
Peer-to-Peer Systems and Security
Anonymity

Christian Grothoff

Technische Universität München

May 16, 2013

“The problem with losing your anonymity is that you can never go
back.” –Marla Maples

Motivation

Suppose Alice and Bob communicate using encryption.

What can Eve still learn here?

Eve cannot read the data Alice and Bob are sending, but:

I Eve knows that Alice and Bob are communicating.

I Eve knows the amount of data they are sending and can
observe patterns.

⇒ Patterns may even allow Eve to figure out the data

Motivation

Suppose Alice and Bob communicate using encryption.

What can Eve still learn here?

Eve cannot read the data Alice and Bob are sending, but:

I Eve knows that Alice and Bob are communicating.

I Eve knows the amount of data they are sending and can
observe patterns.

⇒ Patterns may even allow Eve to figure out the data

Anonymity Definitions

Merriam-Webster:

1. not named or identified: “an anonymous author”, “they wish
to remain anonymous”

2. of unknown authorship or origin: “an anonymous tip”

3. lacking individuality, distinction, or recognizability: “the
anonymous faces in the crowd”, “the gray anonymous streets”
– William Styron

Anonymity Definitions

Andreas Pfitzmann et. al.:

“Anonymity is the state of being not identifiable
within a set of subjects, the anonymity set.”

EFF:

“Instead of using their true names to communicate, (...) people
choose to speak using pseudonyms (assumed names) or

anonymously (no name at all).”

Mine:

A user’s action is anonymous if the adversary cannot link the
action to the user’s identity

Anonymity Definitions

Andreas Pfitzmann et. al.:

“Anonymity is the state of being not identifiable
within a set of subjects, the anonymity set.”

EFF:

“Instead of using their true names to communicate, (...) people
choose to speak using pseudonyms (assumed names) or

anonymously (no name at all).”

Mine:

A user’s action is anonymous if the adversary cannot link the
action to the user’s identity

Anonymity Definitions

Andreas Pfitzmann et. al.:

“Anonymity is the state of being not identifiable
within a set of subjects, the anonymity set.”

EFF:

“Instead of using their true names to communicate, (...) people
choose to speak using pseudonyms (assumed names) or

anonymously (no name at all).”

Mine:

A user’s action is anonymous if the adversary cannot link the
action to the user’s identity

The user’s identity

includes personally identifiable information, such as:

I real name

I fingerprint

I passport number

I IP address

I MAC address

I login name

I ...

Actions

include:

I Internet access

I speach

I participation in demonstration

I purchase in a store

I walking across the street

I ...

Anonymity: Terminology

I Sender Anonymity: The initiator of a message is anonymous.
However, there may be a path back to the initiator.

?

I Receiver Anonymity: The receiver of a message is anonymous.

?

Pseudonymity

Pseudonymity

I A pseudonym is an identity for an entity in the system. It is a
“false identity” and not the true identity of the holder of the
pseudonym.

I Nobody, but (maybe) a trusted party may be able to link a
pseudonym to the true identity of the holder of the
pseudonym.

I A pseudonym can be tracked. We can observe its behaviour,
but we do not learn who it is.

Evaluating Anonymity

How much anonymity does a given system provide?

I Number of known attacks?

I Lowest complexity of successful attacks?

I Information leaked through messages and maintenance
procedures?

I Number of users?

Anonymity: Basics

I Anonymity Set is the set of suspects

I Attacker computes a probability distribution describing the
likelyhood of each participant to be the responsible party.

I Anonymity is the stronger, the larger the anonymity set and
the more evenly distributed the subjects within that set are.

Anonymity Metric: Anonymity Set Size

Let U be the attacker’s probability distribution describing the
probability that user u ∈ Ψ is responsible.

ASS :=
∑
u∈Ψ
u>0

1 (1)

Large Anonymity Sets

Examples of large anonymity sets:

I Any human

I Any human speaking English

I Any human with phone access

I Any human with Internet access

I Any human speaking English with Internet access

Large Anonymity Sets

Examples of large anonymity sets:

I Any human

I Any human speaking English

I Any human with phone access

I Any human with Internet access

I Any human speaking English with Internet access

Large Anonymity Sets

Examples of large anonymity sets:

I Any human

I Any human speaking English

I Any human with phone access

I Any human with Internet access

I Any human speaking English with Internet access

Large Anonymity Sets

Examples of large anonymity sets:

I Any human

I Any human speaking English

I Any human with phone access

I Any human with Internet access

I Any human speaking English with Internet access

Large Anonymity Sets

Examples of large anonymity sets:

I Any human

I Any human speaking English

I Any human with phone access

I Any human with Internet access

I Any human speaking English with Internet access

Anonymity Metric: Maximum Likelihood

Let U be the attacker’s probability distribution describing the
probability that user u ∈ Ψ is responsible.

