

used by ed 253

used by mailx 381

used by make 410

used by vi 778, 785

shell mode
returning to, from TSO/3270 passthrough mode 857

shell pre-defined aliases
autoload 26

functions 290

history 308

integer 319

stop 597

suspend 612

shell tcsh shell variable
description of 662

shell variable
displaying

names of 540

values of 540

shift out
used in DBCS strings 8

shift positional parameters 584

shift shell command 584

SHLVL tcsh environment variable
description of 670

shlvl tcsh shell variable
description of 662

short circuit evaluation 36

shortcut keys 947

show
amount of free space on file system 233

arguments
of programs 190

attributes and contents of symlink 828, 871

currently exported variables 264

declaration of program components 227

differences between two files 236

elapsed time for a command 698

environment variables 257

file attributes 828, 871

first part of files 307

information about locales 352

instructions in program 203

lines common to two files 141

list of active program and functions 228

list of files
of module 202

memory 195

names of
shell variables 540

variables in procedures 197

online z/OS UNIX System Services

publications 852

pathname of working directories 523

process IDs 291

process status 516

processors 698

988 z/OS V1R9.0 UNIX System Services Command Reference

show (continued)
qualifications

of given identifiers 229

of symbols 229

status of print queues 362

system time accumulated by commands 699

terminal names 715

user time accumulated by the shell 699

values of
shell variables 540

variables in procedures 197

showto environment variable
used by mailx 390

SIGHUP signal
ignored when utility is invoked 457

sign environment variable
used by mailx 382, 390

Sign environment variable
used by mailx 390

signal
intercepting 707

sending to processes 331

trapping
starting 191

stopping 201

signal handling 652

simple command 556

singlebyte character set (SBCS)
when you must use 7

singlebyte characters
converting 310

site
transferring data to remote 927

skip subcommand for dbx 219

skip to the next iteration of a loop in a shell script 150

skulker shell command 586

slave mode 736

sleep shell command 585

socket
identifying file types 365

sort
files

in topological order 714

sort shell command 588

sort-merge utility
starting the 588

sorted files
locating 141

sorting keys 590

sound
3270 alarms 854, 859, 863

source definitions
converting for locale categories 356

source dependency information
makedepend 413

source file
changing 199

displaying
instructions in a 203

specific number of lines 201

managing 391

source line
printing tracing information for 224

removing stops from 192

running 199, 220

specifying 199

source subcommand for dbx 220

SourceFile
mkcatdefs message file 424

space
compressing into tabs 725

expanding tabs to 263

special built-in commands 568

special built-in shell commands
. (dot) 242

break 67

colon. 140

continue 150

dot (.) 242

eval 258

exec 260

export 264

readonly 526

return 529

set 540

shell 262

shift 584

trap 707

unset 732

special file
creating a FIFO 429

manipulating 828, 872

special parameter
description of 559

special target directives 404

specify
character conversion tables 854

command lines for another command 260

escape characters 858

number of sessions to be started 862

source lines 199

that OMVS operate in DBCS mode 856

that OMVS operate in SBCS mode 856

that PF keys be shown at the bottom of the

screen 862

z/OS UNIX character conversion table 854

spell shell command 594

spelling errors
looking for 594

split
files 596

text file 173

split output stream 693

split shell command 596

spool directory
/usr/spool/uucp 926

standard environment variables (stdenv)
allocating as files for passing input

using the BPXBATCH command 826

using the BPXBATCH program 892

Index 989

standard error (stderr)
allocating as files for passing input

using the BPXBATCH command 826

using the BPXBATCH program 892

standard input (stdin)
allocating as files for passing input 826

using the BPXBATCH command 826

using the BPXBATCH program 892

closing 566

copying
data read from 704

to each output file 693

copying one line of 346

explanation of 3

reading 110

reading lines from 524

standard output (stdout)
allocating as files for passing input

using the BPXBATCH command 826

using the BPXBATCH program 892

closing 566

copying standard output to each 693

dumping file to 459

explanation of 3

reading lines from 524

sending paginated files to 508

writing
arguments to 246, 514

configuration values to 295

start
ld utility 334

pending UUCP transfers 749

sessions
in ex mode 758

in vi mode 758

shell sessions 860, 864

sort-merge utility 588

statement
explanation of 42

status
displaying 516

of pending UUCP transfers 749

of print queues
displaying 362

status reporting 651

status subcommand for dbx command 220

status tcsh shell variable
description of 662

stdenv (standard environment variables)
allocating as files for passing input 826

