
BTI 4202: Security and Trust in Distributed Systems

Christian Grothoff

Berner Fachhochschule

28.5.2021

Risk Analysis: Operating a Tor Hidden Service

Learning objectives

Fallacies of distributed computing

Boyd’s theorem

CAP Theorem

Zooko’s Triangle

Self stabilization

Attacks and defenses

Distributed Hash Tables
CAN
Chord
Kademlia

Secure Multiparty Computation

Secure Multiparty Computation example: Fog of Trust

Part I: Security in Distributed Systems

The 8 Fallacies of Distributed Computing1

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology does not change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

1According to Peter Deutsch and James Gosling

Limits on authentication

Theorem (Boyd’s Theorem I)

“Suppose that a user has either a confidentiality channel to her, or an authentication
channel from her, at some state of the system. Then in the previous state of the
system such a channel must also exist. By an inductive argument, such a channel
exists at all previous states.”

Theorem (Boyd’s Theorem II)

“Secure communication between any two users may be established by a sequence of
secure key transfers if there is a trusted chain from each one to the other.”

Solution space: Zfone Authentication (ZRTP) [5]

Idea: combine human interaction proof and baby duck approach:

I A and B perform Diffie-Hellman exchange

I Keying material from previous sessions is used (duckling)

I Short Authentication String (SAS) is generated (hash of DH numbers)

I Both users read the SAS to each other, recognize voice

⇒ ZRTP foils standard man-in-the-middle attack.

CAP Theorem [3]

No distributed system can be consistent, available and partition tolerant at the same
time.

I Consistency: A read sees the changes made by all previous writes

I Availability: Reads and writes always succeed

I Partition tolerance: The system operates even when network connectivity between
components is broken

Blockchain Trilemma

Blockchains claim to achieve three properties:

I Decentralization: there are many participants, and each participant only needs to
have a small amount of resources, say O(c)

I Scalability: the system scales to O(n) > O(c) transactions

I Security: the system is secure against attackers with O(n) resources

The Blockchain trilemma is that one can only have two of the three.

Ryge’s Triangle

Ryge’s Triangle postulates three key management goals for a system associating cryp-
tographic keys with addresses or names:

I Non-interactive: the system should require no user interface

I Flexible: addresses/names can be re-used by other participants

I Secure: the system is secure against active attackers

Ryge’s triangle says that one can only have two of the three.

Zooko’s Triangle

Secure

Global Memorable

A name system can only fulfill two!

Zooko’s Triangle

Secure

Global MemorableHierarchical Registration

C
ry

pt
og

ra
ph

ic
 Id

en
tifi

er
s

Petnam
e System

s

DNS, “.onion” IDs and /etc/hosts/ are representative designs.

Zooko’s Triangle

Secure

Global MemorableHierarchical Registration

C
ry

pt
og

ra
ph

ic
 Id

en
tifi

er
s

Petnam
e System

s

 mnemonic
URLs

ce
rt

ifi
ca

te
s

SDSI

DNSSEC security is limited (adversary model!)

Self stabilization (Dijkstra 1974)

I A system is self-stabilizing, if starting from any state, it is guaranteed that the
system will eventually reach a correct state (convergence).

I Given that the system is in a correct state, it is guaranteed to stay in a correct
state, provided that no fault happens (closure).

I Self-stabilization enables a distributed algorithm to recover from a transient fault
regardless of its nature.

Example: Spanning-tree Protocol from Networking!

Sybil Attack

Background:

I Ancient Greece: Sybils were prophetesses that prophesized under the devine
influence of a deity. Note: At the time of prophecy not the person but a god was
speaking through the lips of the sybil.

I 1973: Flora Rheta Schreiber published a book “Sybil” about a woman with 16
separate personalities.

The Sybil Attack [2]:

I Insert a node multiple times into a network, each time with a different identity
I Position a node for next step on attack:

I Attack connectivity of the network
I Attack replica set
I In case of majority votes, be the majority.

