Location Prediction

Christian Grothoff

Berner Fachhochschule

April 6, 2018

Learning Objectives

- Know why location prediction is important
- Understand basics of human movement
- Creation of data set as basis for prediction
- Understand techniques for location prediction
- Realize simple prediction-based application

Context-Aware Applications

- Applications that adapt to context
- Context includes:
 - User behavior
 - Where the user goes
 - What the user does
 - Environment
 - Available connectivity
 - Charging opportunities
 - Location

Context-Aware Applications

- Applications that adapt to context
- Context includes:
 - User behavior
 - Where the user goes
 - What the user does
 - Environment
 - Available connectivity
 - Charging opportunities
 - Location
- Observations:
 - Location links facts
 - ▶ Predicting location ⇒ predicting future context

Example Use of Context Prediction

- Automatically turn heater on when user heads home
- Predict presence of friends nearby
- Vary QoS according to future energy availability
- Prefetching messages or alerts / delaying uploads

Prefetching

- Potential benefits:
 - Saves energy
 - Conserves data allowance
 - Reduces network congestion
 - Reduces latency
 - Hides spotty network coverage
 - ► Reduces dependency on centralized infrastructure

¹O'Donnell and Draper. *How Machine Delays Change User Strategies*. SIGCHI Bull., 1996.

²Trestian, et al., Connecting People, Locations And Interests In A Mobile 3g Network. ACM SIGCOMM, 2009.

Prefetching

- Potential benefits:
 - Saves energy
 - Conserves data allowance
 - Reduces network congestion
 - Reduces latency
 - Hides spotty network coverage
 - Reduces dependency on centralized infrastructure
- More than nice to have: potential emergent behavior
 - Reducing latency changes how people interact with programs¹
 - Users conservative about energy and bandwidth use²

¹O'Donnell and Draper. *How Machine Delays Change User Strategies*. SIGCHI Bull., 1996.

²Trestian, et al., Connecting People, Locations And Interests In A Mobile 3g Network. ACM SIGCOMM, 2009.

Location for Context-aware Applications

- Requirements
 - Current place (home, work, etc.)
 - Geographic coordinates not always required
 - \implies potential for increased privacy / energy savings

Location for Context-aware Applications

- Requirements
 - Current place (home, work, etc.)
 - Geographic coordinates not always required
 - ⇒ potential for increased privacy / energy savings
- GPS
 - Energy intense
 - No indoor coverage
 - Urban canyons
- Cell towers as landmarks
 - Available for "free"
 - Requires cleaning
 - ► Tower transitions when stationary

Overview

 $Mo1 \; Su \; 2 \; Su \; 3 \; Su \; 4 \; Su \; 5 \; Su \; 6 \; Su \; 7 \; Su \; 8 \; Su \; 9 \; Su \; 10 \; Su \; 11 \; Su \; 12 \; Su \; 13 \; Su \; 14 \; Su \; 15 \; Su \; 16 \; Su \; 17 \; Su \; 18 \; Su \; 10 \; Su \; 1$

- Main location ("home") appears as a black line (bottom)
- Regular activities appear as dotted lines
- ▶ 4 trips minor *regime changes*
 - Week 3 & week 11 to same location
 - Similar route, but note newly discovered towers
 - Week 7/8 & Week 15 trips probably with plane

Week-by-Week View

- "home" at night (except second Wed. night)
- At "work" during the day
- Path to and from "work" is similar, but see new towers
- "activity" Monday evenings

Induced Cell Tower Network on a Single DayWork" (9 h)

- 3 major areas of activity
- Device connects to multiple towers in each area; many transitions
 - Device samples nearby cells
 - Core & periphery towers
- Effect more pronounced with more data

Tower Sampling Experiment

Is the device really stationary during some transitions?

- ▶ # Towers seen during each wall charge (> 30 min.)
 - ▶ 6289 wall charges across all traces
 - Median: 2 (MAD: 1.48)
 - Upper quartile: 4

Tower Sampling is Real

- Locations not covered by a single tower
- Phone appears to sample towers in its vicinity
- Conclusions
 - Cell tower data higher resolution than places
 - Tower transitions do not correspond to user movement
 - Need to aggregate towers to identify:
 - Landmarks
 - User movement

Time Spent at Each Tower (1/2)

- CCDF plots of the total time spent at a tower (by user)
- ▶ 44 of the fits (75%) are significant fits to a power law
- Users may visits thousands of towers, but spend nearly all of their time at a few locations

Time Spent at Each Tower (2/2)

- CDF of time at top towers
- ► Top few towers *dominate*

Approaches for mapping Tower \rightarrow Place

- Collapse oscillation sequences
 - ► Relatively simple heuristic
- Place detection

Place Detection

- Observation:
 - ▶ Places automatically carved out via user movement
 - ▶ Places are islands of high dwell time

Related Work (1/2): Geography

- Scellato et al., Kim et al.
 - ▶ Place a 2-D Gaussian at each GPS sample & normalize
 - lslands above a threshold (15% of max) \implies place
 - Recall:
 - ► Tower dwell time consistent with a power law
 - \implies 15% will only identify 1–3 places!

