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Learning Objectives

Example: Attack on CBC Stateful IV

Beyond IND-CPA

Real-world use of cryptographic primitives (exercise)

Symmetric key establishment protocols

Secure channels



Part I: Attack on CBC



Attacking CBC stateful IV (1/5)1

Goal: confirm “Kimberly” was sent!



Attacking CBC stateful IV (2/5)

Setup: Get oracle to encrypt “Kimberly”:

Given random CBC residue, this does not help.



Attacking CBC stateful IV (3/5)

CBC residue is XORed with input, get rid of it first using predicted
IV:



Attacking CBC stateful IV (4/5)

Then add the residue from the original encryption:



Attacking CBC stateful IV (5/5)

Now confirm the output matches:

If output matches, original text was “Kimberly”.



Summary

For CBC, if an attacker can:

I guess the plaintext corresponding to any ciphertext block they
have seen before, and

I can predict a future IV, and

I can submit a suitable message to be encrypted with that IV,

then they can verify their guess.



Is this attack an issue?

I Requires guessing the entire block

I Requires access to encryption oracle

I Block size is say 8 bytes, so 2256 trials

BEAST (2011) made this attack practical by shifting each unknown
plaintext byte to a position in the block just after 7 bytes of known
plaintext.
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IND-CPA Secure Schemes

I The CTR random IV symmetric encryption scheme is
IND-CPA secure.

I The CTR stateful IV encyption scheme (ensuring no IV
re-use) is IND-CPA secure.

I The CBC random IV symmetric encryption scheme is
IND-CPA secure.



Pseudo random functions (PRF)

I A pseudo random function (PRF) is a function that is
(computationally) indistinguishable from a true random
function

I The previous positive results are true under the assumption
that the block cipher used (e.g. AES) is a PRF.

I Assumption really means that this is a commonly shared belief
of the crypto community. No proof exists!

I Breaking any of these schemes thus means breaking the PRF
property of the underlying block cipher.

The crucial security property of a secure block cipher is that it is a
PRF!



Part II: Chosen Ciphertext Attacks



IND-CPA vs. Chosen Ciphertext

IND-CPA is not the strongest security model!

I The adversary does not have access to a decryption oracle

I With a decryption oracle, an adversary can be allowed to ask
for some messages of its choice to be decrypted.

I Security is achieved only if other messages still remain
indistinguishable.



Indistinguishability under Chosen Ciphertext Attacks
(IND-CCA)

The adversary’s goal is the same as in IND-CPA (determine b given
enc(k ,M i

b)) for sequences of messages M i
0,1).

Setup Generate random key k , select b ∈ {0, 1}.
Oracle E Given M, return C := enc(k,M).

Oracle D Given C ′, return M := dec(k,C ′).

The additional restriction C ′ 6= C must be imposed on the use of
Oracle D: The adversary is not allowed to ask for decryption of a
ciphertext C that was previously returned by the encryption oracle.



Examples for IND-CCA Insecure Schemes

CTR schemes are IND-CCA insecure:
“Say 〈r ,C 〉 is a ciphertext of some l-bit message M, and
we flip bit i of C , resulting in a new ciphertext 〈r ,C ′〉.
Let M ′ be the message obtained by decrypting the new
ciphertext. Then M ′ equals M with the i-th bit flipped.
Thus, by making a decryption oracle query of〈r ,C ′〉one
can learn M ′ and thus M.”
–Symmetric Encryption by Mihir Bellare and Phillip Rog-
away



Problem

IND-CCA does not provide authenticity!



Real-world security

I Schemes providing authenticated encryption are IND-CCA
secure.

I For details, see presentation linked from course Web site at
https://grothoff.org/christian/teaching/2021/4202/

https://grothoff.org/christian/teaching/2021/4202/


Break



Part III: Real-world symmetric encryption



GCM encryption
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Using encryption APIs

GNU libgcrypt is a C library offering a wide range of cryptographic
primitives.

1. # apt install libgcrypt20-dev

2. # apt install gcc gdb valgrind emacs

3. Download source templates (exercise.txt) from course Git



Example: AES256 GCM (encrypt.c)

char key[256/8], iv[96/8];

char plaintext[] = "Hello world";

char ciphertext[sizeof (plaintext)];

gcry_cipher_hd_t cipher;

gcry_cipher_open (&cipher, GCRY_CIPHER_AES256,

GCRY_CIPHER_MODE_GCM, 0);

gcry_cipher_setkey (cipher, key, sizeof (key));

gcry_cipher_setiv (cipher, iv, sizeof (iv));

gcry_cipher_encrypt (cipher,

ciphertext, sizeof (ciphertext),

plaintext, sizeof (plaintext));

gcry_cipher_close (cipher);