Sybil Attack

Background:

I Ancient Greece: Sybils were prophetesses that prophesized under the devine
influence of a deity. Note: At the time of prophecy not the person but a god was
speaking through the lips of the sybil.

I 1973: Flora Rheta Schreiber published a book “Sybil” about a woman with 16
separate personalities.

The Sybil Attack [2]:

I Insert a node multiple times into a network, each time with a different identity
I Position a node for next step on attack:

I Attack connectivity of the network
I Attack replica set
I In case of majority votes, be the majority.

Defenses against Sybil Attacks

I Use authentication with trusted party that limits identity creation

I Use “external” identities (IP address, MAC, e-mail)

I Use “expensive” identities (solve computational puzzles, require payment)

Douceur: Without trusted authority to certify identities, no realistic approach exists to
completely stop the Sybil attack.

Eclipse Attack: Goal

I Separate a node or group of nodes from the rest of the network

I isolate peers (DoS, surveillance) or isolate data (censorship)

Eclipse Attack: Techniques

I Use Sybil attack to increase number of malicious nodes

I Take over routing tables, peer discovery

⇒ Details depend on overlay structure

Eclipse Attack: Defenses

I Large number of connections

I Replication

I Diverse neighbour selection (different IP subnets, geographic locations)

I Aggressive discovery (“continuous” bootstrap)

I Audit neighbour behaviour (if possible)

I Prefer long-lived connections / old peers

Poisoning Attacks

Nodes provide false information:

I wrong routing tables

I wrong meta data

I wrong performance measurements

Timing Attacks [4]

Nodes can:

I measure latency to determine origin of data

I delay messages

I send messages using particular timing patterns to aid correlation

I include wrong timestamps (or just have the wrong time set...)

Break

Part II: Distributed Hash Tables

Distributed Hash Tables (DHTs)

I Distributed index

I GET and PUT operations like a hash table

I JOIN and LEAVE operations (internal)

I Trade-off between JOIN/LEAVE and GET/PUT costs

I Typically use exact match on cryptographic hash for lookup

I Typically require overlay to establish particular connections

DHTs: Key Properties

To know a DHT, you must know (at least) its:

I routing table structure

I lookup procedure

I join operation process

I leave operation process

... including expected costs (complexity) for each of these operations.

A trivial DHTs: The Clique

I routing table: hash map of all peers

I lookup: forward to closest peer in routing table

I join: ask initial contact for routing table, copy table, introduce us to all other
peers, migrate data we’re closest to to us

I leave: send local data to remaining closest peer, disconnect from all peers to
remove us from their routing tables

Complexity?

A trivial DHTs: The Circle

I routing table: left and right neighbour in cyclic identifier space

I lookup: forward to closest peer (left or right)

I join: lookup own peer identity to find join position, transfer data from neighbour
for keys we are closer to

I leave: ask left and rigt neighbor connect directly, transfer data to respective
neighbour

Complexity?

Additional Questions to ask

I Security against Eclipse attack?

I Survivability of DoS attack?

I Maintenance operation cost & required frequency?

I Latency? (6= number of hops!)

I Data persistence?

Content Addressable Network: CAN

I routing table: neighbours in
d-dimensional torus space

I lookup: forward to closest peer

I join: lookup own peer identity
to find join position, split
quadrant (data areas) with
existing peer

I leave: assign quadrant space to
neighbour (s)

Interesting CAN properties

I CAN can do range queries along ≤ n dimensions

I CAN’s peers have 2d connections (independent of network size)

I CAN routes in O(d d
√
n)

Chord
I routing table: predecessor in

circle and at distance 2i , plus r
successors

I lookup: forward to closest peer
(peer ID after key ID)

I join: lookup own peer identity
to find join position, use
neighbor to establish finger
table, migrate data from
respective neighbour

I leave: join predecessor with
successor, migrate data to
respective neighbour, periodic
stabilization protocol takes care
of finger updates