using the BPXBATCH command 826

using the BPXBATCH program 892

stderr (standard error)
allocating as files for passing input

using the BPXBATCH command 826

using the BPXBATCH program 892

stdin (standard input)
allocating as files for passing input

using the BPXBATCH command 826

using the BPXBATCH program 892

closing 566

stdin (standard input) (continued)
copying

data read from 704

standard output to each 693

copying one line of 346

explanation of 3

reading 110

reading lines from 524

stdout (standard output)
allocating as files for passing input

using the BPXBATCH command 826

using the BPXBATCH program 892

closing 566

copying standard input to each 693

dumping file to 459

explanation of 3

sending paginated files to 508

writing
arguments to 246

configuration values to 295

writing arguments to 514

step subcommand for dbx command 220

stepi subcommand for dbx command 221

STEPLIB environment variable
description of 573

sticky bit 126

stop
dbx debug session 210

pending UUCP transfers 749

program at a specific location 222

program execution 221

removing from program 194

removing from source lines 192

shell 262

stop subcommand for dbx command 221

displaying 220

stopi subcommand for dbx command 222

STREAM physical file system
set and query

configstrm shell command 149

string
displaying in a binary file 598

finding, in text files 885

searching for 304

strings shell command 598

strip shell command 599

stty shell command 600

stub commands
cancel 108

cu 178

explanation of 909

lpstat 362

su shell command 607

SUBCOMMAND function key for OMVS command 861

subcommand mode
setting up

function key to enter 861

setting up function key to return from 861

submit
batch jobs

using the BPXBATCH command 826

990 z/OS V1R9.0 UNIX System Services Command Reference

submit (continued)
z/OS batch jobs that run shell commands

using the BPXBATCH command 826

subscript-in-array condition 35

substitute
commands 563

directories 559

suffix 851

sum shell command 611

summarize
use of file space 244

suppress command numbers 274

suspend program execution 585

swap bytes 167

switch
locales 9

to the next higher-numbered session 860, 864

to the previous (lower-numbered) session 860, 865

symbol
changing interpretation of 191

displaying qualifications of 229

symbol table
displaying the 455

symbol table used in awk 35

symbolic link
ln 349

symbolic link (symlink)
displaying attributes and contents of 828

symbolic links
SYMLINK

linkname 902

SYMPATH 902

symlink
displaying attributes and contents of 828, 871

symlinks tcsh shell variable
description of 667

SYMTAB symbol table 35

synopsis of dbx commands
displaying 200

syntax
explanation of 1

syntax, lexical
reading description of 343

SYSEXEC environment variable
used by tso 711

sysplex
moving file systems in a sysplex 835

unmounting a file system 729

SYSPROC environment variable
used by tso 711

SYSROOT 875

dummy file system 836

system
calling up 178

connection to 178

system control registers
displaying values of 212

system files 694

sysvar shell command 613

T
tab

compressing from spaces 725

expanding to spaces 263

tab stop
setting 613

tabs shell command 613

tag files
creating 176

tags file format 922

tail shell command 615

talk
to another user 616

talk shell command 616

tape archive 619

tar archive files
manipulating 619

tar file format 922

tar shell command 619

target 393

tcsh
command execution 645

command syntax 636

signal handling 652

tcsh environment variable
_TAG_REDIR_ERR=BIN

description of 670

_TAG_REDIR_ERR=TXT
description of 670

_TAG_REDIR_IN=BIN
description of 670

_TAG_REDIR_IN=TXT
description of 670

_TAG_REDIR_OU =TXT
description of 670

_TAG_REDIR_OUT=BIN
description of 670

COLUMNS
description of 669

DISPLAY
description of 669

EDITOR
description of 669

GROUP
description of 669

HOME
description of 669

HOST
description of 669

HOSTTYPE
description of 669

HPATH
description of 669

LANG
description of 669

LC_CTYPE
description of 669

LINES
description of 669

MACHTYPE
description of 669

Index 991

tcsh environment variable (continued)
NOREBIND

description of 669

OSTYPE
description of 669

PATH
description of 669

PWD
description of 669

REMOTEHOST
description of 670

SHLVL
description of 670

TERM
description of 670

USER
description of 670

VENDOR
description of 670

VISUAL
description of 670

tcsh files 671

tcsh shell
@ (at) shell command 673

alias shell command 11

automatic, periodic, and timed events 651

bg shell command 66

break shell command 67

cd shell command 111

colon (:) shell command 140

echo shell command 246

eval shell command 258

exec shell command 260

exit shell command 262

features 647

fg shell command 275

history shell command 308

jobs shell command 328

kill shell command 331

ls–F shell command 685

Native Language System Report 652

newgrp shell command 451

nice shell command 452

nohup shell command 458

printenv shell command 513

problems and limitations 671

set shell command 540

shift shell command 584

status reporting 651

stop shell command 597

substitutions 637

suspend shell command 612

time shell command 698

umask shell command 721

unalias shell command 722

unset shell command 733

wait shell command 788

tcsh shell command 626

alloc 674

bindkey 674

builtins 675

tcsh shell variable
ampm

description of 656

argv
description of 656

autocorrect
description of 656

autoexpand
description of 656

autolist
description of 656

autologout
description of 656

backslash
description of 656

cdpath
description of 656

command
description of 656

complete
description of 656

correct
description of 657

cwd
description of 657

dextract
description of 657

dirsfile
description of 657

dirstack
description of 657

dunique
description of 657

echo
description of 657

echo_style
description of 658

edit
description of 658

fignore
description of 658

filec
description of 658

gid
description of 658

group
description of 658

histchars
description of 658

histdup
description of 659

histfile
description of 659

histlit
description of 659

history
description of 659

home
description of 659

ignoreeof
description of 659

992 z/OS V1R9.0 UNIX System Services Command Reference

tcsh shell variable (continued)
implicitcd

description of 659

inputmode
description of 659

listflags
description of 660

listjobs
description of 660

listlinks
description of 660

listmax
description of 660

listmaxrows
description of 660

loginsh
description of 660

logout
description of 660

mail
description of 660

matchbeep
description of 660

nobeep
description of 661

noclobber
description of 661

noglob
description of 661

nokanji
description of 661

nonomatch
description of 661

nostat
description of 661

notify
description of 661

owd
description of 661

path
description of 661

printexitvalue
description of 661

prompt
description of 665

prompt2
description of 661

prompt3
description of 662

promptchars
description of 662

pushdsilent
description of 662

pushdtohome
description of 662

recexact
description of 662

recognize_only_executables
description of 662

rmstar
description of 662

tcsh shell variable (continued)
rprompt

description of 662

savedirs
description of 662

savehist
description of 662

sched
description of 662

shell
description of 662

shlvl
description of 662

status
description of 662

symlinks
description of 667

tcsh
description of 658, 663

term
description of 663

time
description of 668

tperiod
description of 663

tty
description of 663

uid
description of 663

user
description of 663

verbose
description of 663

version
description of 664

visiblebell
description of 664

watch
description of 665

who
description of 665

wordchars
description of 665

tcsh tcsh shell variable
description of 663

tee shell command 693

template for commands 816

temporary files 255

/tmp/sh*
description of 574

remove 586

TERM environment variable
used by at 137

used by more 432

used by TABS 614

used by talk 617

used by touch 704

used by vi 759, 783, 785

TERM tcsh environment variable
description of 670

Index 993

term tcsh shell variable
description of 663

terminal
changing characteristics of 703

sending messages to a 793

setting, resetting, or querying ASCII/EBCDIC code

pages 119

terminal entry
printing 108

terminal name
displaying 715

terminal options
displaying 600

setting 600

terminal tab stop
setting 613

terminfo database
printing terminal entries in the 108

terminfo database entries
comparing 315

compiling 697

printing 315

terminfo environment variable 698

TERMINFO environment variable
used by tabs 614

used by talk 617, 704

used by vi 785

terminfo.src file
used by tic 698

test condition 694

test shell command 694

text editor
ex 259

using the 247

vi 758

text file
comparing two 235, 236

concatenating 110

counting items in 789

displaying 110

finding information in 32

finding strings in 885

retrieving information from 32

showing differences between two 236

splitting 173

text insertion commands (for vi) 760

text insertion commands (vi command) 766

TFS file systems
unmounting 875

then shell subcommand 556

then statement
using null shell statement 140

thread
displaying information about 223

thread subcommand for dbx command 223

tic shell command 697

time
displaying 180

time program 698

time sharing option extensions 825

time shell command 698

time tcsh shell variable
description of 668

time zone
setting, with the TZ environment variable 931

times shell command 699

TMOUT environment variable
description of 573

TMP environment variable
used by exrecover 268

TMP_VI environment variable
used by exrecover 267

used by vi 785

TMPDIR environment variable
description of 573

used by ar 16

used by ed 253

used by exrecover 268

used by man 422

used by pg 508

used by sort 591

used by vi 785

token
description of 556

TOP function key for OMVS command 861

TOP subcommand of OMVS command 865

toplines environment variable
used by mailx 381, 390

topological sort 714

touch shell command 700

tperiod tcsh shell variable
description of 663

tput shell command 703

tr shell command 704

trace
removing from program 194

trace subcommand for dbx command 224

displaying 220

tracei subcommand for dbx command 225

tracing
turning on 225

tracing information
printing 224

tracked alias 558

creating a 306

transfers, UUCP
displaying status of pending 749

translate characters 704

