
Peer-to-Peer Systems and Security
Attacks!

Christian Grothoff

Technische Universität München

April 13, 2013

Salsa & AP3

I Goal: eliminate trusted blender server

I Idea: Use DHT (AP3: Pastry, Salsa: custom DHT) to find
peers

I Sybil defense with trusted authority (AP3) or IP-based hash
(Salsa)

Attacks on Salsa & AP3 [2]

I Passive attack: detect lookup, then correlate with path
construction later

I Active attack: return malicious peers during lookup

Defenses against Active Attack: Redundant lookups

Defenses against Passive Attack: Minimize lookup
footprint

Defending against the Combined Attack

r = 3 is optional for f < 0.1,then r = 6 becomes optimal.

An Attack on Tor [1]

Result:

All the Tor nodes involved in a circuit can be discovered, reducing
Tor users level of anonymity and revealing a problem with Tor’s

protocol

Note: this was fixed since the attack was published in 2009.

An Attack on Tor [1]

Result:

All the Tor nodes involved in a circuit can be discovered, reducing
Tor users level of anonymity and revealing a problem with Tor’s

protocol

Note: this was fixed since the attack was published in 2009.

Key Tor Properties

I Data is forwarded through the network

I Each node knows only the previous hop and the next hop

I Only the originator knows all the hops

I Number of hops is hard coded (currently set to three)

Key security goal: No node in the path can discover the full path

Our Basis for Deanonymization

I Target user is running Tor from 2009 with default settings
I Three design issues enable users to be deanonymized

1. No artificial delays induced on connections
2. Path length is set at a small finite number (3)
3. Paths of arbitrary length through the network can be

constructed

Regular Path Example

Client

Server

Tor Node 1 Tor Node 2

Tor Node 3

Circular Path Example 1/5

Client

Server

Tor Node 1 Tor Node 2

Tor Node 3

Circular Path Example 2/5

Client

Server

Tor Node 1 Tor Node 2

Tor Node 3

Circular Path Example 3/5

Client

Server

Tor Node 1 Tor Node 2

Tor Node 3

Circular Path Example 4/5

Client

Server

Tor Node 1 Tor Node 2

Tor Node 3

Circular Path Example 5/5

Client

Server

Tor Node 1 Tor Node 2

Tor Node 3

Attack Implementation

I Exit node “injects” JavaScript “ping” code into HTML
response

I Client browses as usual, while JavaScript continues to “phone
home”

I Exit node measures variance in latency

I While continuing to measure, attack strains possible first
hop(s)

I If no significant variance observed, pick another node from
candidates and start over

I Once sufficient change is observed in repeated measurements,
initial node has been found

Attack Example

Client

Tor Node 3 - Our Exit Node

Server

Tor Node 1 - Unknown Node Malicious Client

Tor Node 2 - Known High BW Tor Node 1

High BW Tor Node 2 Malicious Server

Queue example 1 (3 circuits)

A

A0

B

B0

B1

B2

B3

B4

B5

C

C1

C0

t = 0
Output Queue

Queue example 2 (3 circuits)

A B

B0

B1

B2

B3

B4

B5

C

C1

C0

t = 0

A0

t = 1
Output Queue

Queue example 3 (3 circuits)

A B

B1

B2

B3

B4

B5

C

C1

C0

t = 0

A0

t = 1

B0

t = 2
Output Queue

Queue example 4 (3 circuits)

A B

B1

B2

B3

B4

B5

C

C0

t = 0

A0

t = 1

B0

t = 2

C1

t = 3
Output Queue

Queue example 5 (3 circuits)

A B

B2

B3

B4

B5

C

C0

t = 0

A0

t = 1

B0

t = 2

C1

t = 3

B1

t = 4
Output Queue

Queue example 6 (3 circuits)

A B

B3

B4

B5

C

C0

t = 0

A0

t = 1

B0

t = 2

C1

t = 3

B1

t = 4

B2

t = 5
Output Queue

Queue example 7 (3 circuits)

A B

B4

B5

C

C0

t = 0

A0

t = 1

B0

t = 2

C1

t = 3

B1

t = 4

B2

t = 5

B3

t = 6
Output Queue

Queue example 8 (3 circuits)

