
Secure Channels

Christian Grothoff

Berner Fachhochschule

17.5.2019

Learning Objectives

I What are cryptographic protocols?

I Protocols for key exchange without public key cryptography

I Protocols for key exchange with public key cryptography

I What are secure channels?

I Terminology: Forward secrecy, future secrecy, asynchrony,
repudiation

I Contemporary protocols for secure channels

I Attacks

I Modern secure channels

Protocols

I “A protocol is a series of steps, involving two or more parties,
designed to accomplish a task.”

I Everyone involved must know the steps in advance and agree
to follow it.

I The protocol must be complete and unambiguous.

I For cryptographic protocols, it should not be possible to do
more or learn more than what is specified in the protocol.

Dramatis Personae

I Alice, Bob, Carol and Dave

I Eve – Eavesdropper

I Mallory – Malicious active attacker

I Trent – Trusted arbitrator

I Walter – Warden

I Peggy – Prover

I Victor – Verifier

Attack Personae

I Eavesdroppers

I Passive cheaters

I Active cheaters

I Real-world adversaries – Mallory

Efficiency

I Number of steps in protocol

I Size of messages
I Conflict resolution cost:

1. Involvement of trusted party (arbitrated protocols)
2. Resolution by trusted party on dispute (adjudicated protocols)
3. Self-enforcing protocols

Example: Symmetric Cryptography

1. Alice and Bob agree on a cryptosystem

2. Alice and Bob agree on a key

3. Alice encrypts plaintext with key

4. Alice sends ciphertext to Bob

5. Bob decrypts ciphertext and reads it

Problem

Alice has an item x , and Bob has a set of five distinct items y1, . . . , y5.
Design a protocol through which Alice (but not Bob) finds out
whether her x equals any of Bob’s five items; Alice should not find
out anything other than the answer (“Yes” or “No”) to the above
question, and Bob should not know that answer. Your solution must
always be correct, not just with high probability.

Key Establishment Security goals

The basic security goals of key establishment are:

I Key secrecy: Session keys must not be known by anyone else
than Alice, Bob (and maybe some trusted third party).
Mallory must not learn anything about session keys.

I Authenticity: One party can be assured about the identity of
the other party it shares the session key with. That is, Alice
knows that she has session key with Bob.

I Freshness of keys: Mallory must not be able to replay old
session keys.

Protocols

I Key establishment is realized by using protocols whereby a
shared secret becomes available to two or more parties, for
subsequent cryptographic use.

I Until now, we have been discussing non-interactive crypto
primitives, in the following we look at crypto protocols.

I It is even harder to design secure protocols, than designing
non-interactive primitives. In fact, there is a long list of
protocols designed by famous (and not so famous)
cryptographers that were found to be flawed.

Session keys

I Key establishment protocols result in shared secrets which are
typically called (or used to derive) session keys.

I Ideally, a session key is an ephemeral secret, i.e., one whose
use is restricted to a short time period such as a single
telecommunications connection (or session), after which all
trace of it is eliminated.

I Motivation for ephemeral keys includes the following:

1. To limit available ciphertext (under a fixed key) for
cryptanalytic attack;

2. To limit exposure, with respect to both time period and
quantity of data, in the event of (session) key compromise;

3. To avoid long-term storage of a large number of distinct secret
keys by creating keys only when actually required;

4. To create independence across communications sessions or
applications.

Classification of key establishment methods

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Private channels

I Let us informally refer to a private channel as an authentic
and confidential channel.

I Exchange of secret keys on a USB stick
I Pre-installation of keys on a company laptop

I Symmetric key distribution is impossible without private
channels.

I Private channels are, loosely speaking, “complicated”,
“inefficient”, “expensive”.

I The goal in the following is to:

I Reduce the number of private channels required to
exchange keys.

I Use an initial private channel today to exchange a secret
key that they may use tomorrow for establishing a secure
channel over an insecure link .

Storytime

Once upon a time...

Neumann-Stubblebine

1. Alice sends A,RA to Bob.

2. Bob sends B,RB ,EB(A,RA,TB) to Trent, where TB is a
timestamp and EB uses a key Bob shares with Trent.

3. Trent generates random session key K and sends
EA(B,RA,K ,TB),EB(A,K ,TB),RB to Alice where EA uses a
key Alice shares with Trent.

