Location Prediction

Christian Grothoff

Berner Fachhochschule

April 5, 2019

Learning Objectives

- Know why location prediction is important
- Understand basics of human movement
- Creation of data set as basis for prediction
- Understand techniques for location prediction
- Realize simple prediction-based application

Context-Aware Applications

Applications that adapt to context

- Context includes:
 - User behavior
 - Where the user goes
 - What the user does
 - Environment
 - Available connectivity
 - Charging opportunities
 - Location

Context-Aware Applications

Applications that adapt to context

- Context includes:
 - User behavior
 - Where the user goes
 - What the user does
 - Environment
 - Available connectivity
 - Charging opportunities
 - Location

Observations:

- Location links facts
- \blacktriangleright Predicting location \implies predicting future context

Example Use of Context Prediction

- Automatically turn heater on when user heads home
- Predict presence of friends nearby
- Vary QoS according to future energy availability
- Prefetching messages or alerts / delaying uploads

Prefetching

Potential benefits:

- Saves energy
- Conserves data allowance
- Reduces network congestion
- Reduces latency
- Hides spotty network coverage
- Reduces dependency on centralized infrastructure

¹O'Donnell and Draper. *How Machine Delays Change User Strategies*. SIGCHI Bull., 1996.

²Trestian, et al., *Connecting People, Locations And Interests In A Mobile 3g Network.* ACM SIGCOMM, 2009.

Prefetching

Potential benefits:

- Saves energy
- Conserves data allowance
- Reduces network congestion
- Reduces latency
- Hides spotty network coverage
- Reduces dependency on centralized infrastructure
- More than nice to have: potential emergent behavior
 - Reducing latency changes how people interact with programs¹
 - Users conservative about energy and bandwidth use²

¹O'Donnell and Draper. *How Machine Delays Change User Strategies*. SIGCHI Bull., 1996.

²Trestian, et al., *Connecting People, Locations And Interests In A Mobile 3g Network.* ACM SIGCOMM, 2009.

Location for Context-aware Applications

Requirements

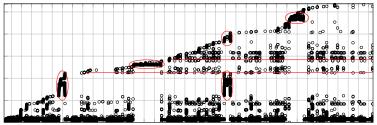
- Current place (home, work, etc.)
- Geographic coordinates not always required
 - \implies potential for increased privacy / energy savings

Location for Context-aware Applications

Requirements

- Current place (home, work, etc.)
- Geographic coordinates not always required
 - \implies potential for increased privacy / energy savings
- GPS
 - Energy intense
 - No indoor coverage
 - Urban canyons
- Cell towers as landmarks
 - Available for "free"
 - Requires cleaning
 - Tower transitions when stationary

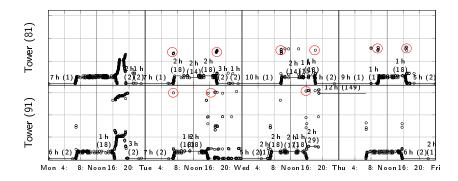
Overview



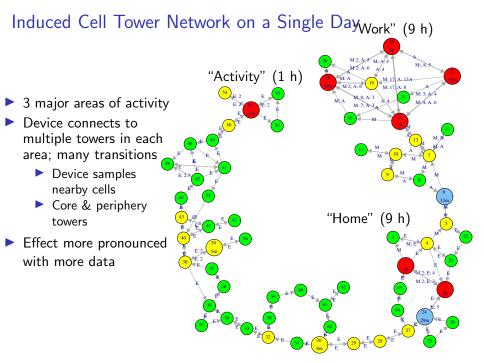
Mo1 Su 2 Su 3 Su 4 Su 5 Su 6 Su 7 Su 8 Su 9 Su 10 Su 11 Su 12 Su 13 Su 14 Su 15 Su 16 Su 17 Su 18 Su

- Main location ("home") appears as a black line (bottom)
- Regular activities appear as dotted lines
- 4 trips minor regime changes
 - Week 3 & week 11 to same location
 - Similar route, but note newly discovered towers
 - Week 7/8 & Week 15 trips probably with plane