Example: AES256 GCM (decrypt.c)

char key[256/8], iv[96/8];

char plaintext[1024];

char ciphertext[sizeof (plaintext)];

gcry_cipher_hd_t cipher;

size_t plen = read (STDIN_FILENO,

ciphertext, sizeof (ciphertext));

gcry_cipher_open (&cipher, GCRY_CIPHER_AES256,

GCRY_CIPHER_MODE_GCM, 0);

gcry_cipher_setkey (cipher, key, sizeof (key));

gcry_cipher_setiv (cipher, iv, sizeof (iv));

gcry_cipher_decrypt (cipher,

plaintext, plen,

ciphertext, plen);

gcry_cipher_close (cipher);



Handling partial reads (decrypt.c)

char plaintext[1024];

size_t plen = 0;

while (1) {

ssize_t inlen = read (STDIN_FILENO,

&ciphertext[plen],

sizeof (ciphertext) - plen);

if (-1 == inlen) {

fprintf (stderr,

"Failed to read input\n");

return 1;

}

if (0 == inlen)

break;

plen += inlen;

}



Tasks (1/3)

I Use the provided encrypt and decrypt programs to encrypt
“Hello world” text using AES256+GCM and then decrypt it.

I Study the libgcrypt documentation. Use it to switch the
program to use AES256+CBC instead.

I Switch back to AES256+GCM. Extend the program to
obtain, transmit and verify the authentication tag.

I Extend the program to authenticate additional plaintext data
that is not at all encrypted.



Tasks (2/3)

I Write a new program hash.c to compute the SHA-256 hash
of the data read from stdin. Output the result in HEX and
compare to sha256sum.

I Modify your program to use SHA-512 instead.

I Write a new program kdf.c to compute the SCRYPT key
derivation function. Output the result in HEX.



Tasks (3/3)

I Modify your programs to perform 10000 iterations each time
before generating any output.

I Measure the time the various operations take.

I Modify your programs to process 1 MB of input instead of the
11 bytes of “Hello world”.

I Again, measure the time the various operations take.

I Change the IV length from 96 bits to 128 bits for
AES256+GCM and measure again.



Break



Part IV: Symmetric key establishment protocols



Key Establishment Security goals

The basic security goals of key establishment are:

I Key secrecy: Session keys must not be known by anyone else
than Alice, Bob (and maybe some trusted third party).
Mallory must not learn anything about session keys.

I Authenticity: One party can be assured about the identity of
the other party it shares the session key with. That is, Alice
knows that she has session key with Bob.

I Freshness of keys: Mallory must not be able to replay old
session keys.



Protocols

I Key establishment is realized by using protocols whereby a
shared secret becomes available to two or more parties, for
subsequent cryptographic use.

I Until now, we have been discussing non-interactive crypto
primitives, in the following we look at crypto protocols.

I It is even harder to design secure protocols, than designing
non-interactive primitives. In fact, there is a long list of
protocols designed by famous (and not so famous)
cryptographers that were found to be flawed.



Session keys

I Key establishment protocols result in shared secrets which are
typically called (or used to derive) session keys.

I Ideally, a session key is an ephemeral secret, i.e., one whose
use is restricted to a short time period such as a single
telecommunications connection (or session), after which all
trace of it is eliminated.

I Motivation for ephemeral keys includes the following:

1. To limit available ciphertext (under a fixed key) for
cryptanalytic attack;

2. To limit exposure, with respect to both time period and
quantity of data, in the event of (session) key compromise;

3. To avoid long-term storage of a large number of distinct secret
keys by creating keys only when actually required;

4. To create independence across communications sessions or
applications.



Classification of key establishment methods

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl



Private channels

I Let us informally refer to a private channel as an authentic
and confidential channel.

I Exchange of secret keys on a USB stick
I Pre-installation of keys on a company laptop

I Symmetric key distribution is impossible without private
channels.

I Private channels are, loosely speaking, “complicated”,
“inefficient”, “expensive”.

I The goal in the following is to:

I Reduce the number of private channels required to
exchange keys.

I Use an initial private channel today to exchange a secret
key that they may use tomorrow for establishing a secure
channel over an insecure link .



Storytime

Once upon a time...



Neumann-Stubblebine

1. Alice sends A,RA to Bob.

2. Bob sends B,RB ,EB(A,RA,TB) to Trent, where TB is a
timestamp and EB uses a key Bob shares with Trent.

3. Trent generates random session key K and sends
EA(B,RA,K ,TB),EB(A,K ,TB),RB to Alice where EA uses a
key Alice shares with Trent.