4. Alice decrypts and confirms that RA is her random value. She
then sends to Bob EB(A,K ,TB),EK (RB).

5. Bob extracts K and confirms that TB and RB have the same
value as in step 2.

Denning-Sacco

1. Alice sends A,B to Trent

2. Trent sends Alice ST (B,KB),ST (A,KA)

3. Alice sends Bob EB(SA(K ,TA)),ST (B,KB),ST (A,KA)

4. Bob decrypts, checks signatures and timestamps

Wide-Mouth Frog protocol

Wide-Mouth Frog protocol

The wide-mouth frog protocol has some conceptual shortcomings:

I Assumes synchronized clocks between the parties to achieve
freshness.

I Although having synchronized clocks seems to be
straight-forward, this is actually not the case.

I Synchronized clocks under normal conditions is indeed
easy (you have that in Windows, Linux...).

I Synchronized clocks under attack is much harder: you
need to have another protocol that securely synchronizes
clocks.

I But as soon as clock synchronization becomes security
relevant, you can bet that it gets attacked.

I Bob must trust Alice that she correctly generates the session
key.

Needham-Schroeder protocol

Needham-Schroeder protocol

I Needham is one of the IT security pioneers. Protocol was
conceived in 1978 and is one of the most widely studied
security protocols ever.

I Removes timestamps and introduces nonces to achieve
freshness.

I The session keys are generated by TTP in on the previous
slide, thus removes problem of Wide-Mouth Frog protocol.

I Protocol is insecure against known session key attacks.
Adversary who gets session key can replay the last three
messages and impersonate A to B.

I The reason for this problem is that B does not know
whether the session key is fresh.

I This vulnerability was discovered only some times after
the protocol was published. Thus, even the smartest and
most experienced people can fail to design secure crypto
protocols.

Kerberos

Kerberos

I Developed at MIT around 1987, made it into Windows 2000,
and is still used as the authentication / key establishment /
authorization mechanism within Windows.

I Quite similar to Needham-Schroeder, but removes weakness
against known session key attacks using synchronized clocks.

I Shorter than Needham-Schroeder: only 4 messages instead of
5.

Otway-Rees protocol

Otway-Rees protocol

I Only 4 messages as Kerberos, but completely different
messages.

I Does not require clock synchronization.

I Has a number of problems (see exercises)

Problem

Describe possible attacks on this protocol:

1. Alice transmits A, SA(EBpub
(K ,RA)) to Bob.

2. Bob transmits B,EK (RA) to Alice.

3. Their secure, authenticated exchange is then:

3.1 Alice sends EK (iA,M
iA
A ,H(iA,M

iA
A)) to Bob.

3.2 Bob sends EK (iB ,M
iB
B ,H(iB ,M

iB
B)) to Alice.

Station to station key agreement protocol

Common input: Z∗p and g ∈ Z∗p, and n such that gn ≡ 1 mod p

Alice Bob

1. xA∈∪[0, n − 1]

CERTB , sigB , yB

CERTA, yA
yA = gxA

sigA = sign(A‖B‖yA‖yB , SKA)

3. verify(A‖B‖yB‖yA, sigB , PKB)

2. xB∈∪[0, n − 1]

yB = gxB

4. yAB = y
xB

A

yAB = y
xA

B
A, sigA

sigB = sign(A‖B‖yB‖yA, SKB)

verify(A‖B‖yA‖yB , sigA, PKA)

I The protocol above is a simplified version of the STS protocol
to illustrate the idea of authenticating messages with public
keys.

I For a detailed spec refer to http://en.wikipedia.org/

wiki/Station-to-Station_protocol

http://en.wikipedia.org/wiki/Station-to-Station_protocol
http://en.wikipedia.org/wiki/Station-to-Station_protocol

Station to station key agreement protocol

I The “station to station protocol” is the DH protocol made
secure against MIM attacks:

I The idea is simple: Alice and Bob basically sign all the
messages they exchange in the Diffie - Hellman protocol.

I The “exchange of authenticated signing keys” is done
using certificates.

I Station to station protocol is the basis for the practically
important IKE (Internet Key Exchange protocol).

