
Secure Channels

Christian Grothoff

Berner Fachhochschule

8.5.2020

Learning Objectives

I What are cryptographic protocols?

I Protocols for key exchange without public key cryptography

I Protocols for key exchange with public key cryptography

I What are secure channels?

I Terminology: Forward secrecy, future secrecy, asynchrony,
repudiation

I Contemporary protocols for secure channels

I Attacks

I Modern secure channels

Protocols

I “A protocol is a series of steps, involving two or more parties,
designed to accomplish a task.”

I Everyone involved must know the steps in advance and agree
to follow it.

I The protocol must be complete and unambiguous.

I For cryptographic protocols, it should not be possible to do
more or learn more than what is specified in the protocol.

Dramatis Personae

I Alice, Bob, Carol and Dave

I Eve – Eavesdropper

I Mallory – Malicious active attacker

I Trent – Trusted arbitrator

I Walter – Warden

I Peggy – Prover

I Victor – Verifier

Attack Personae

I Eavesdroppers

I Passive cheaters

I Active cheaters

I Real-world adversaries – Mallory

Efficiency

I Number of steps in protocol

I Size of messages
I Conflict resolution cost:

1. Involvement of trusted party (arbitrated protocols)
2. Resolution by trusted party on dispute (adjudicated protocols)
3. Self-enforcing protocols

Example: Symmetric Cryptography

1. Alice and Bob agree on a cryptosystem

2. Alice and Bob agree on a key

3. Alice encrypts plaintext with key

4. Alice sends ciphertext to Bob

5. Bob decrypts ciphertext and reads it

Problem

Alice has an item x , and Bob has a set of five distinct items y1, . . . , y5.
Design a protocol through which Alice (but not Bob) finds out
whether her x equals any of Bob’s five items; Alice should not find
out anything other than the answer (“Yes” or “No”) to the above
question, and Bob should not know that answer. Your solution must
always be correct, not just with high probability.

Key Establishment Security goals

The basic security goals of key establishment are:

I Key secrecy: Session keys must not be known by anyone else
than Alice, Bob (and maybe some trusted third party).
Mallory must not learn anything about session keys.

I Authenticity: One party can be assured about the identity of
the other party it shares the session key with. That is, Alice
knows that she has session key with Bob.

I Freshness of keys: Mallory must not be able to replay old
session keys.

Protocols

I Key establishment is realized by using protocols whereby a
shared secret becomes available to two or more parties, for
subsequent cryptographic use.

I Until now, we have been discussing non-interactive crypto
primitives, in the following we look at crypto protocols.

I It is even harder to design secure protocols, than designing
non-interactive primitives. In fact, there is a long list of
protocols designed by famous (and not so famous)
cryptographers that were found to be flawed.

Session keys

I Key establishment protocols result in shared secrets which are
typically called (or used to derive) session keys.

I Ideally, a session key is an ephemeral secret, i.e., one whose
use is restricted to a short time period such as a single
telecommunications connection (or session), after which all
trace of it is eliminated.

I Motivation for ephemeral keys includes the following:

1. To limit available ciphertext (under a fixed key) for
cryptanalytic attack;

2. To limit exposure, with respect to both time period and
quantity of data, in the event of (session) key compromise;

3. To avoid long-term storage of a large number of distinct secret
keys by creating keys only when actually required;

4. To create independence across communications sessions or
applications.

Classification of key establishment methods

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Private channels

I Let us informally refer to a private channel as an authentic
and confidential channel.

I Exchange of secret keys on a USB stick
I Pre-installation of keys on a company laptop

I Symmetric key distribution is impossible without private
channels.

I Private channels are, loosely speaking, “complicated”,
“inefficient”, “expensive”.

I The goal in the following is to:

I Reduce the number of private channels required to
exchange keys.

I Use an initial private channel today to exchange a secret
key that they may use tomorrow for establishing a secure
channel over an insecure link .

Storytime

Once upon a time...

