
Project & Training 3: Networking Project

Emmanuel Benoist1 & Christian Grothoff2

Berner Fachhochschule

KW 17/2021

1Available via MS Teams
2Available on Mumble (gnunet.org)

Agenda

Lab overview

Organization

Hardware

Software

Strategy

Tools

Ethernet Labs

There are three main Ethernet labs deliverables:

1. Implement a Hub & Switch

2. Implement ARP

3. Implement a Router

The Hub is not graded and serves as a quick warm-up. The Switch
is not required for students in BTI 3022.

Team
Suggested

are teams of 4 students. This is a suggestion, not a requirement! If
your team is smaller, the required thresholds for passing the course
will be reduced.
Teams have been pre-assigned, if there are problems within your
team, do talk to the professors who will try to find a solution.

Process

Three 2-week sprints:

I Plan algorithms, data structures and testing

I Implement

I Unit-test

I Integration test

⇒ Version in Git at submission time is graded!

Virtual Hardware

https://gitlab.ti.bfh.ch/demos/vlab

Username: root, password: (given via Mumble)

./network-driver ens4 ens5 ens6 ens7 - ./switch ens4 ens5 ens6 ens7

https://gitlab.ti.bfh.ch/demos/vlab

Hardware

I There are two custom USB-to-4x-Ethernet adapters for each
team in N.111 (below secretary’s office) in the lab.

I You can open the door with your BFH card. Please add your
name to the list with the number of the adapter taken.

I Also take single USB-Ethernet adapters if your notebook/PC
does not have an Ethernet port. You may also take an
Ethernet cable if needed.

I You must bring everything back after the final submission
deadline. When you have returned the adapter, you may cross
your name off the list again.

Suggested setup

hub/switch
arp/router

test client
10.0.0.2

test client
10.0.0.1

test client
10.0.0.3

Ethernet Ethernet

Ethernet

USB

Skeleton

Your Gitlab team repository should have been provisioned with a
skeleton that is a starting point. It includes:

hub.c Template for the hub project. Add 3 lines to get a
working hub!

switch.c Template for the switch project.

arp.c Template for the arp project.

router.c Template for the router project.

Makefile Build system. Modify as needed.

network-driver.c Completed driver to allow you to send and receive
Ethernet frames. You do not need to modify this
code!

Running the network-driver

I LAN driver provided in C in Git (glab/network-driver.c)

I Launch driver with list of names of physical network device
(i.e. “lan0”) followed by “-” followed by the command to run
your program:

$ sudo network-driver eth0 eth1 eth2 - ./my-hub eth0 eth1 eth2

The network devices MUST be passed twice: once to the
network-driver as arguments, and once to your program (hub,
switch, arp, router)!

I Driver will pass received frames to your stdin

I Driver will read frames from your stdout and pass to network

I Driver will not touch stderr, you can use stderr for logging

I Terminate driver via signal (kill) or closing stdout

Your code can be in any language!

The Driver I/O Format

I First 6 bytes written by driver to your stdin are the HW
MACs for each of the network interfaces (in the same order).

I Henceforth, the message format is 16-bit length prefix (in big
endian), followed by 16-bit interface identifier, followed by
Ethernet frame (destination MAC, source MAC, etc.).

I To send frames, also use 16-bit length prefix followed 16-bit
interface identifier, followed by Ethernet frame.

I Interace number 0 is reserved for interacting with the console.

I You must set the source MAC correctly (in particular for
arp/router)!

I Some hardware may not support using source MACs other
than your HW MAC. If you do not use the provided
equipment, check that you have hardware that supports
sending with arbitrary MACs!

Skeleton: Helper files

Other code in the Gitlab team repository:

loop.c Shared logic for all programs. Functions you may
use, but do not need to modify.

print.c Replacement for printf() given that stdout is for
Ethernet frames and MUST NOT be used for
program output.

crc.c Internet checksum. Feel free to use.

glab.h Packet format for the interaction with the
network-driver.

You do NOT have to modify this code, but it may be useful to
understand it. You MUST re-implement this logic if your project is
in languages other than C.

Suggested Strategy

I Understand what a hub/switch/arp/router really has to do.

I Plan your data structures first. The algorithms are always
trivial. Use simple tables (except for routing).3

I For testing, write a program that pretends to be the network
driver. Remember the shell project from CS Basics. Use
dup, fork and exec to run your main program with
stdin/stdout being controlled by your test harness.4

I Perform compatibility tests with real hardware once above
tests work.

Tests and main program do not have to be in the same language.

3Until the router, you do not need malloc() at all!
4java.lang.ProcessBuilder can also be used.

Test requirements

The quality of your tests will also be graded.

I Make sure your tests are run via the make check-XXX

target(s).

I The tests should succeed by returning 0, and fail with
non-zero.

I make check-XXX MUST NOT create binaries like switch,
arp or router.