ML := max
u∈Ψ

pu (2)

Anonymity Metric: Maximum Likelihood

I For successful criminal prosecution in the US, the law requires
ML close to 1 (“beyond reasonable doubt”)

I For successful civil prosecution in the US, the law requires
ML > 1

2 (“more likely than not”)

I For a given anonymity set, the best anonymity is achieved if

ML =
1

ASS
(3)

Anonymity Metric: Entropy
Let U be the attacker’s probability distribution describing the
probability that user u ∈ Ψ is responsible. Define the effective size
S of the anonymity distribution U to be:

S := −
∑
u∈Ψ

pu log2 pu (4)

where pu = U(u).

Interpretation of Entropy

S = −
∑
u∈Ψ

pu log2 pu (5)

This is the expected number of bits of additional information that
the attacker needs to definitely identify the user (with absolute
certainty).

Entropy Calculation Example

Suppose we have 101 suspects including Bob. Furthermore,
suppose for Bob the attacker has a probability of 0.9 and for all
the 100 other suspects the probability is 0.001.

What is S?

I For 101 nodes Hmax = 6.7

I

S = −100 · log2 0.001

1000
− 9 · log2 0.9

10
(6)

≈ 0.9965 + 0.1368 (7)

= 1.133... (8)

Entropy Calculation Example

Suppose we have 101 suspects including Bob. Furthermore,
suppose for Bob the attacker has a probability of 0.9 and for all
the 100 other suspects the probability is 0.001.

What is S?

I For 101 nodes Hmax = 6.7

I

S = −100 · log2 0.001

1000
− 9 · log2 0.9

10
(6)

≈ 0.9965 + 0.1368 (7)

= 1.133... (8)

Attacks to avoid

Hopeless situations include:

I All nodes collaborate against the victim

I All directly adjacent nodes collaborate

I All non-collaborating adjacent nodes are made unreachable
from the victim

I The victim is required to prove his innocence

Economics & Anonymity

R. Dingledine and P. Syverson wrote about Open Issues in the
Economics of Anonymity:

I Providing anonymity services has economic disincentives
(DoS, legal liability)

I Anonymity requires introducing inefficiencies

⇒ Who pays for that?

The anonymizing server that has the best reputation (performance,
most traffic) is presumably compromised.

Economics & Anonymity

R. Dingledine and P. Syverson wrote about Open Issues in the
Economics of Anonymity:

I Providing anonymity services has economic disincentives
(DoS, legal liability)

I Anonymity requires introducing inefficiencies

⇒ Who pays for that?

The anonymizing server that has the best reputation (performance,
most traffic) is presumably compromised.

Anonymity: Dining Cryptographers

“Three cryptographers are sitting down to dinner. The waiter
informs them that the bill will be paid anonymously. One of the
cryptographers maybe paying for dinner, or it might be the NSA.
The three cryptographers respect each other’s right to make an
anonymous payment, but they wonder if the NSA is paying.” –
David Chaum

PipeNet

Wei Dei suggested PipeNet:

I initiator knows receiver identity, but not vice-versa

I layered encryption, forwarding without delay

I constant traffic on each link to avoid observability

Is this useful?

PipeNet

Wei Dei suggested PipeNet:

I initiator knows receiver identity, but not vice-versa

I layered encryption, forwarding without delay

I constant traffic on each link to avoid observability

Is this useful?

