
Chapter 4

Symmetric Encryption

The symmetric setting considers two parties who share a key and will use this key
to imbue communicated data with various security attributes. The main security
goals are privacy and authenticity of the communicated data. The present chapter
looks at privacy, Chapter 6 looks at authenticity, and Chapter 7 looks at providing
both together. Chapters 2 and 3 describe tools we shall use here.

4.1 Symmetric encryption schemes

The primitive we will consider is called an encryption scheme. Such a scheme
specifies an encryption algorithm, which tells the sender how to process the plaintext
using the key, thereby producing the ciphertext that is actually transmitted. An
encryption scheme also specifies a decryption algorithm, which tells the receiver how
to retrieve the original plaintext from the transmission while possibly performing
some verification, too. Finally, there is a key-generation algorithm, which produces
a key that the parties need to share. The formal description follows.

Definition 4.1 A symmetric encryption scheme SE = (K, E ,D) consists of three
algorithms, as follows:

• The randomized key generation algorithm K returns a string K. We let
Keys(SE) denote the set of all strings that have non-zero probability of be-
ing output by K. The members of this set are called keys. We write K $←K
for the operation of executing K and letting K denote the key returned.

• The encryption algorithm E takes a key K ∈ Keys(SE) and a plaintext M ∈
{0, 1}∗ to return a ciphertext C ∈ {0, 1}∗ ∪ {⊥}. This algorithm might be
randomized or stateful. We write C $←EK(M).

89

90 SYMMETRIC ENCRYPTION

• The deterministic decryption algorithm D takes a key K ∈ Keys(SE) and a
ciphertext C ∈ {0, 1}∗ to return some M ∈ {0, 1}∗ ∪ {⊥}. We write M ←
DK(C).

We require that for any key K ∈ Keys(SE) and any message M ∈ {0, 1}∗, if EK(M)
returns a ciphertext C �= ⊥ then DK(C) = M .

The key-generation algorithm, as the definition indicates, is randomized. It takes
no inputs. When it is run, it flips coins internally and uses these to select a key K.
Typically, the key is just a random string of some length, in which case this length
is called the key length of the scheme. When two parties want to use the scheme, it
is assumed they are in possession of K generated via K. How they came into joint
possession of this key K in such a way that the adversary did not get to know K is
not our concern here, and will be addressed later. For now we assume the key has
been shared.

Once in possession of a shared key, the sender can run the encryption algorithm
with key K and input message M to get back a string we call the ciphertext. The
latter is then transmitted to the receiver.

The encryption algorithm may be either randomized or stateful. If randomized,
it flips coins and uses those to compute its output on a given input K, M . Each time
the algorithm is invoked, it flips coins anew. In particular , invoking the encryption
algorithm twice on the same inputs may not yield the same response both times.

We say the encryption algorithm is stateful if its operation depends on a quantity
called the state that is initialized in some pre-specified way. When the encryption
algorithm is invoked on inputs K, M , it computes a ciphertext based on K, M and
the current state. It then updates the state, and the new state value is stored. (The
receiver does not maintain matching state and, in particular, decryption does not
require access to any global variable or call for any synchronization between parties.)
Usually, when there is state to be maintained, the state is just a counter. If there is
no state maintained by the encryption algorithm the encryption scheme is said to
be stateless.

The encryption algorithm might be both randomized and stateful, but in practice
this is rare: it is usually one or the other but not both.

The receiver, upon receiving a ciphertext C, will run the decryption algorithm
with the same key used to create the ciphertext, namely compute DK(C). The
decryption algorithm is neither randomized nor stateful. If C was an output of EK

on input M ∈ Plaintexts then DK(C) will equal M , enabling the receiver to recover
the ciphertext. The decryption algorithm might however, fail to decrypt and return
the special symbol ⊥ to indicate that it deems the ciphertext invalid.

Many encryption schemes restrict the set of strings that they are willing to
encrypt. (For example, perhaps the algorithm can only encrypt plaintexts of length
a positive multiple of some block length n, and can only encrypt plaintexts of length
up to some maximum length.) These kinds of restrictions are captured by having the
encryption algorithm return the special symbol ⊥ when fed a message not meeting

Bellare and Rogaway 91

the required restriction. In a stateless scheme, there is typically a set of strings,
called the plaintext space, such that EK(M) �= ⊥ for all K and all M in the plaintext
space. In a stateful scheme, whether or not EK(M) returns ⊥ depends not only on M
but also possibly on the value of the state variable. For example, when a counter is
being used, it is typical that there is a limit to the number of encryptions performed,
and when the counter reaches a certain value the encryption algorithm returns ⊥
no matter what message it is fed to the algorithm.

4.2 Example encryption schemes (ECB, CBC, CTR)

Here are a few examples of encryption schemes. We stress that not all of the schemes
here are secure encryption schemes. Some are secure and some are not, as we will
see later. We begin with the classical one-time-pad. For a security analysis of this
scheme, see Chapter B.

Scheme 4.2 [One-time-pad encryption] The one-time-pad encryption scheme
SE = (K, E ,D) is stateful and deterministic. The key-generation algorithm simply
returns a random k-bit string K, where the key-length k is a parameter of the
scheme, so that the key space is Keys(SE) = {0, 1}k. The encryptor maintains
a counter ctr which is initially zero. The encryption and decryption algorithms
operate as follows:

Algorithm EK(M)
Let static ctr ← 1
Let m ← |M |
If ctr + m − 1 > k then return ⊥
C ← M ⊕ K[ctr .. ctr + m − 1]
ctr ← ctr + m
Return 〈ctr, C〉

Algorithm DK(〈ctr, C〉)
Let m ← |M |
If ctr + m − 1 > k then return ⊥
M ← C ⊕ K[ctr .. ctr + m − 1]
Return M

Here X[i .. j] denotes the i-th through j-th bit of the binary string X. By 〈ctr, C〉
we mean a string that encodes the number ctr and the string C. The most natural
encoding is to encode ctr using some fixed number of bits, at least lg k, and to
prepend this to C. Conventions are established so that every string Y is regarded as
encoding some ctr, C for some ctr, C. The encryption algorithm XORs the message
bits with key bits, starting with the key bit indicated by the current counter value.
The counter is then incremented by the length of the message. Key bits are not
reused, and thus if not enough key bits are available to encrypt a message, the
encryption algorithm returns ⊥. Note that the ciphertext returned includes the
value of the counter. This is to enable decryption. (Recall that the decryption
algorithm, as per Definition 4.1, must be stateless and deterministic, so we do not
want it to have to maintain a counter as well.)

92 SYMMETRIC ENCRYPTION

Algorithm EK(M)
If (|M | mod n �= 0 or |M | = 0) then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]
For i ← 1 to m do

C[i] ← EK(M [i])
EndFor
C ← C[1] · · ·C[m]
Return C

Algorithm DK(C)
If (|C| mod n �= 0 or |C| = 0) then return ⊥
Break C into n-bit blocks C[1] · · ·C[m]
For i ← 1 to m do

M [i] ← E−1
K (C[i])

EndFor
M ← M [1] · · ·M [m]
Return M

Figure 4.1: ECB mode.

The following schemes rely either on a family of permutations (i.e., a block cipher)
or a family of functions. Effectively, the mechanisms spell out how to use the block
cipher to encrypt. We call such a mechanism a mode of operation of the block cipher.
For some of the schemes it is convenient to assume that the length of the message
to be encrypted is a positive multiple of a block length associated to the family.
Accordingly, we will let the encryption algorithm returns ⊥ if this is not the case.
In practice, one could pad the message appropriately so that the padded message
always had length a positive multiple of the block length, and apply the encryption
algorithm to the padded message. The padding function should be injective and
easily invertible. In this way you would create a new encryption scheme.

The first scheme we consider is ECB (Electronic Codebook Mode), whose secu-
rity is considered in Section 4.5.1.

Scheme 4.3 [ECB mode] Let E: K×{0, 1}n → {0, 1}n be a block cipher. Oper-
ating it in ECB (Electronic Code Book) mode yields a stateless symmetric encryp-
tion scheme SE = (K, E ,D). The key-generation algorithm simply returns a random
key for the block cipher, meaning it picks a random string K $←K and returns it.
The encryption and decryption algorithms are depicted in Figure 4.1. “Break M
into n-bit blocks M [1] · · ·M [m]” means to set m = |M |/n and, for i ∈ {1, . . . , m},
set M [i] to the i-th n-bit block in M , that is, (i−1)n+1 through in of M . Similarly
for breaking C into C[1] · · ·C[m]. Notice that this time the encryption algorithm
did not make any random choices. (That does not mean it is not, technically, a

Bellare and Rogaway 93

Algorithm EK(M)
If (|M | mod n �= 0 or |M | = 0) then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]
C[0] ← IV $←{0, 1}n

For i ← 1 to m do
C[i] ← EK(C[i − 1] ⊕ M [i])

EndFor
C ← C[1] · · ·C[m]
Return 〈IV, C〉

Algorithm DK(〈IV, C〉)
If (|C| mod n �= 0 or |M | = 0) then return ⊥
Break C into n-bit blocks C[1] · · ·C[m]
C[0] ← IV
For i ← 1 to m do

M [i] ← E−1
K (C[i]) ⊕ C[i − 1])

EndFor
M ← M [1] · · ·M [m]
Return M

Figure 4.2: CBC$ mode.

randomized algorithm; it is simply a randomized algorithm that happened not to
make any random choices.)

The next scheme, cipher-block chaining (CBC) with random initial vector, is the
most popular block-cipher mode of operation, used pervasively in practice.

Scheme 4.4 [CBC$ mode] Let E: K × {0, 1}n → {0, 1}n be a block cipher.
Operating it in CBC mode with random IV yields a stateless symmetric encryption
scheme, SE = (K, E ,D). The key generation algorithm simply returns a random
key for the block cipher, K $←K. The encryption and decryption algorithms are
depicted in Figure 4.2. The IV (“initialization vector”) is C[0], which is chosen at
random by the encryption algorithm. This choice is made independently each time
the algorithm is invoked.

For the following schemes it is useful to introduce some notation. If n ≥ 1 and i ≥ 0
are integers then we let [i]n denote the n-bit string that is the binary representation
of integer i mod 2n. If we use a number i ≥ 0 in a context for which a string
I ∈ {0, 1}n is required, it is understood that we mean to replace i by I = [i]n. The
following is a counter-based version of CBC mode, whose security is considered in
Section 4.5.3.

94 SYMMETRIC ENCRYPTION

Algorithm EK(M)
static ctr ← 0
If (|M | mod n �= 0 or |M | = 0) then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]
If ctr ≥ 2n then return ⊥
C[0] ← IV ← [ctr]n
For i ← 1 to m do

C[i] ← EK(C[i − 1] ⊕ M [i])
EndFor
C ← C[1] · · ·C[m]
ctr ← ctr + 1
Return 〈IV, C〉

Algorithm DK(〈IV, C〉)
If (|C| mod n �= 0 or |C| = 0) then return ⊥
Break C into n-bit blocks C[1] · · ·C[m]
If IV + m > 2n then return ⊥
C[0] ← IV
For i ← 1 to m do

M [i] ← E−1
K (C[i]) ⊕ C[i − 1])

EndFor
M ← M [1] · · ·M [m]
Return M

Figure 4.3: CBCC mode.

Scheme 4.5 [CBCC mode] Let E: K × {0, 1}n → {0, 1}n be a block cipher.
Operating it in CBC mode with counter IV yields a stateful symmetric encryption
scheme, SE = (K, E ,D). The key generation algorithm simply returns a random
key for the block cipher, K $←K. The encryptor maintains a counter ctr which is
initially zero. The encryption and decryption algorithms are depicted in Figure 4.3.
The IV (“initialization vector”) is C[0], which is set to the current value of the
counter. The counter is then incremented each time a message is encrypted. The
counter is a static variable, meaning that its value is preserved across invocations
of the encryption algorithm.

The CTR (counter) modes that follow are not much used, to the best of our knowl-
edge, but perhaps wrongly so. We will see later that they have good privacy prop-
erties. In contrast to CBC, the encryption procedure is parallelizable, which can be
exploited to speed up the process in the presence of hardware support. It is also
the case that the methods work for strings of arbitrary bit lengths, without doing
anything “special” to achieve this end. There are two variants of CTR mode, one

Bellare and Rogaway 95

Algorithm EK(M)
m ← �|M |/n�
R $←{0, 1}n

Pad ← EK(R + 1) ‖ EK(R + 2) ‖ · · · ‖ EK(R + m)
Pad ← the first |M | bits of Pad
C ′ ← M ⊕ Pad
C ← R ‖ C ′

Return C

Algorithm DK(C)
If |C| < n then return ⊥
Parse C into R ‖ C ′ where |R| = n
m ← �|C ′|/n�
Pad ← EK(R + 1) ‖ EK(R + 2) ‖ · · · ‖ EK(R + m)
Pad ← the first |C ′| bits of Pad
M ← C ′ ⊕ Pad
Return M

Figure 4.4: CTR$ mode using a block cipher E: K×{0, 1}n → {0, 1}n. This version
of counter mode is probabilistic and stateless.

random and the other stateful, and, as we will see later, their security properties
are different. For security analyses see Section 4.9 and Section 4.12.1.

Scheme 4.6 [CTR$ mode] Let E: K × {0, 1}n → {0, 1}� be be a block cipher.
Then CTR mode over E with a random starting point is a probabilistic, stateless
symmetric encryption scheme, SE = (K, E ,D). The key-generation algorithm sim-
ply returns a random key for E. The encryption and decryption algorithms are
depicted in Figure 4.4. The starting point R is used to define a sequence of values
on which EK is applied to produce a “pseudo one-time pad” to which the plaintext
is XORed. The starting point R chosen by the encryption algorithm is a random
n-bit string. To add an n-bit string R to an integer i—when we write EK(R + i)—
convert the n-bit string R into an integer in the range [0 .. 2n − 1] in the usual way,
add this number to i, take the result modulo 2n, and then convert this back into an
n-bit string. Note that the starting point R is included in the ciphertext, to enable
decryption. On encryption, the pad Pad is understood to be the empty string when
m = 0.