A B

B5

C

C0

t = 0

A0

t = 1

B0

t = 2

C1

t = 3

B1

t = 4

B2

t = 5

B3

t = 6

B4

t = 7
Output Queue

Queue example 1 (15 circuits)

A

A0

A1

A2

A3

B

B0

B1

B2

B3

C

C1

C2

C3

C4

D

D0

D1

D2

D3

D4

D5

E

E0

E1

E2

E3

E4

F G

G0

G1

H

H0

H1

I

I0

I1

I2

I3

I4

J

J0

J1

K

K0

L

L0

L1

L2

L3

M

M0

M1

N

N0

N1

N2

N3

N4

N5

N6

O

O0

O1

O2

O3

O4

O5

C0

t = 0
Output Queue

Queue example 2 (15 circuits)

A

A0

A1

A2

A3

B

B0

B1

B2

B3

C

C1

C2

C3

C4

D

D1

D2

D3

D4

D5

E

E0

E1

E2

E3

E4

F G

G0

G1

H

H0

H1

I

I0

I1

I2

I3

I4

J

J0

J1

K

K0

L

L0

L1

L2

L3

M

M0

M1

N

N0

N1

N2

N3

N4

N5

N6

O

O0

O1

O2

O3

O4

O5

C0

t = 0

D0

t = 1
Output Queue

Queue example 3 (15 circuits)

A

A0

A1

A2

A3

B

B0

B1

B2

B3

C

C1

C2

C3

C4

D

D1

D2

D3

D4

D5

E

E1

E2

E3

E4

F G

G0

G1

H

H0

H1

I

I0

I1

I2

I3

I4

J

J0

J1

K

K0

L

L0

L1

L2

L3

M

M0

M1

N

N0

N1

N2

N3

N4

N5

N6

O

O0

O1

O2

O3

O4

O5

C0

t = 0

D0

t = 1

E0

t = 2
Output Queue

Queue example 4 (15 circuits)

A

A0

A1

A2

A3

B

B0

B1

B2

B3

C

C1

C2

C3

C4

D

D1

D2

D3

D4

D5

E

E1

E2

E3

E4

F G

G1

H

H0

H1

I

I0

I1

I2

I3

I4

J

J0

J1

K

K0

L

L0

L1

L2

L3

M

M0

M1

N

N0

N1

N2

N3

N4

N5

N6

O

O0

O1

O2

O3

O4

O5

C0

t = 0

D0

t = 1

E0

t = 2

G0

t = 3
Output Queue

Queue example 5 (15 circuits)

A

A0

A1

A2

A3

B

B0

B1

B2

B3

C

C1

C2

C3

C4

D

D1

D2

D3

D4

D5

E

E1

E2

E3

E4

F G

G1

H

H1

I

I0

I1

I2

I3

I4

J

J0

J1

K

K0

L

L0

L1

L2

L3

M

M0

M1

N

N0

N1

N2

N3

N4

N5

N6

O

O0

O1

O2

O3

O4

O5

C0

t = 0

D0

t = 1

E0

t = 2

G0

t = 3

H0

t = 4
Output Queue

Queue example 6 (15 circuits)

A

A0

A1

A2

A3

B

B0

B1

B2

B3

C

C1

C2

C3

C4

D

D1

D2

D3

D4

D5

E

E1

E2

E3

E4

F G

G1

H

H1

I

I1

I2

I3

I4

J

J0

J1

K

K0

L

L0

L1

L2

L3

M

M0

M1

N

N0

N1

N2

N3

N4

N5

N6

O

O0

O1

O2

O3

O4

O5

C0

t = 0

D0

t = 1

E0

t = 2

G0

t = 3

H0

t = 4

I0

t = 5
Output Queue

Queue example 7 (15 circuits)