trap
abnormal conditions and interrupts 707

signals
starting 191

stopping 201

trap shell command 707

true shell command 709

TSO function key for OMVS command 861

tso shell command 709

TSO subcommand of OMVS command 865

TSO/3270 passthrough mode
returning to shell mode 857

994 z/OS V1R9.0 UNIX System Services Command Reference

TSO/E (Time Sharing Option Extensions)
command mode

invoking the 865

commands
ISHELL 828

MKDIR 829

MKNOD 830

MOUNT 832

OBROWSE 838

OCOPY 839

OEDIT 844

OGET 845

OGETX 848

OHELP 852

OMVS 854

OPUT 866

OPUTX 868

OSHELL 871

OSTEPLIB 872

UNMOUNT 873

entering commands from 825

giving users access to z/OS UNIX System Services

and shell 828, 871

invoking BPXBATCH from the 871

returning to the 262

running
C/MVS executable files 826

commands from the shell using the 709

shell commands 826

shell scripts 826

setting up function key to enter mode 861

TSOALLOC environment variable
used by tso 711

tsoout environment variable
used by tso 711

TSOPREFIX environment variable
used by tso 711

TSOPROFILE environment variable
used by tso 711

tsort shell command 714

tty shell command 715

tty tcsh shell variable
description of 663

turn off
automatic scrolling 864

type shell command 715

typeset shell command 716

TZ environment variable
description of 573

setting timezones with the 931

used by at 25

used by cron 169

used by crontab 173

used by date 182

used by ls 367

used by mail 370

used by pr 510

used by touch 701

used by uulog 745

used by uustat 751

U
uid tcsh shell variable

description of 663

ulimit shell command 719

umask shell command 721

unalias shell command 722

unalias subcommand for dbx command 226

uname shell command 723

uncompress
data 823

Huffman-coded files 504

uncompress shell command 724

underscore (_) variable
description of 570

undo change 252

unexpand shell command 725

unhide
data entered on the shell command line 864

OMVS command input area 859, 864

uniq shell command 726

unique lines 726

Universal Time Coordinated (UTC)
used by the TZ environment variable 931

UNIX C shell 626

unlink shell command 728

unmount
a file system 729

TFS file systems 875

z/OS UNIX file system 875

UNMOUNT 835

unmount shell command 729

UNMOUNT TSO/E command 873

unmount z/OS UNIX file system 828

unpack shell command 731

unprintable characters
displaying 110

unset
attributes of variables and functions 732

command options 540

positional parameters 540

values of variables and functions 732

unset shell command 732

unset subcommand for dbx command 226

until loop
exiting from, in a shell script 67

until shell subcommand 556

up subcommand for dbx command 227

update
data 860

uppercase
converting to lowercase 231

uppercase letters 1

uptime shell command 734

Usage Notes section
explanation of 6

use subcommand for dbx command 227

user
sending messages to a 793

setting up 828

talking to another user 616

Index 995

user ID
changing to superuser 607

user ID (UID)
returning 360

setting to owner 129

user identity
finding 311

returning 311

user name
displaying your 793

USER tcsh environment variable
description of 670

user tcsh shell variable
description of 663

users
displaying information about current 791

usrspooluucp spool 926

usrspooluucpsouth 926

usrspooluucpxq 754

usrspooluucpxq/usr/spool/uucp/ 754

UTC (Universal Time Coordinated)
used by the TZ environment variable 931

utility
invoking, while ignoring the SIGHUP signal 457

parsing options 301

utmpx file format 924

uucc shell command 734

uucico daemon 735

UUCP
configuration file

/usr/lib/uucp/config 736

reading contents of 734

copying files between systems 737

debug file
/usr/spool/uucp/LOGFILE 736

displaying
list of systems 746

status of transfers 749

events
displaying 744

lock file
/usr/spool/locks 737

searching public directories 747

spool directory (/usr/spool/uucp) 926

status file
/usr/spool/uucp/.Status 737

transfers
displaying status of 749

starting or stopping 749

validating requests by the uucpd program 741

working files
command 925

data 925

execute 925

UUCP file transfer daemon 735

uucp shell command 737

processing file transfer requests 735

uucpd daemon
handling of uucp requests 741

uudecode shell command 742

uuencode shell command 743

uulog shell command 744

uuname shell command 746

uupick shell command 747

uustat shell command 749

uuto shell command 752

uux shell command 753

processing file transfer requests 735

uuxqt daemon 756

uuxqt shell command
/usr/spool/uucp/.Xqtdir directory 754

V
value

defining, for dbx variables 214

displaying, for registers 212

variable
assigning

attributes and variables to 716

values to 190

attributes 716

bc command, for the 52

built-in, for the bc shell command 52

condition
displaying list of 193

deleting 226

description of 560

displaying
currently exported variables 264

list of 716

names of variables in procedures 197

values of variables in procedures 197

environment
displaying 257

listing their attributes 716

parameters used by shell 559, 652

printing tracing information 224

readonly
used by vi 759, 777

setting export attributes 264

unsetting values and attributes of 732

used in awk 33

variable records
converting to fixed records 231

variable to fixed-record conversion 231

VENDOR tcsh environment variable
description of 670

verbose tcsh shell variable
description of 663

version tcsh shell variable
description of 664

vi command
editor initialization 784

entering ex command mode 769

file recovery daemon for 267

fullword
definition of 762

regular expressions 770

scrolling commands 760

set option variables 779

996 z/OS V1R9.0 UNIX System Services Command Reference

vi command (continued)
word

definition of 762

vi file recovery daemon 267

vi mode
absolute movement commands 760

list of 761

command summary 760

context-dependent movement commands 760

current position pointer 759

display conventions 759

manipulation commands 760

object manipulator commands 764

scrolling commands 760

starting session in 758

text insertion commands 760, 766

vi shell command
command mode 758

creating tag files for the 176

insert mode 758

starting sessions in vi mode 758

vi text editor
using the line-editor mode 259

visiblebell tcsh shell variable
description of 664

VISUAL environment variable
description of 573

used by mailx 382, 383

used by shedit 577

VISUAL tcsh environment variable
description of 670

W
wait

for child process to end 788

for jobs to end 788

wait shell command 788

wall shell command 789

watch tcsh shell variable
description of 665

wc shell command 789

whatis subcommand for dbx command 227

whence shell command 790

where subcommand for dbx command 228

whereis subcommand for the dbx command 229

which subcommand for the dbx command 229

while loop
exiting from, in a shell script 67

while shell subcommand 551, 556

who shell command 791

who tcsh shell variable
description of 665

whoami shell command 793

wildcard characters 566

within-rule circular dependency 398

word
counting 789

definition of, for vi 762

description of 556

wordchars tcsh shell variable
description of 665

words
misspelled

looking for 594

working directory
changing

to directory 111

to previous working directory 112

displaying pathname of the 523

setting to value of the HOME environment

variable 112

working files
format of UUCP 925

WRAPDEBUG option of OMVS command 863

write
archive files 474, 619

arguments to standard output 246

checksum for each input file
with the cksum command 135

with the sum command 611

configuration values to standard output 295

cpio archives 165

data 229

debugging information 856

formatted output 514

number of bytes in each input file
with the cksum command 135

with the sum command 611

printouts created by programs 21

to other users 793

write mode 475

write shell command 793

X
xargs shell command 816

xlc 797

xlC 797

xlC shell command 815

xlc utility 796

xlc_64 797

xlC_64 797

xlc_x 797

xlC_x 797

xlc/xlC shell command
environment variables 799

specifying
system and operational information to

xlc/xlC 799

xlc++ 797

xlc++ shell command 816

xlc++_64 797

xlc++_x 797

XPLINK
C/C++ programs 80

extra performance linkages 80

improved performance 80

xtrace 717

Xvfb xv

Index 997

Y
y.output file

used by yacc 821

y.tab.c file
used by yacck 821

y.tab.h file
used by yacc 821

yacc compiler
using the 819

yacc shell command 819

YYDEBUG option 820

Z
z/OS

submitting batch jobs
using the BPXBATCH command 826

z/OS C and z/OS C++ source files
using the c89 command to compile, assemble, and

link-edit 70

z/OS UNIX file system 838

browsing files in the 838

copying
between two files 839

data sets into MVS data sets 845

directories to PDS or PDSE 848

files to PDS or PDSE 848

MVS data set members 866, 868

creating 828

editing files
with the OEDIT TSO/E command 844

mounting 828, 832

TFS file systems 832

unmounting 828, 875

z/OS UNIX Shell Commands 943

z/OS UNIX System Services
displaying publications online 852

giving TSO/E users access to 828, 871

invoking the shell 854

managing functions with the ISPF shell
with ISHELL 828

publications
on CD-ROM xv

softcopy xv

setting up functions with the ISPF shell
with ISHELL 828

zcat shell command 823

998 z/OS V1R9.0 UNIX System Services Command Reference

Readers’ Comments — We’d Like to Hear from You

z/OS

UNIX System Services

Command Reference

 Publication No. SA22-7802-09

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SA22-7802-09

SA22-7802-09

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

MHVRCFS, Mail Station P181

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in USA

SA22-7802-09

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Finding more information about other products
	Where to find more information

	Summary of changes
	Chapter 1. Introduction to shell commands and DBCS
	Reading the command descriptions
	Format
	Description
	Options
	Examples
	Environment variables
	Localization
	Files
	Usage notes
	Exit values
	Limits
	Portability
	Caution
	Related information

	Using the doublebyte character set (DBCS)
	Requirements for using DBCS
	When you must use SBCS and not DBCS characters
	When you can use DBCS characters
	Byte sequences that are not permitted in DBCS strings
	Displaying DBCS characters
	Switching locales
	Problems with filenames containing DBCS characters