Week-by-Week View

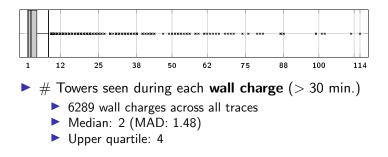


- "home" at night (except second Wed. night)
- At "work" during the day
- Path to and from "work" is similar, but see new towers
- "activity" Monday evenings



Tower Sampling Experiment

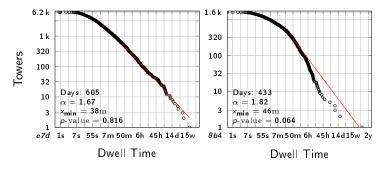
Is the device really stationary during some transitions?



Tower Sampling is Real

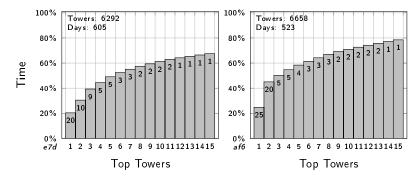
- Locations not covered by a single tower
- Phone appears to sample towers in its vicinity
- Conclusions
 - Cell tower data higher resolution than places
 - Tower transitions do not correspond to user movement
 - Need to aggregate towers to identify:
 - Landmarks
 - User movement

Time Spent at Each Tower (1/2)



- CCDF plots of the total time spent at a tower (by user)
- 44 of the fits (75%) are significant fits to a power law
- ⇒ Users may visits thousands of towers, but spend nearly all of their time at a few locations

Time Spent at Each Tower (2/2)



- CDF of time at top towers
- Top few towers dominate

Approaches for mapping Tower \rightarrow Place

Collapse oscillation sequences

Relatively simple heuristic

Place detection

Place Detection

- Places automatically carved out via user movement
- Places are islands of high dwell time

Related Work (1/2): Geography

Scellato et al., Kim et al.

- Place a 2-D Gaussian at each GPS sample & normalize
- ▶ Islands above a threshold (15% of max) \implies place
- Recall:
 - Tower dwell time consistent with a power law
 - \implies 15% will only identify 1–3 places!

Related Work (2/2): Network Theory

Eagle et al.

- Community detection
 - Partition graph such that the number of edges between subgraphs is lower than expected
- Makes places too large (include routes)
- Computationally expensive and thus can only be run offline

A Good Strategy

Identify graph structures that are typical of places:

- Primary characteristic: High density subgraphs
- Look for cliques, size ≥ 4

Look for new subgraphs whenever there is a new edge

- Only need to look near the edge
- \implies fast
- \implies appropriate for online use

Naming

When merging, use longest used name

- Example: a: 3 h, b: 4 h \implies b
- But, if tower b called b for 0.5 h and x for 3.5 h, then use x
- Overlapping clusters usually share a name
- Example: 5-clique missing 1 edge \implies two 4-cliques

Project

You implemented an (background) App that:

- Frequently records user's location³
- Location method is up to you (Cell tower, WLAN, GPS, multiple)
- Possibly record auxiliary data (power status, usage, etc.)
- Exported data via CSV, MQTT or HTTP
- Imported GPS locations into GIS database

You should have 2-3 week mobility data by now!

Now implement tools to (if applicable):

- Convert CSV to (graphviz/dot) transition graph
- Cluster cell towers into locations
- Compute location dwell time statistics

³Ideally, batch write to disk to safe battery!

