Anonymity With Tor
The Onion Router

Nathan S. Evans Christian Grothoff

Technische Universitat Miinchen

July 5, 2012

“It's a series of tubes.” — Ted Stevens

Overview

» What is Tor?

» Motivation

» Background Material
» How Tor Works

» Hidden Services

» Attacks

» Specific Attack

» Summary

What is Tor?

> Tor is a P2P network of Chaum inspired low-latency mixes
which are used to provide anonymous communication between
parties on the Internet.

What is Tor?

» Sender anonymity for low latency applications
» Common usage: Web browsing

» Sender anonymity

» Web server cannot identify client
» Advanced usage:

Hidden services (send/receive anonymity)
> Filesharing

» IRC

» Any application that communicates using TCP

v

= Tor provides users with a service that effectively hides their
identity on the Internet.

Motivation

v

Internet packets travel from A to B transparently
A knows B, and B knows A (by IP address)

Routers, etc. can determine that A and B are communicating

v

v

v

This may reveal unintended information (e.g. person X's
bank)
Encryption

» For example, TLS (HTTPS)
» Provides Data anonymity
» Does not hide routing information

v

Motivation - Routing Example

www.google.com

Review: Mixing
David Chaum’s mix (1981) and cascades of mixes are the
traditional basis for destroying linkability:

YYY

Review: Mixing
David Chaum’s mix (1981) and cascades of mixes are the
traditional basis for destroying linkability:

YYY

Onion Routing

> Multiple mix servers

» Subset of mix servers chosen by initiator
» Chosen mix servers create “circuit”

» Initiator contacts first server S;, sets up symmetric key Ks,
» Then asks first server to connect to second server S;; through
this connection sets up symmetric key with second server K,

Repeat with server S; until circuit of desired length n
constructed

v

Onion Routing Example

> Client sets up symmetric key Ks, with server S;

Exchange

Client

Onion Routing Example

» Via 51 Client sets up symmetric key Ks, with server 5;

Exchange

Onion Routing Example

» Client encrypts m as Ks,(Ks,(m)) and sends to S;

Onion Routing Example

> S; decrypts, sends on to Sy, Sy decrypts, revealing m

Client

Tor - How it Works

v

v

Low latency P2P Network of mix servers

Designed for interactive traffic (https, ssh, etc.)

» "Directory Servers" store list of participating servers

» Contact information, public keys, statistics
> Directory servers are replicated for security

Clients choose servers randomly with bias towards high
BW /uptime

Clients build long lived Onion routes "circuits" using these
servers

Circuits are bi-directional

Circuits are hard coded at length three

Tor - How it Works - Example

» Example of Tor client circuit

Client
o -m m =

Tor Nodé‘l TorNode2 Tor Node3

\
- = =

Tor Node 4 TorN‘odeS Tor Node 6
|

48 -2 -NN

Server TorNode7 TorNode8 Tor Node9

Tor - How it Works - Servers

Servers connected in " full mesh*

v

> All servers exchange symmetric keys

> Allows fast sending between servers, regardless of which
circuits

» Allows combining of multiple messages with same next-hop

» New servers publish information to directory servers

» Once online for a certain period, they are added to the "live"
list
» They are then available for use by clients

Tor - How it Works - Servers

» Servers are classified into three categories for usability,
security and operator preference
» Entry nodes (aka guards) - chosen for first hop in circuit
» Generally long lived "good* nodes
» Small set chosen by client which are used for client lifetime
(security)
» Middle nodes - chosen for second hop in circuit, least
restricted set
» Exit nodes - last hop in circuit
» Visible to outside destination

» Support filtering of outgoing traffic
» Most vulerable position of nodes

Hidden Services in Tor

» Hidden services allow Tor servers to receive incoming
connections anonymously
» Can provide access to services available only via Tor

» Web, IRC, etc.
» For example, host a website without your ISP knowing

» Uses a "Rendezvous point* to connect two Tor circuits

» Uses " Introduction points“, which allow outside peers to
contact hidden server (while keeping it hidden)

