GNU Taler

Christian Grothoff

Berner Fachhochschule

11.6.2021

Learning Objectives

Key escrow and recovery: From Shamir to Anastasis

- Real world surveillance
- The Bank's Problem
- Introduction to GNU Taler
- Real-World Crypto
- Retail Central Bank Digital Currencies
- Taler Cryptography
- Digital Change with Cut-and-choose
- References

Anastasis¹

 $^{^{1} \}tt https://anastasis.lu/, based on a BFH Bachelor's thesis by D. Neufeld and D. Meister (2020)$

THE PROBLEM

Г	_	Ъ	
L		_	IĦ
Т			
L	- 4	2	ĮŲ

Confidentiality requires only consumer is in control of key material

o Consumers are unable to simultaneously ensure ار confidentiality and availability of keys

Cryptographic key-splitting solutions so far are not usable

European e-money issuers using electronic wallets must:1

- · Enable consumers to always recover their electronic funds (i.e. if devices are lost)
- Not assume consumers are able to remember or securely preserve key material

¹ According to communication from ECB to Taler Systems SA.

THE PROBLEM

Г	_	Ъ	
L		_	IĦ
Т			
L	- 4	2	ĮŲ

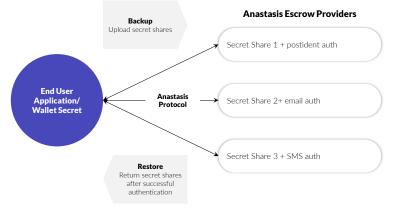
Confidentiality requires only consumer is in control of key material

o Consumers are unable to simultaneously ensure ار confidentiality and availability of keys

Cryptographic key-splitting solutions so far are not usable

European e-money issuers using electronic wallets must:1

- · Enable consumers to always recover their electronic funds (i.e. if devices are lost)
- Not assume consumers are able to remember or securely preserve key material


¹ According to communication from ECB to Taler Systems SA.

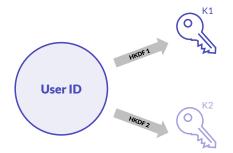
WHAT IS ANASTASIS? ANASTASIS IS A KEY RECOVERY SERVICE.

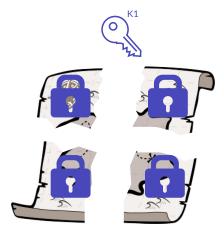
•) નેજ્રેર્	Users split their secret keys across multiple service providers
		Service providers learn nothing about the user, except possibly some details about how to authenticate the user
MarBook Arr	Þ	Only the authorized user can recover the key by following standard authentication procedures (SMS TAN, Video-Ident, Security Question, eMail, etc.)
		Presentation Anastasis I/G 4

OVERVIEW

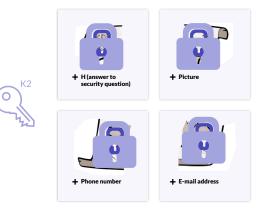
STEP 1: RECOVERY INFORMATION

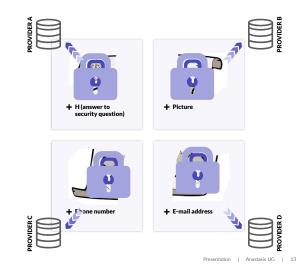
STEP 2: SPLIT RECOVERY INFORMATION



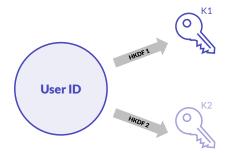

STEP 3: USER IDENTIFICATION

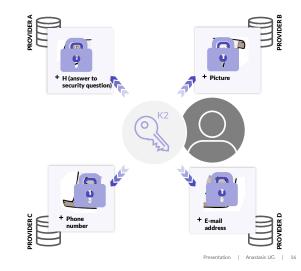
STEP 4: KEY DERIVATION

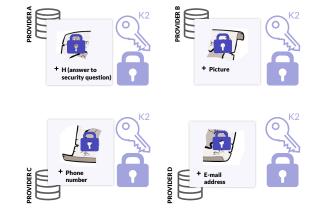

SIMPLIFIED PROCESS FLOW STEP 5: ENCRYPT PARTS

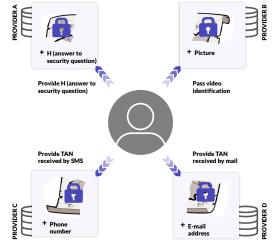

SIMPLIFIED PROCESS FLOW STEP 6: ADD TRUTH

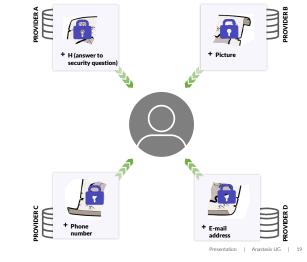
SIMPLIFIED PROCESS FLOW STEP 7: ENCRYPT TRUTH

