
BTI 4202: From Symmetric Encryption to Secure
Channels

Christian Grothoff

Berner Fachhochschule

30.4.2021

Learning Objectives

Example: Attack on CBC Stateful IV

Beyond IND-CPA

Real-world use of cryptographic primitives (exercise)

Symmetric key establishment protocols

Secure channels

Part I: Attack on CBC

Attacking CBC stateful IV (1/5)1

Goal: confirm “Kimberly” was sent!

Attacking CBC stateful IV (2/5)

Setup: Get oracle to encrypt “Kimberly”:

Given random CBC residue, this does not help.

Attacking CBC stateful IV (3/5)

CBC residue is XORed with input, get rid of it first using predicted
IV:

Attacking CBC stateful IV (4/5)

Then add the residue from the original encryption:

Attacking CBC stateful IV (5/5)

Now confirm the output matches:

If output matches, original text was “Kimberly”.

Summary

For CBC, if an attacker can:

I guess the plaintext corresponding to any ciphertext block they
have seen before, and

I can predict a future IV, and

I can submit a suitable message to be encrypted with that IV,

then they can verify their guess.

Is this attack an issue?

I Requires guessing the entire block

I Requires access to encryption oracle

I Block size is say 8 bytes, so 2256 trials

BEAST (2011) made this attack practical by shifting each unknown
plaintext byte to a position in the block just after 7 bytes of known
plaintext.

Is this attack an issue?

I Requires guessing the entire block

I Requires access to encryption oracle

I Block size is say 8 bytes, so 2256 trials

BEAST (2011) made this attack practical by shifting each unknown
plaintext byte to a position in the block just after 7 bytes of known
plaintext.

IND-CPA Secure Schemes

I The CTR random IV symmetric encryption scheme is
IND-CPA secure.

I The CTR stateful IV encyption scheme (ensuring no IV
re-use) is IND-CPA secure.

I The CBC random IV symmetric encryption scheme is
IND-CPA secure.

Pseudo random functions (PRF)

I A pseudo random function (PRF) is a function that is
(computationally) indistinguishable from a true random
function

I The previous positive results are true under the assumption
that the block cipher used (e.g. AES) is a PRF.

I Assumption really means that this is a commonly shared belief
of the crypto community. No proof exists!

I Breaking any of these schemes thus means breaking the PRF
property of the underlying block cipher.

The crucial security property of a secure block cipher is that it is a
PRF!

Part II: Chosen Ciphertext Attacks

IND-CPA vs. Chosen Ciphertext

IND-CPA is not the strongest security model!

I The adversary does not have access to a decryption oracle

I With a decryption oracle, an adversary can be allowed to ask
for some messages of its choice to be decrypted.

I Security is achieved only if other messages still remain
indistinguishable.

Indistinguishability under Chosen Ciphertext Attacks
(IND-CCA)

The adversary’s goal is the same as in IND-CPA (determine b given
enc(k ,M i

b)) for sequences of messages M i
0,1).

Setup Generate random key k , select b ∈ {0, 1}.
Oracle E Given M, return C := enc(k,M).

Oracle D Given C ′, return M := dec(k,C ′).

The additional restriction C ′ 6= C must be imposed on the use of
Oracle D: The adversary is not allowed to ask for decryption of a
ciphertext C that was previously returned by the encryption oracle.

Examples for IND-CCA Insecure Schemes

CTR schemes are IND-CCA insecure:
“Say 〈r ,C 〉 is a ciphertext of some l-bit message M, and
we flip bit i of C , resulting in a new ciphertext 〈r ,C ′〉.
Let M ′ be the message obtained by decrypting the new
ciphertext. Then M ′ equals M with the i-th bit flipped.
Thus, by making a decryption oracle query of〈r ,C ′〉one
can learn M ′ and thus M.”
–Symmetric Encryption by Mihir Bellare and Phillip Rog-
away

Problem

IND-CCA does not provide authenticity!