Location Prediction: Related Work Overview

Most work focused on predicting *next* tower

- Relevant to network management
- Approaches:
 - Markov chain (François et al., Song et al.)
 - Graphical models (Eagle et al.)
 - LZ-based predictor (Song et al.)
- Location in x hours:
 - Non-linear time series (NextPlace, Scellato et al.)
 - Recognize routes (Laasonen)
 - P(place|tod) (Burbey and Martin)
 - Simple scheme
 - Extensions by Walfield et al. work best
 - \Rightarrow We will focus on this scheme

Simple Idea

Solve: $argmax_{t \in T} P(t|\mathbf{c})$

► t: tower aggregate

c: a set of conditions

Simple Idea

- Solve: $argmax_{t \in T} P(t|\mathbf{c})$
 - t: tower aggregate
 - **c**: a set of conditions
- Why argmax?
 - Simplicity of evaluation
 - NextPlace does it
 - Easily modified to return rank or whole CPT, if appropriate

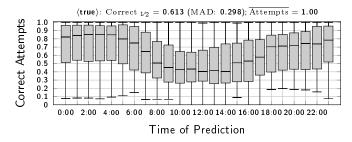
Evaluation

- Every half hour, make a series of predictions
- ▶ Predictions for 0.5 h, 1.5 h, ..., 23.5 hours in the future
- Prediction correct if predicted aggregate visited within ±15 min of prediction time

Evaluation

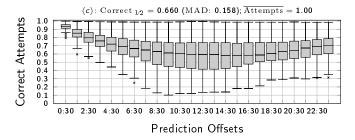
- Every half hour, make a series of predictions
- Predictions for 0.5 h, 1.5 h, ..., 23.5 hours in the future
- Prediction correct if predicted aggregate visited within ±15 min of prediction time
- Only attempt a prediction if c has ≥ 2h of data
 - Larger reduces attempts
 - ► Too large (≥ 8h) also reduces precision
 - Rarely visited locations apparently highly predictive
 - e.g., after shopping, user goes home

Baseline 1/2



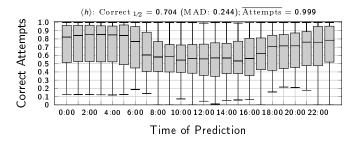
- Unconditional predictor
 - Current dominant aggregate
 - Probably where user usually sleeps
- Results consistent with power law behavior

Baseline 2/2



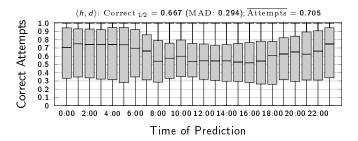
- Note: x axis is prediction offset, not time of day
- Current tower predictor
- Strong tendency to stay at a location for at least half an hour
- Increase for $\Delta > 17h \implies$ diurnal behavior

Time of Day



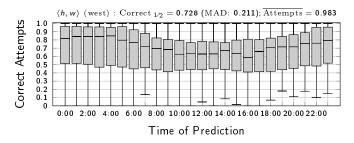
- Idea: daily routines
- Condition on current hour or half hour
 - Both perform similarly
 - We prefer hour due to smaller CPT

Time of Day and Day of Week



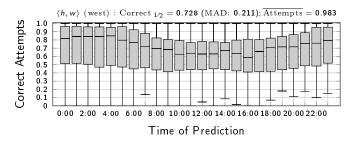
- Reduction in performance! (66.7% vs. 70.4% for $\langle h \rangle$)
- Low number of attempts (70.5%)
- Just considering long traces (¿ 16 weeks):
 - Score: 74.1%
 - Attempts: 95.8%
 - \implies data too spread out!

Time of Day and Work Day



- Just distinguish between workdays and days of rest
- ▶ Increase in performance (72.8% vs. 70.4% for $\langle h \rangle$)
- High portion of attempts

Time of Day and Work Day



- Just distinguish between workdays and days of rest
- ▶ Increase in performance (72.8% vs. 70.4% for $\langle h \rangle$)
- High portion of attempts
- Also tried country-specific days of rest, same performance
- Perhaps bias?
- Ideally learn workdays from data

Regimes

- Weak location-dependent predictor
- Regime classification
 - 0 Dominant tower over past 24 hours
 - 1 Current tower's primary regime $(\operatorname{argmax} P(r|t))$

