Deniable secure multi party communication

P2P Systems and Security
Markus Teich
teichm@fs.tum.de

Chair for Network Architectures and Services

July 8th, 2014



Content

Intro

Group Key Agreement

Protocol

API

Outro



Introduction

Disclaimer

» All specifications are subject to change!

» No crypto auditing yet

> Not thread safe

» Only tested on GNU/Linux and Mac OS X



Goal

We try to achieve the following properties

v

Authenticity
Integrity
Confidentiality
Deniability

v

v

v

v

Forward Secrecy

Consensus

v



Assumptions

For libgotr to be usable we assume

> reliable, in-order packet transmission
> low latency

» Some more bandwidth for crypto overhead



Burmester-Desmedt GKA 1

Prerequisites
> p prime
» g€
> satisfies DDH



Burmester-Desmedt GKA 2

Every User U;,i =1,2,...,n

» selects random r; € Z,

» broadcasts z; ;== g mod p



Burmester-Desmedt GKA 3

Every U;,i = 1,2,...,n broadcasts

Xi = (%)” mod p



Burmester-Desmedt GKA 4

Every U;,i =1,2,...,n computes
Ki:=(zi-1)"" % XI-"_1 * XI.'_’i__l2 x---% Xj_o mod p

— phntrnnt+nn

g mod P



Burmester-Desmedt GKA fazit

Advantages
» Extended DHE

» Cheap calculations

Drawbacks

> expensive rekeying
» Not hot-plug capable



Hot-pluggable GKA - Flake keys




Hot-pluggable GKA - Circle keys




Protocol

Definitions

Enc() uses EDDHE and includes an HMAC
Siguser() uses long term EDDSA keys

Mac() is an HMAC with the flake key

Encg() uses a key ki derived from the circle key

v

v

v

v

» Macg() uses a key kp derived from the circle key



Establish secure pair channel

Alice Bob
Choose DH;:qub' DHSA;C DH;‘ub .
. DHpBub Choose DHEub, DHE.
Enc(Siga(DH2.,))

Enc(Sigg(DHE,,))




Establish flake key

Alice

Bob

A
Choose Mo
A
Save as Yio
Calculate RIA2

A
Save as V1,2

Check Mac

Enc(zf',)

Enc(zE,)

Enc(RlAz)

Enc(RE,)

Enc(Mac(r{, \y{‘,z IR{, V)

Enc(Mac(rIB:2 \le:Z |RE,| Vl"?2))

Save as y52

Choose rEQ

Save as Vl’i
Calculate RE2

Check Mac



Sending a message

Alice everyone

n — 1| all zyWV pairs |Encg(m|pad|digest)|Macg(...)




Complexity
Joining
O(n) x5 messages to establish circle key

5% max(RTT) round trip times

O(n) bytes to send and receive

Other user joining

5 messages to establish circle key
5 round trip times
O(1) bytes to send and receive

Sending a Message

<= n messages (structure dependent)
max(RTT) delay
O(n) bytes



library design

Client libgotr

Protocol



library design (alternative)

Client

Protocol libgotr



Types

struct gotr_chatroom;
struct gotr_user;

typedef int (xgotr_cb_send_all) (
void *room_closure,
const char *b64_msg);

typedef int (*gotr_cb_send_user) (
void *room_closure,
void *user_closure,
const char *b64_msg);

typedef void (*gotr_cb_receive_user) (
void *room_closure,
void *user_closure,
const char #*plain_msg);



Managing

struct gotr_chatroom *gotr_join(
gotr_cb_send_all send_all,
gotr_cb_send_user send_user,
gotr_cb_receive_user receive_user,
const void *room_closure,
const char *privkey_filename) ;

struct gotr_user *gotr_user_joined(
struct gotr_chatroom *room,
void *user_closure) ;

void gotr_keyupdate (
struct gotr_chatroom *room);

void gotr_leave(struct gotr_chatroom *room) ;



Messaging

int gotr_send(
struct gotr_chatroom *room,
char *plain_msg) ;

int gotr_receive(
struct gotr_chatroom *room,
char *b64_msg);

struct gotr_user *gotr_receive_user(
struct gotr_chatroom *room,
struct gotr_user *user,
void *user_closure,
char *b64_msg) ;



Demo

Client

» UDS based
» Multiple Personality Disorder

» Only one chatroom



Current Status

What already works

> Client
» Long term key generation and storage

> Flake key generation



Future Work

To be implemented

» Circle key generation
» Protocol Messages

» Useful client (plugin)



	Intro
	Group Key Agreement
	Protocol
	API
	Outro

