Geographic Information Systems

Christian Grothoff

Berner Fachhochschule

March 16, 2018
Learning Objectives

- Android’s GeoFence API
- What are geographic information systems
- How to use PostGIS:
 - Installation
 - Data import
 - Queries
Android’s Geofence API
Limitations

- Up to 100 Geofences per app
- Region is circular
- Precision depends on circumstances (WiFi, GPS, etc.)
Main classes involved

IntentService Subclass implements functions called when GeoFence is triggered

GeoFence Specifies location and transition we care about, created via GeoFence.Builder

OnAddGeofenceResultListener Success adding GeoFence

ConnectionCallbacks Notified when connection to location services is up and we can add GeoFences
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

<application
 android:allowBackup="true">
 ...
 <meta-data
 android:name="com.google.android.gms.version"
 android:value="4242000">
 <service android:name=".GeofenceTransitionsIntentService"/>
</application>
private boolean servicesConnected() {
 int resultCode = GooglePlayServicesUtil.isGooglePlayServicesAvailable(this);
 if (ConnectionResult.SUCCESS == resultCode) {
 // Continue with GeoFence
 return true;
 } else {
 // Handle the error
 return false;
 }
}
Creating a Geofencing client

private GeofencingClient mGeofencingClient;

// ...
// Location services
//
// Get the Geofencing service
mGeofencingClient
 = LocationServices.getGeofencingClient(this);
Create Geofence List

List<GeoFence> mGeofenceList = ...;
mGeofenceList.add(new Geofence.Builder()
 .setRequestId("my request name")
 .setCircularRegion(
 latitude,
 longitude,
 GEOFENCE_RADIUS_IN_METERS)
 .setExpirationDuration(GEOFENCE_EXPIRATION_IN_MILLISECONDS)
 .setTransitionTypes(Geofence.GEOFENCE_TRANSITION_ENTER | Geofence.GEOFENCE_TRANSITION_EXIT)
 .build());
private GeofencingRequest getGeofencingRequest() {
 GeofencingRequest.Builder builder
 = new GeofencingRequest.Builder();
 builder.setInitialTrigger(GeofencingRequest
 .INITIAL_TRIGGER_ENTER);
 builder.addGeofences(mGeofenceList);
 return builder.build();
}
public class MainActivity extends AppCompatActivity {
 private PendingIntent mGeofencePendingIntent;
 private PendingIntent getGeofencePendingIntent() {
 if (mGeofencePendingIntent != null)
 return mGeofencePendingIntent;
 Intent intent
 = new Intent(this, GeofenceTransitionsIntentService.class);
 mGeofencePendingIntent
 = PendingIntent.getService(this, 0, intent,
 PendingIntent.FLAG_UPDATE_CURRENT);
 return mGeofencePendingIntent;
 }
}

Specify Intend to trigger
Handle event

In GeofenceTransitionsIntentService extends IntentService:

@Override
protected void onHandleIntent(Intent intent) {
 if (LocationClient.hasError(intent)) {
 // Handle error
 } else {
 int transition = LocationClient.getGeofenceTransition(intent);

 switch (transition) {
 case Geofence.GEOFENCE_TRANSITION_ENTER:
 case Geofence.GEOFENCE_TRANSITION_EXIT:
 // action

 }
 }
}
mGeofencingClient.addGeofences(getGeofencingRequest(),
 getGeofencePendingIntent())
 .addOnSuccessListener(this,
 new OnSuccessListener<Void>() {
 @Override
 public void onSuccess(Void aVoid) {
 // Geofences added
 }
 })
 .addOnFailureListener(this, new OnFailureListener() {
 @Override
 public void onFailure(@NonNull Exception e) {
 // Failed to add geofences
 }
 });
Deactivate Geofence

mGeofencingClient.removeGeofences(getGeofencePendingIntent() .addOnSuccessListener(this,
 new OnSuccessListener<Void>() {
 @Override
 public void onSuccess(Void aVoid) {
 // Geofences removed
 }
 }))
 .addOnFailureListener(this, new OnFailureListener() {
 @Override
 public void onFailure(@NonNull Exception e) {
 // Failed to remove geofences
 }
 });
Persistence

The app must re-register geofences if they’re still needed after the following events:

- The device is rebooted.
- The app is uninstalled and re-installed.
- The app’s data is cleared.
- Google Play services data is cleared.
- The app has received a GEOFENCE_NOT_AVAILABLE alert.\(^1\)

\(^1\)This typically happens after NLP (Android’s Network Location Provider) is disabled.
Foreground applications

An app is considered to be in the foreground if:

- It has a visible activity, whether the activity is started or paused.
- It has a foreground service.
- Another foreground app is connected to the app, either by binding to one of its services or by making use of one of its content providers.