Mixing
David Chaum’s mix (1981) and cascades of mixes are the
traditional basis for destroying linkability:

Mixing
David Chaum’s mix (1981) and cascades of mixes are the
traditional basis for destroying linkability:

Threshold Mix

Timed Mix

Pool mix

JAP: Java Anonymizing Proxy1

1From Stefan Köpsell: “AnonDienst – Design und Implementierung”, 2004

Crowds

M. Reiter and A. Rubin introduced Crowds [3]:

I primary application is web-surfing

I each member of the crowd chooses the next hop at random

I communication in the crowd is link-encrypted

I bi-directional communication (replies)

I efficiency and high scalability

I simple protocol

Crowds: non-goals

I no anonymity against local eavesdropper

I no responder anonymity

I no effort to defend against denial-of-service attacks (especially
not against routers tampering with the indirected data)

Crowds: design

I node joins crowd (by signing up with central blender server),
crowd forms one path with a single key for the entire path

I multiple, chained proxies, each proxy either exits or extends
with probability pf >

1
2

I reply is routed back on the same path

Crowds: local eavesdropper

I there is no noise in the system

⇒ eavesdropper can see that a connection is initiated

I request is routed along static path with one session key

⇒ eavesdropper needs one node on the path for full exposure

Crowds: collaborating jondos

Suppose c out of n jondos are collaborating and pf is the
indirection probability. Theorem 5.2: If

n ≥ pf

pf − 1
2

· (c + 1)

the probability that the a collaborating jondo is the first node that
the initiator connects to is lower than 50%.

Crowds: An attack2

The adversary may be able to deduce the initiator over time
I if an adversary controls one or more members of the crowd

and
I if the protocol has multiple interactions between initiator and

responder that can be correlated and that take different paths,
since the initiator has a higher probability to be the sender of
a query than all other nodes

Solution:

I try to use only one static path

I paths must change when new jondos join

I solution: new jondos must join in groups, controlled by the
central registration server

2See also: M. Wright, M. Adler, B. Levine and C. Shields: An Analysis of
the Degradation of Anonymous Protocols

Crowds: An attack2

The adversary may be able to deduce the initiator over time
I if an adversary controls one or more members of the crowd

and
I if the protocol has multiple interactions between initiator and

responder that can be correlated and that take different paths,
since the initiator has a higher probability to be the sender of
a query than all other nodes

Solution:

I try to use only one static path

I paths must change when new jondos join

I solution: new jondos must join in groups, controlled by the
central registration server

2See also: M. Wright, M. Adler, B. Levine and C. Shields: An Analysis of
the Degradation of Anonymous Protocols

Crowds: scalability

Since the amount of traffic a node receives depends only on pf ,
not on the size n of the crowd, scalability is great.

The requirement that all paths must be re-formed whenever nodes
join is much worse, especially since the anonymity of the system
depends on large crowds.

Crowds: choosing pf

I The network load on an individual jondo does not change at
all if that jondo changes the parameter pf .

I Since the last jondo on a path must decrypt, it is optimal for
CPU load to choose pf = 0.

I If a jondo chooses pf = 1, this is optimal for the rest of the
crowd (jondo becomes a proxy!).

I If the jondo then additionally follows the Crowd requirement
to indirect its own requests, they are trivially detectable and
the jondo itself is exposed.

Crowds: open problems

I exit nodes are fair game for legal actions

I no accounting to defend against abuse / DoS attacks

I lower indirection probability benefits only other nodes
⇒ no possibility to trade efficiency for anonymity

Mixminion

G. Danezis, R. Dingledine, D. Hopwood and N. Mathewson
describe Mixminion [2]:

I based on mixmailers (only application is E-mail)

I possibility to reply

I directory servers to evaluate participating remailers
(reputation system)

I exit policies

Mixminion: key ideas

When a message traverses mixminion, each node must decrypt the
message using its (ephemeral) private key.

The key idea behind the replies is splitting the path into two legs:

I the first half is chosen by the responder to hide the responder
identity

I the second half was communicated by the receiver to hide the
receiver identity

I a crossover-node in the middle is used to switch the headers
specifying the path

Mixminion: replay?

Replay attacks were an issue in previous mixnet implementations.

I Mixes are vulnerable to replay attacks

I Mixminion: servers keep hash of previously processed
messages until the server key is rotated

⇒ Bounded amount of state in the server, no possibility for
replay attack due to key rotation

Mixminion: Directory Servers

I Inform users about servers

I Probe servers for reliability

I Allow a partitioning attack unless the user always queries all
directory servers for everything

Mixminion: Nymservers

I Nymservers keep list of use-once reply blocks for a user

I Vulnerable to DoS attacks (deplete reply blocks)

I Nymservers could also store mail (use one reply block for
many messages).

