COMP 3400 Mainframe Administration¹

Christian Grothoff

christian@grothoff.org

http://grothoff.org/christian/

¹These slides are based in part on materials provided by IBM's Academic Initiative.

Examples of Mainframe-based Networks

- ATM Cash withdrawal
- Credit purchase at a retail store or online
- Online banking

The Network Administrator

- Often separated into hardware and software
- Definition, maintenance and modification of the network
- Problem detection, isolation and correction
- Performance tuning
- Capacity planning
- Development of operational procedures
- Training of network operators

Elements of a Network

- Hardware (cables, routers, adapters)
- Software (OS, applications)
- Protocols (traffic rules)

Without Boundaries

With Boundaries

Without Boundaries

With Boundaries

System z network capabilities

Internal:

- Guest machines (z/OS, GNU/Linux, CMS, ...)
- LPARs
- Clustering

External:

- TCP/IP (software, hardware, protocols)
- Subarea System Network Architecture (SNA)
- Advanced Peer-to-Peer Networking
- Integration of SNA into IP networks (EE)

IBM Communications Server (z/OS)

Network Models

Layered Network Models

TCP/IP Hardware

LANs and Subnets

Backbone

Autonomous Systems

Hardware Performance

Physical Aspects

- Speed
- Distance
- Attenuation (Absorption, weakening)
- Interference
- Security
- Cost

Data Channel Interconnect History

TCP/IP

IPv4²

²z/OS also supports IPv6

IP – the Internet Protocol

Version	HDL	ToS	Length				
	Identif	ication	Flags	Fragment offset			
TTL		T. Protocol	Checksum				
Source IP address							
Destination IP address							
Options (optional)							
Data (Length–HDL bytes)							

Routing

- Static manual entry of routes into a table
- Dynamic populate routing tables based on protocols:
 - Routing Information Protocol (RIP)
 - Open Shortest Path First (OSPF)

Routing Design Choices

- Centralized: simpler, less overhead for long-lived routes

 used by SNA, B/T, ESCON
- Decentralized: better to address congestion and failures

Routing Design Choices

- Source-based: complete route is chosen at the start used by ATM, Frame Relay, FICON, Tor
- Hop-by-hop: each hop chooses next route

Routing Algorithms

Distance Vector (Dijkstra's Algorithm):

- Many messages and steps
- Each router knows paths to all destinations
- Failures are localized
- Example: RIP

Link State (Bell's Algorithm):

- Fewer messages and steps
- Routers might not know of paths
- Failures can affect many
- Example: OSPF

TCP – the Transmission Control Protocol

Source port				Destination Port			
Sequence Number							
Acknowledgment Number							
Data offset	Reserved		Flags	Window			
Che	ecks	um	1	Urgent Pointer			
Optio	Padding						
Data							

Encapsulation

Encapsulation and Addresses

Supported TCP/IP commands on z/OS

TCP/IP commands can be entered at the TSO ready prompt or the ISPF command shell or with prefix "o" on the z/OS UNIX shell:

- NETSTAT
- PING
- TRACERTE
- NSLOOKUP
- TELNET
- FTP

Sample JCL for TCP/IP task

```
//TCPIP PROC
//TCPIP EXEC PGM=EZBTCPIP,
//PROFILE DD DISP=SHR,DSN=SYS1.PARMLIB(PROFILE)
//SYSTCPD DD DISP=SHR,DSN=SYS1.PARMLIB(TCPDATA)
```


TCP/IP Configuration Files

- SYS1.IPLPARM
- SYS1.PARMLIB (IEASYSxx, BPXPRMxx, COMMNDxx)
- SYS1.PROCLIB (TCPIP, RESOLVER)
- SYS1.TCPPARMS (TCPDATA)

Finding TCPPARMS

```
SYS1.IPLPARM(LOAD60)
PROCLIB
SYS1.MARIST.PROCLIB(TCPIP)
//SYSTCPD DD DSN=SYS1.TCPPARMS(TCPDMAR)
//PROFILE DD DSN=SYS1.TCPPARMS(PROFMAR6)

SYS1.TCPPARMS(PROFMAR6)

DEVICE
LINK
HOME
ROUTE
START
PORT
TelnetParms
...VTAM
```


Example: The TCP/IP Profile

SYS1.TCPPARMS(PROFILE) might read:

DEVICE OSAEDEV1 MPCIPA PRIROUTER LINK OSAELNK1 IPAQENET OSAEDEV1

DEVICE OSAEDEV2 MPCIPA PRIROUTER

LINK OSAELNK2 IPAQENET OSAEDEV2

DEVICE VIPADEV1 VIRTUAL 1

LINK VIPALNK1 VIRTUAL 1 VIPADEV1

HOME

201.2.11.9 VIPALNK1

201.2.11.1 OSAELNK1

201.2.11.2 OSAELNK2

The Resolver

- Resolves Names to Addresses and Ports
- Test using nslookup NAME (omvs)
- Unix applications use the "RESOLVER_CONFIG" environment variable, configuration can also be in /etc/resolv.conf
- z/OS resolver has its own address space

Example: The TCP/IP Profile

ZOSKCTR.TCPPARMS(DATA) contains:

TCPIPJOBNAME TCPIP

HOSTNAME ZOS.KCTR.MARIST.EDU

DOMAINORIGIN KCTR.MARIST.EDU

NSINTERADDR 148.100.49.253

NSINTERADDR 148.100.32.40

DATASETPREFIX TCPIP

ALWAYSWTO YES

The FTP Server

Configured using the FTP.DATA set:

- Banner page
- Anonymous access
- Data set defaults
- Tracing and logging
- File system
- SSL/TLS
- Character sets

TCP/IP and Sysplex

Virtual IP Addresses (VIPA)

- Independent of OSA
- Identifies application multiple instances viewed as one
- Static VIPA manual intervention required
- Dynamic VIPA movement automatic or manual, can move with application; bind() can be used to activate
- Distributed (DRVIPA) uses Sysplex Distributor; all application instances used

System Network Architecture (SNA)

- Introduced in 1974 by IBM
- Many companies do not want to spend the money to convert from SNA
- IBM introduced new technologies to preserve SNA and integrate it into IP (SNA over IP)

VTAM Overview

SNA Basics

There are three major implementations of SNA:

- Subarea Networking
- Advanced Peer-to-Peer Networking (APPN)
- High Performance Routing and SNA/IP (HPR)

SNA vs. TCP/IP

- Hierarchical network structure
- Subnetworks have a central point of control

SNA Terminology

- Addresses of physical nodes are called PU's (
 = TCP/IP IP addresses)
- Addresses of applications (logical nodes) are called LU's (
 = TCP/IP ports)
- Dependent sessions need a control point to help nodes
- ullet Independent sessions are established by nodes on their own

SNA Nodes

- Nodes send and receive data from the network
- Categorized into "types" by hardware and capabilities (processors, controllers and workstations)

Physical Units (PUs)

Type 5 "Host Node": Mainframe, offers session services, contains System Services Control Point (SSCP)

Type 4 "Intermediate Node": communication controller, runs NCP

Type 3 never implemented

Type 2 "Peripheral Node": displays, ATM-like systems, POS controllers

Physical Units (PUs)

Logical Units (LUs)

Ports through which users access the SNA network:

- Dependent Logical Unit types require SSCP-LU to establish LU-LU sessions
- Independent Logical Unit types do not require SSCP to establish sessions

Dependent Logical Unit Types

Type 1 "dumb" printer or other device

Type 2 "green screen" terminal

Type 3 "green screen" printer with data stream

Type 4 Application program (for example, text processor)

Logical Units (LUs)

System Services Control Points (SSCP)

Control points manage network resources:

- Activates, controls and deactivates network resources in a subarea network
- Coordinates initiation and termination of sessions between applications
- Coordinates testing and status monitoring of resources

Initiating LU-to-LU sessions

Steps required to establish a LU-to-LU session:

- 1. SSCP-PU
- 2. SSCP-LU
- 3. Bind
- 4. LU-LU

Subarea Networks

SNA Routing

SNA uses static routing:

- Routes are defined, not discovered
- Explicit (physical between subareas)
- Virtual (logical between endpoints)

Advanced Peer-to-Peer Networking (APPN)

APPN Features

- Dynamic network topology, nodes are discovered, added and deleted
- Dynamic routing based on topology, class-of-service (CoS), priority
- Control Points (CP) organize inter-node information sharing, information transfer and location of network resources
- Scales to 10's and 100's (but not like TCP/IP)

Enterprise Extender

- SNA (HPR) packets are carried as UDP packets over an IP network
- 3270 data streams are carried over TCP connections to a server tha replaces the TCP transport with an SNA transport
- Replaces SNA Network Interconnect (SNI)
- Support for OSA Gigabit Ethernet cards

SNA to TCP/IP Migration

Inspecting VTAM status

DISPLAY NET, *OPTION*:

VTAMOPTS VTAM startup options
CSM Communication storage use
APPLS Status of applications
MAJNODES Status of major nodes
BFRUSE VTAM buffer usage
TOPO,LIST=SUMMARY APPN topology information
CPCP CP-CP sessions
SESSIONS Status of subarea SSCP-SSCP sessions
CDRMS Status of subarea cross domain resources
EXIT Status of VTAM exit points

3270

- 3270 data stream is designed primarily for transmitting data between an application program and a 3270 display with keyboard
- Implemented using a mapped character buffer in the device
- Data received from the application program and data to be transmitted to the application program are stored in a device buffer and displayed on the screen
- The mode of operation used by 3270 terminals is called **full screen**, which means that the buffer is transferred from the application program to the 3270 device and from the 3270 device to the application program.

3270 Data Stream

The field attribute defines the start of a field and the characteristics of the field. Field attribute defines the following field characteristics:

- Protected or unprotected
- Autoskip
- Nondisplay or display
- Intensified display
- Alphanumeric or numeric

WLM and TN3270

TN3270 Features of Communications Server

- Secure Sockets (SSL)
- Multiple ports
- IP Address to LU Name Mapping (IP Filtering)

Network Startup on z/OS

- z/OS and JES2 must be up and going
- Network devices must be varied online by z/OS
- Network should start before any application
- Parts of VTAM subsystem must start prior to TCP/IP
- EE can not be enabled until both VTAM and TCP/IP are up

Major Operator Commands

S Start

V Vary

F Modify

P Stop

Z Cancel

VARY (1/2)

V NET,

- ACT,ID=x
- INACT,ID=x

VARY (2/2)

V TCPIP, TELNET,

- QUIESCE
- RESUME
- STOP
- ACT
- INACT

MODIFY

F NET,

- RIP,LIST,ALL display RIP routes
- TRACE=ON trace all RPC activity
- TRACE=OFF disable tracing

HALT

- Z NET, QUICK halt VTAM
- Z NET, CANCEL abend VTAM (try QUICK first)

Network Documentation

- Network component overview diagram
- External connections
- Network naming conventions
- Network processes, tools, automation
- Change log
- Problem log

z/VM Networking

z/VM supports a range of network devices:

- Open Systems Adapter (OSA, OSA-2, OSA Express)
- HiperSockets
- Channel-to-channel (CTC)

• ...

I/O channels

- z/VM uses three I/O channels with consecutive numbers for connectivity (NICs, VLANs, etc.)
- Often only the base address needs to be explicitly specified
- Base address should be an even number

Open Systems Adapter

- Supports many network transport protocols, including 10 gigabit Ethernet, ATM and token ring
- Can have up to 640 TCP/IP stacks connected to them
- Supports Queued Direct Input/Output (QDIO) to buffer data in host's main storage

HiperSockets

- TCP/IP connectivity between virtual servers within a System z server
- No need for a physical connection
- Supports QDIO
- Extension to QDIO Hardware Facility of OSA card

Channel-to-channel connection (CTC)

- Physical connection between CECs
- Prior to guest LANs used for communication with Linux guests (required physical cables or virtual CTCs)

Guest LAN

- Similar to OSA card, except simulated in software
- Guest LAN in QDIO mode emulates an OSA-Express
- Guest LAN in iQDIO emulates HiperSockets
- Guest LANs are isolated (even on the same system) unless some member of the LAN acts as a router to other groups!

Virtual Switch

- Like a guest LAN, except that no guest needs to act as a router — VSWITCH controller guest of z/VM does it!
- Can support redundant OSA devices (fault-tolerance!)
- Can support SNA if operated in Layer 2 mode

z/VM TCP/IP support

- TCP/IP tools reside on TCPMAINT user's 592 minidisk
- LINK TCPMAINT 592 592
- ACCESS 592 T
- ⇒ Common tools like ftp, netstat, ping, tracerte available!

Note that these will only work if the network is configured properly...

z/VM TCP/IP for guests

- TCPMAINT should be logged on (xautolog, etc.) to enable TCP/IP for z/VM
- TCP/IP support will then be automatically available to CMS guests
- \bullet FTPSERVE is a guest that must be started to run an FTP server on top of z/VM
- Other guests may require passing a (virtual or real) OSA adapter through to the guest:

```
DEDICATE 1D00 1D00
DEDICATE 1D01 1D01
DEDICATE 1D02 1D02
```


Questions

?