We now give the counter-based version of CTR mode.

Scheme 4.7 [CTRC mode] Let E: K × {0, 1}n → {0, 1}n be a block cipher.
Operating it in CTR mode with a counter starting point is a stateful symmetric

96 SYMMETRIC ENCRYPTION

Algorithm EK(M)
static ctr ← 0
m ← �|M |/��
If ctr + m − 1 ≥ 2n then return ⊥
Pad ← EK(ctr) ‖ EK(ctr + 1) ‖ · · · ‖ EK(ctr + m − 1)
Pad ← the first |M | bits of Pad
C ← M ⊕ Pad
ctr ← ctr + m
Return 〈ctr − m, C〉

Algorithm DK(〈i, C〉)
m ← �|C|/��
Pad ← EK(i) ‖ EK(i + 1) ‖ · · · ‖ EK(i + m − 1)
Pad ← the first C| bits of Pad
M ← Pad ⊕ C
Return M

Figure 4.5: CTRC mode using a block cipher E: K×{0, 1}n → {0, 1}n. This version
of counter mode uses stateful (but deterministic) encryption.

encryption scheme, SE = (K, E ,D), which we call CTRC. The key-generation al-
gorithm simply returns a random key for E. The encryptor maintains a counter
ctr which is initially zero. The encryption and decryption algorithms are depicted
in Figure 4.5. Position index ctr is not allowed to wrap around: the encryption
algorithm returns ⊥ if this would happen. The position index is included in the
ciphertext in order to enable decryption. The encryption algorithm updates the
position index upon each invocation, and begins with this updated value the next
time it is invoked.

We will return to the security of these schemes after we have developed the appro-
priate notions.

We comment that the “backwards direction” of E is never used and so CTRC
and CTR$ modes make sense even if E is not a block cipher but an arbitrary
function family F : K × {0, 1}n → {0, 1}n instead. Indeed you could allow any
function family F : K×{0, 1}n → {0, 1}�, not necessarily length-preserving, making
the obvious changes to the schemes. In contrast, for modes CBCC and CBC$ you
do need to go backwards, though only for decryption. Thus even for these modes
encryption we may consider encryption to be well-defined for any function family
E: K × {0, 1}n → {0, 1}n.

Bellare and Rogaway 97

4.3 Issues in privacy

Let us fix a symmetric encryption scheme SE = (K, E ,D). Two parties share a
key K for this scheme, this key having being generated as K $←K. The adversary
does not a priori know K. We now want to explore the issue of what the privacy of
the scheme might mean. For this chapter, security is privacy, and we are trying to
get to the heart of what security is about.

The adversary is assumed able to capture any ciphertext that flows on the chan-
nel between the two parties. It can thus collect ciphertexts, and try to glean some-
thing from them. Our first question is: what exactly does “glean” mean? What
tasks, were the adversary to accomplish them, would make us declare the scheme
insecure? And, correspondingly, what tasks, were the adversary unable to accom-
plish them, would make us declare the scheme secure?

It is easier to think about insecurity than security, because we can certainly
identify adversary actions that indubitably imply the scheme is insecure. For ex-
ample, if the adversary can, from a few ciphertexts, derive the underlying key K, it
can later decrypt anything it sees, so if the scheme allowed easy key recovery from a
few ciphertexts it is definitely insecure. Yet, an absence of easy key recovery is not
enough for the scheme to be secure; maybe the adversary can do something else.

One might want to say something like: given C, the adversary has no idea
what M is. This however cannot be true, because of what is called a priori in-
formation. Often, something about the message is known. For example, it might
be a packet with known headers. Or, it might be an English word. So the adver-
sary, and everyone else, has some information about the message even before it is
encrypted.

One might also try to say that what we want is: given ciphertext C, the adversary
can’t easily recover the plaintext M . But actually, this isn’t good enough. The
reason is that the adversary might be able to figure out partial information about M .
For example, even though it might not be able to recover M , the adversary might,
given C, be able to recover the first bit of M , or the sum of all the bits of M . This
is not good, because these bits might carry valuable information.

For a concrete example, say I am communicating to my broker a message which
is a sequence of “buy” or “sell” decisions for a pre-specified sequence of stocks. That
is, we have certain stocks, numbered 1 through m, and bit i of the message is 1 if I
want to buy stock i and 0 otherwise. The message is sent encrypted. But if the first
bit leaks, the adversary knows whether I want to buy or sell stock 1, which may be
something I don’t want to reveal. If the sum of the bits leaks, the adversary knows
how many stocks I am buying.

Granted, this might not be a problem at all if the data were in a different format.
However, making assumptions, or requirements, on how users format data, or how
they use it, is a bad and dangerous approach to secure protocol design. An important
principle of good cryptographic design is that the encryption scheme should provide
security regardless of the format of the plaintext. Users should not have to worry

98 SYMMETRIC ENCRYPTION

about the how they format their data: they format it as they like, and encryption
should provide privacy nonetheless.

Put another way, as designers of security protocols, we should not make as-
sumptions about data content or formats. Our protocols must protect any data, no
matter how formatted. We view it as the job of the protocol designer to ensure this
is true.

We want schemes that are secure in the strongest possible natural sense. What
is the best we could hope for? It is useful to make a thought experiment. What
would an “ideal” encryption be like? Well, it would be as though some angel took
the message M from the sender and delivered it to the receiver, in some magic
way. The adversary would see nothing at all. Intuitively, our goal is to approximate
this as best as possible. We would like encryption to have the properties of ideal
encryption. In particular, no partial information would leak.

As an example, consider the ECB encryption scheme of Example 4.3. Given
the ciphertext, can an eavesdropping adversary figure out the message? It is hard
to see how, since it does not know K, and if F is a “good” block cipher, then it
ought to have a hard time inverting FK without knowledge of the underlying key.
Nonetheless this is not a good scheme. Consider just the case n = 1 of a single
block message. Suppose I have just two messages, 0n for buy and 1n for sell. I keep
sending data, but always one of these two. What happens? The adversary sees
which plaintext blocks are the same. That is, it might see if the first two orders are
the same, if they are equal to the third order, and so forth.

In a secure encryption scheme, it should not be possible to relate ciphertexts of
different messages in such a way that information is leaked.

Not allowing message-equalities to be leaked has a dramatic implication. Namely,
encryption must be probabilistic or depend on state information. If not, you can
always tell if the same message was sent twice. Each encryption must use fresh coin
tosses, or, say, a counter, and an encryption of a particular message may be different
each time. In terms of our setup it means E is a probabilistic or stateful algorithm.
That’s why we defined symmetric encryption schemes, above, to allow these types
of algorithms.

The reason this is dramatic is that it goes in many ways against the historical
or popular notion of encryption. Encryption was once thought of as a code, a fixed
mapping of plaintexts to ciphertexts. But this is not the contemporary viewpoint.
A single plaintext should have many possible ciphertexts (depending on the random
choices or the state of the encryption algorithm). Yet it must be possible to decrypt.
How is this possible? We have seen several examples above.

One formalization of privacy is what is called perfect security, an information-
theoretic notion introduced by Shannon and showed by him to be met by the one-
time pad scheme, and covered in Chapter B. Perfect security asks that regardless
of the computing power available to the adversary, the ciphertext provides it no
information about the plaintext beyond the a priori information it had prior to
seeing the ciphertext. Perfect security is a very strong attribute, but achieving it

Bellare and Rogaway 99

requires a key as long as the total amount of data encrypted, and this is not usually
practical. So here we look at a notion of computational security. The security will
only hold with respect to adversaries of limited computing power. If the adversary
works harder, she can figure out more, but a “feasible” amount of effort yields no
noticeable information. This is the important notion for us and will be used to
analyze the security of schemes such as those presented above.

4.4 Indistinguishability under chosen-plaintext attack

We have already discussed the issues in Section 4.3 above and will now distill a
formal definition of security.

The basic idea behind indistinguishability (or, more fully, left-or-right indis-
tinguishability under a chosen-plaintext attack) is to consider an adversary (not in
possession of the secret key) who chooses two messages of the same length, L and R.
Then one of the two messages is encrypted, and the ciphertext is given to the ad-
versary. The scheme is considered secure if the adversary has a hard time telling
which of the two messages was the one encrypted.

We will actually give the adversary a little more power, letting her choose a
whole sequence of pairs of equal-length messages. Let us now detail the game.

The adversary chooses a sequence of pairs of messages, (L1, R1), . . . , (Lq, Rq),
where, in each pair, the two messages have the same length. We give to the adversary
a sequence of ciphertexts C1, . . . , Cq. Either we consistently encrypt the Li strings
(the L stands for left) or we consistently encrypt the Ri strings (the R stands for
right). In doing the encryptions, the algorithm uses fresh coins, or an updated state,
each time. The adversary gets the sequence of ciphertexts and now it must guess if
it has been the Li strings or the Ri strings that we have been encrypting.

To further empower the adversary, we let it choose the sequence of message
pairs via a chosen plaintext attack. This means that the adversary chooses the
first pair, then receives C1, then chooses the second pair, receives C2, and so on.
Sometimes this is called an adaptive chosen-plaintext attack, because the adversary
can adaptively choose each query in a way responsive to the earlier answers.

Let us now formalize this. We fix some encryption scheme SE = (K, E ,D). It
could be either stateless or stateful. We consider an adversary A. It is a program
which has access to an oracle to which it can provide as input any pair (L, R) of
equal-length messages. The oracle will return a ciphertext. We will consider two
possible ways in which this ciphertext is computed by the oracle, corresponding to
two possible “worlds” in which the adversary “lives”. To do this, first define the
left-or-right encryption oracle EK(LR(·, ·, b)), as follows:

Oracle EK(LR(M0, M1, b)) // b ∈ {0, 1} and M0,M1 ∈ {0, 1}∗
C ← EK(Mb)
Return C

100 SYMMETRIC ENCRYPTION

The oracle encrypts one of the messages, the choice of which being made according
to the bit b. Now the two worlds are as follows:

World 0: The oracle provided to the adversary is EK(LR(·, ·, 0)). So, whenever the
adversary makes a query (M0, M1) to its oracle, the oracle computes C $←EK(M0),
and returns C as the answer.

World 1: The oracle provided to the adversary is EK(LR(·, ·, 1)). So, whenever the
adversary makes a query (M0, M1) to its oracle, the oracle computes C $←EK(M1),
and returns C as the answer.

We call the first world (or oracle) the “left” world (or oracle), and we call the second
world (or oracle) the “right” world (or oracle). The problem for the adversary is,
after talking to its oracle for some time, to tell which of the two oracles it was given.
Before we pin this down, let us further clarify exactly how the oracles operate.

Think of an oracle as a subroutine to which A has access. Adversary A can
make an oracle query (M0, M1) by calling the subroutine with arguments (M0, M1).
In one step, the answer is then returned. Adversary A has no control on how the
answer is computed, nor can A see the inner workings of the subroutine, which will
typically depend on secret information that A is not provided. Adversary A has
only an interface to the subroutine—the ability to call it as a black-box, and get
back an answer.

First assume the given symmetric encryption scheme SE is stateless. The oracle,
in either world, is probabilistic, because it calls the encryption algorithm. Recall
that this algorithm is probabilistic. Above, when we say C $←EK(Mb), it is implicit
that the oracle picks its own random coins and uses them to compute ciphertext C.

The random choices of the encryption function are somewhat “under the rug”
here, not being explicitly represented in the notation. But these random bits should
not be forgotten. They are central to the meaningfulness of the notion and the
security of the schemes.

If the given symmetric encryption scheme SE is stateful, the oracles, in either
world, become stateful, too. (Think of a subroutine that maintains a “static” vari-
able across successive calls.) An oracle (either one) begins with a state value initial-
ized to a value specified by the encryption scheme. For example, in CTRC mode, the
state is an integer ctr that is initialized to 0. Now, each time the oracle is invoked,
it computes EK(Mb) according to the specification of algorithm E . The algorithm
may, as a side-effect, update the state, and upon the next invocation of the oracle,
the new state value will be used.

We clarify that the choice of which world we are in is made just once, at the
beginning, before the adversary starts to interact with the oracle. In world 0, all
message pairs sent to the oracle are answered by the oracle encrypting the left
message in the pair, while in world 1, all message pairs are answered by the oracle
encrypting the right message in the pair. The choice of which does not flip-flop from
oracle query to oracle query.

We consider an encryption scheme to be “secure against chosen-plaintext attack”

Bellare and Rogaway 101

if an adversary restricted to using “practical” amount of resources (computing time,
number of queries) cannot obtain “significant” advantage in distinguishing the cases
b = 0 and b = 1 given access to the oracle, where reasonable reflects its resource
usage. The technical notion is called left-or-right indistinguishability under chosen-
plaintext attack, denoted IND-CPA.

Before presenting the technical definition we need to discuss a subtle point. Were
we not careful, there would be certain queries that an adversary can make to its
lr-encryption oracle which will definitely enable it to learn the value of the hidden
bit b (meaning figure out in which world it is) but which we consider illegitimate.
One is to query the oracle with messages M0, M1 of different lengths. We do not ask
that encryption hide the length of the plaintext, and indeed common schemes reveal
this because the length of the ciphertext depends on the length of the plaintext, so
an adversary making such a query might easily win. Another, less obvious attack
is for the adversary to make a query M0, M1 of equal-length messages such that
EK(M0) �= ⊥ and EK(M1) = ⊥. (If the scheme is stateless, this means M0 is in the
plaintext space and M1 is not.) For some schemes, it is easy for the adversary to find
such messages. However, the response of the lr-encryption oracle then gives away the
bit b. We have chosen to deal with these issues by simply disallowing the adversary
from making such queries. That is, let us say that an adversary is illegitimate if
(for some coins it might be provided and for some sequence of oracle responses it
might be given) it either makes an lr-encryption query consisting of two messages of
different lengths or it makes an lr-encryption query M0, M1 for which EK(M0) = ⊥
or EK(M1) = ⊥. The adversary is legitimate if it is not illegitimate. We henceforth
assume that any adversary for attacking IND-CPA indistinguishability is legitimate.

