Neuro - Taxable Electronic Payments with Customer-Anonymity

Florian Dold, Benedikt Müller

Department for Computer Science Technische Universität München

June 12, 2014

Motivation

What we want.

Motivation

Where we want it.

Motivation

What we have.

Naming

Neuro

- borrowed from Euro and new/network or possibly gNu
- other awesome suggestions are welcome

- Customer anonymity
- Unlinkability
- Taxability
- Verifiability
- Ease of deployment
- Green / low resource consumption
- Macro- and micropayments

Customer anonymity

It should not be possible to trace the spending behavior of a customer.

- Unlinkability
- Taxability
- Verifiability
- Ease of deployment
- Green / low resource consumption
- Macro- and micropayments

Customer anonymity

Unlinkability

It should be infeasible to link a set of transactions (even aborted ones) to the same customer.

- Taxability
- Verifiability
- Ease of deployment
- Green / low resource consumption
- Macro- and micropayments

- Customer anonymity
- Unlinkability

Taxability

As it is the responsibility of the merchant to deduct taxes, he should be fully auditable and non-anonymous. Additionally it must not be possible to transfer cash illicitly (i.e. evading audit).

- Verifiability
- Ease of deployment
- Green / low resource consumption
- Macro- and micropayments

- Customer anonymity
- Unlinkability
- Taxability

Verifiability

The trust necessary between the participants of the system should be minimized. Signatures over contractual information should be available in order to resolve disputes.

- Ease of deployment
- Green / low resource consumption
- Macro- and micropayments

- Customer anonymity
- Unlinkability
- Taxability
- Verifiability

Ease of deployment

Low entry-barrier by providing a gateway to the existing financial system (i.e. Internet-banking protocols such as HBCI/FinTS), a free software reference implementation and a open protocol standard.

- Green / low resource consumption
- Macro- and micropayments

- Customer anonymity
- Unlinkability
- Taxability
- Verifiability
- Ease of deployment
- Green / low resource consumption Avoid reliance on expensive and especially "wasteful" computations such as proof-of-work.
- Macro- and micropayments

- Customer anonymity
- Unlinkability
- Taxability
- Verifiability
- Ease of deployment
- Green / low resource consumption
- Macro- and micropayments The system should be able to provide a solution for macro as well as micropayments.

Related Work

Chaum style electronic cash[Cha83]

- Opencoin
- Peppercoin
- Bitcoin
- Zerocoin
- Brands

Chaum style electronic cash

Key ideas proposed by Chaum:

- Anonymity of customer
- Verifiability of payment
- Blind signatures as a means of providing anonymity of customer
- Possibility to utilize post-hoc detection of double-spending

Chaum style electronic cash

Requirements by Chaum:

- Public/private key digital signatures
- Blind signatures (as proposed by Chaum)
- Conservation of signatures (i.e. from one blindly signed value only one unblinded signed value can be derived)

Blind signatures

Chaum style electronic cash

Requirements for blind signatures by Chaum:

- ► Public key crypto such that D_{pub}(E_{priv}(x)) = x where E_{priv} is the private encryption function and E_{pub} the public decryption function.
- A commuting function c and its inverse c' both only known to the customer with c'(E_{pub}(c(x))) = E(x).

Chaum style electronic cash

Basic protocol for blind signatures:

- Customer chooses *x* at random, computes and provides *c*(*x*) to mint
- 2. Mint signs c(x) with E_{priv} and returns $E_{priv}(c(x))$ to customer
- 3. Customer strips signed matter by application of c'. $c'(E_{priv}(c(x))) = E_{priv}(x)$

Example RSA blind signature scheme

- Generate RSA key pair
- Choose a random value r that is relatively prime to N
- Blinding factor B = r^e modN
- 1. Customer \rightarrow Mint: $m' \equiv mr^e \pmod{N}$
- 2. Customer \leftarrow Mint: $s' \equiv (m')^d \pmod{N}$
- 3. Customer removes the blinding factor to reveal *s*, the valid RSA signature of *m*: $s \equiv s' \cdot r^{-1} \pmod{N}$
 - ► RSA keys satisfy $r^{ed} \equiv r \pmod{N}$ and thus $s \equiv s' \cdot r^{-1} \equiv (m')^d r^{-1} \equiv m^d r^{ed} r^{-1} \equiv m^d r r^{-1} \equiv m^d$ (mod N)

Architecture of Chaum style currencies

Payment scheme by Chaum

- 1. Customer chooses random coin identifier, blinds and send it to mint.
- 2. Mint signs blinded value, giving the coin its value as note of currency and sends it back to customer
- 3. Customer unblinds the value. The coin is now spendable
- 4. Coin is sitting in customer's wallet for some time
- Customer provides signed value to merchant as means of payment
- 6. Merchant forwards the signed value to the mint
- Mint adds the value to the list of spent coins and informs merchant of acceptance
 - Mint recognizes double spending and reconstructs identity of customer
- 8. Mint credits account of merchant

Related work

- Chaum style electronic cash
- Opencoin
- Peppercoin
- Bitcoin
- Zerocoin
- Brands

Opencoin

- Attempt to implement Chaum style digital cash
- Free software implementation (GPL)
- Uses post-hoc double spending
- Project status: abandoned
- See opencoin.org

Related work

- Chaum style electronic cash
- Opencoin
- Peppercoin[Riv04]
- Bitcoin
- Zerocoin
- Brands

Peppercoin

- Based on probabilistic selection
- Proposed as extension to current payment systems (such as credit card)
- Addresses problem of expensive transactions
- 1ct ≈ 0.1% · 10€

- Session level aggregation
- Aggregation by intermediation
- Universal aggregation