Real-world security

I Schemes providing authenticated encryption are IND-CCA
secure.

I For details, see presentation linked from course Web site at
https://grothoff.org/christian/teaching/2021/4202/

https://grothoff.org/christian/teaching/2021/4202/

Break

Part III: Real-world symmetric encryption

GCM encryption

Counter0

Enck

Counter1

Enck

Counter2

Enck

incr incr

Ciphertext1 Ciphertext2

multH

multH

Plaintext1 Plaintext2

multHAuth Data1

multH

Auth Tag

len(A)||len(C)

Using encryption APIs

GNU libgcrypt is a C library offering a wide range of cryptographic
primitives.

1. # apt install libgcrypt20-dev

2. # apt install gcc gdb valgrind emacs

3. Download source templates (exercise.txt) from course Git

Example: AES256 GCM (encrypt.c)

char key[256/8], iv[96/8];

char plaintext[] = "Hello world";

char ciphertext[sizeof (plaintext)];

gcry_cipher_hd_t cipher;

gcry_cipher_open (&cipher, GCRY_CIPHER_AES256,

GCRY_CIPHER_MODE_GCM, 0);

gcry_cipher_setkey (cipher, key, sizeof (key));

gcry_cipher_setiv (cipher, iv, sizeof (iv));

gcry_cipher_encrypt (cipher,

ciphertext, sizeof (ciphertext),

plaintext, sizeof (plaintext));

gcry_cipher_close (cipher);

Example: AES256 GCM (decrypt.c)

char key[256/8], iv[96/8];

char plaintext[1024];

char ciphertext[sizeof (plaintext)];

gcry_cipher_hd_t cipher;

size_t plen = read (STDIN_FILENO,

ciphertext, sizeof (ciphertext));

gcry_cipher_open (&cipher, GCRY_CIPHER_AES256,

GCRY_CIPHER_MODE_GCM, 0);

gcry_cipher_setkey (cipher, key, sizeof (key));

gcry_cipher_setiv (cipher, iv, sizeof (iv));

gcry_cipher_decrypt (cipher,

plaintext, plen,

ciphertext, plen);

gcry_cipher_close (cipher);

Handling partial reads (decrypt.c)

char plaintext[1024];

size_t plen = 0;

while (1) {

ssize_t inlen = read (STDIN_FILENO,

&ciphertext[plen],

sizeof (ciphertext) - plen);

if (-1 == inlen) {

fprintf (stderr,

"Failed to read input\n");

return 1;

}

if (0 == inlen)

break;

plen += inlen;

}

Tasks (1/3)

I Use the provided encrypt and decrypt programs to encrypt
“Hello world” text using AES256+GCM and then decrypt it.

I Study the libgcrypt documentation. Use it to switch the
program to use AES256+CBC instead.

I Switch back to AES256+GCM. Extend the program to
obtain, transmit and verify the authentication tag.

I Extend the program to authenticate additional plaintext data
that is not at all encrypted.

Tasks (2/3)

I Write a new program hash.c to compute the SHA-256 hash
of the data read from stdin. Output the result in HEX and
compare to sha256sum.

I Modify your program to use SHA-512 instead.

I Write a new program kdf.c to compute the SCRYPT key
derivation function. Output the result in HEX.

Tasks (3/3)

I Modify your programs to perform 10000 iterations each time
before generating any output.

I Measure the time the various operations take.

I Modify your programs to process 1 MB of input instead of the
11 bytes of “Hello world”.

I Again, measure the time the various operations take.

I Change the IV length from 96 bits to 128 bits for
AES256+GCM and measure again.

Break

Part IV: Symmetric key establishment protocols

Key Establishment Security goals

The basic security goals of key establishment are:

I Key secrecy: Session keys must not be known by anyone else
than Alice, Bob (and maybe some trusted third party).
Mallory must not learn anything about session keys.

I Authenticity: One party can be assured about the identity of
the other party it shares the session key with. That is, Alice
knows that she has session key with Bob.

