
x.509

Christian Grothoff

Berner Fachhochschule

4.06.2018

X.509 and TLS

X.509 is an ITU standard (but also RFC 5280).

I TLS servers (and sometimes clients) are identified by public
key

I Public keys are certified by certificate authorities

I X.509 certificates are the format used for certificates

I Any certificate authority can certify keys for any domain

TLS is not the only major protocol using X.509!
There is also S/MIME for e-mail!

X.509 overview (reminder)

CA

signs cert

HTTPS
Server

shows certUser

What is a certificate?

I A public-key certificate is a digitally signed statement that
binds the identity of the entity to a public key

I If A trusts B, and knows B’s public key, then A can learn C ’s
public key if B issues a public key certification of C

Contents of X.509 certificates

I X.509 version

I CA serial number

I A digital signature algorithm identifier

I The identity of the signer

I Validity period

I The identity of the subject (common name, org. unit, org.,
state, country)

I The public key of the subject

I Optional: URL to revocation center (OCSP!)

I Auxiliary information (identity address, alternative names)

I The digital signature

Certificate Authorities

I Entities that claim to be trustworthy to verify identities and
issuing public key certificates (“let’s encrypt”)

I CAs can be organized into a directed graph

I X.509: Tree depth can be limited for a subtree

I X.509: Certificates of CAs signing intermediate-level CAs have
the special “CA” bit set

Self-signed certificates

I Signer is self

I Allowed by TLS

I Used to sign CA tree roots

X.509 CA challenges

I Must trust a CA
I Which one?
I What is it trusted to do?

I Certificate bindings must be correct
I Which John Smith is this?
I Who authorizes attributes in a certificate?
I How long are these values valid?
I What process is used to verify the key holder?

CA: creates a self-signed certificate

create certificate:

$ openssl req -x509 -out cert.pem -outform PEM -days 3650

private key will now be in privkey.pem

convert to certificate request:

$ openssl x509 -x509toreq -in cert.pem -out req.pem \

-signkey privkey.pem

generate config

$ cp /usr/lib/ssl/openssl.cnf .

self-sign using:

$ openssl x509 -req -in req.pem -extfile openssl.cnf \

-extensions v3_ca -signkey privkey.pem -out selfcert.pem

view using:

$ openssl x509 -in cacert.pem -text -noout

PEM encoding is Base64 of DER bytestream with “begin certificate”
and “end certificate” markers.

Client: creates a certificate request

create private key using:

$ openssl genpkey -algorithm RSA -out key.pem \

-aes-128-cbc -pkeyopt rsa_keygen_bits:2048

create CSR using:

$ openssl req -new -key key.pem -keyform PEM \

-out req.pem -outform PEM

CA: signs certificate request

Prepare CA directory structure

$ wget https://grothoff.org/christian/teaching/ca.conf

$ mkdir dir certdir

$ touch dir/index.txt dir/index.txt.attr

$ echo 1 > dir/serial.txt

sign CSR using:

$ openssl ca -in req.pem -out cert.pem -config ca.conf

X.509v3 subjectAltNames

X.509v3 certificates can specify many subjectAltNames:

I IP:192.168.2.0

I DNS:www.example.com

I email:user@example.com

emails must be subjectAltNames and should not be used for the
subject distinguished name (DN)!

X.509v3 crlDistributionPoints

signatureAlgorithm

Hash FunctionHash Function

Hash / FingerprintHash / Fingerprint

Sign with
Issuer‘s Private Key

Sign with
Issuer‘s Private Key

signature

version (v1 or v2)
signature
issuer
lastUpdate
nextUpdate
revokedCertificates
 SerialNumber
 RevocationDate
 crlEntryExtensions(v2)
 SerialNumber
 · · ·

Online Certificate Status Protocol (OCSP)

Antje Bodo

Kool CA

Kool CA

#0

OCSP Reply:
Kool CA #2 good

signed by OCSP Server

OCSP

Kool CA

Bodo

OCSP Request:
status of Kool CA #2 ?
optionally signed by Bodo

Bodo

Kool CA

#3

frequent status updates e.g. via CRL

Antje

Antje

Kool CA

#2

Authentication

OCSP

OCSP

#0

locally stored

basicConstraints

I CA:TRUE; critical

I CA:TRUE; pathLenConstraint = 0

I CA:FALSE

keyUsage

CA:

I certificateSign

I crlSign

Leaf:

I digitalSignature

I nonRepudiation

I keyEncipherment

I dataEncipherment

I keyAgreement

Extended Key Usage (EKU)

I serverAuth

I clientAuth

I codeSigning

I emailProtection

I timeStamping

I ocspSigning

Legal Aspects

For what is a CA liable?

I Certificate policies (CP) define rights, duties and obligations
of each party in a PKI

I These documents usually have a legal effect
I The CP should be publicly exposed by CAs on their Web site

and include:
I Registration procedures
I Revocation procedures
I Liability issues

Acknowledgements

I Partially based on materials and inspiration taken from talks
by Andreas Steffen (ITA)