I If you write unit tests for individual functions, please put them
under a different target, like make tests. Those will NOT be
graded.

Why? We will run your test suite against our reference
implementation and implementations of other students, and
vice-versa!

Grading of your code

I If you code does not compile with make: 0 points. No
discussions.

I We run public (public-test-XXX and secret tests against
your implementation. Passing our tests gets you points.

I We run your test suite against our correct (public-XXX) and
buggy (public-bug-XXX) implementations — you get points
if your test suite finds our bugs while passing our correct
reference implementation. Bonus points will be awarded for
teams that find previously unknown bugs in the reference
implementation within the scope of the specification.5

I Test your tests against the provided correct and buggy
reference implementations!

5Contact us, if we confirm it is a bug in the reference implementation, you
get your bonus.

Test starting point

int meta (int argc, char **argv) {

int cin[2], cout[2]; pipe (cin); pipe (cout);

if (0 == (chld = fork ()) {

close (STDIN_FILENO); close (STDOUT_FILENO);

close (cin[1]); close (cout[0]);

dup2 (cin[0], STDIN_FILENO);

dup2 (cout[1], STDOUT_FILENO);

execvp (argv[0], argv);

printf (stderr, "Failed to run binary ‘%s’\n", argv[0]);

exit (1);

}

close (cin[0]); close (cout[1]);

child_stdin = cin[1]; child_stdout = cout[0];

// send MACs, run test, cleanup

kill (chld, SIGKILL);

}

Git

The slides and other materials related to the lecture and the
project are on https://gitlab.bfh.ch/. You should have
obtained the links from the official Moodle page of the course.
You must also use Git for your software development. Make sure
to only share the GitLab repository with your team and the
professors. You are responsible that your solution is only submitted
by your team.
When you have questions about your code, it is helpful if the
current version of the code is available to the professor on GitLab
for inspection.

https://gitlab.bfh.ch/

Cryptpad

https://pubcryptpad.pep.foundation/ can be used for
collaborative editing, be it during lectures or your team work. A
cryptpad has the advantage that the data is encrypted before it is
transmitted to the server. Thus, unlike proprietary Web-based text
editors offered by major tech companies, this Free Software
solution is compatible with privacy regulation.
The key for decryption is in the URL, so be careful with whom you
share the link to the pad! When used on-the-spot in lectures, the
professor will share a link to the respective pad using the Mumble
chat.

https://pubcryptpad.pep.foundation/

Mumble

Mumble will be primarily used for voice conferencing, including
lectures and interactive help with the project. The server is
running 24/7, so you are welcome to use it at any time.
Mumble is Free Software, and the voice is transmitted encrypted
between the clients and the server. The server does have access as
it may mix multiple audio inputs to reduce bandwidth. Note that
the server we will be using is under control of Prof. Grothoff and
does not record any information about the server’s use.
Mumble can be used to record sessions. You MUST have the
consent of everyone in the room before recording. Lectures MUST
NEVER be recorded.

Mumble: Installation

Install Mumble. Clients are available for most platforms, see
https://wiki.mumble.info/wiki/Installing_Mumble

Connect to the server ’gnunet.org’. You are free to pick any
username (firstname, lastname, nickname), but expect people to
address you by that username.
Make sure to run the ’audio wizzard’ to check your speaker and
microphone settings. On GNU/Linux distributions, it can be
helpful to use pavucontrol to check/modify general system audio
settings, such as audio device selection and microphone sensitivity.
Mumble has a build-in text chat. Try it.

https://wiki.mumble.info/wiki/Installing_Mumble

Mumble: Discipline

Make sure to configure push-to-talk in Mumble. With that feature,
you need to hold a key to activate your microphone:
https://www.mumble.com/support/

mumble-server-push-to-talk.php

In class, holding the key (without speaking!) can be used as the
virtual equivalent of raising your hand: Mumble indicates by the
color of the ”mouth” of the user in the user list that your
microphone is on and that you thus are ready to talk.
Do NOT use auto-detection or permanent-on (unless you are
actively presenting), as that will make echos worse and may also be
triggered by sounds in your vicinity.

https://www.mumble.com/support/mumble-server-push-to-talk.php
https://www.mumble.com/support/mumble-server-push-to-talk.php

Mumble: Channels

The server is setup to have several channels related to the course,
under the root BTIxxxx.
Use the ”lecture” channel to listen to presentations from the
professors. You should watch for the professor joining the ”lecture”
channel, as that is likely a sign that there is some announcement
to be made.
Use your team’s channel to discuss within your team and/or with
the professor. To invite the professor to join your team’s channel,
join the lobby to invite professors. Make sure to mention to the
professor which team channel to join.
You can create additional temporary channels (like if all existing
team channels are in use). Simply right-click on the BTIxxxx
channel and select ”add”.
Do not join ’private’ channels on the server that are in use unless
you have been invited.

	Lab overview
	Organization
	Hardware
	Software
	Strategy
	Tools