A

A0

A1

A2

A3

B

B0

B1

B2

B3

C

C1

C2

C3

C4

D

D1

D2

D3

D4

D5

E

E1

E2

E3

E4

F G

G1

H

H1

I

I1

I2

I3

I4

J

J1

K

K0

L

L0

L1

L2

L3

M

M0

M1

N

N0

N1

N2

N3

N4

N5

N6

O

O0

O1

O2

O3

O4

O5

C0

t = 0

D0

t = 1

E0

t = 2

G0

t = 3

H0

t = 4

I0

t = 5

J0

t = 6
Output Queue

Queue example 8 (15 circuits)

A

A0

A1

A2

A3

B

B0

B1

B2

B3

C

C1

C2

C3

C4

D

D1

D2

D3

D4

D5

E

E1

E2

E3

E4

F G

G1

H

H1

I

I1

I2

I3

I4

J

J1

K L

L0

L1

L2

L3

M

M0

M1

N

N0

N1

N2

N3

N4

N5

N6

O

O0

O1

O2

O3

O4

O5

C0

t = 0

D0

t = 1

E0

t = 2

G0

t = 3

H0

t = 4

I0

t = 5

J0

t = 6

K0

t = 7
Output Queue

Queue example 9 (15 circuits)

A

A0

A1

A2

A3

B

B0

B1

B2

B3

C

C1

C2

C3

C4

D

D1

D2

D3

D4

D5

E

E1

E2

E3

E4

F G

G1

H

H1

I

I1

I2

I3

I4

J

J1

K L

L1

L2

L3

M

M0

M1

N

N0

N1

N2

N3

N4

N5

N6

O

O0

O1

O2

O3

O4

O5

C0

t = 0

D0

t = 1

E0

t = 2

G0

t = 3

H0

t = 4

I0

t = 5

J0

t = 6

K0

t = 7

L0

t = 8
Output Queue

Queue example 10 (15 circuits)

A

A0

A1

A2

A3

B

B0

B1

B2

B3

C

C1

C2

C3

C4

D

D1

D2

D3

D4

D5

E

E1

E2

E3

E4

F G

G1

H

H1

I

I1

I2

I3

I4

J

J1

K L

L1

L2

L3

M

M1

N

N0

N1

N2

N3

N4

N5

N6

O

O0

O1

O2

O3

O4

O5

C0

t = 0

D0

t = 1

E0

t = 2

G0

t = 3

H0

t = 4

I0

t = 5

J0

t = 6

K0

t = 7

L0

t = 8

M0

t = 9
Output Queue

Attack Example

Client

Tor Node 3 - Our Exit Node

Server

Tor Node 1 - Unknown Node Malicious Client

Tor Node 2 - Known High BW Tor Node 1

High BW Tor Node 2 Malicious Server

Attack Implementation

I Modified exit node

I Modified malicious client node

I Lightweight malicious web server running on GNU
libmicrohttpd

I Client side JavaScript for latency measurements

I Instrumentation client to receive data

Gathered Data Example (1/8)

1

2

3

4

5

6

7

 0 200 400 600 800 1000 1200

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

La
te

nc
y

va
ria

nc
e

(in
 s

ec
on

ds
)

B
yt

es
 e

xp
en

de
d

by
 a

tta
ck

er
 (

in
 k

B
)

Sample number

Latency measurement graph freedomsurfers

Control Run
Attack Run

Downloaded Data

Gathered Data Example (2/8)

1

5

10

15

20

25

30
31

 0 200 400 600 800 1000 1200

10

20

30

40

50

La
te

nc
y

va
ria

nc
e

(in
 s

ec
on

ds
)

B
yt

es
 e

xp
en

de
d

by
 a

tta
ck

er
 (

in
 k

B
)

Sample number

Latency measurement graph bloxortsipt41

Control Run
Attack Run

Downloaded Data

Gathered Data Example (3/8)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 0 200 400 600 800 1000 1200

10

20

30

40

La
te

nc
y

va
ria

nc
e

(in
 s

ec
on

ds
)

B
yt

es
 e

xp
en

de
d

by
 a

tta
ck

er
 (

in
 k

B
)

Sample number

Latency measurement graph carini

Control Run
Attack Run

Downloaded Data

Gathered Data Example (4/8)

1

2

3

4

5

6

7

8

9

10

11

12

13

 0 200 400 600 800 1000 1200

10

20

30

40

La
te

nc
y

va
ria

nc
e

(in
 s

ec
on

ds
)

