
Non-boring cryptography

Christian Grothoff

Berner Fachhochschule

June 7, 2018

Learning Objectives

I Blind signatures and applications

I Homomorphic encryption

I Secure multiparty computation (SMC) theory

I Common SMC adversary models

I Specialized protocols for SMC problems

Reminder: RSA

Pick p, q prime and e such that

GCD((p − 1)(q − 1), e) = 1 (1)

I Define n = pq,
I compute d such that ed ≡ 1 mod (p − 1)(q − 1).

I Let s := md mod n.
I Then m ≡ se mod n.

RSA Summary

I Public key: n, e

I Private key: d ≡ e−1 mod φ(n) where
φ(n) = (p − 1) · (q − 1)

I Encryption: c ≡ me mod n

I Decryption: m ≡ cd mod n

I Signing: s ≡ md mod n
I Verifying: m ≡ se mod n?

Low Encryption Exponent Attack

I e is known
I M maybe small
I C = Me < n?
I If so, can compute M = e

√
C

⇒ Small e can be bad!

Padding and RSA Symmetry

I Padding can be used to avoid low exponent issues (and issues
with m = 0 or m = 1)

I Randomized padding defeats chosen plaintext attacks
I Padding breaks RSA symmetry:

DApriv
(DBpriv

(EApub
(EBpub

(M)))) 6= M (2)

I PKCS#1 / RFC 3447 define a padding standard

Blind signatures with RSA

1. Obtain public key
(e, n)

2. Compute
f := FDH(m),
f < n.

3. Pick blinding factor
b ∈ Zn

4. Transmit
f ′ := fbe mod n

1. Receive f ′.

2. Compute
s ′ := f ′d mod n.

3. Send s ′.

1. Receive s ′.

2. Compute
s := s ′b−1 mod n

Blind signatures with RSA

1. Obtain public key
(e, n)

2. Compute
f := FDH(m),
f < n.

3. Pick blinding factor
b ∈ Zn

4. Transmit
f ′ := fbe mod n

1. Receive f ′.

2. Compute
s ′ := f ′d mod n.

3. Send s ′.

1. Receive s ′.

2. Compute
s := s ′b−1 mod n

Blind signatures with RSA

1. Obtain public key
(e, n)

2. Compute
f := FDH(m),
f < n.

3. Pick blinding factor
b ∈ Zn

4. Transmit
f ′ := fbe mod n

1. Receive f ′.

2. Compute
s ′ := f ′d mod n.

3. Send s ′.

1. Receive s ′.

2. Compute
s := s ′b−1 mod n

Break

A Social Problem
This was a question posed to RAND researchers in 1971:

“Suppose you were an advisor to the head of the KGB,
the Soviet Secret Police. Suppose you are given the as-
signment of designing a system for the surveillance of all
citizens and visitors within the boundaries of the USSR.
The system is not to be too obtrusive or obvious. What
would be your decision?”

Mastercard/Visa are too transparent.

“I think one of the big things that we need to do, is we need to get
a way from true-name payments on the Internet. The credit card
payment system is one of the worst things that happened for the

user, in terms of being able to divorce their access from their
identity.” –Edward Snowden, IETF 93 (2015)

A Social Problem
This was a question posed to RAND researchers in 1971:

“Suppose you were an advisor to the head of the KGB,
the Soviet Secret Police. Suppose you are given the as-
signment of designing a system for the surveillance of all
citizens and visitors within the boundaries of the USSR.
The system is not to be too obtrusive or obvious. What
would be your decision?”

Mastercard/Visa are too transparent.

“I think one of the big things that we need to do, is we need to get
a way from true-name payments on the Internet. The credit card
payment system is one of the worst things that happened for the

user, in terms of being able to divorce their access from their
identity.” –Edward Snowden, IETF 93 (2015)

The Bank’s Problem

3D secure (“verified by visa”) is a nightmare:

I Complicated process

I Shifts liability to
consumer

I Significant latency

I Can refuse valid requests

I Legal vendors excluded

I No privacy for buyers

Legacy M erchant Host ed Card Paym ent w it h Acquirer Support ed 3 DS (Current)

3 DS is used t o add confidence t hat t he payer is w ho t hey say t hey are and im port ant ly in t he event of a disput e liabilit y shift t o t he Issuer.