	Chapter 2. Shell command descriptions
	alias — Display or create a command alias
	Format
	Description
	Options
	Example
	Localization
	Usage notes
	Exit values
	Portability
	Related information

	ar — Create or maintain library archives
	Format
	Description
	Options
	Operands
	Examples
	Environment variables
	Localization
	Files
	Usage note
	Exit values
	Portability
	Related information

	as — Use the HLASM assembler to produce object files
	Format
	Description
	Options

	asa — Interpret ASA/FORTRAN carriage control
	Format
	Description
	Localization
	Exit values
	Portability

	at — Run a command at a specified time
	Format
	Description
	Options
	Environment variables
	Usage note
	Localization
	Exit values
	Portability
	Related information

	autoload — Indicate function name not defined
	Format
	Description
	Related information

	automount — Configure the automount facility
	Format
	Description
	Options
	Examples
	Files
	Usage notes
	Related information

	awk — Process programs written in the awk language
	Format
	Description
	Options
	Examples
	Environment variables
	Localization
	Exit values
	Limits
	Portability
	Related information

	basename — Return the nondirectory components of a pathname
	Format
	Description
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	batch — Run commands when the system is not busy
	Format
	Description
	Environment Variables
	Localization
	Exit Values
	Portability
	Related Information

	bc — Use the arbitrary-precision arithmetic calculation language
	Format
	Description
	Options
	Numbers
	Identifiers
	Built-in Variables
	Scale
	Bases
	Arithmetic Operations
	Comments and White Space
	Instructions
	Functions
	Built-in Functions
	Examples
	Usage notes
	Files
	Localization
	Exit Values
	Limits
	Portability

	bg — Move a job to the background
	Format
	Description
	Usage Note
	Exit Values
	Portability
	Related Information

	bpxmtext — Display reason code text
	Format
	Description
	Usage notes
	Examples
	Exit values

	break — Exit from a loop in a shell script
	Format
	Description
	Localization
	Usage Note
	Exit Value
	Portability
	Related Information

	c++ — Compile, link-edit and assemble C and C++ source code and create an executable file on z/OS
	c89 — Compiler invocation using host environment variables
	Format
	Description
	Options
	Operands
	Environment variables
	Files
	Usage notes
	Localization
	Exit values
	Portability
	Related information

	c99 — Compile, link-edit and assemble C source code and create an executable file on z/OS
	cal — Display a calendar for a month or year
	Format
	Description
	Localization
	Usage Note
	Exit Values
	Portability

	calendar — Display all current appointments
	Format
	Description
	Options
	Examples
	Environment Variable
	Files
	Localization
	Exit Values
	Portability
	Related Information

	cancel — Cancel print queue requests (stub command)
	Format
	Description

	captoinfo — Print the terminal entries in the terminfo database
	Format
	Description
	Options
	Examples
	Related Information

	cat — Concatenate or display text files
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	cc — Compile, link-edit and assemble C source code and create an executable file on z/OS
	cd — Change the working directory
	Format
	Description
	Environment Variables
	Localization
	Usage Note
	Exit Values
	Messages
	Portability
	Related Information

	ceebldtx — Transform message source files into assembler source files
	Format
	Description
	Operands
	Options
	Examples
	Exit values

	chaudit — Change audit flags for a file
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	chcp — Set or query ASCII/EBCDIC code pages for the terminal
	Format
	Description
	Options
	Examples
	Usage notes
	Localization
	Exit Values
	Portability
	Related Information

	chgrp — Change the group owner of a file or directory
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	chlabel — Set the multilevel security label of files and directories
	Format
	Description
	Options
	Usage notes
	Exit Values
	Examples

	chmod — Change the mode of a file or directory
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	chmount — Change the mount attributes of a file system
	Format
	Description
	Options
	Example
	Usage Note
	Exit Values
	Related Information

	chown — Change the owner or group of a file or directory
	Format
	Description
	Options
	Localization
	Exit Values
	Message
	Portability
	Related Information

	chroot — Change the root directory for the execution of a command
	Format
	Description
	Examples
	Exit Values

	chtag — Change file tag information
	Format
	Description
	Options
	Examples
	Usage notes
	Exit Values
	Related Information

	cksum — Calculate and write checksums and byte counts
	Format
	Description
	Options
	File Tag Specific Options
	Localization
	Exit Values
	Portability
	Related Information

	clear — Clear the screen of all previous output
	Format
	Description
	Localization
	Environment Variables
	Exit Values
	Related Information

	cmp — Compare two files
	Format
	Description
	Options
	File Tag Specific Options
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	col — Remove reverse line feeds
	Format
	Description
	Options
	Localization
	Usage notes
	Exit Values
	Portability

	: (colon) — Do nothing, successfully
	Format
	Description
	Example
	Usage notes
	Localization
	Exit Values
	Portability
	Related Information

	comm — Show and select or reject lines common to two files
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	command — Run a simple command
	Format
	Description
	Options
	Example
	Localization
	Usage Note
	Exit Values
	Portability
	Related Information

	compress — Lempel-Ziv file compression
	Format
	Description
	Options
	Localization
	Exit Values
	Limits
	Portability
	Related Information

	confighfs — Invoke the vfs_pfsctl function for HFS file systems
	Format
	Description
	Options
	Examples
	Usage notes

	configstk — Configure the AF_UEINT stack
	Format
	Description
	Option
	Files
	Syntax for Configuration Files
	Examples

	configstrm — Set and query the STREAMS physical file system configuration
	Format
	Description
	Options
	Usage notes
	Example

	continue — Skip to the next iteration of a loop in a shell script
	Format
	Description
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	copytree — Make a copy of a file hierarchy while preserving all file attributes
	Format
	Description
	Options
	Exit Values
	Related information

	cp — Copy a file
	Format
	Description
	Options
	Limits and Requirements
	Usage notes
	Examples
	Environment Variables
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	cpio — Copy in/out file archives
	Format
	Description
	Options
	Usage notes
	Localization
	Exit Values
	Portability
	Related Information

	cron daemon — Run commands at specified dates and times
	Format
	Description
	Files
	Related Information

	crontab — Schedule regular background jobs
	Format
	Description
	Options
	Environment Variables
	Localization
	Exit Values
	Portability
	Related Information

	csplit — Split text files
	Format
	Description
	Options
	Splitting Criteria
	Localization
	Exit Values
	Portability
	Related Information

	ctags — Create tag files for ex, more, and vi
	Format
	Description
	Options
	Localization
	Files
	Usage notes
	Exit Values
	Portability
	Related Information

	cu — Call up another system (stub only)
	Format
	Description

	cut — Cut out selected fields from each line of a file
	Format
	Description
	Options
	Example
	Localization
	Exit Values
	Portability
	Related Information

	cxx — Compile, link-edit and assemble z/OS C and z/OS C++ source code and create an executable file
	date — Display the date and time
	Format
	Description
	Options
	Example
	Environment Variable
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	dbx — Use the debugger
	Format
	Description
	Attach-types
	Options
	Expression Handling
	Files
	Examples
	Related Information

