0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31
Preamble		
Preamble		Frame delimiter
Destinat	ion MAC	
Destination MAC Source MAC		
Source MAC		
optional 802.1Q		
Ethertype or length Payload		load
Payload		
FCS		

Figure 1: Ethernet

0x8100 PCP DEI VID	0x8100		VID	
--------------------	--------	--	-----	--

Figure 2: 802.1Q

0 3	4 7	8 15	16 18	19 23	24	31
Version	$_{ m IHL}$	Type of Service	Total Length			
Identification			Flags	Fragi	ment Offset	
Time t	o Live	Protocol	Header Checksum			
Source Address						
Destination Address						
Options			Padding			

Figure 3: IPv4 Header, Ether Type: $0\mathrm{x}0800$

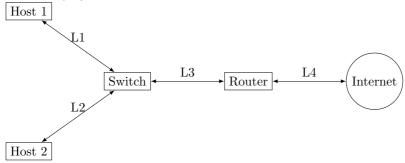
_	0 7	8 15	31
	Type	Code	Checksum
		Rest of	header
	IPv4 H	Header + 8 bytes	s of Original Datagram

Figure 4: ICMPv4

0	7	8	15
	HTY	PE	
	PTY	PE	
	HLEN	PLEN	
	OP	ER	
	SH	A	
	SP	A	
	TH	ÍA	
	TF	'A	

Figure 5: ARP; HTYPE for Ethernet is 1, PTYPE for IPv4 is 2048, Ether Type: 0x0806.

0	7 8	15	16 23 24	31
	Source Port		Destination Port	
	Length		Checksum	
		Dε	uta	


Figure 6: UDP

 $(15^{\rm pts})$

- (a) Welches praktische Problem muss man bei der Verwendung von RAW Sockets beachten? Dieses sollte ganz am Anfang beim Experimentieren mit ihrem traceroute aufgetaucht sein.
- (b) Wie haben Sie es gelöst?
- (c) Wie wird das Problem normalerweise vom traceroute Program in ihrer Distribution gelöst?

(20^{pts}) 2.

- (a) Welches (schwierige) Problem hatten Sie in Bezug auf die korrekte Terminierung ihres traceroute Programmes (welches in der Beschreibung ohne Lösung war)?
- (b) Welche Möglichkeiten kennen Sie, wie man das Problem lösen könnte?
- (15^{pts}) **3.** Ein Netzwerkkabel hat 10 dB Dämpfung pro Kilometer. Die Stecker haben zusätzlich eine Dämpfung von 0.1 dB. Das Powerbudget der Komponenten (Differenz zwischen Sendestärke und Empfängersensitivität) beträgt 10 dB. Berechnen Sie die maximale Übertragungsdistanz, bei der Sie bei einer Bandbreite von 500 Mhz theoretisch noch einen Durchsatz von 100 MBit/s erreichen könnten.
- (2^{pts}) 4. Welche Multiplex Verfahren kennen Sie (nur Namen, Englisch oder Deutsch)?
- (3^{pts}) **5.** Wozu dienen Preamble und Delimiter in einem Ethernet Frame?
- (45^{pts}) **6.** Gegeben sei folgende einfache "Office" Netzwerk-Topologie (L1–L4 identifizieren die jeweiligen Netzwerkverbindungen):

Die Konfiguration ist wie folgt:

Host 1	IP: 192.0.2.2, eth0-MAC: F4:6D:03:2E:82:A3
Host 2	IP: 192.0.2.3, eth0-MAC: F4:6D:03:2E:82:A4
Router	IP: 192.0.2.1, eth0-MAC: A3:4E:13:2F:21:C5
Router	IP: 203.0.113.27, eth1-MAC: A3:4E:13:2F:21:C6
L1	MTU: 9000, VLAN 10, untagged
L2	MTU: 9000, VLAN 10, untagged
L3	MTU: 9000, VLAN 10, tagged
L4	MTU: 1500, kein VLAN

VLAN 10 Verkehr wird vom Router uneingeschränkt ins Internet weitergeleitet.

- (a) Wie sollte die komplette Routingtabelle von Host 1 aussehen?
- (b) Nehmen Sie an, das passende Routing-Tabellen statisch konfiguriert wurden. Ansonsten sind alle Geräte frisch eingeschaltet und alle Caches leer.

Eine Anwendung auf Host 1 versucht jetzt, ein 10000 Byte langes UDP Packet (Payload-länge) an einen Host im Internet (Ziel-IP: 198.51.100.62 an Port 2086) zu versenden. Beschreiben Sie die *alle* dadurch generierten Frames (in der richtigen Reihenfolge) auf *allen* Links im obigen Netz mit jeweils *allen* relevanten Feldern (ohne Preamble und Delimiter), soweit es ihnen möglich ist. Prüfsummen, "ahlte oder aus den gegebenen Angaben nicht erkenntliche Werte kennzeichnen Sie entsprechend, Sie brauchen Prüfsummen **nicht** ausrechnen! Wenn Sie einen Wert/eine Konstanten nicht wissen (z.B.