GNUnet MQTT

Distributed M2M Communication

- In 2013, 39% = 2.2bn people with Internet access
- ~7.7bn people by 2020
 - ~3bn with Internet Access
- >30bn Internet Connected Devices by 2020
- avg. 10 Internet Devices / person!

How to connect 30bn devices?

Messaging	CoAPMQTT, AMQP,Websockets
Transport	TCP, UDP
Network	IPv6
Physical + Data Link	ZigBee, IEEE 802.15.4, WiFi

Subscribe: /weather/germany/munich

Subscribe: /weather/germany/munich

Cool MQTT Features

Wildcard Matching

Wildcard Matching

- +
 - Match exactly one level
 - /weather/+/munich matches all cities
 called munich such as Munich, North Dakota
- *
 - Match all sublevels
 - /weather/germany/* matches all german
 cities and their districts e.g. Sendling

Cool MQTT Features

- Wildcard Matching
- Quality of Service

Quality of Service

- QoS0 Best Effort
- QoS1 At least once
- QoS2 At most once per Subscriber

Broker ensures delivery of QoS1 and 2 messages to connected clients

Cool MQTT Features

- Wildcard Matching
- Quality of Service
- Sessions
 - Retained Messages
 - Last Will

Sessions

- Retained Messages
 - Broker sends cached messages to new clients

Dev2

Publish: /weather/germany/munich

Retained: True Msg: 25°C, Sunny

Dev2

Publish: /weather/germany/munich

Retained: True Msg: 25°C, Sunny

Subscribe: /weather/germany/munich

Sessions

- Retained Messages
 - Broker sends cached messages to new clients
- Last Will
 - Broker sends message on behalf of the client on unexpected disconnect

Limitations of MQTT

Limitations of MQTT

- Single point of failure
- Scaling depends on Broker Performance
- Central point of control
- Honeypot to steal data
- No Self-Organisation

MQTT in P2P Network

MQTT

Single Broker – client-server paradigm

GNUnet MQTT

Every Peer is a broker

How does it work?

Subscribe	 Build Regex for Topic 'Subscribe' it via GNUNET_REGEX_announce()
Publish	 Search for Peers interested in topic via GNUNET_REGEX_search() Send message to all interested peers via GNUNET_MESH
Unsubscribe	1. Take down the Regex via GNUNET_REGEX_cancel()

Subscribe

Publish

Publish

Benefits

- No single Point of Failure
- No single Point of Control
- No Honeypot
- Self-Configuration

Problems

- We lose consistency
- Increased latency
- Privacy issues
- No access control
 - Any peer can read any topic
 - Any peer can publish on any topic

Anonymous Publisher Discovery

Anonymous Publisher Discovery

Anonymous Publisher Discovery

Anonymous Publisher Discovery

```
        Pub1
        DHT Key | Value
        Sub1

        -----|----
        q4 | ANON <-- PUT</td>

        h (q4) | <-- MONITOR</td>
```

Anonymous Publisher Discovery

Anonymous Publisher Discovery

- We lose consistency
- Increased latency
- Privacy issues
- No access control
 - Any peer can read any topic
 - Any peer can publish on any topic

Multicast Channels

Publish Transport

With multicast channels we can adjust subscriber discovery:

- Regex search for topic
- Get end states q2 & q4

Publish Transport

Store channel in DHT

```
o e.g. DHT put (q2, my_channel) & (q4, my_channel)
```

Subscriber looks for channel

```
O e.g. DHT get (q2)
```

Actively join channel(s)

- We lose consistency
- Increased latency
- Privacy issues
- No access control
 - Any peer can read any topic
 - Any peer can publish on any topic

- We lose consistency
- Increased latency
- Privacy issues
- No access control
 - Any peer can read any topic
 - Any peer can publish on any topic

Publish Access Control

- Publish on topic / [pub_key] / nyt
- Put signed channel entry into DHT
 - o (q2, (nyt_channel,sign))
- Check validity
 - o e.g. subscriber checks
 - o e.g. dht checks

- We lose consistency
- Increased latency
- Privacy issues
- No access control
 - Any peer can read any topic
 - Any peer can publish on any topic

Current Status

- Starting from existing Implementation
- Service & Client APIs are there ...
- ... but do not work in all cases
- Only QoS Level 0 (best effort) available

Client API

- GNUNET MQTT subscribe()
- GNUNET MQTT unsubscribe()
- GNUNET MQTT publish()
- GNUNET MQTT publish cancel()

Next Steps

- 1. Get tests running again
 - a. 2 out of 5 still fail :-(
- 2. Add new features
 - a. QoS level 1
 - b. Retain flag
 - c. Last will

Outlook

- Anonymous publisher discovery
- Publish transport (multicast)
- Publish access control (draft)

Further Reading

- MQTT Specification
- GNUnet-MQTT
 - https://github.com/vsaw/gnunet-mqtt
- Messaging Technologies for the Industrial Internet and the Internet of Things

So Long, and Thanks for All the Fish!

valentin.sawadski@mytum.de - david.froy@mytum.de

Partial Solution: Subscriber-side Blacklist

- MQTT blacklist in GNS with peer ids
- Blocks connection attempts