Neumann-Stubblebine

1. Alice sends A,RA to Bob.

2. Bob sends B,RB ,EB(A,RA,TB) to Trent, where TB is a
timestamp and EB uses a key Bob shares with Trent.

3. Trent generates random session key K and sends
EA(B,RA,K ,TB),EB(A,K ,TB),RB to Alice where EA uses a
key Alice shares with Trent.

4. Alice decrypts and confirms that RA is her random value. She
then sends to Bob EB(A,K ,TB),EK (RB).

5. Bob extracts K and confirms that TB and RB have the same
value as in step 2.

Denning-Sacco

1. Alice sends A,B to Trent

2. Trent sends Alice ST (B,KB),ST (A,KA)

3. Alice sends Bob EB(SA(K ,TA)),ST (B,KB),ST (A,KA)

4. Bob decrypts, checks signatures and timestamps

Wide-Mouth Frog protocol

Wide-Mouth Frog protocol

The wide-mouth frog protocol has some conceptual shortcomings:

I Assumes synchronized clocks between the parties to achieve
freshness.

I Although having synchronized clocks seems to be
straight-forward, this is actually not the case.

I Synchronized clocks under normal conditions is indeed
easy (you have that in Windows, Linux...).

I Synchronized clocks under attack is much harder: you
need to have another protocol that securely synchronizes
clocks.

I But as soon as clock synchronization becomes security
relevant, you can bet that it gets attacked.

I Bob must trust Alice that she correctly generates the session
key.

Needham-Schroeder protocol

Needham-Schroeder protocol

I Needham is one of the IT security pioneers. Protocol was
conceived in 1978 and is one of the most widely studied
security protocols ever.

I Removes timestamps and introduces nonces to achieve
freshness.

I The session keys are generated by TTP in on the previous
slide, thus removes problem of Wide-Mouth Frog protocol.

I Protocol is insecure against known session key attacks.
Adversary who gets session key can replay the last three
messages and impersonate A to B.

I The reason for this problem is that B does not know
whether the session key is fresh.

I This vulnerability was discovered only some times after
the protocol was published. Thus, even the smartest and
most experienced people can fail to design secure crypto
protocols.

Kerberos

Kerberos

I Developed at MIT around 1987, made it into Windows 2000,
and is still used as the authentication / key establishment /
authorization mechanism within Windows.

I Quite similar to Needham-Schroeder, but removes weakness
against known session key attacks using synchronized clocks.

I Shorter than Needham-Schroeder: only 4 messages instead of
5.

Otway-Rees protocol

Otway-Rees protocol

I Only 4 messages as Kerberos, but completely different
messages.

I Does not require clock synchronization.

I Has a number of problems ⇒ Homework!

Problem

Describe possible attacks on this protocol:

1. Alice transmits A, SA(EBpub
(K ,RA)) to Bob.

2. Bob transmits B,EK (RA) to Alice.

3. Their secure, authenticated exchange is then:

3.1 Alice sends EK (iA,M
iA
A ,H(iA,M

iA
A)) to Bob.

3.2 Bob sends EK (iB ,M
iB
B ,H(iB ,M

iB
B)) to Alice.

Station to station key agreement protocol

Common input: Z∗
p and g ∈ Z∗

p, and n such that gn ≡ 1 mod p

Alice Bob

1. xA∈∪[0, n − 1]

CERTB , sigB , yB

CERTA, yA
yA = gxA

sigA = sign(A‖B‖yA‖yB , SKA)

3. verify(A‖B‖yB‖yA, sigB , PKB)

2. xB∈∪[0, n − 1]

yB = gxB

4. yAB = y
xB

A

yAB = y
xA

B
A, sigA

sigB = sign(A‖B‖yB‖yA, SKB)

verify(A‖B‖yA‖yB , sigA, PKA)

I The protocol above is a simplified version of the STS protocol
to illustrate the idea of authenticating messages with public
keys.

I For a detailed spec refer to http://en.wikipedia.org/

wiki/Station-to-Station_protocol

http://en.wikipedia.org/wiki/Station-to-Station_protocol
http://en.wikipedia.org/wiki/Station-to-Station_protocol

Station to station key agreement protocol

I The “station to station protocol” is the DH protocol made
secure against MIM attacks:

I The idea is simple: Alice and Bob basically sign all the
messages they exchange in the Diffie - Hellman protocol.