4. Alice decrypts and confirms that RA is her random value. She
then sends to Bob EB(A,K ,TB),EK (RB).

5. Bob extracts K and confirms that TB and RB have the same
value as in step 2.



Denning-Sacco

1. Alice sends A,B to Trent

2. Trent sends Alice ST (B,KB),ST (A,KA)

3. Alice sends Bob EB(SA(K ,TA)),ST (B,KB),ST (A,KA)

4. Bob decrypts, checks signatures and timestamps



Wide-Mouth Frog protocol



Wide-Mouth Frog protocol

The wide-mouth frog protocol has some conceptual shortcomings:

I Assumes synchronized clocks between the parties to achieve
freshness.

I Although having synchronized clocks seems to be
straight-forward, this is actually not the case.

I Synchronized clocks under normal conditions is indeed
easy (you have that in Windows, Linux...).

I Synchronized clocks under attack is much harder: you
need to have another protocol that securely synchronizes
clocks.

I But as soon as clock synchronization becomes security
relevant, you can bet that it gets attacked.

I Bob must trust Alice that she correctly generates the session
key.



Needham-Schroeder protocol



Needham-Schroeder protocol

I Needham is one of the IT security pioneers. Protocol was
conceived in 1978 and is one of the most widely studied
security protocols ever.

I Removes timestamps and introduces nonces to achieve
freshness.

I The session keys are generated by TTP in on the previous
slide, thus removes problem of Wide-Mouth Frog protocol.

I Protocol is insecure against known session key attacks.
Adversary who gets session key can replay the last three
messages and impersonate A to B.

I The reason for this problem is that B does not know
whether the session key is fresh.

I This vulnerability was discovered only some times after
the protocol was published. Thus, even the smartest and
most experienced people can fail to design secure crypto
protocols.



Kerberos



Kerberos

I Developed at MIT around 1987, made it into Windows 2000,
and is still used as the authentication / key establishment /
authorization mechanism within Windows.

I Quite similar to Needham-Schroeder, but removes weakness
against known session key attacks using synchronized clocks.

I Shorter than Needham-Schroeder: only 4 messages instead of
5.



Otway-Rees protocol



Otway-Rees protocol

I Only 4 messages as Kerberos, but completely different
messages.

I Does not require clock synchronization.

I Has a number of problems ⇒ Homework!



Station to station key agreement protocol

Common input: Z∗p and g ∈ Z∗p, and n such that gn ≡ 1 mod p

Alice Bob

1. xA∈∪[0, n − 1]

CERTB , sigB , yB

CERTA, yA
yA = gxA

sigA = sign(A‖B‖yA‖yB , SKA)

3. verify(A‖B‖yB‖yA, sigB , PKB)

2. xB∈∪[0, n − 1]

yB = gxB

4. yAB = y
xB

A

yAB = y
xA

B
A, sigA

sigB = sign(A‖B‖yB‖yA, SKB)

verify(A‖B‖yA‖yB , sigA, PKA)

I The protocol above is a simplified version of the STS protocol
to illustrate the idea of authenticating messages with public
keys.

I For a detailed spec refer to http://en.wikipedia.org/

wiki/Station-to-Station_protocol

http://en.wikipedia.org/wiki/Station-to-Station_protocol
http://en.wikipedia.org/wiki/Station-to-Station_protocol


Station to station key agreement protocol

I The “station to station protocol” is the DH protocol made
secure against MIM attacks:

I The idea is simple: Alice and Bob basically sign all the
messages they exchange in the Diffie - Hellman protocol.

I The “exchange of authenticated signing keys” is done
using certificates.

I Station to station protocol is the basis for the practically
important IKE (Internet Key Exchange protocol).

I The bottom line is: one cannot establish authenticated keys
without bootstrapping the system using an “exterior
authentication mechanism” (e.g., without first establishing
public key certificates for Alice and Bob).



RSA key transport

https://www.theinquirer.net/inquirer/news/2343117/

ietf-drops-rsa-key-transport-from-ssl

https://www.theinquirer.net/inquirer/news/2343117/ietf-drops-rsa-key-transport-from-ssl
https://www.theinquirer.net/inquirer/news/2343117/ietf-drops-rsa-key-transport-from-ssl


Lessons Learned

I Do not try to be too clever, over-optimization is often the
cause for vulnerabilities

I Which optimizations you can do (and which optimization
actually matter) depends on your assumptions (adversary
model, system capabilities)

I Which protocol to use depends on your performance goals and
communications capabilities (all-to-all communication, trusted
party, latency, bandwidth and computational constraints)



Break



Part V: Secure Channels



Overview

I By secure channel we refer to a logical channel running on top
of some insecure link (typically the Internet) that provides

I Confidentiality
I Integrity and authenticity
I Message freshness

I Secure channels are probably one of the most important
applications of crypto in the real world.