Payee (Merchant) PSP [Acquirer]

Payee (Merchant) PSP [Acquirer]

Payee (Merchant) [Acceptor] Site

Payee (Merchant) [Acceptor] Site

Payer (Shopper) [Cardholder] Browser

Payer (Shopper) [Cardholder] Browser

Browser Form Filler

Browser Form Filler

Card Schem e Directory

Card Schem e Directory

Issuing Bank [Issuer] Website

Issuing Bank [Issuer] Website

Issuing Bank [Issuer]

Issuing Bank [Issuer]

HTTPS

Est ablish Paym ent Obligat ion

Present Check-out page with Pay But ton

Select Card Paym ent Method

alt

Form Fill

User Fills Form

Card Paym ent Init ia t ion

Paym ent Init iat ion

opt

Store Card

Authorise

3 DS part of f low

BIN to URL lookup (VAReq m essage)

Lookup URL from BIN

“ PING”

“ PING” response

URL

3DS redirect (PAReq m essage)

3DS redirect (PAReq m essage)

3DS invoke

3DS challenge

3DS response (PARes m essage)

3DS response (PARes m essage)

3DS response (PARes m essage)

3DS response (PARes m essage)

Verificat ion of PARes signature

End of 3 DS

Authorisat ion Request

Authorisat ion Response

Authorisat ion Response

Not if icat ion

Result Page

Request for Set t lem ent process (could be im m ediat e , bat ch (e .g. da ily) or a ft er som e days)

a lt

Capture

Auto Capture in batch processing at end-of-day

Capture

Fulf ilm ent

Provide products or services

Online credit card payments will be replaced, but with what?

The Bank’s Problem

I Global tech companies push oligopolies

I Privacy and federated finance are at risk

I Economic sovereingity is in danger

Do you want to live under total surveillance?

GNU Taler

Digital cash, made socially
responsible.

❬T a l e r❭
Privacy-Preserving, Practical, Taxable, Free Software, Efficient

What is Taler?

Taler is an electronic instant payment system.

I Uses electronic coins stored in wallets on customer’s device

I Like cash

I Pay in existing currencies (i.e. EUR, USD, BTC),
or use it to create new regional currencies

Taler Overview

Exchange

Customer Merchant

w
ith

dr
aw

co
in

s deposit
coins

spend coins

Architecture of Taler

Customer's
Bank

Customer

Wallet
extension

Browser

1.
 p

ay
 e

xc
ha

ng
e

Merchant's
Bank

SDK

Frontend

www

Business
logic Backend

Merchant

7. view
 balance

2. wire transfer

3. withdraw coins

6. wire transfer

5. deposit coins

4. spend coins

Exchange's
Bank

Exchange

Database

⇒ Convenient, taxable, privacy-enhancing, & resource friendly!

Usability of Taler

https://demo.taler.net/

1. Install Chrome extension.

2. Visit the bank.demo.taler.net to withdraw coins.

3. Visit the shop.demo.taler.net to spend coins.

https://demo.taler.net/

Taxability

We say Taler is taxable because:

I Merchant’s income is visible from deposits.

I Hash of contract is part of deposit data.

I State can trace income and enforce taxation.

Limitations:

I withdraw loophole

I sharing coins among family and friends

Taxability

We say Taler is taxable because:

I Merchant’s income is visible from deposits.

I Hash of contract is part of deposit data.

I State can trace income and enforce taxation.

Limitations:

I withdraw loophole

I sharing coins among family and friends

How does it work?

We use a few ancient constructions:

I Cryptographic hash function (1989)

I Blind signature (1983)

I Schnorr signature (1989)

I Diffie-Hellman key exchange (1976)

I Cut-and-choose zero-knowledge proof (1985)

But of course we use modern instantiations.

Exchange setup: Create a denomination key (RSA)

1. Pick random primes p, q.

2. Compute n := pq,
φ(n) = (p − 1)(q − 1)

3. Pick small e < φ(n) such
that d := e−1 mod φ(n)
exists.

4. Publish public key (e, n).

(p, q)

Merchant: Create a signing key (EdDSA)

I pick random m mod o as
private key

I M = mG public key

m

M

Capability: m⇒ M

Customer: Create a planchet (EdDSA)

I Pick random c mod o
private key

I C = cG public key

c
X

N
A

G
YE6P65735P4H1NGN8D

T5
28

W
S3

PX

ZT8T0YDYPS8770GCD
Z5

Capability: c ⇒ X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

Customer: Blind planchet (RSA)

1. Obtain public key (e, n)

2. Compute f := FDH(C),
f < n.

3. Pick blinding factor
b ∈ Zn

4. Transmit f ′ := fbe

mod n

b

b

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

Exchange
tr

an
sm

it

Exchange: Blind sign (RSA)

1. Receive f ′.

2. Compute s ′ := f ′d

mod n.