Assuming that any IND-CPA attacking adversary is legitimate is not a signifi-
cant assumption, and, when convenient, we will always feel at liberty to make such
restrictions on our universe of adversaries. When you make a restriction like this it
is natural to ask: but what if the adversary is not legitimate. One answer is to say
that the advantage of the adversary is, in such a case, defined as zero. A different
answer is to say that the question is meaningless: when we define Advind-cpa

SE (A) we
are defining this value for adversaries that are of the type-correct, and asking about
Advind-cpa

SE (A) for an illegitimate adversary A doesn’t make much sense than asking
about Advind-cpa

SE (A) where A is a real number, a set of strings or guinea pig.

Definition 4.8 Let SE = (K, E ,D) be a symmetric encryption scheme. We define
from SE the following two oracles:

Oracle Left

Initialization
K $←K
On query (L, R)
if |L| �= |R| then return ⊥
C $←EK(L)
Return C

Oracle Right

Initialization
K $←K
On query (L, R)
if |L| �= |R| then return ⊥
C $←EK(R)
Return C

102 SYMMETRIC ENCRYPTION

The IND-CPA advantage of A is defined as

Advind-cpa
SE (A) = Pr

[
ARight(·,·)⇒1

]
− Pr

[
ALeft(·,·)⇒1

]
.

We discuss some important conventions for when we speak of the resource of ad-
versary A. The running time of an adversary A is the worst case execution time
of A over all possible coins of A and all conceivable oracle return values (including
return values that could never arise in the experiment used to define some particular
advantage notion). Oracle queries are understood to return a value in unit time,
but it takes the adversary one unit of time to read any bit that it chooses to read.
By convention, the running time of A also includes the size of the code of the adver-
sary A, in some fixed RAM model of computation. This convention for measuring
time complexity is the same as used in other parts of these notes, for all kinds of
adversaries.

Other resource conventions are specific to the IND-CPA notion. When the ad-
versary asks its left-or-right encryption oracle a query (M0, M1) we say that length
of this query is |M0|. (We can assume this equals |M1| since the adversary is as-
sumed to be legitimate.) The total length of queries is the sum of the length of each
query. We can measure query lengths in bits or in blocks, with block having some
understood number of bits n.

If Advind-cpa
SE (A) is small (meaning close to zero), it means that A is outputting 1

about as often in world 0 as in world 1, meaning it is not doing a good job of telling
which world it is in. If this quantity is large (meaning close to one—or at least far
from zero) then the adversary A is doing well, meaning our scheme SE is not secure,
at least to the extent that we regard A as “reasonable.”

Informally, for symmetric encryption scheme SE to be secure against chosen
plaintext attack, the IND-CPA advantage of an adversary must be small, no matter
what strategy the adversary tries. However, we have to be realistic in our expec-
tations, understanding that the advantage may grow as the adversary invests more
effort in its attack. Security is a measure of how large the advantage of the adversary
might when compared against the adversary’s resources. The resources of the ad-
versary we will typically care about are three. First, its time-complexity, measured
according to the convention above. Second, the number of oracle queries, meaning
the number of message pairs the adversary asks of its oracle. These messages may
have different lengths, and our third resource measure is the sum of all these lengths,
denoted µ, again measured according to the convention above.

Let us move on to describe a somewhat different interpretation of left-or-right
indistinguishability. Why is Advind-cpa

SE (A) called the “advantage” of the adversary?
We can view the task of the adversary as trying to guess which world it is in.
A trivial guess is for the adversary to return a random bit. In that case, it has
probability 1/2 of being right. Clearly, it has not done anything damaging in this
case. The advantage of the adversary measures how much better than this it does

Bellare and Rogaway 103

at guessing which world it is in, namely the excess over 1/2 of the adversary’s
probability of guessing correctly. In this subsection we will see how the above
definition corresponds to this alternative view, a view that lends some extra intuition
to the definition and is also useful in later usages of the definition.

As usual we fix a symmetric encryption scheme SE = (K, E ,D). We now consider
the following game, or experiment.

Experiment Exmtind1-cpa
SE (A)

Pick a bit b at random
Let K $←K
b′ $← AEK(LR(·,·,b))

If b = b′ return 1 else return 0

Here, adversary A is run with an oracle for world b, where the bit b is chosen at
random. A eventually outputs a bit b′, its guess as to the value of b. The experiment
returns 1 if A’s guess is correct. Thus

Pr
[
Exmtind1-cpa

SE (A) = 1
]

is the probability that A correctly guesses which world it is in. (The probability is
over the initial choice of world as given by the bit b, the choice of K, the random
choices of EK(·) if any, and the coins of A if any.) This value is 1/2 when the
adversary deserves no advantage, since one can guess b correctly by a strategy as
simple as “always answer zero” or “answer with a random bit.” So we re-scale the
value and define

Advind1-cpa
SE (A) = 2 Pr

[
Exmtind1-cpa

SE (A) = 1
]
− 1

The following proposition says that this rescaled advantage is exactly the same
measure as before.

Proposition 4.9 Let SE be a symmetric encryption scheme and let A be an ad-
versary. Then

Advind1-cpa
SE (A) = Advind-cpa

SE (A) .

Proof of Proposition 4.9: We let Pr [·] be the probability of event “·” in the
experiment Exmtind1-cpa

SE (A), and refer below to quantities in this experiment. The
claim of the Proposition follows by a straightforward calculation:

Pr
[
Exmtind1-cpa

SE (A) = 1
]

= Pr [b = g]

= Pr
[
b = b′ | b = 1

]
· Pr [b = 1] + Pr

[
b = b′ | b = 0

]
· Pr [b = 0]

104 SYMMETRIC ENCRYPTION

= Pr
[
b = b′ | b = 1

]
· 1
2

+ Pr
[
b = b′ | b = 0

]
· 1
2

= Pr
[
b′ = 1 | b = 1

]
· 1
2

+ Pr
[
b′ = 0 | b = 0

]
· 1
2

= Pr
[
b′ = 1 | b = 1

]
· 1
2

+
(
1 − Pr

[
b′ = 1 | b = 0

])
· 1
2

=
1
2

+
1
2
·
(
Pr

[
b′ = 1 | b = 1

]
− Pr

[
b′ = 1 | b = 0

])

=
1
2

+
1
2
·
(
Pr

[
Exmtind-cpa-1

SE (A) = 1
]
− Pr

[
Exmtind-cpa-0

SE (A) = 1
])

=
1
2

+
1
2
· Advind-cpa

SE (A) .

We began by expanding the quantity of interest via standard conditioning. The term
of 1/2 in the third line emerged because the choice of b is made at random. In the
fourth line we noted that if we are asking whether b = b′ given that we know b = 1,
it is the same as asking whether b′ = 1 given b = 1, and analogously for b = 0. In the
fifth line and sixth lines we just manipulated the probabilities and simplified. The
next line is important; here we observed that the conditional probabilities in question
are exactly the probabilities that A returns 1 in the experiments of Definition 4.8.

4.5 Example chosen-plaintext attacks

We illustrate the use of our CPA-IND definition in finding attacks by providing an
attack on ECB mode, and also a general attack on deterministic, stateless schemes.

4.5.1 Attack on ECB

Let us fix a block cipher E: K×{0, 1}n → {0, 1}n. The ECB symmetric encryption
scheme SE = (K, E ,D) was described as Scheme 4.3. Suppose an adversary sees
a ciphertext C = EK(M) corresponding to some random plaintext M , encrypted
under the key K also unknown to the adversary. Can the adversary recover M?
Not easily, if E is a “good” block cipher. For example if E is AES, it seems quite
infeasible. Yet, we have already discussed how infeasibility of recovering plaintext
from ciphertext is not an indication of security. ECB has other weaknesses. Notice
that if two plaintexts M and M ′ agree in the first block, then so do the corresponding
ciphertexts. So an adversary, given the ciphertexts, can tell whether or not the
first blocks of the corresponding plaintexts are the same. This is loss of partial
information about the plaintexts, and is not permissible in a secure encryption
scheme.

It is a test of our definition to see that it captures these weaknesses and also
finds the scheme insecure. It does. To show this, we want to show that there is

Bellare and Rogaway 105

an adversary that has a high IND-CPA advantage while using a small amount of
resources. This is what the following proposition says.

Proposition 4.10 Let E: K × {0, 1}n → {0, 1}n be a block cipher, and SE =
(K, E ,D) the corresponding ECB symmetric encryption scheme as described in
Scheme 4.3. Then there is an adversary A that runs in time O(n) and asks a single
query, this query having length 2n, and for which

Advind-cpa
SE (A) = 1 .

The advantage of this adversary is 1 even though it uses hardly any resources. That
is an indication that the scheme is insecure.

Proof of Proposition 4.10: We must construct the adversary A. Remember
that A is given an lr-encryption oracle EK(LR(·, ·, b)) that takes as input a pair of
messages and that returns an encryption of either the left or the right message in
the pair, depending on the value of the bit b. The goal of A is to determine the
value of b. Our adversary works like this:

Adversary AEK(LR(·,·,b))

M1 ← 02n ; M0 ← 0n ‖ 1n

C[1]C[2] ← EK(LR(M0, M1, b))
If C[1] = C[2] then return 1 else return 0

The adversary’s single oracle query is the pair of messages M0, M1. Since each of
them is two blocks long, so is the ciphertext computed according to the ECB scheme.
Now, we claim that

Pr
[
Exmtind-cpa-1

SE (A) = 1
]

= 1 and

Pr
[
Exmtind-cpa-0

SE (A) = 1
]

= 0 .

Hence Advind-cpa
SE (A) = 1 − 0 = 1. And A achieved this advantage by making just

one oracle query, whose length, which as per our conventions is just the length of M0,
is 2n bits. So Advind-cpa

SE (A) = 1.

Why are the two equations claimed above true? You have to return to the definitions
of the quantities in question, and trace through the experiments defined there. In
world 1, meaning b = 1, the oracle returns C[1]C[2] = EK(0n) ‖ EK(0n), so C[1] =
C[2] and A returns 1. In world 0, meaning b = 0, the oracle returns C[1]C[2] =
EK(0n)EK(1n). Since EK is a permutation, C[1] �= C[2]. So A returns 0 in this
case.

As an exercise, try to analyze the same adversary as an adversary against CBC$ or
CTR modes, and convince yourself that the adversary will not get a high advantage.

106 SYMMETRIC ENCRYPTION

There is an important feature of this attack that must be emphasized. Namely,
ECB is an insecure encryption scheme even if the underlying block cipher E is highly
secure. The weakness is not in the tool being used (here the block cipher) but in
the manner we are using it. It is the ECB mechanism that is at fault. Even the
best of tools are useless if you don’t know how to properly use them.

This is the kind of design flaw that we want to be able to spot and eradicate.
Our goal is to find symmetric encryption schemes that are secure as long as the
underlying block cipher is secure. In other words, the scheme has no inherent flaw;
as long as you use good ingredients, the recipe will produce a good meal. If you
don’t use good ingredients? Well, that is your problem. All bets are off.

4.5.2 Deterministic, stateless schemes are always insecure

ECB mode is deterministic and stateless, so that if the same message is encrypted
twice, the same ciphertext is returned. It turns out that this property, in general,
results in an insecure scheme, and provides perhaps a better understanding of why
ECB fails. Let us state the general fact more precisely.

Proposition 4.11 Let SE = (K, E ,D) be a deterministic, stateless symmetric en-
cryption scheme. Assume there is an integer m such that the plaintext space of the
scheme contains two distinct strings of length m. Then there is an adversary A such
that

Advind-cpa
SE (A) = 1 .

Adversary A runs in time O(m) and asks just two queries, each of length m.

The requirement being made on the message space is minimal; typical schemes
have messages spaces containing all strings of lengths between some minimum and
maximum length, possibly restricted to strings of some given multiples. Note that
this Proposition applies to ECB and is enough to show the latter is insecure.

Proof of Proposition 4.11: We must describe the adversary A. Remember
that A is given an lr-encryption oracle f = EK(LR(·, ·, b)) that takes input a pair
of messages and returns an encryption of either the left or the right message in the
pair, depending on the value of b. The goal of A is to determine the value of b. Our
adversary works like this:

Adversary Af

Let X, Y be distinct, m-bit strings in the plaintext space
C1 ← f(X, Y)
C2 ← f(Y, Y)
If C1 = C2 then return 1 else return 0

Bellare and Rogaway 107

Now, we claim that

Pr
[
Exmtind-cpa-1

SE (A) = 1
]

= 1 and

Pr
[
Exmtind-cpa-0

SE (A) = 1
]

= 0 .

Hence Advind-cpa
SE (A) = 1 − 0 = 1. And A achieved this advantage by making two

oracle queries, each of whose length, which as per our conventions is just the length
of the first message, is m bits.

Why are the two equations claimed above true? In world 1, meaning b = 1, the
oracle returns C1 = EK(Y) and C2 = EK(Y), and since the encryption function is
deterministic and stateless, C1 = C2, so A returns 1. In world 0, meaning b = 0, the
oracle returns C1 = EK(X) and C2 = EK(Y), and since it is required that decryption
be able to recover the message, it must be that C1 �= C2. So A returns 0.

4.5.3 Attack on CBC encryption with counter IV

Let us fix a block cipher E: K×{0, 1}n → {0, 1}n. We show that the counter-based
version of the CBC encryption mode described in Scheme 4.5 is insecure. The reason
is that the adversary can predict the counter value.

