
Symmetric Encryption Security

Christian Grothoff

Berner Fachhochschule

3.5.2019

Learning Objectives

Review: Cipher modes

Security definitions: IND-CPA

Beyond IND-CPA

Case study: Insecurity of WEP

Real-world use of cryptographic primitives (exercise)

EBC encryption

Enc

P0

k

C0

Enc

P1

k

C1

Enc

P2

k

C2

· · · · · · Enc

Pn

k

Cn

EBC decryption

Dec

C0

k

P0

Dec

C1

k

P1

Dec

C2

k

P2

· · · · · · Dec

Cn

k

Pn

CBC encryption

Enc

P0

k

C0

Enc

P1

k

C1

Enc

P2

k

C2

IV

· · · · · · Enc

Pn

k

Cn

· · · · · · Enc

Pn

k

Cn

CBC decryption

Dec

P0

k

C0

Dec

P1

k

C1

Dec

P2

k

C2

IV

· · · · · · Dec

Pn

k

Cn

· · · · · · Dec

Pn

k

Cn

CTR encryption

Enc

Nonce, Ctr

C0

k

P0

Enc

Nonce, Ctr

C1

k

P1

Enc

Nonce, Ctr

C2

k

P2

· · · · · · Enc

Nonce, Ctr

Cn

k

Pn

CTR decryption

Enc

Nonce, Ctr

P0

k

C0

Enc

Nonce, Ctr

P1

k

C1

Enc

Nonce, Ctr

P2

k

C2

· · · · · · Enc

Nonce, Ctr

Pn

k

Cn

Problem

Which mode is secure?

How to prove it?

Problem

Which mode is secure?

How to prove it?

Security Definitions for Symmetric Encryption

Simplistic security definitions would be:

1. It must be impossible for an adversary to find the key from
ciphertexts.

2. It must be impossible for an adversary to find the plaintext
from a ciphertext.

These are insufficient as, for example, they do not capture the inse-
curity of the ECB mode!

Security Definitions for Symmetric Encryption

Simplistic security definitions would be:

1. It must be impossible for an adversary to find the key from
ciphertexts.

2. It must be impossible for an adversary to find the plaintext
from a ciphertext.

These are insufficient as, for example, they do not capture the inse-
curity of the ECB mode!

Problem

We need a precise, succinct and
comprehensive security definition!

Subtle Corner Cases

Given n stocks, the message m := m1||m2||m3|| . . . ||mn tells your
broker to buy i-th stock if mi = 1 or to sell if mi = 0. Suppose
m is encrypted and sent to your broker. We would consider the
encryption to have failed if an adversary can even just compute one
bit of the message to learn whether you want to buy or sell stock i .

Even partial information leakage about a message is problematic.

In fact, even probabilistic leakage is a problem: an adversary that
can tell that with probability of 90% whether you are buying or
selling might be a problem!

Subtle Corner Cases

Given n stocks, the message m := m1||m2||m3|| . . . ||mn tells your
broker to buy i-th stock if mi = 1 or to sell if mi = 0. Suppose
m is encrypted and sent to your broker. We would consider the
encryption to have failed if an adversary can even just compute one
bit of the message to learn whether you want to buy or sell stock i .

Even partial information leakage about a message is problematic.

In fact, even probabilistic leakage is a problem: an adversary that
can tell that with probability of 90% whether you are buying or
selling might be a problem!

Subtle Corner Cases

Given n stocks, the message m := m1||m2||m3|| . . . ||mn tells your
broker to buy i-th stock if mi = 1 or to sell if mi = 0. Suppose
m is encrypted and sent to your broker. We would consider the
encryption to have failed if an adversary can even just compute one
bit of the message to learn whether you want to buy or sell stock i .

Even partial information leakage about a message is problematic.

In fact, even probabilistic leakage is a problem: an adversary that
can tell that with probability of 90% whether you are buying or
selling might be a problem!

What we want

Our goal is to formalize the intuitive notion of secure encryption
shown here:

The picture shows that an adversary does not learn any useful infor-
mation about a plaintext from a ciphertext.

Indistinguishability under Chosen Plaintext Attacks
(IND-CPA)

Indistinguishability under Chosen Plaintext Attacks
(IND-CPA)

Security Game: Adversary chooses m1 and m2. Defender chooses
key k and b ∈ {0, 1}. Defender computes c := enc(k,mb) and
gives c to the adversary.