Mixminion: obvious problems

I no benefits for running a mixmailer for the operator

I quite a bit of public key cryptography

I trustworthiness of directory servers questionable

I servers must keep significant (but bounded) amount of state

I limited to E-mail (high latency)

Mixminion: open problems

I exit nodes are fair game for legal actions

I no accounting to defend against abuse / DoS attacks

I statistical correlation of entities communicating over time
possible (observe participation)

⇒ bridging between an anonymous network and a traditional
protocol is difficult

Tor

I Tor is a P2P network of low-latency mixes which are used to
provide anonymous communication between parties on the
Internet.

I Tor works for any TCP-based protocol

I TCP traffic enters the Tor network via a SOCKS proxy

I Common usage: client anonymity for web browsing

Onion Routing

I Multiple mix servers

I Path of mix servers chosen by initiator
I Chosen mix servers create “circuit”

I Initiator contacts first server S1, sets up symmetric key KS1

I Then asks first server to connect to second server S2; through
this connection sets up symmetric key with second server KS2

I ...
I Repeat with server Si until circuit of desired length n

constructed

Onion Routing Example

I Client sets up symmetric key KS1 with server S1

S
1

S
2

Client

Exchange

KS
1

Onion Routing Example

I Via S1 Client sets up symmetric key KS2 with server S2

S
1

S
2

Client

Exchange

KS
2

Onion Routing Example

I Client encrypts m as KS1(KS2(m)) and sends to S1

S
1

S
2

Client

(KS
2

KS
1

(m))

Onion Routing Example

I S1 decrypts, sends on to S2, S2 decrypts, revealing m

S
1

S
2

Client

(KS
2

KS
1

(m))
KS

2
(m)

Tor - How it Works

I Low latency P2P Network of mix servers

I Designed for interactive traffic (https, ssh, etc.)
I ”Directory Servers“ store list of participating servers

I Contact information, public keys, statistics
I Directory servers are replicated for security

I Clients choose servers randomly with bias towards high
BW/uptime

I Clients build long lived Onion routes ”circuits“ using these
servers

I Circuits are bi-directional

I Circuits are of length three

Tor - How it Works - Example

I Example of Tor client circuit

Client

Server

Tor Node 1 Tor Node 2 Tor Node 3

Tor Node 4 Tor Node 5 Tor Node 6

Tor Node 7 Tor Node 8 Tor Node 9

Tor - How it Works - Servers

I Servers are classified into three categories for usability,
security and operator preference

I Entry nodes (aka guards) - chosen for first hop in circuit
I Generally long lived ”good“ nodes
I Small set chosen by client which are used for client lifetime

(security)

I Middle nodes - chosen for second hop in circuit, least
restricted set

I Exit nodes - last hop in circuit
I Visible to outside destination
I Support filtering of outgoing traffic
I Most vulerable position of nodes

Hidden Services in Tor

I Hidden services allow Tor servers to receive incoming
connections anonymously

I Can provide access to services available only via Tor
I Web, IRC, etc.
I For example, host a website without your ISP knowing

Hidden Services Example 1

Hidden Services Example 2

Hidden Services Example 3

Hidden Services Example 4

Hidden Services Example 5

Hidden Services Example 6

Types of Attacks on Tor

I Exit Relay Snooping

I Website fingerprinting

I Traffic Analysis

I Intersection Attack

I DoS

The Number of Hops

What is more secure: more hops or fewer hops?

Path lifetime

What is more secure:
short-lived paths or long-lived paths?

Mute/Ants4

Properties that a search-limiting mechanism should have:3

1. Single Integer Representation

2. Distributed Enforcement

3. Total Limit

4. Deterministic

5. Account for Branching

6. Account for Results

3according to Mute author Jason Rohrer
4http://mute-net.sourceforge.net/utilityCounters.shtml

http://mute-net.sourceforge.net/utilityCounters.shtml

Utility Counters

UC starts at zero. Without hop counter:

UCnew = UCold + α ∗ |localResults|+ β ∗ |forwardSet|+ γ

Improved formula with hop counter:

UCnew = UCold +α∗ |localResults| ∗HC +β ∗ |forwardSet|1+ 1
HC +γ

What is the impact of using UCs for search on anonymity?

Utility Counters

UC starts at zero. Without hop counter:

UCnew = UCold + α ∗ |localResults|+ β ∗ |forwardSet|+ γ

Improved formula with hop counter:

UCnew = UCold +α∗ |localResults| ∗HC +β ∗ |forwardSet|1+ 1
HC +γ

What is the impact of using UCs for search on anonymity?