I The bottom line is: one cannot establish authenticated keys
without bootstrapping the system using an “exterior
authentication mechanism” (e.g., without first establishing
public key certificates for Alice and Bob).

RSA key transport

https://www.theinquirer.net/inquirer/news/2343117/

ietf-drops-rsa-key-transport-from-ssl

https://www.theinquirer.net/inquirer/news/2343117/ietf-drops-rsa-key-transport-from-ssl
https://www.theinquirer.net/inquirer/news/2343117/ietf-drops-rsa-key-transport-from-ssl

Lessons Learned

I Do not try to be too clever, over-optimization is often the
cause for vulnerabilities

I Which optimizations you can do (and which optimization
actually matter) depends on your assumptions (adversary
model, system capabilities)

I Which protocol to use depends on your performance goals and
communications capabilities (all-to-all communication, trusted
party, latency, bandwidth and computational constraints)

Break

Overview

I By secure channel we refer to a logical channel running on top
of some insecure link (typically the Internet) that provides

I Confidentiality
I Integrity and authenticity
I Message freshness

I Secure channels are probably one of the most important
applications of crypto in the real world.

I Many well known secure network protocols such as TLS/SSL,
VPNs, IPSec, WPA etc but also application specific (e.g.,
secure VoIP), and proprietary protocols (maybe Skype?) make
use of secure channels.

I Essentially all these protocols build upon the basic ideas we
discuss in the following.

I It is also possible to get it wrong, e.g., the WEP protocol has
a series of security flaws.

Secure channel

Secure channel - Secure send

s e c u r e−send (m , kE , kM) {

STATIC msgsnt := 1

IF (msgsnt ≥ MAXMSGS) THEN RETURN ⊥

c := ENC (kE ,m)

m̃ := msgsnt||LENGTH(c)||c

t := MAC (kM , m̃)

SEND(m̃||t)

msgsnt := msgsnt + 1

}

Secure channel - Secure receive

s e c u r e−r e c e i v e (C , kE , kM) {

STATIC msgrcvd := 0

(msgsnt, len, c , t) = PARSE (C)

IF (t 6= MAC (kM ,msgsnt||len||c)) THEN RETURN ⊥

IF (msgsnt 6 msgrcvd) THEN RETURN ⊥

m := DEC (kE , c)

msgrcvd := msgsnt

RETURN m

}

Remarks

I The freshness property based on counters guarantees the
following: If m1,m2, . . . ,mn denote the messages send using
secure-send(), then secure-receive() can guarantee that the
messages m1,m2, . . . ,mn being received are subsequence of
the messages sent.

I Counters give no timing guarantees, i.e., the adversary
Mallory can delay messages at will.

I Timing guarantees can be achieved using

I Time-stamps
I Challenges

I No security protocol can prevent Mallory from discarding
messages.

I MACs provide not just integrity protection but also
authenticity , as discussed earlier.

I Further reading material: Chapter 8 in Practical Cryptography
by Schneier & Ferguson.

Remarks

I Typically, secure-send() and secure-receive() are run by both
parties using a secure channel.

I Each party will have an independent key-pair (enc & MAC).

I In practice, one introduces the notion of a session (e.g.,
e-banking). Consists of a session ID in the header, which
allows the receiver to look-up session state (keys, counters
etc.) when receiving a message.

I Generally better is the use of authenticated encryption, where
the block-cipher mode guarantees confidentiality and integrity.

I For more info see last week’s slides on AES-GCM and http:

//en.wikipedia.org/wiki/Authenticated_encryption

http://en.wikipedia.org/wiki/Authenticated_encryption
http://en.wikipedia.org/wiki/Authenticated_encryption

Repudiation vs. non-repudiation

I Digital signatures allow proving that someone said something

I Alice may be happy to authenticate to Bob, but not to Eve or
Mallory!

I Bob may turn “evil” and use Alice’s statements against her
later

⇒ Signatures may provide too much (authentication and
non-repudiation)

Off-the-record (OTR) protocols allow repudiation

Repudiation vs. non-repudiation

I Digital signatures allow proving that someone said something

I Alice may be happy to authenticate to Bob, but not to Eve or
Mallory!