Proposition 4.12 Let E: K × {0, 1}n → {0, 1}n be a block cipher, and SE =
(K, E ,D) the corresponding CBCC symmetric encryption scheme as described in
Scheme 4.5. Then there exists an adversary A such that

Advind-cpa
SE (A) = 1

where A run in time for O(n) and A asks just two queries, each of n bits.

The advantage of this adversary is 1 even though it uses hardly any resources: just
one query, and that query just one block long. That is clearly an indication that
the scheme is insecure.

Proof of Proposition 4.12: Again, we must construct an adversary A that
uses the specified resources and obtains the specified advantage. Remember the
adversary A is given an lr-encryption oracle f = EK(LR(·, ·, b)) that takes as input a
pair of messages and returns an encryption of either the left or the right message in
the pair, depending on the value of the hidden bit b. The goal of A is to determine
the value of b. Our adversary works like this:

Adversary AEK(LR(·,·,b))

L1 ← 0n ; R1 ← 0n

L2 ← 0n ; R2 ← 0n−11
〈IV1, C1〉 ← f(L1, R1)
〈IV2, C2〉 ← f(L2, R2)
If C1 = C2 then return 1 else return 0

108 SYMMETRIC ENCRYPTION

We claim that

Pr
[
Exmtind-cpa-1

SE (A) = 1
]

= 1 and

Pr
[
Exmtind-cpa-0

SE (A) = 1
]

= 0 .

Hence Advind-cpa
SE (A) = 1 − 0 = 1, as desired. To justify the above equalities,

first consider the case b = 0, meaning we are in world 0. In that case IV1 = 0
and IV1 = 1 and C1 = EK(0) and C2 = EK(1) and so C1 �= C2 and the defined
experiment returns 0. On the other hand, if b = 1, meaning we are in world 1, then
IV1 = 0 and IV1 = 1 and C1 = EK(0) and C2 = EK(0), so the defined experiment
returns 1.

4.6 Notions equivalent to indistinguishability

One of the ways that we gain confidence that a definition is interesting and mean-
ingful is to demonstrate that it is equivalent to alternative, different-looking for-
mulations. In this section we’ll look at two such alternatives. The first notion,
indistinguishability from the encryption of random bits, captures the idea that an
adversary shouldn’t be able tell apart a “real” encryption oracle from an encryption
oracle that, instead of encrypting its oracle query, just encrypts a string of ran-
dom bits. Our second alternative notion, semantic security, captures the idea that
a secure encryption scheme should hide all partial information about an unknown
plaintext. This latter formulation may most directly match the intuition about what
secure encryption ought to achieve.

4.6.1 Real-or-zero security

Fix an encryption scheme SE = (K, E ,D). Now consider two types of oracles: a
real encryption-oracle and a zero encryption-oracle. The behavior of the oracles
depends on the encryption scheme SE . Both oracles begin by choosing a random
key K $←K from the keyspace. Afterwards, the Real encryption oracle responds to
any query M by computing a ciphertext C $←EK(M) and returning C. In contrast,
the Zero encryption-oracle responds to a query M by encrypting 0|M |: it computes
and returns C $←EK(0|M |). The adversary’s job is to identify if it is in possession of
a Real encryption-oracle or a Zero encryption-oracle. The formal definition follows:

Definition 4.13 [Real-or-Zero security] Let SE = (K, E ,D) be a symmetric
encryption scheme. We define the following two oracles:

Bellare and Rogaway 109

Oracle Real

Initialization:
K $←K
On query M :
C $←EK(M)
return C

Oracle Zero

Initialization:
K $←K
On query M :
C $←EK(0|M |)
return C

The RZ-CPA advantage of A is defined as

Advrz-cpa
SE (A) = Pr[AReal(·)⇒1] − Pr[AZero(·)⇒1]

We now show that RZ-CPA security is equivalent to IND-CPA security. This
entails that RZ-CPA security implies IND-CPA security, and IND-CPA security
implies RZ-CPA.

Proposition 4.14 [IND-CPA ⇒ RZ-CPA] Let SE = (K, E ,D) be a symmetric
encryption scheme and let A be an adversary (for attacking the RZ-CPA security
of SE) that runs in time at most t and asks at most q queries, these queries totaling
at most µ bits. Then there exists an adversary B (for attacking the IND-CPA
security of SE) such that

Advind-cpa
SE (B) ≥ Advrz-cpa

SE (A)

and where B runs in time t′ = t + O(µ) and asks q′ = q queries, these queries
totaling µ bits.

Proof: The adversary B is constructed as follows:

Adversary Bg:
Run Af

When A makes a query f(M):
C ← g(0|M |, M)
Answer A’s query by C

When A halts, outputting a bit β
Return β

So B runs in at most t + O(µ) time and asks at most q queries and these queries
total at most µ bits. As for B’s advantage, note that

Pr[BRight(·,·)⇒1] = Pr[AEK(·)⇒1] and

Pr[BLeft(·,·)⇒1] = Pr[AEK(0|·|)⇒1]

110 SYMMETRIC ENCRYPTION

and so

Advind-cpa
SE (B) = Pr[BRight(·,·)⇒1] − Pr[BLeft(·,·)⇒1]

= Pr[AEK(·)⇒1] − Pr[AEK(0|·|)⇒1]

= Advind-cpa
SE (B) = Advrz-cpa

SE (A)

completing the proof.

Proposition 4.15 [RZ-CPA ⇒ IND-CPA] Let SE = (K, E ,D) be a symmetric
encryption scheme and let A be an adversary (for attacking the IND-CPA security
of SE) that runs in time at most t, asking at most q queries, these queries totaling at
most µ bits. Then there exists an adversary B (for attacking the RZ-CPA security
of SE) such that

Adv(B) ≥ Adv(A)

and where B runs in time t′ = t + O(µ) and asks q′ = q queries, these queries
totaling µ bits.

The proof is by a hybrid argument. In such an argument one inserts one or more
“intermediate behaviors” between the behaviors one is interested in. Here the hybrid
is something we regard as being “between” the behavior of a left encryption-oracle
and the behavior of a right encryption oracle.

Proof: Given the encryption scheme SE = (K, E ,D), define oracle O to behave in
the following way:

Oracle O

Initialization:
K $←K
On query (L, R) (where |L| = |R|):
C $←EK(0|L|)
return C

Now

Advind-cpa
SE (A) = Pr[ARight(·,·)⇒1] − Pr[ALeft(·,·)⇒1]

=
(
Pr[ARight(·,·)⇒1] − Pr[AO(·,·)⇒1]

)
+

(
Pr[AO(·,·)⇒1] − Pr[ALeft(·,·)⇒1]

)

and so either

Pr[ARight(·,·)⇒1] − Pr[AO(·,·)⇒1] ≥ 0.5 Advind-cpa
SE (A) (4.1)

Bellare and Rogaway 111

or

Pr[AO(·,·)⇒1] − Pr[ALeft(·,·)⇒1] ≥ 0.5 Advind-cpa
SE (A) . (4.2)

In the first case, we build the adversary B in one way; in the second case, will build
the adversary B in a different way. Let us first assume Equation 4.1. In that case,
adversary B works as follows:

Adversary Bg

Run Af

When A makes oracle query f(L, R)
Compute C ← f(R)
Answer the adversary with C

When A halts with an output of β
Return β

Note that B runs in time at most t+O(µ) and it asks q queries, these totaling µ bits.
If B is presented a Real(·) oracle then A is provided an environment identical to its
having been presented an oracle Right(·, ·). On the other hand, if B is presented
a Zero(·) oracle then A is provided an environment identical to its having been
presented an oracle O(·, ·). Thus

Advrz-cpa
SE (B) = Pr[BReal(·,·)⇒1] − Pr[BZero(·,·)⇒1]

= Pr[ARight(·,·)⇒1] − Pr[AO(·,·)⇒1]

≥ 0.5 Advind-cpa
SE (A)

which completes the first case.

If Equation (4.2) holds instead, then we will construct the adversary B as follows:

Adversary Bg

Run Af

When A makes oracle query f(L, R)
Compute C ← f(L)
Answer the adversary with C

When A halts with an output of β
Return 1 − β

Note that B runs in time at most t+O(µ) and it asks q queries, these totaling µ bits.
If B is presented a Real(·) oracle then A is provided an environment identical to its
having been presented an oracle Left(·, ·), and then we flip the answer that A would
return. On the other hand, if B is presented a Zero(·) oracle then A is provided

112 SYMMETRIC ENCRYPTION

an environment identical to its having been presented an oracle O(·, ·), and then we
flip the answer that A would return. Thus

Advrz-cpa
SE (B) = Pr[BReal(·,·)⇒1] − Pr[BZero(·,·)⇒1]

= (1 − Pr[ALeft(·,·)⇒1]) − (1 − Pr[AO(·,·)⇒1])

= Pr[AO(·,·)⇒1] − Pr[ALeft(·,·)⇒1])

≥ 0.5 Advind-cpa
SE (A)

which completes the second case and the proof.

Note: need to add some technical condition about 0i being in the
domain?

4.6.2 Semantic security

Definitions like that of IND-CPA or RZ-CPA can be criticized for failing to directly
model what people “intend” when the speak of security in the face of a chosen-
plaintext attack. Though such a thing is hard to pin down, the intent would seem
to have more to do with the hope that encryption protects the privacy of plaintexts
when you see ciphertexts and don’t know what these plaintexts are. In particular,
to call an encryption scheme secure one wants to believe that a ciphertext reveals
nothing significant about the underlying plaintext. So far, we have given notions
where the adversary’s job has nothing to do with trying to say something meaningful
about plaintexts whose ciphertexts are sees.

It takes work to raise intuition like that of the previous paragraph into a defi-
nition. In the case of encryption, Shafi Goldwasser and Silvio Micali were the first
accomplish this. The intuition of theirs that we will try to capture in a definition
is this: that an encryption scheme is secure if that which can be determined about
some plaintexts from their ciphertexts can just as easily be computed in the absence
of those ciphertexts. We want to raise this intuition to a definition, which we shall
do in our own way.

To make for a very strong definition, we will let the adversary choose both
the message spaces from which messages are drawn and the information-function
about messages that the adversary wants to second guess. To make the definition
as general as possible, we will let the adversary choose, in sequence, message spaces
M1, . . . ,Mr. From each message space Mi a message Mi will be chosen at random
and encrypted to Ci using our encryption scheme. Then the adversary will try to
compute something about the vector of plaintexts (M1, . . . , Mr). The something
that the adversary computes will be an arbitrary function F of the adversary’s
choice. We will compare how good a job A does at computing F (M1, . . . ,Mr) with
how good a job A does at a different task. That “different task” is computing
F (M1, . . . , Mr) where the adversary has no information about M1, . . . , Mr except
that these strings are drawn from the distributions the adversary has indicated. In

Bellare and Rogaway 113

carrying out all of the above, we give the adversary an encryption oracle, so that it
can mount a chosen-plaintext attack. The definition now follows.

Definition 4.16 [Semantic security] Let SE = (K, E ,D) be a symmetric encryp-
tion scheme and define the following oracle from it:

Oracle SampleThenEncrypt

Initialization:
q ← 0
K $←K

On query M:
q ← q + 1
Mq

$←Mq

C $←EK(Mq)
return C

Oracle SampleThenEncrypt′

Initialization:
i ← 0
K $←K

On query M:
q ← q + 1
Mq, M ′

q
$←Mq

C $←EK(M ′
q)

return C

The SEM-CPA advantage of A is defined as

Advsem-cpa
SE (A) = Pr[(F, Y) $← ASampleThenEncrypt(·) : F (M1, . . . , Mq) = Y] −

Pr[(F, Y) $← ASampleThenEncrypt′(·) : F (M1, . . . , Mq) = Y]

In the definition above, as the oracles are executed they define the variable q,
for the total number of oracle queries, and the strings M1, . . . , Mq. These values are
referred to in the subsequent experiment that defines SEM-CPA advantage. By M
we denote a probabilistic algorithm, described relative to some standard encoding,
that produces a string output. We insist that if M and M ′ are output with nonzero
probability by M then |M | = |M ′|. By F we denote a deterministic function
(described by some standard encoding) that produces a string output. By Y we
denote a string.

In speaking of the running time of A, we include, beyond the actual running
time, the maximal time to draw two samples from each message space M that A
outputs, and we include the maximal time to compute F (M1, . . . , Mr) over any
vector of strings. In speaking of the length of A’s queries we include, for any message
space M output by A, the length of a string M output with nonzero probability
by M.

We emphasize that the above would seem to be an exceptionally strong notion
of security. We have given the adversary the ability to choose the message spaces
from which each message will get encrypted. We have let the adversary choose the
partial information about the messages that it finds convenient. We have let the
adversary to be fully adaptive. Note that the adversary can get the encryption of

114 SYMMETRIC ENCRYPTION

any desired message M simply by producing an algorithm M that samples that one
desired message.

We now show that security in the sense of left-or-right indistinguishability implies
semantic security.

Theorem 4.17 [IND-CPA ⇒ SEM-CPA] Let SE = (K, E ,D) be a symmetric
encryption scheme and let A be an adversary (for attacking the SEM-CPA security
of SE) that runs in time at most t and asks at most q queries, these queries totaling
at most µ bits. Then there exists and adversary B (for attacking the IND-CPA
security of SE) that achieves advantage

Advind-cpa
SE (B) ≥ Advsem-cpa

SE (A)

and where B runs in time 2t + O(q + µ) and asks at most q queries, these queries
totaling µ bits.

Proof: The adversary Bg is constructed as follows.