I Freshness of keys: Mallory must not be able to replay old
session keys.

Protocols

I Key establishment is realized by using protocols whereby a
shared secret becomes available to two or more parties, for
subsequent cryptographic use.

I Until now, we have been discussing non-interactive crypto
primitives, in the following we look at crypto protocols.

I It is even harder to design secure protocols, than designing
non-interactive primitives. In fact, there is a long list of
protocols designed by famous (and not so famous)
cryptographers that were found to be flawed.

Session keys

I Key establishment protocols result in shared secrets which are
typically called (or used to derive) session keys.

I Ideally, a session key is an ephemeral secret, i.e., one whose
use is restricted to a short time period such as a single
telecommunications connection (or session), after which all
trace of it is eliminated.

I Motivation for ephemeral keys includes the following:

1. To limit available ciphertext (under a fixed key) for
cryptanalytic attack;

2. To limit exposure, with respect to both time period and
quantity of data, in the event of (session) key compromise;

3. To avoid long-term storage of a large number of distinct secret
keys by creating keys only when actually required;

4. To create independence across communications sessions or
applications.

Classification of key establishment methods

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Private channels

I Let us informally refer to a private channel as an authentic
and confidential channel.

I Exchange of secret keys on a USB stick
I Pre-installation of keys on a company laptop

I Symmetric key distribution is impossible without private
channels.

I Private channels are, loosely speaking, “complicated”,
“inefficient”, “expensive”.

I The goal in the following is to:

I Reduce the number of private channels required to
exchange keys.

I Use an initial private channel today to exchange a secret
key that they may use tomorrow for establishing a secure
channel over an insecure link .

Storytime

Once upon a time...

Neumann-Stubblebine

1. Alice sends A,RA to Bob.

2. Bob sends B,RB ,EB(A,RA,TB) to Trent, where TB is a
timestamp and EB uses a key Bob shares with Trent.

3. Trent generates random session key K and sends
EA(B,RA,K ,TB),EB(A,K ,TB),RB to Alice where EA uses a
key Alice shares with Trent.

4. Alice decrypts and confirms that RA is her random value. She
then sends to Bob EB(A,K ,TB),EK (RB).

5. Bob extracts K and confirms that TB and RB have the same
value as in step 2.

Denning-Sacco

1. Alice sends A,B to Trent

2. Trent sends Alice ST (B,KB),ST (A,KA)

3. Alice sends Bob EB(SA(K ,TA)),ST (B,KB),ST (A,KA)

4. Bob decrypts, checks signatures and timestamps

Wide-Mouth Frog protocol

Wide-Mouth Frog protocol

The wide-mouth frog protocol has some conceptual shortcomings:

I Assumes synchronized clocks between the parties to achieve
freshness.

I Although having synchronized clocks seems to be
straight-forward, this is actually not the case.

I Synchronized clocks under normal conditions is indeed
easy (you have that in Windows, Linux...).

I Synchronized clocks under attack is much harder: you
need to have another protocol that securely synchronizes
clocks.

I But as soon as clock synchronization becomes security
relevant, you can bet that it gets attacked.

I Bob must trust Alice that she correctly generates the session
key.

Needham-Schroeder protocol

Needham-Schroeder protocol

I Needham is one of the IT security pioneers. Protocol was
conceived in 1978 and is one of the most widely studied
security protocols ever.

I Removes timestamps and introduces nonces to achieve
freshness.

I The session keys are generated by TTP in on the previous
slide, thus removes problem of Wide-Mouth Frog protocol.

I Protocol is insecure against known session key attacks.
Adversary who gets session key can replay the last three
messages and impersonate A to B.

I The reason for this problem is that B does not know
whether the session key is fresh.

I This vulnerability was discovered only some times after
the protocol was published. Thus, even the smartest and
most experienced people can fail to design secure crypto
protocols.

Kerberos

Kerberos

I Developed at MIT around 1987, made it into Windows 2000,
and is still used as the authentication / key establishment /
authorization mechanism within Windows.