Definition: A symmetric encryption scheme enc() is IND-CPA se-
cure, if it is impossible for all possible adversaries to tell whether
b = 0 or b = 1. That is, the adversary wins if they can determine
the correct b.

Problem

The above definition is incomplete: What if the adversary wins
60% of the time?

Cryptographic Games

An oracle is a party in a game that the adversary can call upon
to indirectly access information that is otherwise hidden from it.
IND-CPA can then be formalized like this:

Setup Generate random key k, select b ∈ {0, 1} for
i ∈ {1, . . . , q}.

Oracle Given M0 and M1 (of same length), return
C := enc(k,Mb).

The adversary wins, if it can guess b with probability greater than
1
2 +ε(κ) where ε(κ) is a negligible function in the security parameter
κ.

Restrictions on Oracle use

Many schemes break after an large number of messages. Thus,
restrictions are generally imposed on the use of the Oracle by the
adversary:

I Best known attack on AES uses birthday attack, 264 queries

I ⇒ limit oracle use to say 230 queries of some maximum
length, say 213 (1 kB).

Then the resulting advantage of the adversary remains “small”.

IND-CPA

IND-CPA is a widely accepted definition of secure symmetric en-
cryption.

Practically relevant symmetric encryption schemes (i.e. AES in CTR
or CBC mode) are considered IND-CPA secure.

Examples for IND-CPA Insecure Schemes

I Schemes where the plaintext can be recovered from the
ciphertext ...

I Schemes where the key can be recovered from the ciphertext
...

I ECB mode encryption ...

I Schemes where the n-th plaintext bit can be recovered from
ciphertext ...

... are all IND-CPA insecure.

Examples for IND-CPA Insecure Schemes

I Any deterministic, stateless encryption scheme is insecure.

I CBC stateful IV mode1 is IND-CPA insecure

Break

Attacking CBC stateful IV (1/5)2

Goal: confirm “Kimberly” was sent!

Attacking CBC stateful IV (2/5)

Setup: Get oracle to encrypt “Kimberly”:

Given random CBC residue, this does not help.

Attacking CBC stateful IV (3/5)

CBC residue is XORed with input, get rid of it first using predicted
IV:

Attacking CBC stateful IV (4/5)

Then add the residue from the original encryption:

Attacking CBC stateful IV (5/5)

Now confirm the output matches:

If output matches, original text was “Kimberly”.

Summary

For CBC, if an attacker can:

I guess the plaintext corresponding to any ciphertext block they
have seen before, and

I can predict a future IV, and

I can submit a suitable message to be encrypted with that IV,

then they can verify their guess.

Is this attack an issue?

I Requires guessing the entire block

I Requires access to encryption oracle

I Block size is say 8 bytes, so 2256 trials

BEAST (2011) made this attack practical by shifting each unknown
plaintext byte to a position in the block just after 7 bytes of known
plaintext.

Is this attack an issue?

I Requires guessing the entire block

I Requires access to encryption oracle

I Block size is say 8 bytes, so 2256 trials

BEAST (2011) made this attack practical by shifting each unknown
plaintext byte to a position in the block just after 7 bytes of known
plaintext.

IND-CPA Secure Schemes

I The CTR random IV symmetric encryption scheme is
IND-CPA secure.

I The CTR stateful IV encyption scheme (ensuring no IV
re-use) is IND-CPA secure.

I The CBC random IV symmetric encryption scheme is
IND-CPA secure.

Pseudo random functions (PRF)

I A pseudo random function (PRF) is a function that is
(computationally) indistinguishable from a true random
function

I The previous positive results are true under the assumption
that the block cipher used (e.g. AES) is a PRF.

I Assumption really means that this is a commonly shared belief
of the crypto community. No proof exists!

I Breaking any of these schemes thus means breaking the PRF
property of the underlying block cipher.

The crucial security property of a secure block cipher is that it is a
PRF!

Break

Chosen Ciphertext Attacks

IND-CPA vs. Chosen Ciphertext

IND-CPA is not the strongest security model!

I The adversary does not have access to a decryption oracle

I With a decryption oracle, an adversary can be allowed to ask
for some messages of its choice to be decrypted.

I Security is achieved only if other messages still remain
indistinguishable.