Adversary Bg

i ← 0
Run Af

When A makes an oracle query M
i ← i + 1
Compute Mi, M

′
i

$←M
Compute C ← f(Mi, M

′
i)

Answer the adversary’s query by C
When A halts with an output (F, Y)

if F (M1, . . . , Mi) = Y then return 0 else return 1

We observe that the running time of B is at most 2t + O(µ + q), where the mul-
tiplicative factor of two takes account of the fact that we are sampling two points
instead of one from each message space M queried by the adversary A. In addi-
tion, adversary B asks at most q oracle queries and these queries total at most µ
bits. To verify the advantage that is claimed of the adversary, note that if ora-
cle g is a left encryption-oracle then we are providing A with a perfect simulation
of the experiment associated to oracle SampleThenEncrypt, while if oracle g is a
right encryption-oracle then we are providing A with a perfect simulation of the
experiment associated to having a SampleThenEncrypt′ oracle.

4.7 Indistinguishability implies security against plain-
text recovery

In Section 4.3 we noted a number of security properties that are necessary but not
sufficient for security. For example, it should be computationally infeasible for an

Bellare and Rogaway 115

adversary to recover the key from a few plaintext-ciphertext pairs, or to recover a
plaintext from a ciphertext. A test of our definition is that it implies these properties,
in the sense that a scheme that is secure in the sense of our definition is also secure
against key-recovery or plaintext-recovery.

The situation is analogous to what we saw in the case of PRFs. There we showed
that a secure PRF is secure against key-recovery. In order to have some variation,
this time we choose a different property, namely plaintext recovery. We formalize
this, and then show if there was an adversary B capable of recovering the plaintext
from a given ciphertext, then this would enable us to construct an adversary A that
broke the scheme in the IND-CPA sense (meaning the adversary can identify which
of the two worlds it is in). If the scheme is secure in the IND-CPA sense, that latter
adversary could not exist, and hence neither could the former.

The idea of this argument illustrates one way to evidence that a definition is
good—say the definition of left-or-right indistinguishability. Take some property
that you feel a secure scheme should have, like infeasibility of key recovery from a
few plaintext-ciphertext pairs, or infeasibility of predicting the XOR of the plaintext
bits. Imagine there were an adversary B that was successful at this task. We should
show that this would enable us to construct an adversary A that broke the scheme
in the original sense (left-or-right indistinguishability). Thus the adversary B does
not exist if the scheme is secure in the left-or-right sense. More precisely, we use
the advantage function of the scheme to bound the probability that adversary B
succeeds.

Let us now go through the plaintext recovery example in detail. The task facing
the adversary will be to decrypt a ciphertext which was formed by encrypting a
randomly chosen challenge message of some length m. In the process we want to
give the adversary the ability to see plaintext-ciphertext pairs, which we capture
by giving the adversary access to an encryption oracle. This encryption oracle is
not the lr-encryption oracle we saw above: instead, it simply takes input a single
message M and returns a ciphertext C $←EK(M) computed by encrypting M . To
capture providing the adversary with a challenge ciphertext, we choose a random m-
bit plaintext M , compute C $←EK(M), and give C to the adversary. The adversary
wins if it can output the plaintext M corresponding to the ciphertext C.

For simplicity we assume the encryption scheme is stateless, and that {0, 1}m is
a subset of the plaintext space associated to the scheme. As usual, when either the
encryption or the challenge oracle invoke the encryption function, it is implicit that
they respect the randomized nature of the encryption function, meaning the latter
tosses coins anew upon each invocation of the oracle.

Definition 4.18 Let SE = (K, E ,D) be a stateless symmetric encryption scheme
whose plaintext space includes {0, 1}m and let B be an algorithm that has access
to an oracle. We consider the following experiment:

116 SYMMETRIC ENCRYPTION

Experiment Exmtpr-cpa
SE (B)

K $←K
M ′ $←{0, 1}m

C $←EK(M ′)
M $← BEK(·)(C)
If M = M ′ then return 1 else return 0

The pr-advantage of B is defined as

Advpr-cpa
SE (B) = Pr

[
Exmtpr-cpa

SE (B) = 1
]

.

In the experiment above, B is executed with its oracle and challenge ciphertext C.
The adversary B wins if it can correctly decrypt C, and in that case the experiment
returns 1. In the process, the adversary can make encryption oracle queries as it
pleases.

The following Proposition says that the probability that an adversary success-
fully recovers a plaintext from a challenge ciphertext cannot exceed the IND-CPA
advantage of the scheme (with resource parameters those of the plaintext recovery
adversary) plus the chance of simply guessing the plaintext. In other words, security
in the IND-CPA sense implies security against plaintext recovery.

Proposition 4.19 [IND-CPA ⇒ PR-CPA] Let SE = (K, E ,D) be a stateless
symmetric encryption scheme whose plaintext space includes {0, 1}m. Suppose
that B is a (plaintext-recovery) adversary that runs in time t and asks at most q
queries, these queries totaling at most µ bits. Then there exists an adversary A such
that

Advind-cpa
SE (A) ≥ Advpr-cpa

SE (B) − 1
2m

.

Furthermore, the running time of A is t + O(µ + m + c) where c bounds the length
of the encryption of an m-bit string and A makes q + 1 oracle queries and these
queries total at most µ + m bits.

Recall that turning one adversary B into another type of adversary A is called a
called a reduction. Don’t do a reduction “backwards.” When you transform B,
an adversary for goal B, into A, an adversary for goal A, you are showing that
insecurity in the B-sense implies insecurity in the A-sense, so security in the A-
sense implies security in the B-sense.

Proof of Proposition 4.19: As per Definition 4.8, adversary A will be provided
an lr-encryption oracle and will try to determine in which world it resides. To do
so, it will run adversary B as a subroutine. We provide the description followed by
an explanation and analysis.

Bellare and Rogaway 117

Adversary Af(·,·)

M0
$←{0, 1}m ; M1

$←{0, 1}m

C ← f(M0, M1)
Run adversary Bg(C), replying to its oracle queries as follows
When B makes an oracle query X to g do

Y ← f(X, X)
Return Y to B as the answer

When B halts and outputs a plaintext M
If M = M1 then return 1 else return 0

Here A is running B and itself providing answers to B’s oracle queries. To make the
challenge ciphertext C for B, adversary A chooses random messages M0 and M1

and uses its lr-oracle to get the encryption C of one of them. When B makes an
encryption oracle query X, adversary A needs to return EK(X). It does this by
invoking its lr-encryption oracle, setting both messages in the pair to X, so that
regardless of the value of the bit b, the ciphertext returned is an encryption of X, just
as B wants. When B outputs a plaintext M , adversary A tests whether M = M1

and if so bets that it is in world 1. Otherwise, it bets that it is in world 0. Now we
claim that

Pr
[
Exmtind-cpa-1

SE (A) = 1
]

≥ Advpr-cpa
SE (B) (4.3)

Pr
[
Exmtind-cpa-0

SE (A) = 1
]

≤ 2−m . (4.4)

We will justify these claims shortly, but first let us use them to conclude. Subtract-
ing, as per Definition 4.8, we get

Advind-cpa
SE (A) = Pr

[
Exmtind-cpa-1

SE (A) = 1
]
− Pr

[
Exmtind-cpa-0

SE (A) = 1
]

≥ Advpr-cpa
SE (B) − 2−m .

It remains to justify Equations (4.3) and (4.4).

Adversary B will return the M = DK(C) with probability at least Advpr-cpa
SE (B).

In world 1, ciphertext C is an encryption of M1, so this means that M = M1 with
probability at least Advpr-cpa

SE (B), and thus Equation (4.3) is true. Now assume A
is in world 0. In that case, adversary A will return 1 only if B returns M = M1.
But B is given no information about M1, since C is an encryption of M0 and M1 is
chosen randomly and independently of M0. It is simply impossible for B to output
M1 with probability greater than 2−m. Thus Equation (4.4) is true.

Similar arguments can be made to show that other desired security properties of a
symmetric encryption scheme follow from this definition. For example, is it possible
that some adversary B, given some plaintext-ciphertext pairs and then a challenge
ciphertext C, can compute the XOR of the bits of M = DK(C)? Or the sum of

118 SYMMETRIC ENCRYPTION

these bits? Or the last bit of M? Its probability of doing any of these cannot be
more than marginally above 1/2 because were it so, we could design an adversary A
that won the left-or-right game using resources comparable to those used by B. We
leave as an exercise the formulation and working out of other such examples along
the lines of Proposition 4.19.

Of course one cannot exhaustively enumerate all desirable security properties.
But you should be moving towards being convinced that our notion of left-or-right
security covers all the natural desirable properties of security under chosen plaintext
attack. Indeed, we err, if anything, on the conservative side. There are some attacks
that might in real life be viewed as hardly damaging, yet our definition declares the
scheme insecure if it succumbs to one of these. That is all right; there is no harm in
making our definition a little demanding. What is more important is that if there
is any attack that in real life would be viewed as damaging, then the scheme will
fail the left-or-right test, so that our formal notion too declares it insecure.

4.8 Indistinguishability from random bits implies indis-
tinguishability

In this section we give what might seem to be an inappropriately strong definition
of security: we consider demanding that ciphertexts look like sequences of random
bits. We show that this notion of security implies left-or-right indistinguishability.
On the other hand, we show that left-or-right indistinguishability does not imply
indistinguishability from random bits.

Why do we say that indistinguishability from random bits might seem too strong
for a notion of encryption-scheme privacy? Because our intuition is that, fundamen-
tally, it simply does not matter if ciphertexts look random or not. If a ciphertext
hides everything about the underlying plaintext, but happens not to look random,
is that not good enough?

Said differently, suppose you started with an encryptions scheme SE = (K, E ,D)
and then you modified it to make an encryption scheme SE = (K, E ′,D′) by arrang-
ing that every ciphertext has tacked on to its end 100 zero-bits. Decryption would
ignore these final 100 bits. Now even if ciphertexts happened to look random in the
original scheme, most certainly they would not look random in the modified scheme.
But what you have done seems irrelevant to preserving the user’s privacy. If you
were protecting the privacy of your plaintexts before than you’re still protecting the
privacy, just as well, when you expand ciphertexts by appending a fixed pattern
of bits. Of course the modified encryption scheme is less efficient than the origi-
nal one—it is “wasting” 100 bits on every ciphertext—but that is not our present
concern.

Despite the argument above, we like the notion of indistinguishability from ran-
dom bits. There are several reasons for our liking it. First, we are going to see
that indistinguishability from random bits implies left-or-right indistinguishability,
and when your goal is to show that some particular scheme is secure there is no

Bellare and Rogaway 119

downside in selecting an unnecessarily strong notion of security. While there is no
downside in such an application, there is a potential benefit: an encryption scheme
whose output has been shown to be indistinguishable from random bits can be used
in some contexts where the goal was not not message privacy. In particular, such
an encryption scheme can be used as a pseudorandom generator. Next, when we go
to prove security for practical encryption schemes like CTRC, CTR$, and CBC$,
we find that not only do they achieve this stronger notion of security but that it is
just as easy—indeed it is a bit easier—to directly demonstrate the stronger security
property. Finally, we find indistinguishability from random bits to be the very sim-
plest and easiest-to-understand notion of encryption-scheme security that has been
offered.

Our definition will again speak of placing an adversary in one of two world,
denoted world 0 and world 1. In both cases the adversary is given an oracle f . In
world 1 the oracle works by encrypting whatever message M the adversary asks.
The encryption is done using a key K that is randomly sampled from the underlying
space of keys at the beginning of the experiment.. In world 0 the oracle works by
returning a bunch of random bits. The number of random bits that are returned is
the number of bits that the adversary would see were the message actually encrypted.
The message M that the adversary asks of the oracle is used only to determine the
length of the ciphertext output. The formal definition now follows.

Definition 4.20 Let SE = (K, E ,D) be a symmetric encryption scheme, let b ∈
{0, 1}, and let A be an algorithm that has access to an oracle. We consider the
following experiments:

Experiment Exmtrnd-cpa-1
SE (A)

K $←K
b′ $← AEK(·)

Return b′

Experiment Exmtrnd-cpa-0
SE (A)

K $←K
Run Ag

When A asks an oracle query g(X)
C $←EK(X)
If C = ⊥ then answer ⊥
R $←{0, 1}|C|

Answer the query with R
When A halts with bit b

Return b′

The RND-CPA advantage of A is defined as

Advrnd-cpa
SE (A) = Pr

[
Exmtind-cpa-1

SE (A) = 1
]
− Pr

[
Exmtind-cpa-0

SE (A) = 1
]

For concision we will write as $(·) the oracle whose behavior is described by the ex-
periment Exmtrnd-cpa-0

SE (A). The expression RND-CPA advantage is then simplified
to Pr[AEK(·)⇒1] − Pr[A$(·)⇒1].

120 SYMMETRIC ENCRYPTION

We now show that security in the RND-sense implies security in the IND-sense.
As usual, we think in terms of the converse: insecurity in the IND-sense implies
insecurity in the RND-sense. In other words, given an adversary A that does well
at distinguishing a left encryption oracle from a right encryption oracle we will need
to construct an adversary B that does well at distinguishing an encryption oracle
from a source of random bits. The result is as follows.

Proposition 4.21 [RND-CPA ⇒ IND-CPA] Let SE = (K, E ,D) be an encryp-
tion scheme. Let A be a (left-or-right distinguishing) adversary that runs in time
at most t and asks at most q queries, these queries totaling at most µ bits. Then
there exists a (real-or-random distinguishing) adversary B such that

Advrnd-cpa
SE (B) ≥ 1

2
Advind-cpa

SE (A)

where the running time of B is t + O(µ) and B makes at most q oracle queries and
these queries total at most µ + m bits.

Proof of Proposition 4.21: Adversary Bg is constructed from adversary Af as
follows.