B
yt

es
 e

xp
en

de
d

by
 a

tta
ck

er
 (

in
 k

B
)

Sample number

Latency measurement graph carini

Control Run
Attack Run

Downloaded Data

Gathered Data Example (5/8)

0

100

200

300

400

500

600

1 2 3 4 5 6 7

N
um

be
r o

f m
ea

su
re

m
en

ts
 in

 ra
ng

e

Range of measurements (in seconds)

Histogram of latency measurements for freedomsurfers

Control Run
Attack Run

Control Run Regression Line
Attack Run Regression Line

Gathered Data Example (6/8)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N
um

be
r o

f m
ea

su
re

m
en

ts
 in

 ra
ng

e

Range of measurements (in seconds)

Histogram of latency measurements for bloxortsipt41

Control Run
Attack Run

Control Run Regression Line
Attack Run Regression Line

Gathered Data Example (7/8)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r o

f m
ea

su
re

m
en

ts
 in

 ra
ng

e

Range of measurements (in seconds)

Histogram of latency measurements for carini

Control Run
Attack Run

Control Run Regression Line
Attack Run Regression Line

Gathered Data Example (8/8)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13

N
um

be
r o

f m
ea

su
re

m
en

ts
 in

 ra
ng

e

Range of measurements (in seconds)

Histogram of latency measurements for carini

Control Run
Attack Run

Control Run Regression Line
Attack Run Regression Line

Statistical Analysis

I Use modified χ2 test

I Compare baseline distribution to attack distribution

I High χ2 value indicates distribution changed in the right
direction

I Product of χ2 confidence values over multiple runs

I Iterate over suspect routers until single node stands out

Cumulative Product of χ2 p-values

1-1x10-20

1-1x10-10

.99999

.99
.9

0
 0 5 10 15 20 25 30

P
ro

du
ct

 o
f C

on
fid

en
ce

 V
al

ue
s

Number of Runs

Rattensalat
SEC

wie6ud6B
hamakor

yavs
auk

dontmesswithme
cThor

Raccoon
eponymousraga

BlueStar88a
wranglerrutgersedu

conf555nick
mf62525

miskatonic
WeAreAHedge

anon1984n2
c64177124055

bond
server3

1-1x10-10

.99999

.99

.9

0
 0 2 4 6 8 10 12 14

P
ro

du
ct

 o
f C

on
fid

en
ce

 V
al

ue
s

Number of Runs

Privacyhosting
c64177124055

DieYouRebelScum1
ArikaYumemiya

auk
mrkoolltor

TorSchleim
myrnaloy

judas
Doodles123

tin0
baphomet

kallio
diora

aquatorius
Einlauf

dontmesswithme
askatasuna

century

What We Actually Achieve

I We do identify the entire path through the Tor network

I We do achieve this on the 2009 Tor network

I Attack works on routers with differing bandwidths

I This means that if someone were performing this attack from
an exit node, Tor becomes as effective as a network of
one-hop proxies

Why Our Attack is Effective

I Since we run the exit router, only a single node needs to be
found

I Our multiplication of bandwidth technique allows low
bandwidth connections to DoS high bandwidth connections
(solves common DoS limitation)

Fixes

I Don’t use a fixed path length (or at least make it longer)

I Don’t allow infinite path lengths (this is fixed in Tor now!)

I Induce delays into connections (probably not going to happen)

I Monitor exit nodes for strange behavior (been done
somewhat)

I Disable JavaScript in clients

I Use end-to-end encryption

Attack Improvements/Variants

I Use meta refresh tags for measurements instead of JavaScript

I Parallelize testing (rule out multiple possible first nodes at
once)

I Improved latency measures for first hop to further narrow
possible first hops

Conclusion

I Initial Tor implementation allowed arbitrary length paths

I Arbitrary path lengths allow latency altering attack

I Latency altering attack allows detection of significant changes
in latency

I Significant changes in latency reveal paths used

Motivation

I Efficient fully decentralized routing in restricted-route
topologies is important:

I Friend-to-friend (F2F) networks (“darknets”)
I WiFi ad-hoc and sensor networks
I Unstructured networks

I Clarke & Sandberg claim to achieve O(log n) routing in the
dark (Freenet 0.7)

I Is this new routing protocol reasonably resistant against
attacks?