	dbx subcommands
	? subcommand for dbx: Search backward for a pattern
	/ subcommand for dbx: Search forward for a pattern
	alias subcommand for dbx: Display and assign subcommand aliases
	args subcommand for dbx: Display program arguments
	assign subcommand for dbx: Assign a value to a variable
	case subcommand for dbx: Change how dbx interprets symbols
	catch subcommand for dbx: Start trapping a signal
	clear subcommand for dbx: Remove all stops at a given source line
	cleari subcommand for dbx: Remove all breakpoints at an address
	condition subcommand for dbx: Display a list of active condition variables
	cont subcommand for dbx: Continue program execution
	delete subcommand for dbx: Remove traces and stops
	detach subcommand for dbx: Continue program execution without dbx control
	display memory subcommand for dbx: Display the contents of memory
	down subcommand for dbx: Move the current function down the stack
	dump subcommand for dbx: Display the names and values of variables in a procedure
	edit subcommand for dbx: Invoke an editor
	file subcommand for dbx: Change the current source file
	func subcommand for dbx: Change the current function
	goto subcommand for dbx: Run a specified source line
	gotoi subcommand for dbx: Change the program counter address
	help subcommand for dbx: Display a subcommand synopsis
	history subcommand for dbx: Display commands in a history list
	ignore subcommand for dbx: Stop trapping a signal
	list subcommand for dbx: Display lines of the current source file
	listfiles subcommand for dbx: Display the list of source files
	listfuncs subcommand for dbx: Display the list of functions
	listi subcommand for dbx: List instructions from the program
	map subcommand for dbx: Display load characteristics
	move subcommand for dbx: Display or change the next line to be shown with the list command
	multproc subcommand for dbx: Enable or disable multiprocess debugging
	mutex subcommand for dbx: Display a list of active mutex objects
	next subcommand for dbx: Run the program up to the next source line
	nexti subcommand for dbx: Run the program up to the next machine instruction
	object subcommand for dbx: Load an object file
	onload subcommand for dbx: Evaluate stop/trace after dll load
	plugin subcommand for dbx: Pass the specified command to the plug-in parameter
	pluginload subcommand for dbx: Load the specified plug-in
	pluginunload subcommand for dbx: Unload the specified plug-in
	print subcommand for dbx: Print the value of an expression
	prompt subcommand for dbx: Change the dbx command prompt
	quit subcommand for dbx: End the dbx debugging session
	readwritelock subcommand for dbx: Display a list of active read/write lock objects
	record subcommand for dbx: Append user's commands to a file
	registers subcommand for dbx: Display the value of registers
	rerun subcommand for dbx: Begin running a program with the previous arguments
	return subcommand for dbx: Continue running a program until a return is reached
	run subcommand for dbx: Run a program
	set subcommand for dbx: Define a value for a dbx variable
	sh subcommand for dbx: Pass a command to the shell for execution
	skip subcommand for dbx: Continue from the current stopping point
	source subcommand for dbx: Read subcommands from a file
	status subcommand for dbx: Display the active trace and stop subcommands
	step subcommand for dbx: Run one or more source lines
	stepi subcommand for dbx: Run one or more machine instructions
	stop subcommand for dbx: Stop execution of a program
	stopi subcommand for dbx: Stop at a specified location
	thread subcommand for dbx: Display a list of active threads
	trace subcommand for dbx: Print tracing information
	tracei subcommand for dbx: Turn on tracing
	unalias subcommand for dbx: Remove an alias
	unset subcommand for dbx: Delete a variable
	up subcommand for dbx: Move the current function up the stack
	use subcommand for dbx: Set the list of directories to be searched
	whatis subcommand for dbx: Display the type of program components
	where subcommand for dbx: List active procedures and functions
	whereis subcommand for dbx: Display the full qualifications of symbols
	which subcommand for dbx: Display the full qualification of an identifier

	dd — Convert and copy a file
	Format
	Description
	Options
	Example
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	df — Display the amount of free space in the file system
	Format
	Description
	Options
	Example
	Localization
	Exit Values
	Portability
	Related Information

	diff — Compare two text files and show the differences
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	dircmp — Compare directories
	Format
	Description
	Options
	Localization
	Related Information

	dirname — Return the directory components of a pathname
	Format
	Description
	Examples
	Localization
	Exit Values
	Portablity
	Related Information

	. (dot) — Run a shell file in the current environment
	Format
	Description
	Usage notes
	Localization
	Exit Values
	Portability
	Related Information

	dspcat — Display all or part of a message catalog
	Format
	Description
	Options
	Examples

	dspmsg — Display selected messages from message catalogs
	Format
	Description
	Options
	Examples

	du — Summarize usage of file space
	Format
	Description
	Options
	Usage notes
	Localization
	Exit Values
	Portability
	Related Information

	echo — Write arguments to standard output
	Format
	Description
	Examples
	Usage Note
	Localization
	Exit Value
	Portability
	Related Information

	ed — Use the ed line-oriented text editor
	Format
	Description
	Options
	Addresses
	Subcommands
	Environment Variables
	Files
	Localization
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	edcmtext — Display errnojr reason code text
	Format
	Description
	Usage notes
	Message returns
	Examples
	Exit Values

	egrep — Search a file for a specified pattern
	Format
	Description

	env — Display or set environment variables for a process
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	eval — Construct a command by concatenating arguments
	Format
	Description
	Examples
	Usage Note
	Localization
	Exit Value
	Portability
	Related Information

	ex — Use the ex text editor
	Format
	Description
	Options
	Localization
	Portability
	Related Information

	exec — Run a command and open, close, or copy the file descriptors
	Format
	Description
	Option
	Example
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	exit — Return to the shell's parent process or to TSO/E
	Format
	Description
	Usage Note
	Localization
	Exit Values
	Related Information

	expand — Expand tabs to spaces
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	export — Set a variable for export
	Format
	Description
	Option
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	expr — Evaluate arguments as an expression
	Format
	Description
	Option
	Usage Note
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	exrecover daemon — Retrieve vi and ex files
	Format
	Description
	Options
	Environment Variables
	Localization
	Files
	Usage notes
	Exit Values
	Related Information

	extattr — Set, reset, and display extended attributes for files
	Format
	Description
	Extended attributes
	Options
	Examples
	Related Information

	false — Return a nonzero exit code
	Format
	Description
	Usage Note
	Localization
	Exit Value
	Portability
	Related Information

	fc — Process a command history list
	Format
	Description
	Options
	Environment Variables
	Files
	Localization
	Usage notes
	Exit Values
	Messages
	Portability
	Related Information

	fg — Bring a job into the foreground
	Format
	Description
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	fgrep — Search a file for a specified pattern
	Format
	Description

	file — Determine file type
	Format
	Description
	Options
	File Tag Specific Options
	Environment variables
	Localization
	Files
	Usage notes
	Exit Values
	Portability
	Related Information

	find — Find a file meeting specified criteria
	Format
	Description
	Operators and Primaries
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	fold — Break lines into shorter lines
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	functions — Display or assign attributes to functions
	Format
	Description
	Related Information

	fuser — List process IDs of processes with open files
	Format
	Description
	Option
	Usage notes
	Examples
	Exit Values
	Related Information

	gencat — Create or modify message catalogs
	Format
	Description
	Extended Description
	Portability of Message Catalogs
	Example
	Localization
	Exit Values
	Portability

	getconf — Get configuration values
	Format
	Description
	Options
	Configuration Variables
	Example
	Localization
	Exit Values
	Portability
	Related Information

	getfacl — Display owner, group, and access control list (ACL) entries
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	getopts — Parse utility options
	Format
	Description
	Options
	Example
	Environment Variables
	Localization
	Usage Note
	Exit Values
	Portability
	Related Information

	grep — Search a file for a specified pattern
	Format
	Description
	Options
	Example
	Localization
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	hash — Create a tracked alias
	Format
	Description
	Option
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	head — Display the first part of a file
	Format
	Description
	Options
	File Tag Specific Options
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	history — Display a command history list
	Format
	Description
	Related Information

	iconv — Convert characters from one codeset to another
	Format
	Description
	Options
	Localization
	Examples
	Exit Values
	Portability

	id — Return the user identity
	Format
	Description
	Options
	Localization
	Example
	Usage Note
	Exit Values
	Portability
	Related Information

	inetd daemon — Provide Internet Service Management
	Format
	Description
	Options
	Signals
	Usage notes
	Related Information

	infocmp — Compare or print the terminal description
	Format
	Description
	Options
	Usage notes
	Examples
	Environment Variables
	Related Information

	integer — Mark each variable with an integer value
	Format
	Description
	Related Information

	ipcrm — Remove message queues, semaphore sets, or shared memory IDs
	Format
	Description
	Options
	Examples
	Exit Values
	Related Information

	ipcs — Report status of the interprocess communication facility
	Format
	Description
	Options
	Examples
	Exit Values
	Related Information

	jobs — Return the status of jobs in the current session
	Format
	Description
	Options
	Localization
	Usage Note
	Exit Values
	Portability
	Related Information

	join — Join two sorted textual relational databases
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	kill — End a process or job, or send it a signal
	Format
	Description
	Options
	Options
	Localization
	Usage notes
	Exit Values
	Messages
	Portability
	Related Information