Mute Sender Anonymity

Use a hybrid approach for flodding:

I Initiator picks random 20-byte SHA1 hash value

I Each hop re-hashes the current value

I If last bytes is ≤ 51, switch to utility counters

Does this solve the problem?

Mute Responder Anonymity

Use a third approach for the end:

I Forward with branching until UC hits the limit

I Then switch to chain mode

I Each node on startup once determines an operational mode n
with probability p(n), and in chain mode forwards to the same
n neighbours, where:

p(n) =

{
3
4 n = 0

2−n+2 n > 0
(9)

Does this solve the problem?

gap

K. Bennett and C. Grothoff introduced gap [1]:

I uses link-encryted, unstructured overlay network

I search integrated: initiator and responder anonymity
I Simple query-reply scheme:

I sender queries using hash code
I responder replies with encrypted reply (ECRS)

I nodes can individually trade anonymity for efficiency

I nodes can not gain anonymity at the expense of other nodes

⇒ “correct” economic incentives

I implemented in GNUnet (fs)

gap

K. Bennett and C. Grothoff introduced gap [1]:

I uses link-encryted, unstructured overlay network

I search integrated: initiator and responder anonymity
I Simple query-reply scheme:

I sender queries using hash code
I responder replies with encrypted reply (ECRS)

I nodes can individually trade anonymity for efficiency

I nodes can not gain anonymity at the expense of other nodes

⇒ “correct” economic incentives

I implemented in GNUnet (fs)

gap: Money Laundering

If you wanted to hide your financial traces, would you:

I Give the money to your neighbor,

I expect that your neighbor gives it to me,

I and then hope that I give it to the intended recipient?
I trust everybody involved:

I to do this for you as a favour,

I not to steal the money, and
I not to tell the police?

gap: Money Laundering

If you wanted to hide your financial traces, would you:

I Give the money to your neighbor,

I expect that your neighbor gives it to me,

I and then hope that I give it to the intended recipient?
I trust everybody involved:

I to do this for you as a favour,
I not to steal the money, and
I not to tell the police?

gap: Banks!

gap: key idea

Source rewriting was traditionally used to hide the identity of the
source. gap uses it in a different way:

I Anonymity is achieved by making the initiator look like a
router that acts on behalf of somebody else

I It is important to make traffic originating from the router look
identical to traffic that the router indirects

I It is not necessary to avoid a direct network connection
between the responder and the initiator

gap: Why indirect?

I Indirections do not protect the sender or receiver

I Indirections can help the indirector to hide its own traffic

I If the indirector cheats (e.g. by keeping the sender address
when forwarding) it only exposes its own action and does not
change the anonymity of the original participants

gap: Key Realization

Anonymity can be measured in terms of

I how much traffic from non-malicious hosts is indirected
compared to the self-generated traffic

I in a time-interval small enough such that timing analysis can
not disambiguate the sources.

gap routing: Local Heuristics

In gap, each peer is free to route queries whichever way it thinks
is best.

I structured routing is predictable and analyzable

I gap keeps routing hard to predict, peers do not disclose
information

I proximity-based routing is efficient for migrated content

I hot-path routing is efficient if queries are correlated

I flodding is acceptable if merely noise is substituted

How long should a peer keep track of which queries?

gap routing: Local Heuristics

In gap, each peer is free to route queries whichever way it thinks
is best.

I structured routing is predictable and analyzable

I gap keeps routing hard to predict, peers do not disclose
information

I proximity-based routing is efficient for migrated content

I hot-path routing is efficient if queries are correlated

I flodding is acceptable if merely noise is substituted

How long should a peer keep track of which queries?

gap routing: Local Heuristics

In gap, each peer is free to route queries whichever way it thinks
is best.

I structured routing is predictable and analyzable

I gap keeps routing hard to predict, peers do not disclose
information

I proximity-based routing is efficient for migrated content

I hot-path routing is efficient if queries are correlated

I flodding is acceptable if merely noise is substituted

How long should a peer keep track of which queries?