Adversary Bg

b $←{0, 1}
Run adversary Af

When Af makes an oracle query (M0, M1),
answer the oracle query with g(Mb)

When Af halts, outputting a bit b′

If b = b′ then return 1 else return 0

We observe that B runs in time t + O(µ), that B asks at most q queries, and that
these queries total at most µ bits. To analyze the advantage of B in the RND-
sense, suppose first that B’s oracle g is an encryption oracle EK(·) for a random
key K $←K. Then half the time B is providing A a perfect simulation of a left
oracle, and half the time B is providing A a perfect simulation of a right oracle.
Adversary B outputs 1 exactly when A correctly identifies which of the two kinds
of oracles it has. By the definition and result of Section ??, we thus have that

Pr[BEK(·)⇒1] = Pr[Exmtind1-cpa
SE (A) = 1] (4.5)

=
1
2
Advind-cpa

SE (A) +
1
2

(4.6)

On the other hand, suppose first that B’s oracle g is realized as a $(·)-oracle. Be-
cause queries to f must have the same length, there is, information-theoretically, no
correlation between oracle-responses provided to A and the contents of A’s queries.

Bellare and Rogaway 121

In particular, there is no correlation between oracle-responses provided to A and
the bit b, and so

Pr[B$(·)⇒1] =
1
2

By the definition of RND-CPA advantage and the last two equations, we have that

Advrnd-cpa
SE (B) = Pr[BEK(·)⇒1] − Pr[B$(·)⇒1]

=
1
2
Advind-cpa

SE (A) +
1
2
− 1

2

and so

Advrnd-cpa
SE (B) = Pr[BEK(·)⇒1] − Pr[B$(·)⇒1]

=
1
2
Advind-cpa

SE (A) +
1
2
− 1

2

=
1
2
Advind-cpa

SE (A)

which completes the proposition.

We emphasize that IND-CPA security does not imply RND-CPA security. The
example given at the beginning of this section proves that. Namely, starting with
any IND-CPA secure encryption scheme we showed how to modify it so that it will
be just as IND-CPA secure, but completely RND-CPA insecure. This was done by
tacking on a number of zero bits to the end of each encryption, so as to ensure that
ciphertexts do not look random. It is easy to see that the modification does not
adversely impact IND-CPA security.

4.9 Security of CTR modes

This section torn apart, in process of being replaced
Recall that the CTR (counter) mode of symmetric encryption comes in two vari-

ants: the randomized (stateless) version CTRC of Scheme 4.6, and the counter-based
(stateful) mechanism CTR$ of Scheme 4.7. Both modes achieve indistinguishabil-
ity under a chosen-plaintext attack, but, interestingly, the quantitative security is
a little different. The difference springs from the fact that CTRC achieves perfect
indistinguishability if one uses the random function family Rand(n) in the role of
the underlying block cipher E—but CTR$ would not achieve perfect indistinguisha-
bility even then, because of the possibility that collisions would produce “overlaps”
in the pseudo-one-time pad.

We will state the main theorems about the schemes, discuss them, and then
prove them. For the counter version we have:

122 SYMMETRIC ENCRYPTION

Theorem 4.22 [Security of CTRC mode] Let E: K × {0, 1}n → {0, 1}n be a
block cipher and let SE = (K, E ,D) be the corresponding CTRC symmetric encryp-
tion scheme as described in Scheme 4.7. Let A be an adversary (for attacking the
IND-CPA security of SE) that runs in time at most t and asks at most q queries,
these totaling at most σ n-bit blocks. Then there exists an adversary B where

Advprf
E (B) ≥ Advind-cpa

SE (A)

(and so Advprp
E (B) ≥ Advind-cpa

SE (A) − 0.5 σ2/2n) and such that B runs in time at
most t′ = t + O(q + nσ) and asks at most q′ = σ oracle queries.

And for the randomized version:

Theorem 4.23 [Security of CTR$ mode] Let E: K × {0, 1}n → {0, 1}n be a
block cipher and let SE = (K, E ,D) be the corresponding CTR$ symmetric encryp-
tion scheme as described in Scheme 4.6. Let A be an adversary (for attacking the
RND-CPA security of SE) that runs in time at most t and asks at most q queries,
these totaling at most σ n-bit blocks. Then there exists an adversary B where

Advprf
F (B) ≥ Advrnd-cpa

SE (A) − 0.5 σ2

2n

(and so Advprp
E (B) ≥ Advrnd-cpa

SE (A)−σ2/2n) and such that B runs in time at most
t′ = t + O(q + nσ) and asks at most q′ = σ oracle queries.

This kind of result is what this whole approach is about. Namely, we are able to
provide provable guarantees of security of some higher level cryptographic construct
(in this case, a symmetric encryption scheme) based on the assumption that some
building block (in this case an underlying block) is secure. The above results are
the first example of the “punch-line” we have been building towards. So it is worth
pausing at this point and trying to make sure we really understand what these
theorems are saying and what are their implications.

If we want to entrust our data to some encryption mechanism, we want to know
that this encryption mechanism really provides privacy. If it is ill-designed, it may
not. We saw this happen with ECB. Even if we used a secure block cipher, the flaws
of ECB mode make it an insecure encryption scheme.

Flaws are not apparent in CTR at first glance. But maybe they exist. It is very
hard to see how one can be convinced they do not exist, when one cannot possible
exhaust the space of all possible attacks that could be tried. Yet this is exactly the
difficulty that the above theorems circumvent. They are saying that CTR mode
does not have design flaws. They are saying that as long as you use a good block
cipher, you are assured that nobody will break your encryption scheme. One cannot
ask for more, since if one does not use a good block cipher, there is no reason to
expect security of your encryption scheme anyway. We are thus getting a conviction
that all attacks fail even though we do not even know exactly how these attacks
might operate. That is the power of the approach.

Bellare and Rogaway 123

Now, one might appreciate that the ability to make such a powerful statement
takes work. It is for this that we have put so much work and time into developing
the definitions: the formal notions of security that make such results meaningful.
For readers who have less experience with definitions, it is worth knowing, at least,
that the effort is worth it. It takes time and work to understand the notions, but
the payoffs are big: you get significant guarantees of security.

How, exactly, are the theorems saying this? The above discussion has pushed
under the rug the quantitative aspect that is an important part of the results. It
may help to look at a concrete example.

Example 4.24 Let us suppose that E is AES, so the the blocksize is n = 128.
Suppose I want to encrypt q = 230 messages, each being one kilobyte (213 bits)
long. I am thus encrypting a total of one terabyte (243 bits), which is to say
σ = 236 blocks. Can I do this securely using counter-mode encryption, say CTR$?
Well, Theorem 4.23 says that if there is an adversary A that breaks CTR$ with
advantage δ then there is adversary B that breaks AES—breaks it in the sense of
distinguishing a randomly select AESK(·) from a random permutation—that gets
advantage δ− (236)2/2128 = δ−2−56 ≈ δ and where B uses comparable resources to
that used by A. In other words, adversary B is doing essentially as well in attacking
AES as adversary A was doing at attacking CTR$[AES]. So if there exists a practi-
cal attack on CTR$[AES] (breaking it in the sense of IND-CPA) then there exists a
practical attack on AES (breaking it in the PRP-sense). Since we don’t think there
is any practical attack on AES (to break it in the PRP-sense) we must also believe
that there is no practical attack on CBC$[AES] when you one terabyte of data.
Note that as the amount of data that is encrypted goes up, the value corresponding
to 2−56 increases, until finally it becomes a large enough value to have to concern
yourself with. By the time that you have encrypted 264 blocks worth of data, all
provable security has been lost.

The example illustrates how to use the theorems to figure out how much security
you will get from the CTR encryption scheme in a given application.

We point out that our security theorems say that CTRC is IND-CPA secure
and CTR$ is, instead, RND-CPA security. Recall that the latter notion is stronger
than IND-CPA security. As we have defined things, we can’t possibly hope to prove
RND-CPA security for CTRC mode, because the counter that is included with each
ciphertext will not look random. If we had defined things a little differently, so that
the IV was not regarded as part of the ciphertext, then we could indeed have had
that the ciphertext was random-looking for CTRC.

4.9.1 Proof of Theorem 4.22

The paradigm we are going to follow is one we will use again and again. In order
to analyze CTRC mode with a function family E, we will begin by focusing on
the security of the construction with the random function family Rand(n). That

124 SYMMETRIC ENCRYPTION

is, we look at CTRC[Rand(n)] and only when that is done concern ourselves with
CTRC[E].

Focusing on CTRC[Rand(n)] is definitely a thought experiment, insofar as no
real implementation can use a random function in place of a real block cipher EK ,
for even storing such a function would take an exorbitant amount of memory. But
this analysis of the idealized scheme enables us to focus on any possible weaknesses
of the CTR mode itself, as opposed to weaknesses arising from properties of the
underlying block cipher. We will then can show that this idealized scheme is secure,
and then we will show how that means that the original mode is good.

Lemma 4.25 Let A be an adversary (for attacking the IND-CPA security of SE [Rand(n,�)]).
Then

Advind-cpa
CTRC[Rand(n)](A) = 0 .

The lemma considers an arbitrary adversary. Let us say this adversary has time-
complexity t, makes q queries to its lr-encryption oracle, these totaling µ bits. The
lemma does not care about the values of t, q, an µ. (Recall, however, that CBCC
“shuts up” after encrypting 2n blocks, so that is effectively the limit in which the
mode is useful.) The theorem says the adversary has zero advantage, meaning that
the adversary is completely clueless if it is speaking to a left encryption oracle or
a right encryption oracle. The fact that no restriction is made on t indicates that
the result is information-theoretic: it holds regardless of how much computing time
the adversary invests. Passing to the information-theoretic setting is almost always
done in carrying out our analyses of block-cipher constructions.

Proof of Lemma 4.25: We must show that, regardless of A’s behavior, Pr[ALeft((,·),·)⇒1] =
Pr[ARight((,·),·)⇒1] where Left((, ·), ·) is the oracle that, on query (L, R), CTRC-
encrypts L using a random function ρ $← Rand(n) and where Right((, ·), ·) is the or-
acle that, on query (L, R), CTRC-encrypts R using a random function ρ $← Rand(n).

To be finished later: either oracle, on input of an m-bit query, returns m
random bits or returns ⊥, the latter only when the number total query
length makes that necessary.

4.9.2 Proof of Theorem 4.23

Give a game playing argument

4.10 Security of CBC with a random IV

In this section we show that CBC encryption using a random IV, the algorithm we
called CBC$[E], is secure as long as E is a secure block cipher. By “secure” we

Bellare and Rogaway 125

Initialization:
00 for X ∈ {0, 1}n do ρ(X) ← undef
01 bad ← false

In response to an oracle query M1 · · ·Mm:
10 Y0

$←{0, 1}n

11 for i ← 1 to m do
12 Xi ← Yi−1 ⊕ Mi

13 Yi
$←{0, 1}n

14 if Xi ∈ Domain(ρ) then bad ← true , Yi ← ρ(Xi)

15 ρ(Xi) ← Yi

16 return Y0Y1 · · ·Ym

Figure 4.6: Games used in the analysis of CBC$. Game C is the game as written,
while game R omits the shaded statement. The former provides an accurate simu-
lation of a CBC encryption oracle, while the latter provides an accurate simulation
of random-bit source $(·).

mean the strongest notion we have talked about—indistinguishability from random
bits. Remember that this notion of security implies all the other notions of security
we have talked about, like left-or-right indistinguishability and semantic security.

We begin with the information-theoretic result in which the the underlying func-
tion family to CBC$ is the set of random functions. The result is then as follows.

Theorem 4.26 [Security of CBC$ using a random function] Let n ≥ 1 be a
number and let A be an adversary (for attacking CBC$-encryption in the IND$-CPA
sense) that queries at most σ blocks. Then

Advrnd-cpa
CBC$[Rand(n)](A) ≤ σ2

2n+1

In other words, if the adversary is limited to querying σ blocks than its ability
to distinguish between CBC-mode encryptions (where CBC uses a random IV and
uses a random n-bit to n-bit function as though it were the underlying block cipher)
and a bunch of random bits is limited to σ2/2n. Thus if σ � 2n/2 the adversary just
can’t do a good job at this task. The proof is by another game-playing argument.

Proof: Consider the two games specified in Figure 4.6. Recall that Domain(ρ)
denotes the set of all X ∈ {0, 1}n such that ρ(X) �= undef. This set grows as the
game executes and more and more queries are answered by the adversary.

126 SYMMETRIC ENCRYPTION

The first game, which we call game C, is the pseudocode exactly as written. The
game is easily seen to behave as a CBC-encryption oracle would if that oracle used
a random function ρ ∈ Rand(n) and a random IV. Since the adversary’s view is
identical in those two cases, we know that

Pr[ρ $← Rand(n) : ACBC$ρ(·)⇒1] = Pr[AGame C⇒1] (4.7)

The second game, which we call game R, is the identical pseudocode except for
omitting the highlighted statement. This game, in response to any m-block query
M1 · · ·Mm, responds with m+1 random blocks (meaning a random string of length
(m + 1)n bits). Thus

Pr[A$(·)⇒1] = Pr[AGame R⇒1] (4.8)

where the behavior of the $(·) oracle was given in the experiment used in the defi-
nition of IND$-CPA advantage. Thus we have that

Advrnd-cpa
CBC$[Rand(n)](A) = Pr[ACBC$ρ(·)⇒1] − Pr[A$(·)⇒1]

= Pr[AGame C⇒1] − Pr[AGame R⇒1]

Now we have set up games R and C so as to be identical apart from statements that
immediately follow bad ← true. In such a case the game-playing paradigm allows
us to conclude that

Pr[AGame C⇒1] − Pr[AGame R⇒1] ≤ Pr[AGame R sets bad] (4.9)

Our analysis, then has been reduced to bounding the probability that bad get set
to true in game R. Keep clear that, because we are in game R, the highlighted
statement of Figure 4.6 does not exist; go ahead and mentally (or physically!) cross
it out.