» Publishes Intro. point addresses to " Lookup server*

» Client gets Introduction point address from lookup server,
sends random rendezvous point to hidden server

» Data travels a total of 7 hops (once established)

Hidden Services Example 1

T4H¢ Hidden Services: 1

Step 1: Bob picks some ~——
introduction points and - —
builds circuits to them. —

-

L—_:: Tor cloud

A Tor circuit
Intreduction points
2D rubiic key
One-time secret

Rendezvous point

Hidden Services Example 2

ToH¢ Hidden Services: 2

Step 2: Bob advertises —
his hidden service -- - <
XYZ.onion -- at the J—...}
database. -

f'-"\l

IL_) Tor cloud

A Tor circuit
Intreduction points
2D rubiic key

One-time secret

Rendezvous point

Hidden Services Example 3

ToH¢ Hidden Services: 3

Step 3: Alice hears that
X¥Z.onion exists, and she
requests more info from E
the database. She also -

sets up a rendezvous —

point, though she could
have done this before.

f'-"\l

IL_) Tor cloud

A Tor circuit
Intreduction points
2D rubiic key

One-time secret

Rendezvous point

Hidden Services Example 4

TH¢ Hidden Services: 4

Step 4: Alice writes a
message to Bob
[encrypted to PK) listing
the rendezvous point
and a one-time secret,
and asks an introduction

point to deliver it to Bob.

-

L_/‘: Tor cloud
A Tor circuit

Intreduction points
2D rubiic key
One-time secret

Rendezvous point

Hidden Services Example 5

ToH¢ Hidden Services: 5

Step 5: Bob connects to
the Alice's rendezvous
point and provides her

one-time secret. /

f'-"\l

L_/: Tor cloud
A Tor circuit
Intreduction points
2D rubiic key

One-time secret

Rendezvous point

Hidden Services Example 6

ToH¢ Hidden Services: 6

Step 6: Bob and Alice E

proceed to use their Tor
circuits like normal.

Q Tor cloud
A Tor circuit
Intreduction points
2D rubiic key
One-time secret

Rendezvous point

Types of Attacks on Tor

v

Exit Relay Snooping

v

Website fingerprinting

v

Traffic Analysis

v

Intersection Attack
» DoS

Why attack Tor?

» Tor is the most popular and widely used free software P2P
network used to achieve anonymity on the Internet:

» Tor has a large user base
» The project is well supported
» Generally assumed to give users strong anonymity

Our results:
All the Tor nodes involved in a circuit can be discovered, reducing

Tor users level of anonymity and revealing a problem with Tor’s
protocol

Key Tor Properties

v

Data is forwarded through the network

v

Each node knows only the previous hop and the next hop

v

Only the originator knows all the hops

v

Number of hops is hard coded (currently set to three)

Key security goal: No node in the path can discover the full path

Our Basis for Deanonymization

> Target user is running Tor from 2009 with default settings
> Three design issues enable users to be deanonymized

1. No artificial delays induced on connections

2. Path length is set at a small finite number (3)

3. Paths of arbitrary length through the network can be
constructed

Regular Path Example

Client

Tor Node 3

Circular Path Example 1/5

Client

Tor Node 3

Tor Node 1 Tor Node 2

Circular Path Example 2/5

Client

Tor Node 3
P
. .
— P— =
Tor Node 1 Tor Node 2

Circular Path Example 3/5

Client

Tor Node 3

Tor Node 1 Tor Node 2

Circular Path Example 4/5

Tor Node 1 Tor Node 2

Circular Path Example 5/5

Client

P

l% Tor Node 3 \

Tor Node 1 l Tor Node 2

7

Attack Implementation

» Exit node “injects” JavaScript “ping” code into HTML

response _ . _)
» Client browses as usual, while JavaScript continues to “phone

home” : .

» Exit node measures variance in latency _ _

» While continuing to measure, attack strains possible first
hop(s) . .