I Bob may turn “evil” and use Alice’s statements against her
later

⇒ Signatures may provide too much (authentication and
non-repudiation)

Off-the-record (OTR) protocols allow repudiation

OTR (Idea)

SA(TA) (1)

SB(TB) (2)

HKDF (DH(TA,TB)) (3)

OTR (Real)

The OTR protocol protects the above KX by wrapping it inside
another ephemeral key exchange:

K1 : = DH(T 1
A||T 1

B) (4)

EK1(SA(T 2
A)) (5)

EK1(SB(T 2
B)) (6)

K2 : = HKDF (DH(T 2
A,T

2
B)) (7)

(8)

To achieve forward secrecy, OTR keeps rolling out new keys T i
A,B .

To improve deniability, OTR publishes the old MAC keys once the
conversation progresses.

Is OTR deniable?

Both parties still have proof that they communicated: SX (TX)!

Is OTR deniable?

Both parties still have proof that they communicated: SX (TX)!

3DH (Trevor Perrin)

A: K = HKDF (DH(Ta,TB)||DH(Ta,B)||DH(a,TB))
B: K = HKDF (DH(TA,Tb)||DH(TA, b)||DH(A,Tb))

A Message from God (Dominic Tarr)

With 3DH, what happens if Alice’s private key (a, Ta) is
compromised?

M: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))
A: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))

A Message from God (Dominic Tarr)

With 3DH, what happens if Alice’s private key (a, Ta) is
compromised?

M: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))
A: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))

Forward secrecy

What happens if your private key is compromised
to your past communication data?

Static keys vs. ephemeral keys

Diffie-Hellman with:

I static keys allow authenticated encryption without signatures

I ephemeral keys protect against replay attacks and provide
forward secrecy

Asynchronous forward secrecy: SCIMP

Idea of Silence Circle’s SCIMP:

Replace key with its own hash.

I New key in zero round trips!

I Forward secrecy!

Future secrecy

Suppose your regain control over your system.
What happens with your future communication data?

Axolotl / Signal Protocol

Securing unidirectional communcation

I Alice knows Bob’s public key B

I Alice wants to send M to Bob

I Alice cannot receive messages from Bob (possibly ever)

Suggestion:

K : = DH(TA,B) (9)

C : = EK (SA(TA,A,B)||M) (10)

With Curve25519, cryptography has 92–128 bytes overhead:

I one or two 32 byte public keys

I one 64 byte EdDSA signature

I (plus HMAC)

What are the security properties we get here?

Securing unidirectional communcation

I Alice knows Bob’s public key B

I Alice wants to send M to Bob

I Alice cannot receive messages from Bob (possibly ever)

Suggestion:

K : = DH(TA,B) (9)

C : = EK (SA(TA,A,B)||M) (10)

With Curve25519, cryptography has 92–128 bytes overhead:

I one or two 32 byte public keys

I one 64 byte EdDSA signature

I (plus HMAC)

What are the security properties we get here?

Break

Motivation

Suppose Alice and Bob communicate using encryption.

What can Eve still learn here?

Eve cannot read the data Alice and Bob are sending, but:

I Eve knows that Alice and Bob are communicating.

I Eve knows the amount of data they are sending and can
observe patterns.

⇒ Patterns may even allow Eve to figure out the data

Motivation

Suppose Alice and Bob communicate using encryption.

What can Eve still learn here?

Eve cannot read the data Alice and Bob are sending, but:

I Eve knows that Alice and Bob are communicating.

I Eve knows the amount of data they are sending and can
observe patterns.

⇒ Patterns may even allow Eve to figure out the data

How Much does TLS leak?

“We present a traffic analysis attack against over 6000 webpages
spanning the HTTPS deployments of 10 widely used,

industry-leading websites in areas such as healthcare, finance, legal
services and streaming video. Our attack identifies individual

pages in the same website with 89% accuracy, exposing personal
details including medical conditions, financial and legal affairs

and sexual orientation. We examine evaluation methodology and
reveal accuracy variations as large as 18% caused by assumptions

affecting caching and cookies.” [?]

https://www.youtube.com/watch?v=V2rVYvylvZc (5’2014)

https://www.youtube.com/watch?v=V2rVYvylvZc

Anonymity Definitions

Merriam-Webster:

1. not named or identified: “an anonymous author”, “they wish
to remain anonymous”

2. of unknown authorship or origin: “an anonymous tip”

3. lacking individuality, distinction, or recognizability: “the
anonymous faces in the crowd”, “the gray anonymous streets”
– William Styron

Anonymity Definitions

Andreas Pfitzmann et. al.:

“Anonymity is the state of being not identifiable
within a set of subjects, the anonymity set.”