3. Send signature s ′.

b

b

Customer

tr
an

sm
it

Customer: Unblind coin (RSA)

1. Receive s ′.

2. Compute s := s ′b−1

mod n

b

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

b

Withdrawing coins on the Web
Taler (W it hdraw coins)

Custom er Browser

Custom er Browser

Bank Site

Bank Site

Taler Exchange

Taler Exchange

HTTPS

HTTPS

wire t ransfer

1 user authent icat ion

2 send account portal

3 init iate withdrawal (specify am ount and exchange)

4 request coin denom inat ion keys and wire t ransfer data

5 send coin denom inat ion keys and wire t ransfer data

6 execute withdrawal

opt

7 request t ransact ion authorizat ion

8 t ransact ion authorizat ion

9 withdrawal confirm at ion

1 0 execute wire t ransfer

1 1 withdraw request

1 2 signed blinded coins

1 3 unblind coins

Customer: Build shopping cart

www

Merchant

tr
an

sm
it

Merchant: Propose contract (EdDSA)

1. Complete proposal D.

2. Send D, EdDSAm(D)
M

Customer

m

tr
an

sm
it

Customer: Spend coin (EdDSA)

1. Receive proposal D,
EdDSAm(D).

2. Send s, C , EdDSAc(D)

M

M X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

c

Merchant

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

tr
an

sm
it

tr
an

sm
it

Merchant and Exchange: Verify coin (RSA)

se
?≡ m mod n

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

?⇔

Payment processing with Taler
Taler (Paym ent)

Payer (Shopper) Browser

Payer (Shopper) Browser

Payee (Merchant) Site

Payee (Merchant) Site

Taler Exchange

Taler Exchange

Tor/HTTPS

HTTP/HTTPS

Request Offer

1 Choose goods by navigat ing to offer URL

2 Send signed digital cont ract proposal

opt

3 Select Taler paym ent m ethod (skippable with auto-detect ion)

Execut e Paym ent

opt

4 Affirm cont ract

5 Navigate to fulfillm ent URL

6 Send hash of digital cont ract and paym ent inform at ion

7 Send paym ent

8 Forward paym ent

9 Confirm paym ent

1 0 Confirm paym ent

Fulf ilm ent

1 1 Reload fulfillm ent URL for delivery

1 2 Provide product resource

Break

Giving change

It would be inefficient to pay EUR 100 with 1 cent coins!

I Denomination key represents value of a coin.

I Exchange may offer various denominations for coins.

I Wallet may not have exact change!

I Usability requires ability to pay given sufficient total funds.

Key goals:

I maintain unlinkability

I maintain taxability of transactions

Method:

I Contract can specify to only pay partial value of a coin.

I Exchange allows wallet to obtain unlinkable change for
remaining coin value.

Giving change

It would be inefficient to pay EUR 100 with 1 cent coins!

I Denomination key represents value of a coin.

I Exchange may offer various denominations for coins.

I Wallet may not have exact change!

I Usability requires ability to pay given sufficient total funds.

Key goals:

I maintain unlinkability

I maintain taxability of transactions

Method:

I Contract can specify to only pay partial value of a coin.

I Exchange allows wallet to obtain unlinkable change for
remaining coin value.

Giving change

It would be inefficient to pay EUR 100 with 1 cent coins!

I Denomination key represents value of a coin.

I Exchange may offer various denominations for coins.

I Wallet may not have exact change!

I Usability requires ability to pay given sufficient total funds.

Key goals:

I maintain unlinkability

I maintain taxability of transactions

Method:

I Contract can specify to only pay partial value of a coin.

I Exchange allows wallet to obtain unlinkable change for
remaining coin value.

Diffie-Hellman (ECDH)

1. Create private keys c , t
mod o

2. Define C = cG

3. Define T = tG

4. Compute DH
cT = c(tG) = t(cG) =
tC

t

C T

c

Strawman solution

Given partially spent private coin key cold :

1. Pick random cnew mod o private key

2. Cnew = cnewG public key

3. Pick random bnew

4. Compute fnew := FDH(Cnew), m < n.

5. Transmit f ′new := fnewb
e
new mod n

... and sign request for change with cold .

b

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

cnew

bnew

Exchange

tr
an

sm
it

Problem: Owner of cnew may differ from owner of cold !