Related Work (2/2): Network Theory

- Eagle et al.
 - Community detection
 - Partition graph such that the number of edges between subgraphs is lower than expected
 - Makes places too large (include routes)
 - Computationally expensive and thus can only be run offline

A Good Strategy

- Identify graph structures that are typical of places:
 - Primary characteristic: High density subgraphs
 - ► Look for cliques, size ≥ 4

When to Run

Look for new subgraphs whenever there is a new edge

- ► Only need to look near the edge
- \implies fast
- ⇒ appropriate for online use

Naming

- When merging, use longest used name
 - ightharpoonup Example: a: 3 h, b: 4 h \Longrightarrow b
 - ▶ But, if tower b called b for 0.5 h and x for 3.5 h, then use x
 - Overlapping clusters usually share a name
 - ► Example: 5-clique missing 1 edge ⇒ two 4-cliques

Exercise

You implemented an (background) App that:

- Frequently records user's location³
- ► Location method is up to you (Cell tower, WLAN, GPS, multiple)
- Possibly record auxiliary data (power status, usage, etc.)
- Export data in CSV format

You should have 2-3 week mobility data by now!

Now implement tools to (if applicable):

- Convert CSV to (graphviz/dot) transition graph
- Cluster cell towers into locations
- ► Import GPS locations into GIS database
- Compute location dwell time statistics

³Ideally, batch write to disk to safe battery!

Location Prediction: Related Work Overview

- Most work focused on predicting next tower
 - Relevant to network management
 - Approaches:
 - Markov chain (François et al., Song et al.)
 - Graphical models (Eagle et al.)
 - LZ-based predictor (Song et al.)
- Location in x hours:
 - Non-linear time series (NextPlace, Scellato et al.)
 - Recognize routes (Laasonen)
 - P(place|tod) (Burbey and Martin)
 - Simple scheme
 - Extensions by Walfield et al. work best
 - ⇒ We will focus on this scheme

Simple Idea

- ► Solve: $argmax_{t \in T} P(t|\mathbf{c})$
 - t: tower aggregate
 - **c**: a set of conditions

Simple Idea

- ► Solve: $argmax_{t \in T} P(t|\mathbf{c})$
 - t: tower aggregate
 - **c**: a set of conditions
- ► Why argmax?
 - Simplicity of evaluation
 - NextPlace does it
 - Easily modified to return rank or whole CPT, if appropriate

Evaluation

- Every half hour, make a series of predictions
- ▶ Predictions for 0.5 h, 1.5 h, ..., 23.5 hours in the future
- ightharpoonup Prediction correct if predicted aggregate visited within ± 15 min of prediction time

Evaluation

- Every half hour, make a series of predictions
- ▶ Predictions for 0.5 h, 1.5 h, ..., 23.5 hours in the future
- \blacktriangleright Prediction correct if predicted aggregate visited within ± 15 min of prediction time
- ▶ Only attempt a prediction if **c** has $\geq 2h$ of data
 - Larger reduces attempts
 - ▶ Too large ($\geq 8h$) also reduces precision
 - Rarely visited locations apparently highly predictive
 - e.g., after shopping, user goes home

Baseline 1/2

- Unconditional predictor
 - Current dominant aggregate
 - Probably where user usually sleeps
- Results consistent with power law behavior

Baseline 2/2

- Note: x axis is prediction offset, not time of day
- Current tower predictor
- Strong tendency to stay at a location for at least half an hour
- ▶ Increase for $\Delta > 17h \implies$ diurnal behavior

Time of Day

- ► Idea: daily routines
- Condition on current hour or half hour
 - Both perform similarly
 - We prefer hour due to smaller CPT

Time of Day and Day of Week

- ▶ Reduction in performance! (66.7% vs. 70.4% for $\langle h \rangle$)
- ► Low number of attempts (70.5%)
- ▶ Just considering long traces (¿ 16 weeks):
 - Score: 74.1%Attempts: 95.8%
 - → data too spread out!