I The “exchange of authenticated signing keys” is done
using certificates.

I Station to station protocol is the basis for the practically
important IKE (Internet Key Exchange protocol).

I The bottom line is: one cannot establish authenticated keys
without bootstrapping the system using an “exterior
authentication mechanism” (e.g., without first establishing
public key certificates for Alice and Bob).

RSA key transport

https://www.theinquirer.net/inquirer/news/2343117/

ietf-drops-rsa-key-transport-from-ssl

https://www.theinquirer.net/inquirer/news/2343117/ietf-drops-rsa-key-transport-from-ssl
https://www.theinquirer.net/inquirer/news/2343117/ietf-drops-rsa-key-transport-from-ssl

Lessons Learned

I Do not try to be too clever, over-optimization is often the
cause for vulnerabilities

I Which optimizations you can do (and which optimization
actually matter) depends on your assumptions (adversary
model, system capabilities)

I Which protocol to use depends on your performance goals and
communications capabilities (all-to-all communication, trusted
party, latency, bandwidth and computational constraints)

Break

Overview

I By secure channel we refer to a logical channel running on top
of some insecure link (typically the Internet) that provides

I Confidentiality
I Integrity and authenticity
I Message freshness

I Secure channels are probably one of the most important
applications of crypto in the real world.

I Many well known secure network protocols such as TLS/SSL,
VPNs, IPSec, WPA etc but also application specific (e.g.,
secure VoIP), and proprietary protocols (maybe Skype?) make
use of secure channels.

I Essentially all these protocols build upon the basic ideas we
discuss in the following.

I It is also possible to get it wrong, e.g., the WEP protocol has
a series of security flaws.

Secure channel

Secure channel - Secure send

s e c u r e−send (m , kE , kM) {

STATIC msgsnt := 1

IF (msgsnt ≥ MAXMSGS) THEN RETURN ⊥

c := ENC (kE ,m)

m̃ := msgsnt||LENGTH(c)||c

t := MAC (kM , m̃)

SEND(m̃||t)

msgsnt := msgsnt + 1

}

Secure channel - Secure receive

s e c u r e−r e c e i v e (C , kE , kM) {

STATIC msgrcvd := 0

(msgsnt, len, c , t) = PARSE (C)

IF (t 6= MAC (kM ,msgsnt||len||c)) THEN RETURN ⊥

IF (msgsnt 6 msgrcvd) THEN RETURN ⊥

m := DEC (kE , c)

msgrcvd := msgsnt

RETURN m

}

Remarks

I The freshness property based on counters guarantees the
following: If m1,m2, . . . ,mn denote the messages send using
secure-send(), then secure-receive() can guarantee that the
messages m1,m2, . . . ,mn being received are subsequence of
the messages sent.

I Counters give no timing guarantees, i.e., the adversary
Mallory can delay messages at will.

I Timing guarantees can be achieved using

I Time-stamps
I Challenges

I No security protocol can prevent Mallory from discarding
messages.

I MACs provide not just integrity protection but also
authenticity , as discussed earlier.

I Further reading material: Chapter 8 in Practical Cryptography
by Schneier & Ferguson.

Remarks

I Typically, secure-send() and secure-receive() are run by both
parties using a secure channel.

I Each party will have an independent key-pair (enc & MAC).

I In practice, one introduces the notion of a session (e.g.,
e-banking). Consists of a session ID in the header, which
allows the receiver to look-up session state (keys, counters
etc.) when receiving a message.

I Generally better is the use of authenticated encryption, where
the block-cipher mode guarantees confidentiality and integrity.

I For more info see last week’s slides on AES-GCM and http:

//en.wikipedia.org/wiki/Authenticated_encryption

http://en.wikipedia.org/wiki/Authenticated_encryption
http://en.wikipedia.org/wiki/Authenticated_encryption

Repudiation vs. non-repudiation

I Digital signatures allow proving that someone said something

I Alice may be happy to authenticate to Bob, but not to Eve or
Mallory!