To analyze the probability that bad gets set to true in game R we use the sum bound:
we add up the probability that bad gets set to true during each of the at most σ times
that line 14 is executed. Note that the first time that line 14 is executed Domain(ρ)
will have not points in it; the next time that line 14 is executed Domain(ρ) will have
one point in it; and, in general, the ith time that line 14 gets executed Domain(ρ)
will have at most i−1 points in it. We claim that if Domain(ρ) has i points in it than
the probability that Xi will fall in Domain(ρ) will be at most i/2n. We will prove
this in a moment. For now, let us verify that, with this claim, we are done. For the
sum bound will then tell us that the probability that bad ever gets set is at most
0/2n +1/2n + · · ·+(σ−1)/2n = (1+2+ · · ·+(σ−1))/2n = σ(σ−1)/2n+1 ≤ σ2/2n.

Now to see that the claim is true we first note that Xi is a random n-bit string and
we are testing if it is present in a set Domain(ρ) of size i, so the probability that Xi

will be in this set is exactly i/2n if Xi is independent of Domain(ρ). But is Xi

independent of Domain(ρ) when we do this test at line 14? (That is to say, we are

Bellare and Rogaway 127

looking at the random variables Xi and Domain(ρ) at some particular, unnamed
point in time.) Since line 15 adds points Xi to the Domain(ρ) it might at first look
like these random variables are not going to be independent. But realize that the
sequence of steps is like this (mentally unroll the loop, if that is helpful): (1) first a
uniformly distributed Yi−1 value is selected (at line 10 or at line 13); (2) then Xi is
defined by xoring Yi−1 with something that the adversary provided, Mi, creating a
uniformly distributed Xi value; (3) now we test if Xi is in the set Domain(ρ); and,
finally, (4) we grow Domain(ρ) by Xi. The point is that Domain(ρ) is grown by Xi

only after the test, and Yi−1 does not influence Domain(ρ) prior to then. At the
time of the test, the randomly chosen Yi−1 has not yet had a chance to influence
Domain(ρ). This completes the proof.

The theorem above addresses the maximal adversarial advantage when CBC$
is done over a random n-bit to n-bit function. What if we use a random n-bit to
n-bit permutation, instead? Applying the Switching Lemma (that is, Lemma 3.17)
to the result above lets us bound this new advantage.

Corollary 4.27 [Security of CBC$ using a random permutation] Let n ≥ 1
be a number and let A be an adversary (for attacking CBC$-encryption in the
RND-CPA sense) that queries at most σ blocks. Then

Advrnd-cpa
CBC$[Perm(n)](A) ≤ σ2

2n

Proof: We have that

Advrnd-cpa
CBC$[Perm(n)](A) = Pr[π $← Perm(n) : ACBCπ(·)⇒1] − Pr[A$(·)⇒1]

=
(
Pr[π $← Perm(n) : ACBCπ(·)⇒1] − Pr[ρ $← Rand(n) : ACBCρ(·)⇒1]

)
+

(
Pr[ρ $← Rand(n) : ACBCρ(·)⇒1] − Pr[A$(·)⇒1]

)

≤ σ2/2n+1 + Pr[ρ $← Rand(n) : ACBCρ(·)⇒1] − Pr[A$(·)⇒1]

≤ σ2/2n+1 + Advrnd-cpa
CBC$[Rand(n)](A)

≤ σ2/2n+1 + σ2/2n+1

= σ2/2n

The first line is the definition of RND-CPA security. The forth line is by the Switch-
ing Lemma: think of building from A an adversary B that runs A and answers oracle
queries by carrying out the CBC$ computation on its own, but using its oracle as
the underlying block cipher. The second to last line is Theorem 4.28.

After you gain some experience with this kind of argument you will begin to
just “know” that you can trade off the Perm(n) with Rand(n) if you correspondingly
increase the bound by σ2/2n+1.

128 SYMMETRIC ENCRYPTION

Finally, we can look at what happens when we use a “real” block cipher within
CBC mode.

Corollary 4.28 [Security of CBC$ using a block cipher] Let n ≥ 1 and let
E: K × {0, 1}n → {0, 1}n be a block cipher. Let A be an adversary (for attacking
CBC$-encryption in the RND-CPA sense) that runs in time at most t and that
queries at most σ blocks. Then there exists an adversary B (for attacking block
cipher E in the PRP-CPA sense) where

Advprp
E (B) ≥ Advrnd-cpa

CBC$[E](A) − σ2

2n

and where B makes at most σ queries and runs in time at most t + O(nσ).

Proof: Adversary Bg works by running adversary Af , answering A’s oracle queries
by simulating a CBC$ oracle with CBC computed over the function g that is B’s
oracle. To describe this, let CBCC0

ρ (M1 · · ·Mm) be the string C0C1 · · ·Cm where
Ci = ρ(Mi−1 ⊕ Ci). Let CBC$

ρ(·) denote an oracle that, on input M , returns CBCIV
ρ

for a random n-bit string IV. Adversary B is then the following:

Algorithm Bg:
Run Af

When A makes an oracle call f(M1 · · ·Mm):
Let IV $←{0, 1}n

Computer CBCIV
ρ (M1 · · ·Mm) and return this to A

When A halts, outputting a bit β
Return β

Note that the running time of B is t + O(nσ), as required. To see its advantage,
first note that

Pr[BEK⇒1] = Pr[ACBC$
EK

(·)⇒1]

and

Pr[Bπ⇒1] = Pr[ACBC$
π(·)⇒1]

Thus

Advprp
E (B) = Pr[BEK⇒1] − Pr[Bπ⇒1]

= Pr[ACBC$
EK

(·)⇒1] − Pr[ACBC$
π(·)⇒1]

=
(
Pr[ACBC$

EK
(·)⇒1] − Pr[A$(·)⇒1]

)
−

(
Pr[ACBC$

π(·)⇒1] − Pr[A$(·)⇒1]
)

= Advrnd-cpa
CBC$[E](A) − Advrnd-cpa

CBC$[Perm(n)](A)

≥ Advrnd-cpa
CBC$[E](A) − σ2

2n

Bellare and Rogaway 129

concluding the proof.

We have so far shown that the RND-CPA advantage of CBC$ falls off by an
amount that is at most quadratic in the number of blocks, σ, asked by the adversary.
We can also give a matching attack, showing that there actually is an adversary
that obtains advantage of about σ2/2n. This tells us that our security result is
tight—there is no possibility of making the bound significantly better. It means
that we have arrived at reasonably precise understanding of the security of CBC
encryption with a random IV.

Since we are giving an attack, it makes our result stronger if we go back to our
original, weaker definition of security, IND-CPA. That is, when we are proving secu-
rity we like to choose a strong definition—one that is as hard to achieve as possible.
But when we are giving an attack we want to break the scheme as convincingly as
possible, so we prefer a weak definition of security. The result is then as follows.

Proposition 4.29 Let n ≥ 1, let E: K × {0, 1}n → {0, 1}n be a function family,
and let σ ∈ [0 ..

√
2 2n/2 − 1]. Then there is an adversary A that asks a single query,

the query consisting of σ blocks, runs in time O(nσ lg(σ)), and achieves advantage
Advind-cpa

CBC[E](A) ≥ 0.15 σ2/2n and

Proof: The adversary A sets L ← 0nσ, chooses R $←{0, 1}nσ, and asks its oracle
the query (L, R), receiving in response a ciphertext C that it partitions into σ + 1
n-bit blocks, C0C1 . . . Cσ. If there is an i, I ∈ [0 .. σ] such that i < I and Ci = CI

then A selects the lexicographically first such (i, I) and answers 1 (for “right oracle”)
if Ci+1 �= CI+1. (In this case the adversary has found a “proof” that the oracle is a
right oracle.) In all other cases the adversary outputs 0 (for “left oracle”).

The adversary described asks asks a single query of σ blocks and, using standard
data structure techniques, it runs in time O(nσ lg(σ)). It remains to calculate
the adversary’s advantage, Advprp

E (A) = Pr[ARight(·,·)⇒1] − Pr[ALeft(·,·)⇒1]. The
second summand is zero since when A is given a left encryption-oracle that oracle
is encrypting the zero-string and any time Ci = CI we must have that Ci+1 = CI+1

as well. Thus

Advprp
E (A) = Pr[ARight(·,·)⇒1]

= Pr[R $←{0, 1}nσ; K $←K; IV $←{0, 1}n; C $← CBCIV
K (R) :

∃i < I s.t. Ci = CI and Ci+1 �= CI+1 on the first such (i, I)]

By the structure of CBC mode with a random IV it is easy to see that that when
you encrypt a random string R ∈ {0, 1}nσ you get a random string C ∈ {0, 1}n(σ+1).
To see this, note that to make block Ci, for i ≥ 1, you xor the random block Ri

with Ci and apply the block cipher. The random block Ri is independent of Ci—it
wasn’t even consulted in making Ci—and it is independent of all of C0, . . . , Ci−1, too.
The image of a uniformly selected value under a permutation is uniform. The very

130 SYMMETRIC ENCRYPTION

first block of ciphertext, C0, is uniform. This makes the entire string C0C1 · · ·Cσ

uniform. So the probability in question is

Advprp
E (A) = Pr[C $←{0, 1}n(σ+1) :

∃i < I s.t. Ci = CI and Ci+1 �= CI+1 on the first such (i, I)]

Now the birthday bound (Appendix A, Theorem A.1) tells us that the probability
there will be an i < I such that Ci = CI is at least C(2n, σ + 1) ≥ 0.3σ2/2n. When
there is such an i, I and we fix the lexicographically first such i, I, note that CI+1

is still uniform and independent of Ci+1. Independence is assured because CI+1 is
obtained as EK(RI+1 ⊕ CI) for a permutation EK and a uniform random value RI+1

that is independent of CI and Ci+1. Because of this probabilistic independence, the
probability of the conjunct is just the product of the probabilities and we have that

Advprp
E (A) ≥ 0.3 σ2/2n · (1 − 2−n) ≥ 0.15 σ2/2n

completing the proof.

4.11 Indistinguishability under chosen-ciphertext attack

So far we have considered privacy under chosen-plaintext attack. Sometimes we
want to consider privacy when the adversary is capable of mounting a stronger type
of attack, namely a chosen-ciphertext attack. In this type of attack, an adversary
has access to a decryption oracle. It can feed this oracle a ciphertext and get back
the corresponding plaintext.

How might such a situation arise? One situation one could imagine is that
an adversary at some point gains temporary access to the equipment performing
decryption. It can feed the equipment ciphertexts and see what plaintexts emerge.
(We assume it cannot directly extract the key from the equipment, however.)

If an adversary has access to a decryption oracle, security at first seems moot,
since after all it can decrypt anything it wants. To create a meaningful notion of
security, we put a restriction on the use of the decryption oracle. To see what this
is, let us look closer at the formalization. As in the case of chosen-plaintext attacks,
we consider two worlds:

World 0: The adversary is provided the oracle EK(LR(·, ·, 0)) as well as the oracle
DK(·).
World 1: The adversary is provided the oracle EK(LR(·, ·, 1)) as well as the oracle
DK(·).
The adversary’s goal is the same as in the case of chosen-plaintext attacks: it wants
to figure out which world it is in. There is one easy way to do this. Namely,
query the lr-encryption oracle on two distinct, equal length messages M0, M1 to
get back a ciphertext C, and now call the decryption oracle on C. If the message

Bellare and Rogaway 131

returned by the decryption oracle is M0 then the adversary is in world 0, and if the
message returned by the decryption oracle is M1 then the adversary is in world 1.
The restriction we impose is simply that this call to the decryption oracle is not
allowed. More generally, call a query C to the decryption oracle illegitimate if C
was previously returned by the lr-encryption oracle; otherwise a query is legitimate.
We insist that only legitimate queries are allowed. In the formalization below, the
experiment simply returns 0 if the adversary makes an illegitimate query. (We clarify
that a query C is legitimate if C is returned by the lr-encryption oracle after C was
queried to the decryption oracle.)

This restriction still leaves the adversary with a lot of power. Typically, a suc-
cessful chosen-ciphertext attack proceeds by taking a ciphertext C returned by the
lr-encryption oracle, modifying it into a related ciphertext C ′, and querying the
decryption oracle with C ′. The attacker seeks to create C ′ in such a way that its
decryption tells the attacker what the underlying message M was. We will see this
illustrated in Section 4.12 below.

The model we are considering here might seem quite artificial. If an adversary
has access to a decryption oracle, how can we prevent it from calling the decryp-
tion oracle on certain messages? The restriction might arise due to the adversary’s
having access to the decryption equipment for a limited period of time. We imagine
that after it has lost access to the decryption equipment, it sees some ciphertexts,
and we are capturing the security of these ciphertexts in the face of previous access
to the decryption oracle. Further motivation for the model will emerge when we see
how encryption schemes are used in protocols. We will see that when an encryp-
tion scheme is used in many authenticated key-exchange protocols the adversary
effectively has the ability to mount chosen-ciphertext attacks of the type we are
discussing. For now let us just provide the definition and exercise it.

Definition 4.30 Let SE = (K, E ,D) be a symmetric encryption scheme, let b ∈
{0, 1}, and let A be an algorithm that has access to two oracles and returns a bit.
We consider the following experiment:

Experiment Exmtind-cca-b
SE (A)

K $←K
b ← AEK(LR(·,·,b)) , DK(·)

If A queried DK(·) on a ciphertext previously returned by EK(LR(·, ·, b))
then return 0
else return b

The ind-cca advantage of A is defined as

Advind-cca
SE (A) = Pr

[
Exmtind-cca-1

SE (A) = 1
]
− Pr

[
Exmtind-cca-0

SE (A) = 1
]

.

For any t, qe, µe, qd, µd we define the ind-cca advantage of SE via

Advind-cca
SE (t, qe, µe, qd, µd) = max

A
{Advind-cca

SE (A)}

132 SYMMETRIC ENCRYPTION

where the maximum is over all A having time-complexity t, making to the lr-
encryption oracle at most qe queries the sum of whose lengths is at most µe bits,
and making to the decryption oracle at most qd queries the sum of whose lengths is
at most µd bits.