Strawman solution

Given partially spent private coin key cold :

1. Pick random cnew mod o private key

2. Cnew = cnewG public key

3. Pick random bnew

4. Compute fnew := FDH(Cnew), m < n.

5. Transmit f ′new := fnewb
e
new mod n

... and sign request for change with cold .

b

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

cnew

bnew

Exchange

tr
an

sm
it

Problem: Owner of cnew may differ from owner of cold !

Customer: Transfer key setup (ECDH)

Given partially spent private coin key cold :

1. Let Cold := coldG (as before)

2. Create random private transfer key t
mod o

3. Compute T := tG

4. Compute
X := cold(tG) = t(coldG) = tCold

5. Derive cnew and bnew from X

6. Compute Cnew := cnewG

7. Compute fnew := FDH(Cnew)

8. Transmit f ′new := fnewb
e
new

t

C T

cold

cnew bnew

b

Exchange

tr
an

sm
it

Cut-and-Choose

t1

C T

cold

cnew ,1 bnew ,1

b

Exchange

tr
an

sm
it

t2

C T

cold

cnew ,2 bnew ,2

b

Exchange

tr
an

sm
it

t3

C T

cold

cnew ,3 bnew ,3

b

Exchange

tr
an

sm
it

Exchange: Choose!

Exchange sends back random γ ∈ {1, 2, 3} to the customer.

Customer: Reveal

1. If γ = 1, send t2, t3 to exchange

2. If γ = 2, send t1, t3 to exchange

3. If γ = 3, send t1, t2 to exchange

Exchange: Verify (γ = 2)

t1

C T

Cold

cnew ,1 bnew ,1

b

t3

C T

Cold

cnew ,3 bnew ,3

b

Exchange: Blind sign change (RSA)

1. Take f ′new ,γ .

2. Compute s ′ := f ′dnew ,γ
mod n.

3. Send signature s ′.

b

b

Customer

tr
an

sm
it

Customer: Unblind change (RSA)

1. Receive s ′.

2. Compute s := s ′b−1new ,γ

mod n.

bnew ,γ

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

b

Exchange: Allow linking change

Given Cold

return Tγ and

s := s ′b−1new ,γ mod n.

Cold

Tγ
b

Customer

link

lin
k

Customer: Link (threat!)

1. Have cold .

2. Obtain Tγ , s from
exchange

3. Compute Xγ = coldTγ

4. Derive cnew ,γ and
bnew ,γ from Xγ

5. Unblind s := s ′b−1new ,γ

mod n

Tγ

Exchange

b

C T

bnew ,γ

cold

cnew ,γ
X

N
A

G
YE6P65735P4H1NGN8D

T5
28

W
S3

PX

ZT8T0YDYPS8770GCD
Z5

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

link

lin
k

Refresh protocol summary

I Customer asks exchange to convert old coin to new coin

I Protocol ensures new coins can be recovered from old coin

⇒ New coins are owned by the same entity!

Thus, the refresh protocol allows:

I To give unlinkable change.

I To give refunds to an anonymous customer.

I To expire old keys and migrate coins to new ones.

I To handle protocol aborts.

Transactions via refresh are equivalent to sharing a wallet.

Break

Secure Multiparty Computation (SMC)

I Alice und Bob haben private Daten ai and bi .

I Alice und Bob führen ein Protokoll aus und berechnen
gemeinsam f (ai , bi).

I Nur einer von beiden lernt das Ergebnis (i.d.R.)

Adversary model

Honest but curious

Homomorphic Encryption

E (x1 ⊕ x2) = E (x1)⊗ E (x2) (3)

Multiplicative Homomorphism: RSA & ElGamal

I Unpadded RSA (multiplicative):

E (x1) · E (x2) = xe1 x
2
2 = E (x1 · x2) (4)

I ElGamal:

E (x1) · E (x2) = (g r1 , x1 · hr1)(g r2 , x2 · hr2) (5)

= (g r1+r2), (x1 · x2)hr1+r2) (6)

= E (m1 ·m2) (7)

Additive Homomorphism: Paillier

EK (m) : = gm · rn mod n2, (8)

DK (c) : =
(cλ mod n2)− 1

n
· µ mod n (9)

where the public key K = (n, g), m is the plaintext, c the ciphertext,
n the product of p, q ∈ P of equal length, and g ∈ Z∗n2 . In Paillier,
the private key is (λ, µ), which is computed from p and q as follows:

λ : = lcm(p − 1, q − 1), (10)

µ : =

(
(gλ mod n2)− 1

n

)−1
mod n. (11)

Paillier offers additive homomorphic public-key encryption, that is:

EK (a)⊗ EK (b) ≡ EK (a + b) (12)

for any public key K .