Time of Day and Work Day

- Just distinguish between workdays and days of rest
- ▶ Increase in performance (72.8% vs. 70.4% for $\langle h \rangle$)
- High portion of attempts

Time of Day and Work Day

- Just distinguish between workdays and days of rest
- ▶ Increase in performance (72.8% vs. 70.4% for $\langle h \rangle$)
- High portion of attempts
- Also tried country-specific days of rest, same performance
- Perhaps bias?
- Ideally learn workdays from data

Regimes

- Weak location-dependent predictor
- ► Regime classification
 - 0 Dominant tower over past 24 hours
 - 1 Current tower's primary regime (argmax P(r|t))

Regime-based Predictor

Predictor	Correct Attempts	Attempts
$\langle h, w \rangle$	72.8%	98.3%
$\langle r, h \rangle$	77.6%	91.7%
$\langle r, h, d \rangle$	76.7%	55.8%
$\langle r, h, w \rangle$	81.1%	86.9%

- Significant improvement in correct attempts
- ► Trade-off: Fewer attempts

Current Tower Aggregate-based Predictor

- Strong location-dependent predictor
- ► Note:
 - $ightharpoonup \langle c \rangle$ is the current tower predictor (our baseline)
 - \blacktriangleright Need a temporal reference, e.g., the prediction offset (Δ)

Evaluation

Predictor	Correct Attempts	Attempts
$\langle r, h, w \rangle$	81.1%	86.9%
$\langle h, \Delta, c \rangle$	81.3%	73.8%
$\langle h, d, \Delta, c \rangle$	81.4%	38.2%
$\langle h, w, \Delta, c \rangle$	83.0%	66.1%

- ► Slight improvement in correct attempts
- ► Tradeoff: significant decrease in portion of attempts

Aging

- Idea: Adapt to changes in behavior
- ► Approaches:
 - 1 Keep last x days of data
 - 2 Keep last *x* days per *primary* condition
 - ▶ Idea: behavior at secondary regimes likely stable
 - Example: parents' or remote office visited every few months

Aging Evaluation

- ▶ Used approach 2
- ► Tried different amounts of aging
 - ▶ 1, 2, 3, 4, 6 weeks

Aging Evaluation

- Used approach 2
- ► Tried different amounts of aging
 - ▶ 1, 2, 3, 4, 6 weeks
- Results:
 - ▶ Aging $\langle h \rangle$: 1 week improved precision from 70.4% to 75%
 - ▶ Aging *r*-based predictors: status quo for 3–4 weeks
 - Aging c-based predictors: status quo for 3-4 weeks
- Conclusion:
 - Conditioning on r or c already captures dynamic behavior
- Recommendation:
 - 3–4 weeks of aging to reduce amount of data stored

Combining Predictors

- If a predictor doesn't have enough data, fallback to another
- Prefer high precision predictors
- ► Results:
 - > 99% attempts
 - $ightharpoonup \langle r, h, w \rangle, \langle r, h \rangle, \langle r \rangle$: 80% correct
 - \blacktriangleright $\langle h, w, c, \Delta \rangle, \langle h, c, \Delta \rangle, \langle r, h, w \rangle, \langle r, h \rangle, \langle r \rangle$: 79% correct

Combining Predictors

- If a predictor doesn't have enough data, fallback to another
- Prefer high precision predictors
- ► Results:
 - > 99% attempts
 - $ightharpoonup \langle r, h, w \rangle, \langle r, h \rangle, \langle r \rangle$: 80% correct
 - \blacktriangleright $\langle h, w, c, \Delta \rangle, \langle h, c, \Delta \rangle, \langle r, h, w \rangle, \langle r, h \rangle, \langle r \rangle$: 79% correct
- Per prediction offset-based predictors:
 - ▶ 0.5*h*: Current tower aggregate baseline (93%)
 - ▶ 1.5h 2.5h: Current tower-aggregate based (80% 85%)
 - > 2.5h: Regime-based (78% 80%)
 - Result (24h): 82%

Exercise

- 1. Design high-level location prediction API
- 2. Implement baseline predictor
- 3. Implement current tower-aggregate predictor (1-2.5h)
- 4. Use prediction to:
 - Enable/disable home heating (project!)
 - Prefetch weather data (going to Bern or skiing?)
 - Disable GSM/WLAN ("user rarely uses it on the train")
 - Make suggestions for when to schedule appointments
 - **.**..

API Design Hints

- Start by defining "Location" abstraction
- ▶ Input for location prediction is time in future
- Plan for "no prediction" as possible answer!
- Output may include level of uncertanity or multi-set with probabilities

Your final design will likely depend on your method to record locations and your application!

Exam reminder

- 1. You may be asked questions about the project
- 2. You may be asked questions about QR/GPS/GIS/LOC that exercises would help you answer

Acknowlegements

This presentation used material from:

Copyright 2011, Neal H. Walfield, licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License unless otherwise noted.