I Quite similar to Needham-Schroeder, but removes weakness
against known session key attacks using synchronized clocks.

I Shorter than Needham-Schroeder: only 4 messages instead of
5.

Otway-Rees protocol

Otway-Rees protocol

I Only 4 messages as Kerberos, but completely different
messages.

I Does not require clock synchronization.

I Has a number of problems ⇒ Homework!

Station to station key agreement protocol

Common input: Z∗p and g ∈ Z∗p, and n such that gn ≡ 1 mod p

Alice Bob

1. xA∈∪[0, n − 1]

CERTB , sigB , yB

CERTA, yA
yA = gxA

sigA = sign(A‖B‖yA‖yB , SKA)

3. verify(A‖B‖yB‖yA, sigB , PKB)

2. xB∈∪[0, n − 1]

yB = gxB

4. yAB = y
xB

A

yAB = y
xA

B
A, sigA

sigB = sign(A‖B‖yB‖yA, SKB)

verify(A‖B‖yA‖yB , sigA, PKA)

I The protocol above is a simplified version of the STS protocol
to illustrate the idea of authenticating messages with public
keys.

I For a detailed spec refer to http://en.wikipedia.org/

wiki/Station-to-Station_protocol

http://en.wikipedia.org/wiki/Station-to-Station_protocol
http://en.wikipedia.org/wiki/Station-to-Station_protocol

Station to station key agreement protocol

I The “station to station protocol” is the DH protocol made
secure against MIM attacks:

I The idea is simple: Alice and Bob basically sign all the
messages they exchange in the Diffie - Hellman protocol.

I The “exchange of authenticated signing keys” is done
using certificates.

I Station to station protocol is the basis for the practically
important IKE (Internet Key Exchange protocol).

I The bottom line is: one cannot establish authenticated keys
without bootstrapping the system using an “exterior
authentication mechanism” (e.g., without first establishing
public key certificates for Alice and Bob).

RSA key transport

https://www.theinquirer.net/inquirer/news/2343117/

ietf-drops-rsa-key-transport-from-ssl

https://www.theinquirer.net/inquirer/news/2343117/ietf-drops-rsa-key-transport-from-ssl
https://www.theinquirer.net/inquirer/news/2343117/ietf-drops-rsa-key-transport-from-ssl

Lessons Learned

I Do not try to be too clever, over-optimization is often the
cause for vulnerabilities

I Which optimizations you can do (and which optimization
actually matter) depends on your assumptions (adversary
model, system capabilities)

I Which protocol to use depends on your performance goals and
communications capabilities (all-to-all communication, trusted
party, latency, bandwidth and computational constraints)

Break

Part V: Secure Channels

Overview

I By secure channel we refer to a logical channel running on top
of some insecure link (typically the Internet) that provides

I Confidentiality
I Integrity and authenticity
I Message freshness

I Secure channels are probably one of the most important
applications of crypto in the real world.

I Many well known secure network protocols such as TLS/SSL,
VPNs, IPSec, WPA etc but also application specific (e.g.,
secure VoIP), and proprietary protocols (maybe Skype?) make
use of secure channels.

I Essentially all these protocols build upon the basic ideas we
discuss in the following.

I It is also possible to get it wrong, e.g., the WEP protocol has
a series of security flaws.

Secure channel

Secure channel - Secure send

s e c u r e −send (m , kE , kM) {

STATIC msgsnt := 1

IF (msgsnt ≥ MAXMSGS) THEN RETURN ⊥

c := ENC (kE ,m)

m̃ := msgsnt||LENGTH(c)||c

t := MAC (kM , m̃)

SEND(m̃||t)

msgsnt := msgsnt + 1

}

Secure channel - Secure receive

s e c u r e −r e c e i v e (C , kE , kM) {

STATIC msgrcvd := 0

(msgsnt, len, c , t) = PARSE (C)

IF (t 6= MAC (kM ,msgsnt||len||c)) THEN RETURN ⊥

IF (msgsnt 6 msgrcvd) THEN RETURN ⊥

m := DEC (kE , c)

msgrcvd := msgsnt

RETURN m

}

Remarks

I The freshness property based on counters guarantees the
following: If m1,m2, . . . ,mn denote the messages send using
secure-send(), then secure-receive() can guarantee that the
messages m1,m2, . . . ,mn being received are subsequence of
the messages sent.