Time-to-Live

I TTL field in queries is relative time and can be negative.
I Absolute TTL = NOW + relative TTL
I Absolute TTL and decies which query to drop.
I TTL is decremented at each hop.
I peers can still route “expired” queries indefinitely
⇒ better solution than traditional hop-count

GAP illustrated (1/9)

GAP illustrated (2/9)

GAP illustrated (3/9)

GAP illustrated (4/9)

GAP illustrated (5/9)

GAP illustrated (6/9)

GAP illustrated (7/9)

GAP illustrated (8/9)

GAP illustrated (9/9)

gap: efficient or anonymous

When a node M processes a query from A, it can choose:

I to how many other nodes Ci should receive the query

I to tell Ci to send the reply directly to A

I to send a reply if content is available

If a node forwards a query preserving the identity of the originator,
it may expose the actual initiator to the responder. This is ok:

I Next hop has still no certainty that the exposed predecessor is
not routing for somebody else

I Same argument holds for the other direction

gap: efficient or anonymous

When a node M processes a query from A, it can choose:

I to how many other nodes Ci should receive the query

I to tell Ci to send the reply directly to A

I to send a reply if content is available

If a node forwards a query preserving the identity of the originator,
it may expose the actual initiator to the responder. This is ok:

I Next hop has still no certainty that the exposed predecessor is
not routing for somebody else

I Same argument holds for the other direction

Costs and benefits of short-cuts

By preserving the previous sender of the query when the
short-cutting peer forwarded the query:

I the peer has exposed its own routing behaviour for this
message, reducing the set of messages it can use to hide its
own traffic

I the peer has gained performance (bandwidth) since it does
not have to route the reply

A node decides to forward a query based on the current load:

I if the load is low, the node maximizes the indirected traffic
and thus its anonymity

I if the load is high, the node is already covered in terms of
anonymity and it reduces its load (does not have to route the
replies) by forwarding

I if the load is far too high, the node just drops packets.

Costs and benefits of short-cuts

By preserving the previous sender of the query when the
short-cutting peer forwarded the query:

I the peer has exposed its own routing behaviour for this
message, reducing the set of messages it can use to hide its
own traffic

I the peer has gained performance (bandwidth) since it does
not have to route the reply

A node decides to forward a query based on the current load:

I if the load is low, the node maximizes the indirected traffic
and thus its anonymity

I if the load is high, the node is already covered in terms of
anonymity and it reduces its load (does not have to route the
replies) by forwarding

I if the load is far too high, the node just drops packets.

gap: individual trade-offs

In summary:

I indirect when idle,

I forward when busy,

I drop when very busy.

If we are handling too much traffic, we likely
do not need as much to hide ourselves and can
be more efficient!

B

C

A

1

2

3 4

gap is unreliable and has best-effort semantics:

I packets can be lost, duplicated or arrive out-of-order

I nodes can act more randomly and adjust to load

I application layer is responsible for adding reliability

gap: individual trade-offs

In summary:

I indirect when idle,

I forward when busy,

I drop when very busy.

If we are handling too much traffic, we likely
do not need as much to hide ourselves and can
be more efficient!

B

C

A

1

2

3 4

gap is unreliable and has best-effort semantics:

I packets can be lost, duplicated or arrive out-of-order

I nodes can act more randomly and adjust to load

I application layer is responsible for adding reliability

Attacks: Partitioning (1/2)

Attacks: Partitioning (2/2)

gap: Traffic Analysis?

A powerful adversary doing traffic analysis sees:

I encrypted packets

I unlinkable queries or replies at collaborating nodes

I random delays, unpredictable packet drops

I unpredictable packet duplication

I only a small part of the network’s topology since no routing
information is exchanged

gap: Conclusion

gap can achieve:

I any degree of anonymity based on the bandwidth available to
the user compared to the adversary

I scalability because busy nodes can increase thoughput without
compromising anonymity

Questions?

?
“A society that gets rid of all its troublemakers goes downhill.”
–Robert A. Heinlein

References

Krista Bennett and Christian Grothoff.
gap - Practical Anonymous Networking.
In Designing Privacy Enhancing Technologies, pages 141–160.
Springer-Verlag, 2003.

George Danezis, Roger Dingledine, and Nick Mathewson.
Mixminion: Design of a type iii anonymous remailer protocol.
In Proceedings of the 2003 IEEE Symposium on Security and
Privacy, SP ’03, 2003.

Michael K. Reiter and Aviel D. Rubin.
Anonymous web transactions with crowds.
Commun. ACM, 42(2):32–48, February 1999.

	References