Indistinguishability under Chosen Ciphertext Attacks
(IND-CCA)

The adversary’s goal is the same as in IND-CPA (determine b given
enc(k ,M i

b)) for sequences of messages M i
0,1).

Setup Generate random key k , select b ∈ {0, 1}.
Oracle E Given M, return C := enc(k,M).

Oracle D Given C ′, return M := dec(k,C ′).

The additional restriction C ′ 6= C must be imposed on the use of
Oracle D: The adversary is not allowed to ask for decryption of a
ciphertext C that was previously returned by the encryption oracle.

Examples for IND-CCA Insecure Schemes

I CTR schemes are IND-CCA insecure

Problem

IND-CCA does not provide authenticity!

Real-world security

Schemes providing authenticated encryption are IND-CCA secure.3

GCM encryption

Counter0

Enck

Counter1

Enck

Counter2

Enck

incr incr

Ciphertext1 Ciphertext2

multH

multH

Plaintext1 Plaintext2

multHAuth Data1

multH

Auth Tag

len(A)||len(C)

WEP Insecurity

Read the article “Intercepting Mobile Communications: The Insecu-
rity of 802.11” until section 4.2. For each of the attacks, decryption
(section 3), message modification (section 4.1) and message injec-
tion (section 4.2) explain:

I How does the attack work?

I Why does it work (i.e., what are the flaws that make the
attack possible)?

Using encryption APIs

GNU libgcrypt is a C library offering a wide range of cryptographic
primitives.

1. # apt install libgcrypt20-dev

2. # apt install gcc gdb valgrind emacs

3. Download source templates from course Git

Example: AES256 GCM (encrypt.c)

char key[256/8], iv[96/8];

char plaintext[] = "Hello world";

char ciphertext[sizeof (plaintext)];

gcry_cipher_hd_t cipher;

gcry_cipher_open (&cipher, GCRY_CIPHER_AES256,

GCRY_CIPHER_MODE_GCM, 0);

gcry_cipher_setkey (cipher, key, sizeof (key));

gcry_cipher_setiv (cipher, iv, sizeof (iv));

gcry_cipher_encrypt (cipher,

ciphertext, sizeof (ciphertext),

plaintext, sizeof (plaintext));

gcry_cipher_close (cipher);

Example: AES256 GCM (decrypt.c)

char key[256/8], iv[96/8];

char plaintext[1024];

char ciphertext[sizeof (plaintext)];

gcry_cipher_hd_t cipher;

size_t plen = read (STDIN_FILENO,

ciphertext, sizeof (ciphertext));

gcry_cipher_open (&cipher, GCRY_CIPHER_AES256,

GCRY_CIPHER_MODE_GCM, 0);

gcry_cipher_setkey (cipher, key, sizeof (key));

gcry_cipher_setiv (cipher, iv, sizeof (iv));

gcry_cipher_decrypt (cipher,

plaintext, plen,

ciphertext, plen);

gcry_cipher_close (cipher);

Handling partial reads (decrypt.c)

char plaintext[1024];

size_t plen = 0;

while (1) {

ssize_t inlen = read (STDIN_FILENO,

&ciphertext[plen],

sizeof (ciphertext) - plen);

if (-1 == inlen) {

fprintf (stderr,

"Failed to read input\n");

return 1;

}

if (0 == inlen)

break;

plen += inlen;

}

Tasks (1/3)

I Use the provided encrypt and decrypt programs to encrypt
“Hello world” text using AES256+GCM and then decrypt it.

I Study the libgcrypt documentation. Use it to switch the
program to use AES256+CBC instead.

I Switch back to AES256+GCM. Extend the program to
obtain, transmit and verify the authentication tag.

I Extend the program to authenticate additional plaintext data
that is not at all encrypted.

Tasks (2/3)

I Write a new program hash.c to compute the SHA-256 hash
of the data read from stdin. Output the result in HEX and
compare to sha256sum.

I Modify your program to use SHA-512 instead.

I Write a new program kdf.c to compute the SCRYPT key
derivation function. Output the result in HEX.

Tasks (3/3)

I Modify your programs to perform 10000 iterations each time
before generating any output.

I Measure the time the various operations take.

I Modify your programs to process 1 MB of input instead of the
11 bytes of “Hello world”.

I Again, measure the time the various operations take.

I Change the IV length from 96 bytes to 128 bytes for
AES256+GCM and measure again.