Interesting Chord properties

I Simple design

I log2 n routing table size

I log2 n lookup cost

I Asymmetric, inflexible routing tables

Kademlia
I routing table: 2160 buckets with k peers at XOR distance 2i

I lookup: iteratively forward to α peers from the “best” bucket, selected by latency
I join: lookup own peer identity, populate table with peers from iteration
I maintenance: when interacting with a peer, add to bucket if not full; if bucket

full, check if longest-not-seen peer is live first
I leave: just drop out

0 1

0 1
10 11

0 1
00 01

Connections
Route path

Interesting Kademlia properties

I XOR is a symmetric metric: connections are used in both directions

I α replication helps with malicious peers and churn

I Iterative lookup gives initiator much control,

I Lookup helps with routing table maintenance

I Bucket size trade-off between routing speed and table size
I Iterative lookup is a trade-off:

I good UDP (no connect cost, initiator in control)
I bad with TCP (very large number of connections)

Break

Part III: Secure Multiparty Computation

Secure Multiparty Computation (SMC)

I Alice und Bob haben private Daten ai and bi .

I Alice und Bob führen ein Protokoll aus und berechnen gemeinsam f (ai , bi).

I Nur einer von beiden lernt das Ergebnis (i.d.R.)

Adversary models

Honest but curious

Dishonest and curious

Pairing-based cryptography

Let G1, G2 be two additive cyclic groups of prime order q, and GT another cyclic group
of order q (written multiplicatively). A pairing is an efficiently computable map e:

e : G1 × G2 → GT (1)

which satisfies e 6= 1 and bilinearity:

∀a,b∈F∗
q
, ∀P∈G1,Q∈G2 : e (aP, bQ) = e (P,Q)ab (2)

Examples: Weil pairing, Tate pairing.

Hardness assumption

Computational Diffie Hellman:
g , g x , g y ⇒ g xy (3)

remains hard on G even given e.

Boneh-Lynn-Sacham (BLS) signatures [1]

Key generation:
Pick random x ∈ Zq

Signing:
σ := hx where h := H(m)

Verification:
Given public key g x :

e(σ, g) = e(h, g x) (4)

Why:

e(σ, g) = e(h, g)x = e(h, g x) (5)

due to bilinearity.

Boneh-Lynn-Sacham (BLS) signatures [1]

Key generation:
Pick random x ∈ Zq

Signing:
σ := hx where h := H(m)

Verification:
Given public key g x :

e(σ, g) = e(h, g x) (4)

Why:

e(σ, g) = e(h, g)x = e(h, g x) (5)

due to bilinearity.

Fun with BLS

Given signature 〈σ, g x〉 on message h, we can blind the signature and public key g x :

e(σb, g) = e(h, g)xb = e(h, g xb) (6)

Thus σb is a valid signature for the derived public key (g x)b with blinding value b ∈ Zq.

Part IV: Fog of Trust

The Fog of Trust

Problem:

I Publishing who certified whom exposes the social graph.

I The “NSA kills based on meta data”.

Solution:

I Do not publish the graph.

I Have Alice and Bob collect their certificates locally.

I Use SMC protocol for

private set intersection cardinality with signatures!

We will only consider paths with one intermediary.

The Fog of Trust

Problem:

I Publishing who certified whom exposes the social graph.

I The “NSA kills based on meta data”.

Solution:

I Do not publish the graph.

I Have Alice and Bob collect their certificates locally.

I Use SMC protocol for

private set intersection cardinality with signatures!

We will only consider paths with one intermediary.