EFF:

“Instead of using their true names to communicate, (...) people
choose to speak using pseudonyms (assumed names) or

anonymously (no name at all).”

Mine:

A user’s action is anonymous if the adversary cannot link the
action to the user’s identity

Anonymity Definitions

Andreas Pfitzmann et. al.:

“Anonymity is the state of being not identifiable
within a set of subjects, the anonymity set.”

EFF:

“Instead of using their true names to communicate, (...) people
choose to speak using pseudonyms (assumed names) or

anonymously (no name at all).”

Mine:

A user’s action is anonymous if the adversary cannot link the
action to the user’s identity

Anonymity Definitions

Andreas Pfitzmann et. al.:

“Anonymity is the state of being not identifiable
within a set of subjects, the anonymity set.”

EFF:

“Instead of using their true names to communicate, (...) people
choose to speak using pseudonyms (assumed names) or

anonymously (no name at all).”

Mine:

A user’s action is anonymous if the adversary cannot link the
action to the user’s identity

The user’s identity

includes personally identifiable information, such as:

I real name

I fingerprint

I passport number

I IP address

I MAC address

I login name

I ...

Actions

include:

I Internet access

I speach

I participation in demonstration

I purchase in a store

I walking across the street

I ...

Anonymity: Terminology

I Sender Anonymity: The initiator of a message is anonymous.
However, there may be a path back to the initiator.

?

I Receiver Anonymity: The receiver of a message is anonymous.

?

Pseudonymity

Pseudonymity

I A pseudonym is an identity for an entity in the system. It is a
“false identity” and not the true identity of the holder of the
pseudonym.

I Nobody, but (maybe) a trusted party may be able to link a
pseudonym to the true identity of the holder of the
pseudonym.

I A pseudonym can be tracked. We can observe its behaviour,
but we do not learn who it is.

Evaluating Anonymity

How much anonymity does a given system provide?

I Number of known attacks?

I Lowest complexity of successful attacks?

I Information leaked through messages and maintenance
procedures?

I Number of users?

Anonymity: Basics

I Anonymity Set is the set of suspects

I Attacker computes a probability distribution describing the
likelyhood of each participant to be the responsible party.

I Anonymity is the stronger, the larger the anonymity set and
the more evenly distributed the subjects within that set are.

Anonymity Metric: Anonymity Set Size

Let U be the attacker’s probability distribution and pu = U(u) de-
scribing the probability that user u ∈ Ψ is responsible.

ASS :=
∑
u∈Ψ
pu>0

1 (11)

Large Anonymity Sets

Examples of large anonymity sets:

I Any human

I Any human with Internet access

I Any human speaking German

I Any human speaking German with Internet access awake at
3am CEST

Large Anonymity Sets

Examples of large anonymity sets:

I Any human

I Any human with Internet access

I Any human speaking German

I Any human speaking German with Internet access awake at
3am CEST

Large Anonymity Sets

Examples of large anonymity sets:

I Any human

I Any human with Internet access

I Any human speaking German

I Any human speaking German with Internet access awake at
3am CEST

Large Anonymity Sets

Examples of large anonymity sets:

I Any human

I Any human with Internet access

I Any human speaking German

I Any human speaking German with Internet access awake at
3am CEST

Anonymity Metric: Maximum Likelihood

Let U be the attacker’s probability distribution describing the prob-
ability that user u ∈ Ψ is responsible.