	[(left bracket) — Test for a condition
	ld — Link object files
	Format
	Description
	Options
	Operands
	Environment variables
	Usage notes
	Localization
	Exit values
	Related information

	let — Evaluate an arithmetic expression
	Format
	Description
	Examples
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	lex — Generate a program for lexical tasks
	Format
	Description
	Options
	Locale
	Files
	Localization
	Exit Values
	Limits
	Portability
	Related Information

	line — Copy one line of standard input
	Format
	Description
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	link — Create a hard link to a file
	Format
	Description
	Localization
	Exit Values
	Related Information

	ln — Create a link to a file
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	locale — Get locale-specific information
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	localedef — Define the locale environment
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	logger — Log messages
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability

	logname — Return a user's login name
	Format
	Description
	Environment Variables
	Localization
	Exit Values
	Portability
	Related Information

	lp — Send a file to a printer
	Format
	Description
	Options
	Examples
	Environment Variables
	Localization
	Exit Values
	Portability

	lpstat — Show status of print queues (stub command)
	Format
	Description

	ls — List file and directory names and attributes
	Format
	Description
	Options
	Long Output Format
	Usage Note
	Environment Variables
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	mail — Read and send mail messages
	Format
	Description
	Options
	Reading Mail
	Sending Mail
	Example
	Usage notes
	Environment Variables
	Localization
	Files
	Exit Values
	Portability
	Limits
	Related Information

	mailx — Send or receive electronic mail
	Format
	Description
	Options
	General Overview
	Command-Mode Subcommands
	Input-Mode Subcommands
	Startup Files
	Example
	Environment Variables
	Files
	Localization
	Exit Values
	Portability
	Related Information

	make — Maintain program-generated and interdependent files
	Format
	Description
	Options
	Targets
	Makefiles
	Macro Definitions
	Macro Modifiers
	Runtime Macros
	Usage Note
	Makefile Contents
	Rules
	Circular Dependencies
	Recipes
	Inference Rules
	Metarules
	Transitive Closure
	Order of Rule Generation
	Suffix Rules
	Attributes
	Special Target Directives
	Control Macros
	Making Libraries
	Conditionals
	Files
	Environment Variables
	Localization
	Exit Values
	Limits
	Usage notes
	Portability
	Related Information

	makedepend — Generate source dependency information
	Format
	Description
	Options
	Examples
	Environment variables
	Localization
	Usage notes
	Exit values
	Related information

	man — Display sections of the online reference manual
	Format
	Description
	Options
	Examples
	Environment Variables
	Localization
	Files
	Exit Values
	Portability
	Related Information

	mesg — Allow or refuse messages
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	mkcatdefs — Preprocess a message source file
	Format
	Description
	Options
	Extended Description
	Examples

	mkdir — Make a directory
	Format
	Description
	Options
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	mkfifo — Make a FIFO special file
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	mknod — Make a FIFO or character special file
	Format
	Description
	Operands
	Localization
	Exit Values
	Portability
	Related Information

	more — Display files on a page-by-page basis
	Format
	Description
	Options
	Interactive Commands
	Environment Variables
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	mount — Logically mount a file system
	Format
	Description
	Options
	Examples
	Usage notes
	Exit values
	Related information

	mv — Rename or move a file or directory
	Format
	Description
	Options
	Limits and Requirements
	Usage notes
	Examples
	Environment Variable
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	newgrp — Change to a new group
	Format
	Description
	Options
	Localization
	Usage notes
	Exit Values
	Portability
	Related Information

	nice — Run a command at a different priority
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	nl — Number lines in a file
	Format
	Description
	Options
	Example
	Localization
	Messages
	Portability
	Related Information

	nm — Display symbol table of object, library, or executable files
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	nohup — Start a process that is immune to hangups
	Format
	Description
	Localization
	Exit Values
	Portability
	Related Information

	obrowse — Browse an z/OS UNIX file
	Format
	Description
	Option
	Usage notes
	Exit Values

	od — Dump a file in a specified format
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	oedit — Edit files in a z/OS UNIX file system
	Format
	Description
	Option
	Usage notes
	Environment Variable
	Exit Values

	pack — Compress files by Huffman coding
	Format
	Description
	Options
	File Tag Specific Options
	Localization
	Exit Values
	Portability
	Related Information

	passwd — Change user passwords
	Format
	Description
	Examples
	Exit Values

	paste — Merge corresponding or subsequent lines of a file
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	patch — Change a file using diff output
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	pathchk — Check a pathname
	Format
	Description
	Options
	Localization
	Exit Values
	Portability

	pax — Interchange portable archives
	Format
	Description
	Patterns
	Options
	Output
	Usage notes
	Extended header keywords
	Extended header keyword precedence
	z/OS extended USTAR support
	ACL (access control list) pax support
	Examples
	Files
	Environment variables
	Localization
	Exit values
	Portability
	Related information

	pcat — Unpack and display Huffman packed files
	Format
	Description
	Localization
	Exit Values
	Related Information

	pg — Display files interactively
	Format
	Description
	Options
	Commands
	Examples
	Localization
	Exit Values
	Files
	Environment Variables
	Portability
	Related Information

	pr — Format a file in paginated form and send it to standard output
	Format
	Description
	Options
	Files
	Environment Variables
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	print — Return arguments from the shell
	Format
	Description
	Options
	Usage Note
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	printenv — Display the values of environment variables
	Format
	Description
	Options
	Example
	Usage notes
	Exit Values
	Portability
	Related Information

	printf — Write formatted output
	Format
	Description
	Caution
	Localization
	Exit Values
	Portability
	Related Information

	ps — Return the status of a process
	Format
	Description
	Options
	Format Specifications
	Environment Variables
	Localization
	Exit Values
	Portability
	Related Information

	pwd — Return the working directory name
	Format
	Description
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	r — Process a command history list
	Format
	Description
	Related Information

	read — Read a line from standard input
	Format
	Description
	Options
	Examples
	Environment Variables
	Localization
	Usage Note
	Exit Values
	Messages
	Portability
	Related Information

	readonly — Mark a variable as read-only
	Format
	Description
	Options
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	renice — Change priorities of a running process
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	return — Return from a shell function or . (dot) script
	Format
	Description
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	rlogind — Validate rlogin requests
	Format
	Description
	Options
	Usage notes
	Related Information

	rm — Remove a directory entry
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	rmdir — Remove a directory
	Format
	Description
	Options
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	runcat — Pipe output from mkcatdefs to gencat
	Format
	Description
	Examples
	Related Information

	sed — Start the sed noninteractive stream editor
	Format
	Description
	Options
	Subcommands
	Example
	Environment Variable
	Localization
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	set — Set or unset command options and positional parameters
	Format
	Description
	Options
	Usage notes
	Localization
	Exit Values
	Portability
	Related Information

	setfacl — Set, remove, and change access control lists (ACLs)
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	sh — Invoke a shell
	Format
	Description
	Options
	Command Syntax
	Command Execution
	Quoting
	Directory Substitution
	Parameter Substitution
	Arithmetic Substitution
	Command Substitution
	File Descriptors and Redirection
	Filename Generation
	Variables
	Shell Execution Environments
	Built-in Commands
	Examples
	Shell Variables
	Files
	Localization
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	shedit — Interactive command and history editing in the shell
	Format
	Usage notes
	emacs/gmacs Editing Mode
	vi Editing Mode
	Limits
	Related Information

	shift — Shift positional parameters
	Format
	Description
	Examples
	Usage Note
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	sleep — Suspend execution of a process for an interval of time
	Format
	Description
	Example
	Localization
	Exit Values
	Portability
	Related Information

	skulker — Remove old files from a directory
	Format
	Description
	Options
	Examples
	Exit Values
	Messages

	sort — Start the sort-merge utility
	Format
	Description
	Options
	Sorting Keys
	Examples
	Environment Variable
	File
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	spell — Detect spelling errors in files
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Files
	Limits
	Portability
	Related Information

	split — Split a file into manageable pieces
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	stop — Suspend a process or job
	Format
	Description
	Options
	Related Information