Regime-based Predictor

Predictor	Correct Attempts	Attempts
$\langle h, w \rangle$	72.8%	98.3%
	77.6% 76.7% 81.1%	91.7% 55.8% 86.9%

Significant improvement in correct attempts

► Trade-off: Fewer attempts

Current Tower Aggregate-based Predictor

- Strong location-dependent predictor
- Note:
 - $\langle c \rangle$ is the current tower predictor (our baseline)
 - Need a temporal reference, e.g., the prediction offset (Δ)

Evaluation

Predictor	Correct Attempts	Attempts
$\langle r, h, w \rangle$	81.1%	86.9%
$\langle h, \Delta, c \rangle$	81.3%	73.8%
$\langle h, d, \Delta, c angle$	81.4%	38.2%
$\langle h, w, \Delta, c \rangle$	83.0%	66.1%

Slight improvement in correct attempts

▶ Tradeoff: significant decrease in portion of attempts

Aging

Idea: Adapt to changes in behavior

Approaches:

- 1 Keep last x days of data
- 2 Keep last x days per primary condition
 - Idea: behavior at secondary regimes likely stable
 - Example: parents' or remote office visited every few months

Aging Evaluation

Used approach 2

Tried different amounts of aging

1, 2, 3, 4, 6 weeks

Aging Evaluation

Used approach 2

Tried different amounts of aging

1, 2, 3, 4, 6 weeks

Results:

• Aging $\langle h \rangle$: 1 week improved precision from 70.4% to 75%

Aging r-based predictors: status quo for 3–4 weeks

Aging c-based predictors: status quo for 3–4 weeks

Conclusion:

Conditioning on r or c already captures dynamic behavior

Recommendation:

3–4 weeks of aging to reduce amount of data stored

Combining Predictors

If a predictor doesn't have enough data, fallback to another

- Prefer high precision predictors
- Results:
 - > 99% attempts
 - $\langle r, h, w \rangle, \langle r, h \rangle, \langle r \rangle$: 80% correct
 - $\blacktriangleright \langle h, w, c, \Delta \rangle, \langle h, c, \Delta \rangle, \langle r, h, w \rangle, \langle r, h \rangle, \langle r \rangle: 79\% \text{ correct}$

Combining Predictors

If a predictor doesn't have enough data, fallback to another

- Prefer high precision predictors
- Results:
 - > 99% attempts
 - $\langle r, h, w \rangle, \langle r, h \rangle, \langle r \rangle$: 80% correct
 - $\blacktriangleright \langle h, w, c, \Delta \rangle, \langle h, c, \Delta \rangle, \langle r, h, w \rangle, \langle r, h \rangle, \langle r \rangle: 79\% \text{ correct}$
- Per prediction offset-based predictors:
 - 0.5*h*: Current tower aggregate baseline (93%)
 - ▶ 1.5*h* 2.5*h*: Current tower-aggregate based (80% 85%)
 - > 2.5*h*: Regime-based (78% 80%)
 - Result (24*h*): 82%

Project

- 1. Design high-level location prediction API
- 2. Implement baseline predictor
- 3. Implement current tower-aggregate predictor (1 2.5h)
- 4. Use prediction to:
 - Enable/disable home heating (project!)
 - Prefetch weather data (going to Bern or skiing?)
 - Disable GSM/WLAN ("user rarely uses it on the train")
 - Make suggestions for when to schedule appointments
 ...

API Design Hints

- Start by defining "Location" abstraction
- Input for location prediction is time in future
- Plan for "no prediction" as possible answer!
- Output may include level of uncertanity or multi-set with probabilities

Your final design will likely depend on your method to record locations and your application!

Exam reminder

- 1. Submit your code ≈ 1 week before the oral exams
- 2. In that case, you will be asked questions about the project:
 - What your project does (explain to co-examiners!)
 - Examination on how it works in depth
 - Critical discussion based on my code review prior to the exam
- 3. Otherwise, any theory that was taught is fair game

This presentation used material from:

 Copyright 2011, Neal H. Walfield, licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License unless otherwise noted.