Freenet 101

I Freenet is a ’anonymous’ peer-to-peer network

I Overlay based on cyclic address space of size 232

I Nodes have a constant set of connections (F2F)

I All data identified by a key (modulo 232)

I Data assumed to be stored at closest node

I Routing uses depth-first traversal in order of proximity to key

Routing in the Dark

I Small world network assumption
I Sparsely connected graph
I There exists a short path (O(log N)) between any pair of nodes
I Common real world phenomenon (Milgram, Watts & Strogatz)

I Freenet’s routing algorithm attempts to find short paths
I Uses locations of nodes to determine proximity to target
I Uses swapping of locations to structure topology

Swap Example

0.60

0.10

.50

0.90

Swap?

0.30

.40

0.45

0.85

0.40

.25

0.25

.35

Result of Swap

0.90

0.10

0.20

0.60

0.30

0.30

0.45

0.85

0.40

0.05

0.25

0.35

Location Swapping

I Nodes swap locations to improve routing performance

I Each connected pair of nodes (a, b) computes:

Pa,b :=

∏
(a,o)∈E

|La − Lo | ·
∏

(b,p)∈E
|Lb − Lp|∏

(a,o)∈E
|Lb − Lo | ·

∏
(b,p)∈E

|La − Lp|
(1)

I If Pa,b ≥ 1 the nodes swap locations

I Otherwise they swap with probability Pa,b

Routing of GET Requests

GET requests are routed based on peer locations and key:

1. Client initiates GET request

2. Request routed to neighbor with closest location to key

3. If data not found, request is forwarded to neighbors in order
of proximity to the key

4. Forwarding stops when data found, hops-to-live reaches zero
or identical request was recently forwarded (to avoid circular
routing)

⇒ Depth-first routing in order of proximity to key.

GET 1/7

0.90

0.10

0.60

0.30 0.45

0.85

0.40

0.25

Figure: A GET request from node 0.90 searching for data with identifier
0.22 (which is stored at node identified by 0.25)

GET 2/7

0.90

0.10

0.60

0.30 0.45

0.85

0.40

0.25

Figure: A GET request from node 0.90 searching for data with identifier
0.22 (which is stored at node identified by 0.25)

GET 3/7

0.90

0.10

0.60

0.30 0.45

0.85

0.40

0.25

Figure: A GET request from node 0.90 searching for data with identifier
0.22 (which is stored at node identified by 0.25)

GET 4/7

0.90

0.10

0.60

0.30 0.45

0.85

0.40

0.25

Figure: A GET request from node 0.90 searching for data with identifier
0.22 (which is stored at node identified by 0.25)

GET 5/7

0.90

0.10

0.60

0.30

0.25
 Found!

0.45

0.85

0.40

Figure: A GET request from node 0.90 searching for data with identifier
0.22 (which is stored at node identified by 0.25)

GET 6/7

0.90

0.10

0.60

0.30

0.25

0.45

0.85

0.40

Figure: A GET request from node 0.90 searching for data with identifier
0.22 (which is stored at node identified by 0.25)

GET 7/7

0.90

0.10

0.60

0.30

0.25

0.45

0.85

0.40

Figure: A GET request from node 0.90 searching for data with identifier
0.22 (which is stored at node identified by 0.25)

PUT Requests

PUT requests are routed the same as GET requests:

1. Client initiates PUT requests

2. Request routed to neighbor closest to the key

3. If receiver has any peer whose location is closer to the key,
request is forwarded

4. If not, the node resets the hops-to-live to the maximum and
sends the put request to all of its’ neighbors

5. Routing continues until hops-to-live reaches zero (or node has
seen request already)

Put Example

0.90

0.10

0.60

0.30 0.45

0.85

0.40

0.25

Figure: Put example from node with ID 0.25 inserting data identified by
the ID 0.93

