
QR Codes

Christian Grothoff

Berner Fachhochschule

22.3.2019



Exam preview

1. If you submit a project, you will be asked about your project

2. Even if you do not work on a project, you may be asked
questions about QR/GPS/GIS/LOC that doing the exercises
would help you answer

Also, for this course, I do not care what language you do your
projects in, some languages are more suitable than others, but the
choice is entirely yours!
For the project, you may want to re-use parts of the MC2 project, but
this is not required: you can also choose to do an implementation
without any HTTP (or use MQTT).



A QR code

I Created in 1994 by Denso-Wave (subsidiary of Toyota)

I Use is license-free

I The squares are called modules

I QR code must be surrounded by 4-module wide quiet zone



Position symbols and their borders

These are used by the device attempting to read the symbol. They
fix the rotation and basic dimensions.



Alignment symbols

The number of these grows with the size of the symbol.
They help correct for perspective, curvature, and other distortion.



Timing arrays

Dotted lines connecting the alignment symbols:

These help to determine the dimensions of the symbol.



Dark module

I Always black

I Next to bottom left finder

I Coordinate (4V + 4, 8)



Version information

This is not a format version, but determines the dimensions of the
image.

The size of version V is N × N with N = 17 + 4V .



Format information

Level of error correction chosen, and the index of the mask laid over
the original message. Stored in several places.



Format information

EC level Determines error correction capability (Reed-Solomon
is used)

Mask Laid over the symbol to minimize undesirable traits
(“penalty rules”)

Mode Determines type of input for efficient encoding
(number, alpha-numeric, text, etc.)



L (7%)



M (15%)



Q (25%)



H (30%)



Why EC?



Modes

I Numeric

I Alpha-Numeric (case-insensitive, with $%*+-,/: and space)

I Byte

I Kanji (Japanese company!)

I Extended channel interpretation

I Structured append mode

I FNC1



Maximum sizes

A 40-L QR code (177x177, 7% EC) can store:

Numeric 7089 characters
Alpha-Numeric 4296 characters
Byte 2953 characters
Kanji 1817 characters



Mask penalty rules

I Group of five or more same-colored modules in a row

I 2 × 2 area of same-colored modules

I Large penalty for patterns similar1 to finder patterns

I Penalty proportional to black-white ratio imbalance

101000101111 or 11110100010



Think first!

https://www.youtube.com/watch?v=V2rVYvylvZc (11’2011)

https://www.youtube.com/watch?v=V2rVYvylvZc


Create QR code

#include <qrencode.h>

QRinput * qri;

QRcode *qrc;

qri = QRinput_new2 (0, QR_ECLEVEL_M);

QRinput_append (qri,

QR_MODE_AN,

strlen (text),

(unsigned char*) text);

qrc = QRcode_encodeInput (qri);



Create pixel buffer

#include <gdk-pixbuf/gdk-pixbuf.h>

unsigned int size = qrc->width * scale;

size += 8 - (size % 8);

GdkPixbuf *pb = gdk_pixbuf_new (...);

guchar *pixels = gdk_pixbuf_get_pixels (pb);

int n_channels = gdk_pixbuf_get_n_channels (pb);



Set bits in pixel buffer

for (unsigned int x=0;x<size;x++)

for (unsigned int y=0;y<size;y++) {

off = (x * qrc->width / size) +

(y * qrc->width / size) * qrc->width;

for (int c = 0; c < n_channels; c++)

pixels[(y * size + x) * n_channels + c]

= (0 == (qrc->data[off] & 1)) ? 0xFF : 0;

}



Use pixel buffer for Gtk+ image

GtkImage *image;

image = GTK_IMAGE (...);

gtk_image_set_from_pixbuf (image, pb);



Free resources

QRcode_free (qrc);

QRinput_free (qri);

g_object_unref (pb);



Exercise

I Write a C program that generates a QR code

I The input text should be taken from command-line
(“argv[1]”)

I Write the image output as X or spaces to the console, one
character per pixel

I Bonus: use getopt to support command-line options for the
various QR encoder options!



QR Codes in LaTeX

\usepackage{pspicture}

\usepackage{pst-barcode}

\usepackage{auto-pst-pdf}

\begin{center}

\leavevmode

\begin{pspicture}(15mm,15mm)

\psbarcode{text here}{eclevel=Q}{qrcode}

\end{pspicture}

\end{center}



Scanning QR codes

We will use zbar:

import sys

import getopt

import subprocess

from sys import argv

try:

import zbar

except ImportError as e:

print(’Cannot run, please install zbar-python’)

sys.exit (1)



Opening the camera

Open camera:

device = ’/dev/video0’

proc = zbar.Processor()

proc.parse_config(’enable’)

proc.init(device)



Read a QR code

try:

proc.process_one()

except Exception as e:

# Window was closed without finding code

exit (1)



Use results

for symbol in proc.results:

print(’Found ’, symbol.type, ’ symbol ’, ’"%s"’ \

% symbol.data)



Exercise

I Implement logic to read QR code

I Use https://www.thonky.com/qrcode/ to generate and
print different QR codes (text length, error correction, output
size)

I Test your reader against examples

https://www.thonky.com/qrcode/


Android: Reacting to URLs via schema registration

In you manifest, use:

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT" />

<category android:name="android.intent.category.BROWSABLE" />

<data android:scheme="mailto" />

<data android:scheme="http" android:host="example.com" />

</intent-filter>

to hook the mailto schema and “http://example.com/”.



Android: Barcode Detection

https://codelabs.developers.google.com/codelabs/bar-codes/

https://codelabs.developers.google.com/codelabs/bar-codes/


Further reading



Acknowlegements

This presentation used material from:

I http:

//www.ams.org/samplings/feature-column/fc-2013-02

I https://www.thonky.com/qrcode-code-tutorial/

I https://gnunet.org/

http://www.ams.org/samplings/feature-column/fc-2013-02
http://www.ams.org/samplings/feature-column/fc-2013-02
https://www.thonky.com/qrcode-code-tutorial/
https://gnunet.org/