> If no significant variance observed, pick another node from

candidates and start over _
» Once sufficient change is observed in repeated measurements,

initial node has been found

Attack Example

Tor Node 1 - Unknown Node ~ Madicious Client

Client
& -
Tor Node 3 - Our Exit Node
=
\ Tor Node 2 - Known High BW Tor Ni
4 - .=
Server High BW Tor Node 2 Malicious Server

Queue example 1 (3 circuits)

>
-]

)

Queue example 2 (3 circuits)

A B c
s
B4
B3
2
b1
;) Cl
\\\\\
Output Queue \\\\

— . t=1t=0

I A0| co‘

Queue example 3 (3 circuits)

>
-]
)

Output Queue t=2t=1t=0

I BO| AO’ co‘

Queue example 4 (3 circuits)

>
-]
)

outputoueue t=3t=2t=1t=0

I c1| BO’ AO’ co‘

Queue example 5 (3 circuits)

>

B5|

B4

B3|

)

B2

m

t=4t=3t=2t=1t=0

| B1| c1’ BO’ AO’ co‘

Queue example 6 (3 circuits)

>

B5|

B4

)

B3

m

t=5t=4t=3t=2t=1t=0

I le 31’ c1’ BO’ AO’ co‘

Queue example 7 (3 circuits)

>

-]
)

B5|

B4

- (-

Output Q S, t=6t=5t=4t=3t=2t=1t=0

I B3| B2’ 31’ c1’ BO’ AO’ co‘

Queue example 8 (3 circuits)

>
-]
)

Output-Queue
t=7t=6t=5t=4t=3t=2t=1t=0

I B4| 53’ B2’ 31’ c1’ BO’ AO’ co‘

Queue example 1 (15 circuits)

>
[-]

A3

A2

ALl

IAQ

)

o

D5

D4

D3

D2

D1

DO

G H I
s
i3]
2|

6l |u |

cd |Hd o]

Output Queue

]l K
|
ol

L3

L2

L1

LO

Iz

lo

Queue example 2 (15 circuits)

A B C D E F G H 1 K L MN O
NG|
N5 (05
D5 |[E4 14 N4 (04
A3 B3| [C4 |[D4] [E3 13 L3 N3] (03
A2l B2| |C3] |[D3| |E2 12 L2 N2| (02
Al Bl |C2 [D2] |E1 Gl |HY |1 L1 M1 N1 |O1
/A0 |BO| |Cl (DL |EO| GO |HQ |0 LO MQ |NO| |OQ
[N EN N S A
—
—
—
—
—
Output Queue \,\7\‘ t—1t=o0

Queue example 3 (15 circuits)

>
[-]

A3

A2

ALl

IAQ

)

o

D5

D4

D3

D2

D1

G H 1] KL MN O
N

INs| |os

4 g [o4
i3] 13| (EE
2| L Nz oz

o |l faf |n ul wl N o1
aHOEOEMCNOOU

— t=2t=1t=0

I E0| DO’ co‘

Queue example 4 (15 circuits)

>
[-]

A3

A2

ALl

IAQ

)

o

D5

D4

D3

D2

D1

G H I
s
i3]
2|

bl o
ﬂEE
.

Output Queue

=l

|=

-

L3

L2

L1

LO

M N O
N
g |os
Nd o4
ng o3
N2 |02
ml N1 |on
Mg |ng oo

t=3t=2t=1t=0

I GO| EO’ DO’ co‘

Queue example 5 (15 circuits)

>
[-]

A3

A2

ALl

IAQ

)

o

D5

D4

D3

D2

D1

[}
|z
‘—

Output Queue

=l

|=

-

L MN O
N
g |os
Nd o4
13| ng o3
L2| Ng |0z
a| Ml N fod
| [md o oo

t=4t=3t=2t=1t=0

| H0| GO’ EO’ DO’ co‘

Queue example 6 (15 circuits)

>
[-]

A3

A2

ALl

IAQ

)

o

D5

D4

D3

D2

D1

[}
|z
‘—

Output Queue

I=
L
12
|z
lo

Ng
g |os
Nd o4

13| ng o3

L2| Ng |0z

t=5t=4t=3t=2t=1t=0

I 10 | HO’ GO’ EO’ DO’ co‘

Queue example 7 (15 circuits)