Put Example 1/3

0.90

0.10

0.60

0.30 0.45

0.85

0.40

0.25

Figure: Put example from node with ID 0.25 inserting data identified by
the ID 0.93

Put Example 2/3

0.90

0.10

0.60

0.30 0.45

0.85

0.40

0.25

Figure: Put example from node with ID 0.25 inserting data identified by
the ID 0.93

Put Example 3/3

0.90

0.10

0.60

0.85

0.30 0.45

0.40

0.25

Figure: Put example from node with ID 0.25 inserting data identified by
the ID 0.93

Basic Idea for the Attack

I Freenet relies on a balanced distribution of node locations for
data storage

I Reducing the spread of locations causes imbalance in storage
responsibilities

I Peers cannot verify locations in swap protocol, including
location(s) they may receive

⇒ use swap protocol to reduce spread of locations!

Attack Details

I Initialize malicious nodes with a specific location

I If a node swaps with the malicious node, the malicious node
resets to the initial location (or one very close to it)

I This removes the “good” node location and replaces it with
one of the malicious nodes choosing

I Each time any node swaps with the malicious node, another
location is removed and replaced with a “bad” location

I Bad location(s) spread to other nodes through normal
swapping behavior

I Over time, the attacker creates large clusters of nodes around
a few locations

Attack Example 1/11

0.90

0.10

0.60

0.30 0.45

0.85

0.40

0.25

Figure: Node 0.90 is sent a signal to become malicious

Attack Example 2/11

0.500

0.10

0.60

0.30 0.45

0.85

0.40

0.25

Figure: Malicious node resets its location to malicious location (0.500)

Attack Example 3/11

0.85

0.10

0.60

0.30 0.45

0.500

0.40

0.25

Figure: Malicious node forces a swap with 0.85

Attack Example 4/11

0.501

0.10

0.60

0.30 0.45

0.500

0.40

0.25

Figure: Malicious node resets its location to malicious location (0.501)
removing “good” location 0.85

Attack Example 5/11

0.10

0.501

0.60

0.30 0.45

0.500

0.40

0.25

Figure: Malicious node forces a swap with 0.10

Attack Example 6/11

0.502

0.501

0.60

0.30 0.45

0.500

0.40

0.25

Figure: Malicious node resets its location to malicious location (0.502)
removing “good” location 0.10

Attack Example 7/11

0.60

0.501

0.502

0.30 0.45

0.500

0.40

0.25

Figure: Malicious node forces a swap with 0.60

Attack Example 8/11

0.503

0.501

0.502

0.30 0.45

0.500

0.40

0.25

Figure: Malicious node resets its location to malicious location (0.503)
removing “good” location 0.60

Attack Example 9/11

0.503

0.501

0.502

0.30 0.500

0.45

0.40

0.25

Figure: Even with low probability, a swap can occur between 0.500 and
0.45

Attack Example 10/11

0.45

0.501

0.502

0.30 0.500

0.503

0.40

0.25

Figure: Malicious node forces a swap with 0.45

Attack Example 11/11

0.504

0.501

0.502

0.30 0.500

0.503

0.40

0.25

Figure: Malicious node resets its location to malicious location (0.504)
removing “good” location 0.45

Attack Implementation

I Malicious node uses Freenet’s codebase with minor
modifications

I Attacker does not violate the protocol in a detectable manner

I Malicious nodes behave as if they had a large group of friends

I Given enough time, a single malicous node can spread bad
locations to most nodes

I Using multiple locations for clustering increases the speed of
penetration

Experimental Setup

I Created testbed with 800 Freenet nodes

I Topology corresponds to Watts & Strogatz small world
networks

I Instrumentation captures path lengths and node locations

I Content is always placed at node with closest location

I Nodes have bounded storage space

Dispersion Example with 800 Nodes

Figure: Plot of node locations
before attack.

Figure: Plot of node locations after
attack.

Data Loss Example (2 attack nodes)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

%
 d

at
a

lo
ss

Time (in iterations of 90 seconds)

Average Loss over time with Std. Dev.

Figure: Graph showing average data loss over 5 runs with 800 nodes and
2 attack nodes using 8 bad locations with the attack starting after about
2h.