Straw-man version of protocol 1

Problem: Alice wants to compute n := |LA ∩ LB |

Suppose each user has a private key ci and the corresponding public key is Ci := g ci

where g is the generator

The setup is as follows:

I LA: set of public keys representing Alice trusted verifiers

I LB : set of public keys representing Bob’s signers

I Alice picks an ephemeral private scalar tA ∈ Fp

I Bob picks an ephemeral private scalar tB ∈ Fp

Straw-man version of protocol 1

XA : =
{
C tA

∣∣ C ∈ LA }

YA : =
{
Ĉ tA

∣∣∣ Ĉ ∈ XB

}
=
{
C tA·tB

∣∣ C ∈ LA }

Alice Bob

XA

XB,YB

XB : =
{
C tB

∣∣ C ∈ LB }
YB : =

{
C

tB
∣∣∣ C ∈ XA

}
=
{
C tB ·tA

∣∣ C ∈ LB }

Alice can get |YA ∩ YB | at linear cost.

Attack against the Straw-man

If Bob controls two trusted verifiers C1,C2 ∈ LA, he can:

I Detect relationship between C tA
1 and C tA

2

I Choose K ⊂ Fp and substitute with fakes:

XB : =
⋃
k∈K

{
C k
1

}
YB : =

⋃
k∈K

{
(C tA

1)k
}

so that Alice computes n = |K |.

Cut & choose version of protocol 1: Preliminaries

Assume a fixed system security parameter κ ≥ 1.

Let Bob use secrets tB,i for i ∈ {1, . . . , κ}, and let XB,i and YB,i be blinded sets over
the different tB,i as in the straw-man version.

For any list or set Z , define
Z ′ := {h(x)|x ∈ Z} (7)

Cut & choose version of protocol 1

Alice Bob

send XA

X ′B,i ,Y
′
B,i

J

XB,j , tB,j

Protocol messages:

1. Alice sends:
XA := sort [C tA | C ∈ A]

2. Bob responds with commitments:
X ′B,i ,Y ′B,i for i ∈ 1, . . . , κ

3. Alice picks a non-empty random
subset J ⊆ {1, . . . , κ} and sends
it to Bob.

4. Bob replies with XB,j for j ∈ J,
and tB,j for j /∈ J.

Cut & choose version of protocol 1: Verification

For j /∈ J, Alice checks the tB,j matches the commitment Y ′B,j .

For j ∈ J, she verifies the commitment to XB,j and computes:

YA,j :=
{
Ĉ tA

∣∣∣ Ĉ ∈ XB,j

}
(8)

To get the result, Alice computes:

n = |Y ′A,j ∩ Y ′B,j | (9)

Alice checks that the n values for all j ∈ J agree.

Protocol 2: Private Set Intersection with Subscriber Signatures

I Naturally, signers are willing to sign that Bob’s key is Bob’s key.

I We still want the identities of the signers to be private!

I BLS (Boneh et. al) signatures are compatible with our blinding.

⇒ Integrate them with our cut & choose version of the protocol.

Costs are linear in set size. Unlike prior work this needs no CA.

References I

Dan Boneh, Ben Lynn, and Hovav Shacham.
Short signatures from the weil pairing.
In Advances in Cryptology – ASIACRYPT ’01, LNCS, pages 514–532. Springer,
2001.

John Douceur.
The Sybil Attack.
In Proceedings of the 1st International Peer To Peer Systems Workshop (IPTPS
2002), March 2002.

Seth Gilbert and Nancy Lynch.
Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant
web services.
SIGACT News, 33(2):51–59, June 2002.

References II

Brian N. Levine, Michael K. Reiter, Chenxi Wang, and Matthew K. Wright.
Timing attacks in low-latency mix-based systems.
In Proceedings of Financial Cryptography (FC ’04), pages 251–265, February 2004.

Laurianne McLaughlin.
Philip zimmermann on what’s next after pgp.
IEEE Security & Privacy, 4(1):10–13, 2006.

	Fallacies of distributed computing
	Boyd's theorem
	CAP Theorem
	Zooko's Triangle
	Self stabilization
	Attacks and defenses
	Distributed Hash Tables
	CAN
	Chord
	Kademlia

	Secure Multiparty Computation
	Secure Multiparty Computation example: Fog of Trust