>
[-]

A3

A2

ALl

IAQ

)

o

D5

D4

D3

D2

D1

G H 1
4 |
3]
2|
AH ¢

Output Queue

I=
L
12
|z
lo

Ng
g |os
Nd o4

13| ng o3

L2| Ng |0z

t=6t=5t=4t=3t=2t=1t=0

IJO | |o’ HO’ GO’ EO’ DO’ co‘

Queue example 8 (15 circuits)

>
[-]

A3

A2

ALl

IAQ

)

o

D5

D4

D3

D2

D1

G H1 J] KL MN O
N

g |os

Nd o4

2 13| ng o3
I3 L2| Ng |0z
2| a| Ml N fod
ﬂ;? o] M4 [N oo

t=7t=6t=5t=4t=3t=2t=1t=0

I K0|J0’ |o’ HO’ GO’ EO’ DO’ co‘

Queue example 9 (15 circuits)

>
[-]

A3

A2

ALl

IAQ

)

o

D5

D4

D3

D2

D1

G H1 J] KL MN O
N

g |os

Nd o4

2 ng o3
I3 13| Ng |0z
2| 2| Ml N1 od
ﬂET ul [md I log

e
t=8t=7t=6t=5t=4t=3t=2t=1t=0

I L0| KO’ JO’ |o’ HO’ GO’ EO’ DO’ co‘

Queue example 10 (15 circuits)

A B C D EF GHI1] KL MN O
NG|
N5| |05
D5 N4 |04
A3 B3| |C4 |D4 |E4 14 N3] |03
A2 B2| |C3 |D3 |E3 13 L3 N2| |02
Al Bl |C2 [D2 |E2 12 L2 N1 |01
/A0 BO| |Cl} [DY |E1 ﬂ 11 1 L1 ﬂ NO| |00
_—
_—
_—
_—
ou:wmeﬂt=7t=6t=5t=4t=3t=2t=1t=0

| M0| L0’ KO’ JO’ |o’ HO’ GO’ EO’ DO’ co‘

Attack Example

Tor Node 1 - Unknown Node ~ Madicious Client

Client
& -
Tor Node 3 - Our Exit Node
=
\ Tor Node 2 - Known High BW Tor Ni
4 - .=
Server High BW Tor Node 2 Malicious Server

Attack Implementation

Modified exit node

Modified malicious client node

v

v

v

Lightweight malicious web server running on GNU
libmicrohttpd

Client side JavaScript for latency measurements

v

Instrumentation client to receive data

v

(g ur) 19x0ene Aq papuadxs saikg

- 160

o
™
T

Latency measurement graph freedomsurfers
T

Attack Run --—-&--—-

Control Run —<—

Downloaded Data -

7k

© [Te] < (3] N
(spuodas uil) asueleA Aouale

Gathered Data Example (1/8)

600 800 1000 1200
Sample number

400

200

(g ur) 19x0ene Aq papuadxs saikg

o
o
N
e e -
o
o
B o
-
—
<
A
=
17} o
I BB e, o
m [ER=2 =]
o
e}
Ny
Q.
©
S
—~ c 'S
(ee) 2 ©
g 5
o g
£
2 > il 8
o c bk N
oL [
S Sl
c c @
(qv] S35q
P e
L HESE .]
£2% S
© 0T
+2 m
(¢]
) °
1 1 1 1 1 o
d —O [Tel o n o [Te} -
e oM N N — —
n_vu (spuodas uil) asueleA Aouale
=
)
T

Sample number

Gathered Data Example (3/8)

Latency measurement graph carini

(g ur) 19x0ene Aq papuadxs saikg

[=} o =} o
< ® « — =
T T [ER TS =R N
[Ble=S=Errs o e -
(e s = s
& 1555 S En A
o
s}
r =}
[—
OB
B-—-SeE=E w
L B =
o
L =}
©
. o
Nt =
oo
Lo
[
cc®
uu.mla.
xS
B X
[Shahe] o
Hs § o S
C£T «
oL T
O 9
f={
3
]
[a]
1 1 1 1 1 1 1 1 1 1 1 1 1 = o
© NN T MHMAN O DO~ O©WLST MmN A
e I T TR R R

