
Assignment 1: PRNGs

1 Implementation – Part 1

Implement a program prngtest that subjects a sequence of “random” binary
numbers to the χ2 tests with t-tuples discussed in class. Your program should
read a sequence of characters “0” and “1” from standard input and print its
evaluation (a real value in [0,∞), which gives the multiple of the critical
value of the 99% confidence interval. In other words, an output of (near)
zero means “perfectly” random (according to the test) and 1 corresponds to
a probability of just 1% that the given sequence is random (according to the
test). The output should be produced once the standard input stream ends
(EOF). The parameter t is be the first argument to the application. Make
sure your implementation scales to reasonably large values for t and works
for sequences of arbitrary length.

2 Example – Part 1

$ echo 0101010101010101 | prngtest 1

0

$ echo 0001101100011011 | prngtest 2

0

3 Implementation – Part 2

You are to design and implement various PRNG generators. Each program is
to print a sequence of “0” and “1” characters to stdout. The first argument
to the program is an integer specifying the length of the sequence that should
be generated. Implement the following PRNG generators:

• A generator prngnot that does not produce a (good) random sequence

• A generator prngrand using the rand() function (map the int correctly
to binary)

• A generator prngrecu using the standard C++ recurrence Xn+1 =
(aXn + c)modm. Experiment with different values for a, c and m and

1



submit your code with the best values you could find. Describe your
reasoning about the choice of parameters in a comment in the source
code.

• A generator prngyours using a recurrence function of your own design.
You should evaluate the function and describe your evaluation strategy
and conclusions in a comment in the source code.

4 Example – Part 2

$ prngnot 4

0000

$ prngrand 2

01

$ prngrecu 10

0110010110

$ prngyours 10

0110010110

5 Submission

You must submit the implementations to your subversion repository to the
directory courses/comp3704/s2009/$USER/p1/. Do not include generated
files. The files submitted should be named as follows:

• Makefile

• prngtest.c

• prngnot.c

• prngrand.c

• prngrecu.c

• prngyours.c

You must check that the submitted code compiles by invoking make. Ver-
ify that the output of your program matches the expected output using your
own testcases.

2