If none of those conditions is true, the app is considered to be in the background.
As of Android 8.0, background applications are limited to “a few times each hour” in terms of how often they can obtain the user’s location!
This affects:

- Fused Location Provider
- Location Manager
- GeoFence API
- GNSS measurements
- Wi-Fi manager
Expected latencies for GeoFence

- 2–3 minutes if device is moving
- 6 minutes if device was stationary
- Forever if there is no WiFi/data service and/or GPS
- Since Android 4.3, WiFi “off” may not matter

\(^2\)Device may be configured to do “Wi-Fi scan only” which suffices for location.
Create a background service that:

- Detects when user successfully (!) enables WLAN
- Creates a Geofence for the area
- Disables data service whenever WLAN-area is entered

Why not automatically enable WLAN as well?
Geographic Information Systems

Are systems designed to:

- capture
- store
- manipulate
- analyze
- manage and
- present

spatial or geographic data.
Databases

- store
- manipulate
- analyze
- manage
PostGIS

Postgres extension to:

- store
- manipulate
- analyze
- manage

spatial or geographic data.
Applications

- Public safety
- Asset inventory, land management
- Planning (water management, transportation, engineering)
- Network management
“Show me the region with the highest number of households where the average closest distance to any pizza parlor with a star ranking below 5 is greater than 10 kilometers.” –PostGIS in Action

“Give me the number of houses within a two kilometer radius of the coastline.” –PostGIS in Action
Spatial data types

Geometry
the world is two dimensional

Geography
lines and polygons are drawn on the earth’s curved surface

Raster
models spaces as a grid of rectangular cells with associated data values

Topology
models world as a network of connected nodes
Geometry types

- Linestrings ("coastline")
- Polygons ("region")
- Points ("houses")
Installation

apt-get install postgis
su - postgres
postgres@localhost: $ createuser -s -O $USER
postgres@localhost: $ createdb -O $USER gis
postgres@localhost: $ psql gis
gis=> CREATE EXTENSION postgis;

$ psql gis # From here on everything as $USER
gis=> SELECT postgis_full_version();
Create schema for locations

CREATE SCHEMA bfh;
CREATE TABLE bfh.locations (
id SERIAL PRIMARY KEY,
 name VARCHAR (300) NOT NULL,
 geom GEOMETRY(POINT,4326)
);
CREATE INDEX idx_loc_geo
 ON bfh.locations
 USING gist(geom);

SRID 4326 corresponds to World Geodetic System (WGS) 1984 data.
CREATE TABLE bfh.roads (
id SERIAL PRIMARY KEY,
label VARCHAR(120) NOT NULL,
geom GEOMETRY(multilinestring,4326)
);

CREATE INDEX idx_roads_geo
ON bfh.roads
USING gist(geom);
Import data

```
$ shp2pgsql points.shp | head -n 10
SET CLIENT_ENCODING TO UTF8;
SET STANDARD_CONFORMING_STRINGS TO ON;
BEGIN;
CREATE TABLE "points" (gid serial,
"osm_id" float8,
"name" varchar(48),
"type" varchar(16));
ALTER TABLE "points" ADD PRIMARY KEY (gid);
SELECT AddGeometryColumn('','points','geom','0','POINT',2);
INSERT INTO "points" ("osm_id","name","type",geom) VALUES
(‘280587’,’Figuiers’,’bus_stop’,
’01010000003F8BA548BE721A4089CD6CFC2E424740’);
```
Import data (for real)

$ shp2pgsql -s 4326 points.shp | psql gis 2> /dev/null
INSERT INTO bfh.locations (name, geom)
SELECT name,
 geom
FROM points
WHERE name IS NOT NULL;
DROP TABLE points;
SELECT COUNT(*) FROM bfh.locations;

The result should be 16700.
Import road data

$ shp2pgsql -s 4326 roads.shp | psql gis

(may take a few minutes).
Convert road data

INSERT INTO bfh.roads (label, geom)
SELECT
 name AS label,
 geom
FROM roads
WHERE name IS NOT NULL;
DROP TABLE roads;
SELECT COUNT(*) FROM bfh.roads;

The result should be 78006.
Query data

Determine road location(s)
SELECT label, ST_AsText(geom)
 FROM bfh.roads LIMIT 3;

Determine total length of roads in meters
SELECT SUM(ST_Length(ST_Transform(geom, 21781)))
 FROM bfh.roads;

EPSPG³ 21781 is die Schweizer Projektion.

³ European Petroleum Survey Group
Query data

Find location of interest furthest from any road
SELECT name, ST_AsText(loc.geom)
FROM
 bfh.locations AS points, bfh.roads AS lines
ORDER BY ST_Distance(points.geom, lines.geom) DESC
LIMIT 1;
(approx. 30 minutes runtime)

Find all locations of interest within 1 m of any road
SELECT loc.name, ST_AsText(loc.geom)
FROM
 bfh.locations AS loc
INNER JOIN
 bfh.roads AS road
ON ST_DWithin(ST_Transform(road.geom, 21781),
 ST_Transform(loc.geom, 21781),
 1);
(approx. 2h runtime, 1861 rows)

Don't forget to get a coffee!
Exercise

- Implement application to collect your own movement data
- Store location (GPS + CID) and time data first as CSV
- Export result from mobile, import into PostGIS
- Overlay movement data with maps
- Determine mode of transport (public transit schedule, movement speed)
- Compute CO_2 emissions, calories burnt, ...
Acknowledgements

This presentation used material from:

- https://developer.android.com/training/location/geofencing.html
- https://github.com/marimiyachi/geofence_example