Session level aggregation

- Consumer repeatedly makes small purchases with same vendor
- Limited scope, not applicable in general
- Aggregation by intermediation
- Universal aggregation

Session level aggregation

Aggregation by intermediation

- Intermediary has to emulates financial system
- Increases complexity and processing instead of minimizing it
- Intermediary still needs to handle each payment
- Universal aggregation

- Session level aggregation
- Aggregation by intermediation
- Universal aggregation
 - Merchant processes micropayments
 - Only "upgraded" micropayments macropayments are relayed to the mint
 - mint buffers upgraded payments in case the cumulative value of spent micropayments is lower than the upgraded payment
 - Upgrade selection not random but based on deterministic values

Peppercoin - Downsides

- No exact payments possible
- No customer anonymity
- Customer and merchant can conspire against mint

Related work

- Chaum style electronic cash
- Opencoin
- Peppercoin
- Bitcoin[Nak08]
- Zerocoin
- Brands

Bitcoin

Why Bitcoin will NOT be the payment system of the future:

- No taxability
- No unlinkability \rightarrow limited anonymity
- No fast and cheap transactions
- No stable value
- Waste of resources (transaction-chain, proof-of-work, bandwidth)

Related work

- Chaum style electronic cash
- Opencoin
- Peppercoin
- Bitcoin
- Zerocoin[MGGR13]
- Brands

Zerocoin

- Extension to Bitcoin
- Removes linkability by conversion (BC \rightarrow ZC \rightarrow BC)
- No trusted third parties necessary
- Uses massive crypto (zero-knowledge proofs, cryptographic accumulators, commitment schemes, etc)
- \blacktriangleright \rightarrow secure money laundering

Related Work

- Chaum Style Electronic Cash
- Opencoin
- Peppercoin
- Bitcoin
- Zerocoin
- Brands[Bra93]

Brands

- Based on Chaums architecture
- Realizes divisibility by k-show signatures
- Post-hoc double spending detection
- Proposes the integration of a "secure" observer into customers wallet :(
- Mainly theoretical, has never been implemented

Neuro

Assumptions

► Existence of anonymous channel (customer → mint, customer → merchant)

Curve25519 elliptic curve cryptography

- Blind signatures over elliptic curves
- Hash functions :)
- but: no global/state PKI

Curve25519

- Elliptic curve cryptography curve by Daniel J. Bernstein
- Used by wide variety of software (e.g. GNUnet)
- Optimized for and fast on 64-bit x86 processors
- No magic constants by NIST/NSA
- EdDSA: small signature (64 byte) and private/public key (32 byte)

Assumptions

- Existence of anonymous channel
- Curve25519 elliptic curve cryptography
- Blind signatures over elliptic curves
- Hash Functions

Blind signatures on elliptic curves

- Multiple new proposals
- Different message order
- Some contain errors or are faulty
- Different but similar
- No final decision on protocol yet

Architecture of Neuro

The Neuro Coin

- Identified by public key
- Only owner knows private key
- Signature of public key by mint denomination key
- Operations are authorized by signature of coin private key
- Expiration date defined by denomination key

The Neuro Mint

- Mints new Neuro coins
- Holds list of all (partially) spent but not expired coins
- Earns money by collecting fees
- Restricted trust necessary, correctness legally enforceable
- It is of economical interest for the mint to operate correctly

Security model: financial security

- Mint is compromised (key lost)
- Mint goes offline
- Hardware failure
- Packet loss/network loss

Adversary cannot break crypto primitives \rightarrow privacy guarantee

- Mint can only link customers to coin set
- Customer is not requiered to use his identity

Modes of spending

- Partial Spending
 - Online Payment
 - Lock fraction of a coin
 - Give deposit permission for a fraction
 - Repeat with remaining fraction of the coin
- Incremental spending
 - Online payment
 - Lock maximum amount of coin customer wants to spend
 - Incrementally give deposit permission
- Probabilistic spending (bona fide)
 - Offline payment
 - Gambling for payment "upgrade"
 - Interaction with mint only when payment gets upgraded
 - Anti-piracy strategies: "Accept and Embrace", "Detect and Adapt"

Refreshing

Crucial to avoid linkability as merchant knows Coin from

- aborted transactions
- partially spent coins

Illicit transactions

- Transaction after which the private key of a coin is only known by the new owner.
- Transaction that is not registered as a payment by the mint.

Refreshing extended

Avoid possibility to use refreshing for illicit/black market transactions

- Store encrypted private key of new coin with mint
- Make it possible to retrieve the private key of every new coin derived from the old coin with only the private key of the old coin
- Use cut-and-choose to prevent customer from using fake old coin key

SEPA and HBCI Integration

Homebanking Computer Interface (HBCI)

- German standard
- Finalized by Zentraler Kreditausschuss (ZKA)
- Using custom protocol on port 3000 or standard HTTPS
- Supported by most German banks

REST API / JSON

REST API

- using HTTP1.1
- and JSON

Fee Model

A Mint can charge fees for:

- Minting
- Refreshing
- Depositing

Questions?

BRANDS, Stefan A.:

An efficient off-line electronic cash system based on the representation problem.

1993

CHAUM, David:

Blind signatures for untraceable payments.

In: Advances in cryptology Springer, 1983, S. 199–203

MIERS, Ian ; GARMAN, Christina ; GREEN, Matthew ; RUBIN, Aviel D.: Zerocoin: Anonymous distributed e-cash from bitcoin.

In: Security and Privacy (SP), 2013 IEEE Symposium on IEEE, 2013, S. 397–411

NAKAMOTO, Satoshi:

Bitcoin: A peer-to-peer electronic cash system.

In: Consulted 1 (2008), S. 2012

RIVEST, Ronald L.:

Peppercoin micropayments.

In: Financial Cryptography Springer, 2004, S. 2-8