ML := max
u∈Ψ

pu (12)

Anonymity Metric: Maximum Likelihood

I For successful criminal prosecution in the US, the law requires
ML close to 1 (“beyond reasonable doubt”)

I For successful civil prosecution in the US, the law requires
ML > 1

2 (“more likely than not”)

I For a given anonymity set, the best anonymity is achieved if

ML =
1

ASS
(13)

Anonymity Metric: Entropy
Let U be the attacker’s probability distribution describing the prob-
ability that user u ∈ Ψ is responsible. Define the effective size S of
the anonymity distribution U to be:

S := −
∑
u∈Ψ

pu log2 pu (14)

where pu = U(u).

Interpretation of Entropy

S = −
∑
u∈Ψ

pu log2 pu (15)

This is the expected number of bits of additional information that
the attacker needs to definitely identify the user (with absolute cer-
tainty).

Entropy Calculation Example

Suppose we have 101 suspects including Bob. Furthermore, suppose
for Bob the attacker has a probability of 0.9 and for all the 100 other
suspects the probability is 0.001.

What is S?

I For 101 nodes Hmax = 6.7

I

S = −100 · log2 0.001

1000
− 9 · log2 0.9

10
(16)

≈ 0.9965 + 0.1368 (17)

= 1.133... (18)

Entropy Calculation Example

Suppose we have 101 suspects including Bob. Furthermore, suppose
for Bob the attacker has a probability of 0.9 and for all the 100 other
suspects the probability is 0.001.

What is S?

I For 101 nodes Hmax = 6.7

I

S = −100 · log2 0.001

1000
− 9 · log2 0.9

10
(16)

≈ 0.9965 + 0.1368 (17)

= 1.133... (18)

Attacks to avoid

Hopeless situations include:

I All nodes collaborate against the victim

I All directly adjacent nodes collaborate

I All non-collaborating adjacent nodes are made unreachable
from the victim

I The victim is required to prove his innocence

Economics & Anonymity

R. Dingledine and P. Syverson wrote about Open Issues in the Eco-
nomics of Anonymity:

I Providing anonymity services has economic disincentives
(DoS, legal liability)

I Anonymity requires introducing inefficiencies

⇒ Who pays for that?

The anonymizing server that has the best reputation (performance,
most traffic) is presumably compromised.

Economics & Anonymity

R. Dingledine and P. Syverson wrote about Open Issues in the Eco-
nomics of Anonymity:

I Providing anonymity services has economic disincentives
(DoS, legal liability)

I Anonymity requires introducing inefficiencies

⇒ Who pays for that?

The anonymizing server that has the best reputation (performance,
most traffic) is presumably compromised.

Anonymity: Dining Cryptographers

“Three cryptographers are sitting down to dinner. The waiter in-
forms them that the bill will be paid anonymously. One of the cryp-
tographers maybe paying for dinner, or it might be the NSA. The
three cryptographers respect each other’s right to make an anony-
mous payment, but they wonder if the NSA is paying.” – David
Chaum

Mixing
David Chaum’s mix (1981) and cascades of mixes are the traditional
basis for destroying linkability:

Mixing
David Chaum’s mix (1981) and cascades of mixes are the traditional
basis for destroying linkability:

Threshold Mix

Timed Mix

Pool mix

Mixminion

G. Danezis, R. Dingledine, D. Hopwood and N. Mathewson describe
Mixminion [?]:

I based on mixmailers (only application is E-mail)

I possibility to reply

I directory servers to evaluate participating remailers
(reputation system)

I exit policies

Mixminion: key ideas

When a message traverses mixminion, each node must decrypt the
message using its (ephemeral) private key.

The key idea behind the replies is splitting the path into two legs:

I the first half is chosen by the responder to hide the responder
identity

I the second half was communicated by the receiver to hide the
receiver identity

I a crossover-node in the middle is used to switch the headers
specifying the path

Mixminion: replay?

Replay attacks were an issue in previous mixnet implementations.

I Mixes are vulnerable to replay attacks

I Mixminion: servers keep hash of previously processed
messages until the server key is rotated

⇒ Bounded amount of state in the server, no possibility for
replay attack due to key rotation

Mixminion: Directory Servers

I Inform users about servers

I Probe servers for reliability

I Allow a partitioning attack unless the user always queries all
directory servers for everything

Mixminion: Nymservers

I Nymservers keep list of use-once reply blocks for a user

I Vulnerable to DoS attacks (deplete reply blocks)

I Nymservers could also store mail (use one reply block for
many messages).