	strings — Display printable strings in binary files
	Format
	Description
	Options
	File Tag Specific Options
	Localization
	Exit Values
	Portability

	strip — Remove unnecessary information from an executable file
	Format
	Description
	Localization
	Exit Values
	Messages
	Portability

	stty — Set or display terminal options
	Format
	Description
	Options
	Control Mode Operands
	Input Mode Operands
	Output Mode Operands
	Local Mode Operands
	Control Character Operands
	Combination Mode Operands
	Usage notes
	Localization
	Exit Values
	Portability

	su — Change the user ID associated with a session
	Format
	Description
	Options
	Examples
	Usage notes
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	sum — Compute checksum and block count for file
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	suspend — Send a SIGSTOP to the current shell
	Format
	Description
	Related Information

	sysvar — Display static system symbols
	Format
	Description
	Exit Values

	tabs — Set tab stops
	Format
	Description
	Options
	Environment Variables
	Localization
	Exit Values
	Portability
	Related Information

	tail — Display the last part of a file
	Format
	Description
	Options
	File Tag Specific Options
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	talk — Talk to another user
	Format
	Description
	Options
	Environment Variables
	Localization
	Usage notes
	Exit Values
	Portability
	Related Information

	tar — Manipulate the tar archive files to copy or back up a file
	Format
	Description
	Options
	Output
	ACL (access control list) tar support
	Usage notes
	Examples
	Localization
	Exit values
	Portability
	Related information

	tcsh — Invoke a C shell
	Format
	Description
	Options and invocation
	Options
	tcsh shell editing
	Command syntax
	Substitutions
	Command execution
	Features
	Jobs
	Status reporting
	Automatic, periodic and timed events
	National language system report
	Signal handling
	Terminal management
	tcsh built-in commands
	tcsh programming constructs
	tcsh shell and environment variables
	tcsh files
	tcsh shell: problems and limitations
	Related information

	tcsh built-in command descriptions
	@ (at) built-in command for tcsh: Print the value of tcsh shell variables
	% (percent) built-in command for tcsh: Move jobs to the foreground or background
	alloc built-in command for tcsh: Show the amount of dynamic memory acquired
	bindkey built-in command for tcsh: List all bound keys
	builtins built-in command for tcsh: Prints the names of all built-in commands
	bye built-in command for tcsh: Terminate the login shell
	chdir built-in shell command for tcsh: Change the working directory
	complete built-in command for tcsh: List completions
	dirs built-in command for tcsh: Print the directory stack
	echotc built-in command for tcsh: Exercise the terminal capabilities in args
	filetest built-in command for tcsh: Apply the op file inquiry operator to a file
	glob built-in command for tcsh: Write each word to standard output
	hashstat built-in command for tcsh: Print a statistic line on hash table effectiveness
	hup built-in command for tcsh: Run command so it exits on a hang-up signal
	limit built-in command for tcsh: Limit consumption of processes
	log built-in command for tcsh: Print the watch tcsh shell variable
	login built-in command for tcsh: Terminate a login shell
	logout built-in command for tcsh: Terminate a login shell
	ls-F built-in command for tcsh: List files
	notify built-in command for tcsh: Notify user of job status changes
	onintr built-in command for tcsh: Control the action of the tcsh shell on interrupts
	popd built-in command for tcsh: Pop the directory stack
	pushd built-in command for tcsh: Make exchanges within directory stack
	rehash built-in command for tcsh: Recompute internal hash table
	repeat built-in command for tcsh: Execute command count times
	sched built-in command for tcsh: Print scheduled event list
	setenv built-in command for tcsh: Set environment variable name to value
	settc built-in command for tcsh: Tell tcsh shell the terminal capability cap value
	setty built-in command for tcsh: Control tty mode changes
	source built-in command for tcsh: Read and execute commands from name
	telltc built-in command for tcsh: List terminal capability values
	uncomplete built-in command for tcsh: Remove completions whose names match pattern
	unhash built-in command for tcsh: Disable use of internal hash table
	unlimit built-in command for tcsh: Remove resource limitations
	unsetenv built-in command for tcsh: Remove environmental variables that match pattern
	watchlog built-in command for tcsh: Print the watch shell variable
	where built-in command for tcsh: Report all instances of command
	which built-in command for tcsh: Display next executed command

	tee — Duplicate the output stream
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	test — Test for a condition
	Format
	Description
	Usage notes
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	tic — Put terminal entries in the terminfo database
	Format
	Description
	Options
	Example
	Environment Variables
	Related Information

	time — Display processor and elapsed times for a command
	Format
	Description
	Option
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	times — Get process and child process times
	Format
	Description
	Option
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	touch — Change the file access and modification times
	Format
	Description
	Options
	Examples
	Environment Variable
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	tput — Change characteristics of terminals
	Format
	Description
	Options
	Localization
	Environment Variables
	Exit Values
	Portability
	Related Information

	tr — Translate characters
	Format
	Description
	Options
	String Options
	Usage notes
	Examples
	Environment variables
	Localization
	Exit Values
	Portability

	trap — Intercept abnormal conditions and interrupts
	Format
	Description
	Usage Note
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	true — Return a value of 0
	Format
	Description
	Usage Note
	Localization
	Exit Value
	Portability
	Related Information

	tso — Run a TSO/E command from the shell
	Format
	Description
	Options
	Examples
	Environment Variables
	Messages

	tsort — Sort files topologically
	Format
	Description
	Example
	Localization
	Exit Values
	Portability

	tty — Return the user's terminal name
	Format
	Description
	Options
	Localization
	Exit Values
	Messages
	Portability

	type — Tell how the shell interprets a name
	Format
	Description
	Usage Note
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	typeset — Assign attributes and values to variables
	Format
	Description
	Options
	Usage Note
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	uconvdef — Create binary conversion tables
	Format
	Description
	Options
	Example
	Exit Values
	Related Information

	ulimit — Set process limits
	Format
	Description
	Options
	Usage notes
	Localization
	Related Information

	umask — Set or return the file mode creation mask
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	unalias — Remove alias definitions
	Format
	Description
	Options
	Localization
	Usage notes
	Exit Values
	Portability
	Related Information

	uname — Display the name of the current operating system
	Format
	Description
	Options
	Examples
	Localization
	Usage Note
	Exit Values
	Portability
	Related Information

	uncompress — Undo Lempel-Ziv compression of a file
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	unexpand — Compress spaces into tabs
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	uniq — Report or filter out repeated lines in a file
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	unlink — Removes a directory entry
	Format
	Description
	Localization
	Exit Values
	Related Information

	unmount — Remove a file system from the file hierarchy
	Format
	Description
	Options
	Examples
	Usage notes
	Exit Values
	Related Information

	unpack — Decode Huffman packed files
	Format
	Description
	Localization
	File
	Exit Values
	Messages
	Portability
	Related Information

	unset — Unset values and attributes of variables and functions
	Format
	Description
	Options
	Usage notes
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	uptime — Report how long the system has been running
	Format
	Description
	Files
	Localization
	Exit Values

	uucc — Compile UUCP configuration files
	Format
	Description
	Files
	Exit Values
	Related Information

	uucico daemon — Process UUCP file transfer requests
	Format
	Description
	Options
	Examples
	Files
	Exit Values
	Portability
	Related Information

	uucp — Copy files between remote UUCP systems
	Format
	Description
	Options
	Examples
	Environment Variable
	Localization
	Files
	Usage Note
	Exit Values
	Portability
	Related Information

	uucpd daemon — Invoke uucico for TCP/IP connections from remote UUCP systems
	Format
	Description
	Options
	Usage Note
	Exit Values
	Portability
	Related Information

	uudecode — Decode a transmitted binary file
	Format
	Description
	Options
	Localization
	Usage notes
	Exit Values
	Portability
	Related Information

	uuencode — Encode a file for safe transmission
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	uulog — Display log information about UUCP events
	Format
	Description
	Options
	Environment Variables
	Localization
	Files
	Exit Values
	Portability
	Related Information