Fully homomorphic encryption

Additive:
E (A)⊕ E (B) = E (A + B) (13)

and multiplicative:

E (A)⊗ E (B) = E (A · B) (14)

Known cryptosystems: Brakerski-Gentry-Vaikuntanathan (BGV), NTRU,
Gentry-Sahai-Waters (GSW).

Break

Example: Secure Scalar Product

I Original idea by Ioannids et al. in 2002 (use:
(a− b)2 = a2 − 2ab + b2)

I Refined by Amirbekyan et al. in 2007 (corrected math)

I Implemented with practical extensions in GNUnet (negative
numbers, small numbers, concrete protocol, set intersection,
implementation).

Preliminaries

I Alice has public key A and input map mA : MA → Z.

I Bob has public key B and input map mB : MB → Z.

I We want to calculate ∑
i∈MA∩MB

mA(i)mB(i) (15)

I We first calculate M = MA ∩MB .

I Define ai := mA(i) and bi := mB(i) for i ∈ M.

I Let s denote a shared static offset.

Network Protocol

I Alice transmits EA(s + ai) for i ∈ M to Bob.

I Bob creates two random permutations π and π′ over the
elements in M, and a random vector ri for i ∈ M and sends

R : = EA(s + aπ(i))⊗ EA(s − rπ(i) − bπ(i)) (16)

= EA(2 · s + aπ(i) − rπ(i) − bπ(i)), (17)

R ′ : = EA(s + aπ′(i))⊗ EA(s − rπ′(i)) (18)

= EA(2 · s + aπ′(i) − rπ′(i)), (19)

S : =
∑

(ri + bi)
2, (20)

S ′ : =
∑

r2i (21)

Decryption (1/3)

Alice decrypts R and R ′ and computes for i ∈ M:

aπ(i) − bπ(i) − rπ(i) = DA (R)− 2 · s, (22)

aπ′(i) − rπ′(i) = DA

(
R ′
)
− 2 · s, (23)

which is used to calculate

T : =
∑
i∈M

a2i (24)

U : = −
∑
i∈M

(aπ(i) − bπ(i) − rπ(i))
2 (25)

U ′ : = −
∑
i∈M

(aπ′(i) − rπ′(i))
2 (26)

Decryption (2/3)

She then computes

P : = S + T + U

=
∑
i∈M

(bi + ri)
2 +

∑
i∈M

a2i +

(
−
∑
i∈M

(ai − bi − ri)
2

)
=
∑
i∈M

(
(bi + ri)

2 + a2i − (ai − bi − ri)
2
)

= 2 ·
∑
i∈M

ai (bi + ri).

P ′ : = S ′ + T + U ′

=
∑
i∈M

r2i +
∑
i∈M

a2i +

(
−
∑
i∈M

(ai − ri)
2

)
=
∑
i∈M

(
r2i + a2i − (ai − ri)

2
)

= 2 ·
∑
i∈M

ai ri .

Decryption (3/3)

Finally, Alice computes the scalar product using:

P − P ′

2
=
∑
i∈M

ai (bi + ri)−
∑
i∈M

ai ri =
∑
i∈M

aibi . (27)

Computing Discrete Logarithms

Who said calculating DLOG was hard?

ECC Version1

Alice’s public key ist A = ga, ihr private key ist a. Alices schickt an
Bob (gi , hi) = (g ri , g ria+ai) mit zufälligen Werten ri für i ∈ M.
Bob antwortet mit(∏

i∈M
gbi
i ,
∏
i∈M

hbii

)
=

(∏
i∈M

gbi
i , (

∏
i∈M

gbi
i)ag

∑
i∈M aibi

)

Alice kann dann berechnen(∏
i∈M

gbi
i

)−a
·

(∏
i∈M

gbi
i

)a

· g
∑

i∈M aibi = g
∑

i∈M aibi .

Falls
∑

i∈M aibi ausreichend klein ist, kann Alice dann das Skalarpro-
dukt durch Lösung des DLP bestimmen.

1Joint work with Tanja Lange

Performance Evaluation

Length RSA-2048 ECC-220 ECC-228

25 14 s 2 s 29 s

50 21 s 2 s 29 s

100 39 s 2 s 29 s

200 77 s 3 s 30 s

400 149 s OOR 31 s

800 304 s OOR 33 s

800 3846 kb OOR 70 kb

The pre-calculation of ECC-228 is ×16 more expensive than for ECC-
220 as the table is set to have size

√
n.

Exercise

Implement function to calculate DLOG.

	The Bank's Problem
	What is Taler?