The conventions with regard to resource measures are the same as those used in the
case of chosen-plaintext attacks. In particular, the length of a query M0, M1 to the
lr-encryption oracle is defined as the length of M0, and the time-complexity is the
execution time of the entire experiment plus the size of the code of the adversary.

We consider an encryption scheme to be “secure against chosen-ciphertext at-
tack” if a “reasonable” adversary cannot obtain “significant” advantage in distin-
guishing the cases b = 0 and b = 1 given access to the oracles, where reasonable
reflects its resource usage. The technical notion is called indistinguishability under
chosen-ciphertext attack, denoted IND-CCA.

4.12 Example chosen-ciphertext attacks

Chosen-ciphertext attacks are powerful enough to break all the standard modes of
operation, even those like CTR and CBC that are secure against chosen-plaintext
attack. The one-time pad scheme is also vulnerable to a chosen-ciphertext attack:
our notion of perfect security only took into account chosen-plaintext attacks. Let
us now illustrate a few chosen-ciphertext attacks.

4.12.1 Attacks on the CTR schemes

Let F : K × {0, 1}n → {0, 1}� be a family of functions and let SE = (K, E ,D) be
the associated CTR$ symmetric encryption scheme as described in Scheme 4.6. The
weakness of the scheme that makes it susceptible to a chosen-ciphertext attack is
the following. Say 〈r, C〉 is a ciphertext of some �-bit message M , and we flip bit
i of C, resulting in a new ciphertext 〈r, C ′〉. Let M ′ be the message obtained by
decrypting the new ciphertext. Then M ′ equals M with the i-th bit flipped. (You
should check that you understand why.) Thus, by making a decryption oracle query
of 〈r, C ′〉 one can learn M ′ and thus M . In the following, we show how this idea
can be applied to break the scheme in our model by figuring out in which world an
adversary has been placed.

Proposition 4.31 Let F : K × {0, 1}n → {0, 1}� be a family of functions and let
SE = (K, E ,D) be the corresponding CTR$ symmetric encryption scheme as de-
scribed in Scheme 4.6. Then

Advind-cca
SE (t, 1, �, 1, n + �) = 1

for t = O(n + �) plus the time for one application of F .

Bellare and Rogaway 133

The advantage of this adversary is 1 even though it uses hardly any resources: just
one query to each oracle. That is clearly an indication that the scheme is insecure.

Proof of Proposition 4.31: We will present an adversary algorithm A, having
time-complexity t, making 1 query to its lr-encryption oracle, this query being of
length �, making 1 query to its decryption oracle, this query being of length n + �,
and having

Advind-cca
SE (A) = 1 .

The Proposition follows.

Remember that the lr-encryption oracle EK(LR(·, ·, b)) takes input a pair of mes-
sages, and returns an encryption of either the left or the right message in the pair,
depending on the value of b. The goal of A is to determine the value of b. Our
adversary works like this:

Adversary AEK(LR(·,·,b)) , DK(·)

M0 ← 0� ; M1 ← 1�

〈r, C〉 ← EK(LR(M0, M1, b))
C ′ ← C ⊕ 1�

M ← DK(〈r, C ′〉)
If M = M0 then return 1 else return 0

The adversary’s single lr-encryption oracle query is the pair of distinct messages
M0, M1, each one block long. It is returned a ciphertext 〈r, C〉. It flips the bits of C
to get C ′ and then feeds the ciphertext 〈r, C〉 to the decryption oracle. It bets on
world 1 if it gets back M0, and otherwise on world 0. Notice that 〈r, C ′〉 �= 〈r, C〉,
so the decryption query is legitimate. Now, we claim that

Pr
[
Exmtind-cca-1

SE (A) = 1
]

= 1

Pr
[
Exmtind-cca-0

SE (A) = 1
]

= 0 .

Hence Advind-cpa
SE (A) = 1 − 0 = 1. And A achieved this advantage by making just

one lr-encryption oracle query, whose length, which as per our conventions is just the
length of M0, is � bits, and just one decryption oracle query, whose length is n+� bits
(assuming an encoding of 〈r, X〉 as n + |X|-bits). So Advpr-cpa

SE (t, 1, �, 1, n + �) = 1.

Why are the two equations claimed above true? You have to return to the definitions
of the quantities in question, as well as the description of the scheme itself, and walk
it through. In world 1, meaning b = 1, let 〈r, C〉 denote the ciphertext returned by
the lr-encryption oracle. Then

C = FK(r + 1) ⊕ M1 = FK(r + 1) ⊕ 1� .

134 SYMMETRIC ENCRYPTION

Now notice that

M = DK(〈r, C ′〉)
= FK(r + 1) ⊕ C ′

= FK(r + 1) ⊕ C ⊕ 1�

= FK(r + 1) ⊕ (FK(r + 1) ⊕ 1�) ⊕ 1�

= 0�

= M0 .

Thus, the decryption oracle will return M0, and A will return 1. In world 0, meaning
b = 0, let 〈r, C[1]〉 denote the ciphertext returned by the lr-encryption oracle. Then

C = FK(r + 1) ⊕ M0 = FK(r + 1) ⊕ 0� .

Now notice that

M = DK(〈r, C ′〉)
= FK(r + 1) ⊕ C ′

= FK(r + 1) ⊕ C ⊕ 1�

= FK(r + 1) ⊕ (FK(r + 1) ⊕ 0�) ⊕ 1�

= 1�

= M1 .

Thus, the decryption oracle will return M1, and A will return 0, meaning will
return 1 with probability zero.

An attack on CTRC (cf. Scheme 4.7) is similar, and is left to the reader.

4.12.2 Attack on CBC$

Let E: K × {0, 1}n → {0, 1}n be a block cipher and let SE = (K, E ,D) be the
associated CBC$ symmetric encryption scheme as described in Scheme 4.4. The
weakness of the scheme that makes it susceptible to a chosen-ciphertext attack is
the following. Say 〈IV, C[1]〉 is a ciphertext of some n-bit message M , and we flip
bit i of the IV, resulting in a new ciphertext 〈IV′, C[1]〉. Let M ′ be the message
obtained by decrypting the new ciphertext. Then M ′ equals M with the i-th bit
flipped. (You should check that you understand why by looking at Scheme 4.4.)
Thus, by making a decryption oracle query of 〈IV′, C[1]〉 one can learn M ′ and thus
M . In the following, we show how this idea can be applied to break the scheme in
our model by figuring out in which world an adversary has been placed.

Bellare and Rogaway 135

Proposition 4.32 Let E: K × {0, 1}n → {0, 1}n be a block cipher and let SE =
(K, E ,D) be the corresponding CBC$ encryption scheme as described in Scheme 4.4.
Then

Advind-cca
SE (t, 1, n, 1, 2n) = 1

for t = O(n) plus the time for one application of F .

The advantage of this adversary is 1 even though it uses hardly any resources: just
one query to each oracle. That is clearly an indication that the scheme is insecure.

Proof of Proposition 4.32: We will present an adversary A, having time-
complexity t, making 1 query to its lr-encryption oracle, this query being of length
n, making 1 query to its decryption oracle, this query being of length 2n, and having

Advind-cca
SE (A) = 1 .

The proposition follows.

Remember that the lr-encryption oracle EK(LR(·, ·, b)) takes input a pair of mes-
sages, and returns an encryption of either the left or the right message in the pair,
depending on the value of b. The goal of A is to determine the value of b. Our
adversary works like this:

Adversary AEK(LR(·,·,b)) , DK(·)

M0 ← 0n ; M1 ← 1n

〈IV, C[1]〉 ← EK(LR(M0, M1, b))
IV′ ← IV ⊕ 1n

M ← DK(〈IV′, C[1]〉)
If M = M0 then return 1 else return 0

The adversary’s single lr-encryption oracle query is the pair of distinct messages
M0, M1, each one block long. It is returned a ciphertext 〈IV, C[1]〉. It flips the
bits of the IV to get a new IV, IV′, and then feeds the ciphertext 〈IV′, C[1]〉 to
the decryption oracle. It bets on world 1 if it gets back M0, and otherwise on
world 0. It is important that 〈IV′, C[1]〉 �= 〈IV, C[1]〉 so the decryption oracle query
is legitimate. Now, we claim that

Pr
[
Exmtind-cca-1

SE (A) = 1
]

= 1

Pr
[
Exmtind-cca-0

SE (A) = 1
]

= 0 .

Hence Advind-cca
SE (A) = 1 − 0 = 1. And A achieved this advantage by making just

one lr-encryption oracle query, whose length, which as per our conventions is just
the length of M0, is n bits, and just one decryption oracle query, whose length is 2n
bits. So Advind-cca

SE (t, 1, n, 1, 2n) = 1.

136 SYMMETRIC ENCRYPTION

Why are the two equations claimed above true? You have to return to the definitions
of the quantities in question, as well as the description of the scheme itself, and walk
it through. In world 1, meaning b = 1, the lr-encryption oracle returns 〈IV, C[1]〉
with

C[1] = EK(IV ⊕ M1) = EK(IV ⊕ 1n) .

Now notice that

M = DK(〈IV′, C[1]〉)
= E−1

K (C[1]) ⊕ IV′

= E−1
K (EK(IV ⊕ 1n)) ⊕ IV′

= (IV ⊕ 1n) ⊕ IV′[0]

= (IV ⊕ 1n) ⊕ (IV ⊕ 1n)

= 0n

= M0 .

Thus, the decryption oracle will return M0, and A will return 1. In world 0, meaning
b = 0, the lr-encryption oracle returns 〈IV, C[1]〉 with

C[1] = EK(IV ⊕ M0) = EK(IV ⊕ 0l) .

Now notice that

M = DK(〈IV′, C[1]〉)
= E−1

K (C[1]) ⊕ IV′

= E−1
K (EK(IV ⊕ 0n)) ⊕ IV′

= (IV ⊕ 0n) ⊕ IV′[0]

= (IV ⊕ 0n) ⊕ (IV ⊕ 1n)

= 1n

= M1 .

Thus, the decryption oracle will return M1, and A will return 0, meaning will
return 1 with probability zero.

4.13 Historical notes

The pioneering work on the theory of encryption is that of Goldwasser and Micali
[18], with refinements by [28, 13]. This body of work is however in the asymmet-
ric (i.e., public key) setting, and uses the asymptotic framework of polynomial-time
adversaries and negligible success probabilities. The treatment of symmetric encryp-
tion we are using is from [3]. In particular Definition 4.1 and the concrete security

Bellare and Rogaway 137

Algorithm E(m)
K (M)

Break M into n-bit blocks M [1], . . . , M [m]
For i ← 1 to m do

C[i] ← EK(M [i])
EndFor
C ← C[1] · · ·C[m]
Return C

Algorithm D(m)
K (C)

Break C into n-bit blocks C[1] · · ·C[m]
For i ← 1 to m do

M [i] ← DK(C[i])
If M [i] = ⊥ then return ⊥

EndFor
M ← M [1] · · ·M [m]
Return M

Figure 4.7: Encryption scheme for Problem 4.2.

framework are from [3]. The analysis of the CTR mode encryption schemes, as given
in Theorems 4.22 and 4.23, is also from [3]. The approach taken to the analysis of
CBC mode is new.

4.14 Problems

Problem 4.1 Formalize a notion of security against key-recovery for symmetric
encryption schemes, and prove an analog of Proposition 4.19.

Problem 4.2 Let l ≥ 1 and m ≥ 2 be integers, and let SE = (K, E ,D) be a given
symmetric encryption scheme whose associated plaintext space is {0, 1}n, meaning
one can only encrypt messages of length n. In order to be able to encrypt longer
messages, says ones of mn bits for m ≥ 1, we define a new symmetric encryption
scheme SE(m) = (K, E(m),D(m)) having the same key-generation algorithm as that of
SE , plaintext space {0, 1}mn, and encryption and decryption algorithms as depicted
in Figure 4.7.

(a) Show that

Advind-cca
SE(m) (t, 1, mn, 1, mn) = 1

for some small t.

138 SYMMETRIC ENCRYPTION

(b) Show that

Advind-cpa

SE(m) (t, q, mnq) ≤ Advind-cpa
SE (t, mq, mnq)

for any t, q.

Part (a) says that SE(m) is insecure against chosen-ciphertext attack. Note this is
true regardless of the security properties of SE , which may itself be secure against
chosen-ciphertext attack. Part (b) says that if SE is secure against chosen-plaintext
attack, then so is SE(m).

Problem 4.3 The CBC-Chain mode of operation is a CBC variant in which the
IV that is used for the very first message to be encrypted is random, while the
IV used for each subsequent encrypted message is the last block of ciphertext that
was generated. The scheme is probabilistic and stateful. Show that CBC-Chain is
insecure by giving a simple and efficient adversary that breaks it in the IND-CPA
sense.

Problem 4.4 Our definition of RND-CPA security provides the adversary with
no method to get, with certitude, the encryption of a given message: when the
adversary asks a query M , it might get answered with C $←EK(M) but it might
also get answered with random bits. Consider providing the adversary an additional,
“reference” oracle that always encrypts the queried string. Define the corresponding
advantage notion in the natural way: for an encryption scheme SE = (K, E ,D), let

Advrnd2−cpa
SE (A) = Pr[K $←K : AEK(·), EK(·)⇒1] − Pr[K $←K : AEK(·), $(·)⇒1]

State and prove a theorem that shows that this notion of security is equivalent to
our original RND-CPA notion.

Problem 4.5 Write a problem on padding.

Problem 4.6 Write a problem on OFB mode.

Problem 4.7 Devise a secure extension to CBC$ mode that allows messages of any
bit length to be encrypted. Clearly state your encryption and decryption algorithm.
Your algorithm should be simple, should “look like” CBC mode as much as possible,
and it should coincide with CBC mode when the message being encrypted is a
multiple of the blocklength. How would you prove your algorithm secure?

Problem 4.8 Write a problem on whichkey-revealing.