(spuodas uil) asueleA Aouale

Sample number

Gathered Data Example (4/8)

Latency measurement graph carini

(g ur) 19x0ene Aq papuadxs saikg

1 40

mw\\m@wummuuu@uu‘ﬂm

Attack Run --—-&--—-

Control Run —<—
Downloaded Data -

13

12

(spuodas uil) asueleA Aouale

600 800 1000 1200
Sample number

400

200

Gathered Data Example (5/8)

Number of measurements in range

600

500

400

300

200

100

of latency for fre fers

T T
Control Run #2225

Attack Run s

ontrol Run Regression Line Ll
Attack Run Regression Line

Range of measurements (in seconds)

Gathered Data Example (6/8)

Number of measurements in range

600

500

400

300

200

100

Hi of latency for bloxortsipt41

T T T T T T T T T T T 171
Control Run #2225

Attack Run s

Control Run Regression Line Ll
Attack Run Regression Line

12345678 91011121314151617 181920212223 24 252627 28293031

Range of measurements (in seconds)

Gathered Data Example (7/8)

Number of measurements in range

600

of latency for carini

500

400

300

200

100

Control Run #2225
Attack Run s

Control Run Regression Line
Attack Run Regression Line

Range of measurements (in seconds)

Gathered Data Example (8/8)

Number of measurements in range

600

of latency for carini

500

400

300

200

100

T T T T T T T T T
Control Run #2225

Attack Run s

Control Run Regression Line Ll
Attack Run Regression Line

5 6 7 8 9 10 " 12 13

Range of measurements (in seconds)

Statistical Analysis

v

Use modified x? test

v

Compare baseline distribution to attack distribution

v

High x? value indicates distribution changed in the right
direction

v

Product of x? confidence values over multiple runs

v

Iterate over suspect routers until single node stands out

Cumulative Product of x? p-values

Product of Confidence Values

1-1x10°%°

1-1x10°%°

199999

Rattensalat
SEC

wiebud6B
hamakor
yavs

aul
dontmesswithme
cThor

Raccoon
eponymousraga
BlueStar88a
wranglerrutgersedu
conf555nick
mf62525
miskatonic
WeAreAHedge
anon1984n2
©64177124055
bond
Server3 e

-

10 15 20 25 30
Number of Runs

Product of Confidence Values

1-1x10°%0

99999

Privacyhosting s
©64177124055
DieYouRebelScum1
ArikaYumemiya
auk
mrkoolltor
TorSchleim
myrnaloy

aquatorius
Einlauf
dontmesswithme
askatasuna
century

4 6 8
Number of Runs

10 12 14

What We Actually Achieve

» We do identify the entire path through the Tor network
> We do achieve this on the 2009 Tor network
» Attack works on routers with differing bandwidths

» This means that if someone were performing this attack from
an exit node, Tor becomes as effective as a network of
one-hop proxies

Why Our Attack is Effective

» Since we run the exit router, only a single node needs to be
found

» Qur multiplication of bandwidth technique allows low
bandwidth connections to DoS high bandwidth connections
(solves common DoS limitation)

Fixes

Don't use a fixed path length (or at least make it longer)
Don't allow infinite path lengths (this is fixed in Tor now!)
Induce delays into connections (probably not going to happen)

Monitor exit nodes for strange behavior (been done
somewhat)

Disable JavaScript in clients

Use end-to-end encryption

Attack Improvements/Variants

» Use meta refresh tags for measurements instead of JavaScript

» Parallelize testing (rule out multiple possible first nodes at
once)

» Improved latency measures for first hop to further narrow
possible first hops

Conclusion

v

Initial Tor implementation allowed arbitrary length paths

v

Arbitrary path lengths allow latency altering attack

v

Latency altering attack allows detection of significant changes
in latency

v

Significant changes in latency reveal paths used

Questions?