I Many well known secure network protocols such as TLS/SSL,
VPNs, IPSec, WPA etc but also application specific (e.g.,
secure VoIP), and proprietary protocols (maybe Skype?) make
use of secure channels.

I Essentially all these protocols build upon the basic ideas we
discuss in the following.

I It is also possible to get it wrong, e.g., the WEP protocol has
a series of security flaws.



Secure channel



Secure channel - Secure send

s e c u r e −send (m , kE , kM ) {

STATIC msgsnt := 1

IF (msgsnt ≥ MAXMSGS) THEN RETURN ⊥

c := ENC (kE ,m)

m̃ := msgsnt||LENGTH(c)||c

t := MAC (kM , m̃)

SEND(m̃||t)

msgsnt := msgsnt + 1

}



Secure channel - Secure receive

s e c u r e −r e c e i v e (C , kE , kM ) {

STATIC msgrcvd := 0

(msgsnt, len, c , t) = PARSE (C )

IF (t 6= MAC (kM ,msgsnt||len||c)) THEN RETURN ⊥

IF (msgsnt 6 msgrcvd) THEN RETURN ⊥

m := DEC (kE , c)

msgrcvd := msgsnt

RETURN m

}



Remarks

I The freshness property based on counters guarantees the
following: If m1,m2, . . . ,mn denote the messages send using
secure-send(), then secure-receive() can guarantee that the
messages m1,m2, . . . ,mn being received are subsequence of
the messages sent.

I Counters give no timing guarantees, i.e., the adversary
Mallory can delay messages at will.

I Timing guarantees can be achieved using

I Time-stamps
I Challenges

I No security protocol can prevent Mallory from discarding
messages.

I MACs provide not just integrity protection but also
authenticity , as discussed earlier.

I Further reading material: Chapter 8 in Practical Cryptography
by Schneier & Ferguson.



Remarks

I Typically, secure-send() and secure-receive() are run by both
parties using a secure channel.

I Each party will have an independent key-pair (enc & MAC).

I In practice, one introduces the notion of a session (e.g.,
e-banking). Consists of a session ID in the header, which
allows the receiver to look-up session state (keys, counters
etc.) when receiving a message.

I Generally better is the use of authenticated encryption, where
the block-cipher mode guarantees confidentiality and integrity.

I For more info see last week’s slides on AES-GCM and http:

//en.wikipedia.org/wiki/Authenticated_encryption

http://en.wikipedia.org/wiki/Authenticated_encryption
http://en.wikipedia.org/wiki/Authenticated_encryption


Break



Part IV: Extended Security Objectives for Secure Channels



Repudiation vs. non-repudiation

I Digital signatures allow proving that someone said something

I Alice may be happy to authenticate to Bob, but not to Eve or
Mallory!

I Bob may turn “evil” and use Alice’s statements against her
later

⇒ Signatures may provide too much (authentication and
non-repudiation)

Off-the-record (OTR) protocols allow repudiation
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I Alice may be happy to authenticate to Bob, but not to Eve or
Mallory!
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OTR (Idea)

SA(TA) (1)

SB(TB) (2)

HKDF (DH(TA,TB)) (3)



OTR (Real)

The OTR protocol protects the above KX by wrapping it inside
another ephemeral key exchange:

K1 : = DH(T 1
A||T 1

B) (4)

EK1(SA(T 2
A)) (5)

EK1(SB(T 2
B)) (6)

K2 : = HKDF (DH(T 2
A,T

2
B)) (7)

(8)

To achieve forward secrecy, OTR keeps rolling out new keys T i
A,B .

To improve deniability, OTR publishes the old MAC keys once the
conversation progresses.



Is OTR deniable?

Both parties still have proof that they communicated: SX (TX )!



Is OTR deniable?

Both parties still have proof that they communicated: SX (TX )!



3DH (Trevor Perrin)

A: K = HKDF (DH(Ta,TB)||DH(Ta,B)||DH(a,TB))
B: K = HKDF (DH(TA,Tb)||DH(TA, b)||DH(A,Tb))



A Message from God (Dominic Tarr)

With 3DH, what happens if Alice’s private key (a, Ta) is
compromised?

M: K = HKDF (DH(Ta,TG )||DH(Ta,G )||DH(a,TG ))
A: K = HKDF (DH(Ta,TG )||DH(Ta,G )||DH(a,TG ))



A Message from God (Dominic Tarr)

With 3DH, what happens if Alice’s private key (a, Ta) is
compromised?

M: K = HKDF (DH(Ta,TG )||DH(Ta,G )||DH(a,TG ))
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Forward secrecy

What happens if your private key is compromised
to your past communication data?



Static keys vs. ephemeral keys

Diffie-Hellman with:

I static keys allow authenticated encryption without signatures

I ephemeral keys protect against replay attacks and provide
forward secrecy
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