I Bob may turn “evil” and use Alice’s statements against her
later

⇒ Signatures may provide too much (authentication and
non-repudiation)

Off-the-record (OTR) protocols allow repudiation

Repudiation vs. non-repudiation

I Digital signatures allow proving that someone said something

I Alice may be happy to authenticate to Bob, but not to Eve or
Mallory!

I Bob may turn “evil” and use Alice’s statements against her
later

⇒ Signatures may provide too much (authentication and
non-repudiation)

Off-the-record (OTR) protocols allow repudiation

OTR (Idea)

SA(TA) (1)

SB(TB) (2)

HKDF (DH(TA,TB)) (3)

OTR (Real)

The OTR protocol protects the above KX by wrapping it inside
another ephemeral key exchange:

K1 : = DH(T 1
A||T 1

B) (4)

EK1(SA(T 2
A)) (5)

EK1(SB(T 2
B)) (6)

K2 : = HKDF (DH(T 2
A,T

2
B)) (7)

(8)

To achieve forward secrecy, OTR keeps rolling out new keys T i
A,B .

To improve deniability, OTR publishes the old MAC keys once the
conversation progresses.

Is OTR deniable?

Both parties still have proof that they communicated: SX (TX)!

Is OTR deniable?

Both parties still have proof that they communicated: SX (TX)!

3DH (Trevor Perrin)

A: K = HKDF (DH(Ta,TB)||DH(Ta,B)||DH(a,TB))
B: K = HKDF (DH(TA,Tb)||DH(TA, b)||DH(A,Tb))

A Message from God (Dominic Tarr)

With 3DH, what happens if Alice’s private key (a, Ta) is
compromised?

M: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))
A: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))

A Message from God (Dominic Tarr)

With 3DH, what happens if Alice’s private key (a, Ta) is
compromised?

M: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))
A: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))

Forward secrecy

What happens if your private key is compromised
to your past communication data?

Static keys vs. ephemeral keys

Diffie-Hellman with:

I static keys allow authenticated encryption without signatures

I ephemeral keys protect against replay attacks and provide
forward secrecy

Asynchronous forward secrecy: SCIMP

Idea of Silence Circle’s SCIMP:

Replace key with its own hash.

I New key in zero round trips!

I Forward secrecy!

Future secrecy

Suppose your regain control over your system.
What happens with your future communication data?

Axolotl / Signal Protocol

Securing unidirectional communcation

I Alice knows Bob’s public key B

I Alice wants to send M to Bob

I Alice cannot receive messages from Bob (possibly ever)

Suggestion:

K : = DH(TA,B) (9)

C : = EK (SA(TA,A,B)||M) (10)

With Curve25519, cryptography has 92–128 bytes overhead:

I one or two 32 byte public keys

I one 64 byte EdDSA signature

I (plus HMAC)

What are the security properties we get here?

Securing unidirectional communcation

I Alice knows Bob’s public key B

I Alice wants to send M to Bob

I Alice cannot receive messages from Bob (possibly ever)

Suggestion:

K : = DH(TA,B) (9)

C : = EK (SA(TA,A,B)||M) (10)

With Curve25519, cryptography has 92–128 bytes overhead:

I one or two 32 byte public keys

I one 64 byte EdDSA signature

I (plus HMAC)

What are the security properties we get here?

Acknowlegements

This presentation used material from:

I https:

//signal.org/blog/simplifying-otr-deniability/

I Endre Bangerter (BTI 7261/2017)

https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/blog/simplifying-otr-deniability/

References

George Danezis, Roger Dingledine, and Nick Mathewson.
Mixminion: Design of a type iii anonymous remailer protocol.
In Proceedings of the 2003 IEEE Symposium on Security and
Privacy, SP ’03, 2003.

Brad Miller, Ling Huang, A.D. Joseph, and J.D. Tygar.
I know why you went to the clinic: Risks and realization of
https traffic analysis.
http://arxiv.org/abs/1403.0297, 2014.

http://arxiv.org/abs/1403.0297

	References