	uuname — Display list of remote UUCP systems
	Format
	Description
	Options
	Localization
	File
	Exit Values
	Portability
	Related Information

	uupick — Manage files sent by uuto and uucp
	Format
	Description
	Options
	Localization
	Files
	Usage notes
	Portability
	Related Information

	uustat — Display status of pending UUCP transfers
	Format
	Description
	Options
	Output
	Examples
	Environment Variables
	Localization
	Files
	Exit Values
	Portability
	Related Information

	uuto — Copy files to users on remote UUCP systems
	Format
	Description
	Options
	Localization
	Files
	Usage notes
	Portability
	Related Information

	uux — Request command execution on remote UUCP systems
	Format
	Description
	Options
	Special Characters
	Examples
	Security
	Localization
	Files
	Exit Values
	Portability
	Related Information

	uuxqt daemon — Carry out command requests from remote UUCP systems
	Format
	Description
	Options
	Examples
	Usage notes
	Localization
	Files
	Exit Values
	Portability
	Related Information

	vi — Use the display-oriented interactive text editor
	Format
	Description
	Options
	Current Position Pointer
	Display Conventions
	vi Command Summary
	Scrolling Commands
	Absolute Movement Commands
	Context-Dependent Movement Commands
	Object Manipulator Commands
	Object Manipulator Abbreviations
	Text Insertion Commands
	Miscellaneous Commands
	Insert Mode Commands
	ex Command Mode
	Regular Expressions and Replacements
	Summary of Regular Expressions
	Summary of Replacement Patterns
	ex Commands
	Special Characters in ex Commands
	Set Option Variables
	Editor Initialization
	Files
	Environment Variables
	Localization
	Exit Values
	Limits
	Portability
	Related Information

	wait — Wait for a child process to end
	Format
	Description
	Localization
	Usage notes
	Exit Values
	Portability
	Related Information

	wall — Broadcast a message to logged-in users
	Format
	Description
	Exit Values

	wc — Count newlines, words, and bytes
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	whence — Tell how the shell interprets a command name
	Format
	Description
	Options
	Usage notes
	Localization
	Exit Values
	Portability
	Related Information

	who — Display information about current users
	Format
	Description
	Options
	Files
	Localization
	Exit Values
	Portability
	Related Information

	whoami — Display your effective user name
	Format
	Description
	Exit Values
	Related Information

	write — Write to another user
	Format
	Description
	Options
	Usage notes
	Localization
	Exit Values
	Portability
	Related Information

	writedown — Set or display user's write-down mode
	Format
	Description
	Options
	Usage notes
	Exit Values
	Examples
	Related Information

	xlc — Compiler invocation using a customizable configuration file
	Format
	Description
	Invocation commands
	Setting up the compilation environment
	Setting up a configuration file
	Invoking the compiler
	Invoking the binder
	Supported options
	Specifying compiler options

	xlC — C++ compiler invocation using a customizable configuration file
	xlc++ — C++ compiler invocation using a customizable configuration file
	xargs — Construct an argument list and run a command
	Format
	Description
	Options
	Example
	Localization
	Exit Values
	Restriction
	Portability
	Related Information

	yacc — Use the yacc compiler
	Format
	Description
	Options
	Files
	Localization
	Usage notes
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	zcat — Uncompress and display data
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	Chapter 3. TSO/E commands
	BPXBATCH — Run shell commands, shell scripts, or executable files
	Format
	Description
	Parameters
	Examples

	ISHELL — Invoke the ISPF shell
	Format
	Description
	Parameters

	MKDIR — Make a directory
	Format
	Description
	Parameters
	Return Codes
	Examples

	MKNOD — Create a character special file
	Format
	Description
	Parameters
	Examples

	MOUNT — Logically mount a file system
	Format
	Description
	Usage notes
	Return codes
	Examples

	OBROWSE — Browse a z/OS UNIX file
	Format
	Description
	Parameters
	Option

	OCOPY — Copy an MVS data set member or z/OS UNIX file to another member or file
	Format
	Description
	Parameters
	Usage notes
	Return codes
	Examples

	OEDIT — Edit an z/OS UNIX file system file
	Format
	Description
	Parameters
	Option
	Usage notes

	OGET — Copy z/OS UNIX files into an MVS data set
	Format
	Description
	Parameters
	Usage notes
	Return codes
	Examples

	OGETX — Copy z/OS UNIX files from a directory to an MVS PDS or PDSE
	Format
	Description
	Parameters
	Usage notes
	Examples

	OHELP — Display online z/OS UNIX System Services publications
	Format
	Description
	Parameters
	Examples

	OMVS — Invoke the z/OS shell
	Format
	Description
	Parameters
	Subcommands
	Usage notes
	Return codes
	Examples

	OPUT — Copy an MVS data set member into a z/OS UNIX system file
	Format
	Description
	Parameters
	Usage notes
	Return codes
	Examples

	OPUTX — Copy members from an MVS PDS or PDSE to an z/OS UNIX system directory
	Format
	Description
	Parameters
	Usage notes
	Examples

	OSHELL — Invokes BPXBATCH from TSO/E
	Format
	Description

	OSTEPLIB — Build a list of files
	Format
	Description
	Parameters

	UNMOUNT — Remove a file system from the file hierarchy
	Format
	Description
	Parameters
	Usage notes
	Return codes
	Examples

	Appendix A. z/OS UNIX Shell Command Summary
	General Use
	Controlling Your Environment
	Daemons
	Managing Directories
	Managing Files
	Printing Files
	Computing and Managing Logic
	Controlling Processes
	Writing Shell Scripts
	Developing or Porting Application Programs
	Communicating with the System or Other Users
	Working with Archives
	Working with UUCP

	Appendix B. tcsh Shell Command Summary
	General Use
	Controlling Your Environment
	Managing Directories
	Computing and Managing Logic
	Managing Files
	Controlling Processes

	Appendix C. Regular Expressions (regexp)
	Summary
	Examples

	Appendix D. Running shell scripts or executable files under MVS environments
	BPXBATCH
	Format
	Description
	Parameters
	Usage notes
	Files
	Return codes

	Using OSHELL to run shell commands and scripts from MVS

	Appendix E. BPXCOPY: Copying a sequential or partitioned data set or PDSE member into an HFS file
	BPXCOPY
	Format
	Description
	Parameters
	Return codes
	Examples

	Appendix F. Localization
	Appendix G. Stub Commands
	Appendix H. File Formats
	cpio — Format of cpio archives
	Description
	Related Information

	magic — Format of the /etc/magic file
	Description
	Usage Notes
	Examples
	Related Information

	pax — Format of pax archives and special header summary files
	USTAR archive format
	pax interchange format
	pax header block
	pax extended header

	queuedefs — Queue description for at, batch, and cron
	Description
	Examples
	Related Information

	tags — Format of the tags file
	Description
	Related Information

	tar — Format of tar archives
	Description
	Description of the Header Files
	Related Information

	utmpx — Format of login accounting files
	Description
	Files
	Related Information

	uucp — Format of UUCP working files
	Description
	Command Files
	Examples
	Data Files
	Examples
	Execute Files
	Examples
	Portability
	Related Information

	Appendix I. Setting the Local Time Zone with the TZ Environment Variable
	TZ Environment Variable
	Format
	Description
	Portability
	Related Information

	Appendix J. Environment Variables
	Appendix K. Specifying MVS data set names in the shell environment
	Utilities supporting MVS data set names

	Appendix L. Automatic Codeset Conversion: Default Status for Specific Commands
	Appendix M. Additional dbx Documentation
	execution: Controlling Execution
	Usage Note
	Related Information

	files: Accessing Source Files
	Usage Note
	Related Information

	scope: Scope
	Usage Note

	threads: Thread Display and Control
	Usage Note
	Example
	Related Information

	usage: Basic Command Usage
	Usage Note

	variables: "Set" Variables
	Usage Note

	Appendix N. UNIX shell commands changed for UNIX03
	Appendix O. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Standards
	Trademarks
	Acknowledgments

	Index
	Readers’ Comments — We'd Like to Hear from You