Data Loss Example (4 Attack nodes)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

%
 d

at
a

lo
ss

Time (in iterations of 90 seconds)

Average Loss over time with Std. Dev.

Figure: Graph showing average data loss over 5 runs with 800 nodes and
4 attack nodes using 8 bad locations with the attack starting after about
2h.

Data Loss Example (8 Attack nodes)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

%
 d

at
a

lo
ss

Time (in iterations of 90 seconds)

Average Loss over time with Std. Dev.

Figure: Graph showing average data loss over 5 runs with 800 nodes and
8 attack nodes using 8 bad locations with the attack starting after about
2h.

How to protect against this?

I Check how frequently a node swaps similar locations?

I Limit number of swaps with a particular peer?

I Determine a node is malicious because its’ location is too
close?

I Periodically reset all node locations?

I Secure multiparty computation for swaps?

In F2F networks, you can never be sure about the friends of your
friends!

Churn

I Leave join churn
I Nodes are not constantly in the network
I They leave for some period of time and then come back into

the network

I Join leave churn
I Nodes join the network for a time, then disconnect

permanently

I This also causes load imbalance similar to our attack

Churn Example 1/13

0.90

0.80

0.70

0.60

0.85

Figure: Example stable core
network Figure: Node location plot

Churn Example 2/13

0.90

0.80

0.70

0.60

0.85

0.95

Swap?

Figure: Node 0.95 joins the network
Figure: Node location plot

Churn Example 3/13

0.90

0.80

0.70

0.95

0.85

0.60

Yes

Figure: Node 0.95 swaps with 0.60
Figure: Node location plot

Churn Example 4/13

0.90

0.80

0.70

0.95

0.85

Figure: Node (now 0.60) leaves the
network Figure: Node location plot

Churn Example 5/13

0.90

0.80

0.70

0.95

0.85

0.30

Swap?

Figure: Node 0.30 joins the network
Figure: Node location plot

Churn Example 6/13

0.90

0.80

0.70

0.95

0.85

0.30

No

Figure: Node 0.30 does not swap
Figure: Node location plot

Churn Example 7/13

0.90

0.80

0.70

0.95

0.85

Figure: Node 0.30 leaves the
network Figure: Node location plot

Churn Example 8/13

0.90

0.80

0.70

Swap?

0.95

0.85

Figure: Nodes 0.70 and 0.90
consider a swap Figure: Node location plot

Churn Example 9/13

0.70

0.80

0.90

Yes

0.95

0.85

Figure: 0.70 and 0.90 swap
Figure: Node location plot

Churn Example 10/13

0.70

0.80

0.90

0.95

0.85

Figure: Result after the swap
Figure: Node location plot

Churn Example 11/13

0.70

0.80

0.90

0.95

0.85

0.05

Swap?

Figure: Node 0.05 joins the network
Figure: Node location plot

Churn Example 12/13

0.05

0.80

0.90

0.95

0.85

0.70

Yes

Figure: Node 0.05 swaps location
with 0.70 Figure: Node location plot

Churn Example 13/13

0.05

0.80

0.90

0.95

0.85

Figure: Node (now 0.70) leaves the
network

Figure: Node location plot

Churn Simulation

I Created stable core of nodes

I Simulated join-leave churn, let network stabilize

I Ran exactly the native swap code

I Repeat n number of times

I Revealed drastic convergence to single location

Conclusion

I Freenet’s routing algorithm is not robust

I Adversaries can easily remove most of the content

I Attack exploits location swap, where nodes trust each other

I Swap is fundamental to the routing algorithm

I Natural churn causes similar results

References

Nathan S. Evans, Roger Dingledine, and Christian Grothoff.
A practical congestion attack on tor using long paths.
In 18th USENIX Security Symposium, pages 33–50. USENIX,
2009.

Prateek Mittal and Nikita Borisov.
Information leaks in structured peer-to-peer anonymous
communication systems.
In Proceedings of the 15th ACM conference on Computer and
communications security, CCS ’08, pages 267–278, New York,
NY, USA, 2008. ACM.

	References