Mixminion: obvious problems

I no benefits for running a mixmailer for the operator

I quite a bit of public key cryptography

I trustworthiness of directory servers questionable

I servers must keep significant (but bounded) amount of state

I limited to E-mail (high latency)

Mixminion: open problems

I exit nodes are fair game for legal actions

I no accounting to defend against abuse / DoS attacks

I statistical correlation of entities communicating over time
possible (observe participation)

⇒ bridging between an anonymous network and a traditional
protocol is difficult

Break

Tor

I Tor is a P2P network of low-latency mixes which are used to
provide anonymous communication between parties on the
Internet.

I Tor works for any TCP-based protocol

I TCP traffic enters the Tor network via a SOCKS proxy

I Common usage: client anonymity for web browsing

Onion Routing

I Multiple mix servers

I Path of mix servers chosen by initiator
I Chosen mix servers create “circuit”

I Initiator contacts first server S1, sets up symmetric key KS1

I Then asks first server to connect to second server S2; through
this connection sets up symmetric key with second server KS2

I ...
I Repeat with server Si until circuit of desired length n

constructed

Onion Routing Example

I Client sets up symmetric key KS1 with server S1

S
1

S
2

Client

Exchange

KS
1

Onion Routing Example

I Via S1 Client sets up symmetric key KS2 with server S2

S
1

S
2

Client

Exchange

KS
2

Onion Routing Example

I Client encrypts m as KS1(KS2(m)) and sends to S1

S
1

S
2

Client

(KS
2

KS
1

(m))

Onion Routing Example

I S1 decrypts, sends on to S2, S2 decrypts, revealing m

S
1

S
2

Client

(KS
2

KS
1

(m))
KS

2
(m)

Tor - How it Works

I Low latency P2P Network of mix servers

I Designed for interactive traffic (https, ssh, etc.)
I ”Directory Servers“ store list of participating servers

I Contact information, public keys, statistics
I Directory servers are replicated for security

I Clients choose servers randomly with bias towards high
BW/uptime

I Clients build long lived Onion routes ”circuits“ using these
servers

I Circuits are bi-directional

I Circuits are of length three

Tor - How it Works - Example

I Example of Tor client circuit

Client

Server

Tor Node 1 Tor Node 2 Tor Node 3

Tor Node 4 Tor Node 5 Tor Node 6

Tor Node 7 Tor Node 8 Tor Node 9

Tor - How it Works - Servers

I Servers are classified into three categories for usability,
security and operator preference

I Entry nodes (aka guards) - chosen for first hop in circuit
I Generally long lived ”good“ nodes
I Small set chosen by client which are used for client lifetime

(security)

I Middle nodes - chosen for second hop in circuit, least
restricted set

I Exit nodes - last hop in circuit
I Visible to outside destination
I Support filtering of outgoing traffic
I Most vulerable position of nodes

Hidden Services in Tor

I Hidden services allow Tor servers to receive incoming
connections anonymously

I Can provide access to services available only via Tor
I Web, IRC, etc.
I For example, host a website without your ISP knowing

Hidden Services Example 1

Hidden Services Example 2

Hidden Services Example 3

Hidden Services Example 4

Hidden Services Example 5

Hidden Services Example 6

Types of Attacks on Tor

I Exit Relay Snooping

I Website fingerprinting

I Traffic Analysis

I Intersection Attack

I DoS

Exercise

I Install Tor

I Configure Tor relay

I Setup hidden service

I Perform risk analysis for deanonymization

Acknowlegements

This presentation used material from:

I https:

//signal.org/blog/simplifying-otr-deniability/

I Endre Bangerter (BTI 7261/2017)

https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/blog/simplifying-otr-deniability/

References

George Danezis, Roger Dingledine, and Nick Mathewson.
Mixminion: Design of a type iii anonymous remailer protocol.
In Proceedings of the 2003 IEEE Symposium on Security and
Privacy, SP ’03, 2003.

Brad Miller, Ling Huang, A.D. Joseph, and J.D. Tygar.
I know why you went to the clinic: Risks and realization of
https traffic analysis.
http://arxiv.org/abs/1403.0297, 2014.

http://arxiv.org/abs/1403.0297

	References