I Counters give no timing guarantees, i.e., the adversary
Mallory can delay messages at will.

I Timing guarantees can be achieved using

I Time-stamps
I Challenges

I No security protocol can prevent Mallory from discarding
messages.

I MACs provide not just integrity protection but also
authenticity , as discussed earlier.

I Further reading material: Chapter 8 in Practical Cryptography
by Schneier & Ferguson.

Remarks

I Typically, secure-send() and secure-receive() are run by both
parties using a secure channel.

I Each party will have an independent key-pair (enc & MAC).

I In practice, one introduces the notion of a session (e.g.,
e-banking). Consists of a session ID in the header, which
allows the receiver to look-up session state (keys, counters
etc.) when receiving a message.

I Generally better is the use of authenticated encryption, where
the block-cipher mode guarantees confidentiality and integrity.

I For more info see last week’s slides on AES-GCM and http:

//en.wikipedia.org/wiki/Authenticated_encryption

http://en.wikipedia.org/wiki/Authenticated_encryption
http://en.wikipedia.org/wiki/Authenticated_encryption

Break

Part IV: Extended Security Objectives for Secure Channels

Repudiation vs. non-repudiation

I Digital signatures allow proving that someone said something

I Alice may be happy to authenticate to Bob, but not to Eve or
Mallory!

I Bob may turn “evil” and use Alice’s statements against her
later

⇒ Signatures may provide too much (authentication and
non-repudiation)

Off-the-record (OTR) protocols allow repudiation

Repudiation vs. non-repudiation

I Digital signatures allow proving that someone said something

I Alice may be happy to authenticate to Bob, but not to Eve or
Mallory!

I Bob may turn “evil” and use Alice’s statements against her
later

⇒ Signatures may provide too much (authentication and
non-repudiation)

Off-the-record (OTR) protocols allow repudiation

OTR (Idea)

SA(TA) (1)

SB(TB) (2)

HKDF (DH(TA,TB)) (3)

OTR (Real)

The OTR protocol protects the above KX by wrapping it inside
another ephemeral key exchange:

K1 : = DH(T 1
A||T 1

B) (4)

EK1(SA(T 2
A)) (5)

EK1(SB(T 2
B)) (6)

K2 : = HKDF (DH(T 2
A,T

2
B)) (7)

(8)

To achieve forward secrecy, OTR keeps rolling out new keys T i
A,B .

To improve deniability, OTR publishes the old MAC keys once the
conversation progresses.

Is OTR deniable?

Both parties still have proof that they communicated: SX (TX)!

Is OTR deniable?

Both parties still have proof that they communicated: SX (TX)!

3DH (Trevor Perrin)

A: K = HKDF (DH(Ta,TB)||DH(Ta,B)||DH(a,TB))
B: K = HKDF (DH(TA,Tb)||DH(TA, b)||DH(A,Tb))

A Message from God (Dominic Tarr)

With 3DH, what happens if Alice’s private key (a, Ta) is
compromised?

M: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))
A: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))

A Message from God (Dominic Tarr)

With 3DH, what happens if Alice’s private key (a, Ta) is
compromised?

M: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))
A: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))

Forward secrecy

What happens if your private key is compromised
to your past communication data?

Static keys vs. ephemeral keys

Diffie-Hellman with:

I static keys allow authenticated encryption without signatures

I ephemeral keys protect against replay attacks and provide
forward secrecy

	Example: Attack on CBC Stateful IV
	Beyond IND-CPA
	Real-world use of cryptographic primitives (exercise)
	Symmetric key establishment protocols
	Secure channels