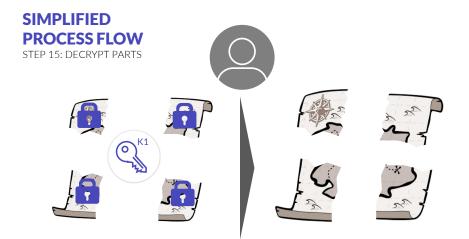

SIMPLIFIED PROCESS FLOW STEP 8: STORE DATA


STEP 9: USER IDENTIFICATION


STEP 10: KEY DERIVATION


SIMPLIFIED PROCESS FLOW STEP 11: PROVIDE KEY


SIMPLIFIED PROCESS FLOW STEP 12: DECRYPT TRUTH



SIMPLIFIED PROCESS FLOW STEP 13:

SIMPLIFIED PROCESS FLOW STEP 14:

SIMPLIFIED PROCESS FLOW STEP 16: REASSEMBLY

SIMPLIFICATIONS

THE PREVIOUS ILLUSTRATION MAKES VARIOUS SIMPLIFICATIONS

UNIQUE SALES PROPOSITIONS (USPS)

Distributed trust instead of single point of failure

2 Maximum privacy with respect to authentication data

5 Low cost, scalable cloudbased solution

L Ease of use

Generic API suitable for a range of applications

Customers can remain

anonymous:

 Minimizes risk to Anastasis service provider in case database is exposed

 Makes it more difficult for attackers to fool authentication procedure

5 Transparent, Free Software solution E-money issuer does not have to protect consumer data against its own staff and can respect consumer privacy

SOCIAL IMPACT OF ANASTASIS

Low-cost solution with minimal environmental impact

Increases informational selfdetermination by keeping consumers in control of their data

Free Software contributes to the global Commons

OPERATING MODEL

REVENUE

- E-money issuers pay Anastasis UG to offer service to consumers with wallets to satisfy their regulatory requirements (service must exist)
- Wallet operators pay Anastasis UG to assist with technical integration
- Consumers pay Anastasis UG for safekeeping and/or recovery (subscription)

EXPENSES

- · Development and operations (staff costs)
- Server infrastructure

Electronic wallets for blockchain wallets and/or fiat currencies

Key store for communication keys, such as OpenPGP or X.509

Identity management solutions

Password managers and disk encryption key material (*)

MAIN RISKS AND MITIGATIONS

IMPLEMENTATION RISK Straightforward design simplifies work


INFORMATION SECURITY RISK Privacy-by-design minimizes loss

DISTRIBUTION ON CUSTOMER SIDE Strong partners with implementation need

4

CASH FLOW Cloud-based deployment with outsourcing of procedures that amortize only at scale

Break

What domain of digital communication should we be most concerned about?

Surveilance concerns

• Everybody knows about Internet surveilance.

But is it that bad?

Surveilance concerns

- Everybody knows about Internet surveilance.
- But is it that bad?
 - You can choose when and where to use the Internet
 - You can anonymously access the Web using Tor
 - You can find open access points that do not require authentication
 - IP packets do not include your precise location or name
 - ISPs typically store this meta data for days, weeks or months

Where is it worse?

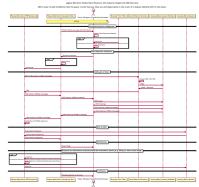
This was a question posed to RAND researchers in 1971:

"Suppose you were an advisor to the head of the KGB, the Soviet Secret Police. Suppose you are given the assignment of designing a system for the surveillance of all citizens and visitors within the boundaries of the USSR. The system is not to be too obtrusive or obvious. What would be your decision?"

Where is it worse?

This was a question posed to RAND researchers in 1971:

"Suppose you were an advisor to the head of the KGB, the Soviet Secret Police. Suppose you are given the assignment of designing a system for the surveillance of all citizens and visitors within the boundaries of the USSR. The system is not to be too obtrusive or obvious. What would be your decision?"


What is worse:

- When you pay by CC, the information includes your name
- When you pay in person with CC, your location is also known
- You often have no alternative payment methods available
- You hardly ever can use someone else's CC
- Anonymous prepaid cards are difficult to get and expensive
- Payment information is typically stored for at least 6 years

Banks have Problems, too!

3D secure ("verified by visa") is a nightmare:

- Complicated process
- Shifts liability to consumer
- Significant latency
- Can refuse valid requests
- Legal vendors excluded
- No privacy for buyers

Online credit card payments will be replaced, but with what?

The Bank's Problem

- Global tech companies push oligopolies
- Privacy and federated finance are at risk
- Economic sovereingity is in danger

Predicting the Future

- Google and Apple will be your bank and run your payment system
- They can target advertising based on your purchase history, location and your ability to pay
- They will provide more usable, faster and broadly available payment solutions; our federated banking system will be history
- After they dominate the payment sector, they will start to charge fees befitting their oligopoly size
- Competitors and vendors not aligning with their corporate "values" will be excluded by policy and go bankrupt
- The imperium will have another major tool for its financial warfare

Do you want to live under total surveillance?

Banking, Surveillance and Physical Security

https://www.youtube.com/watch?v=GyJZViNf2Vk (4'2019)

Break

GNU Taler

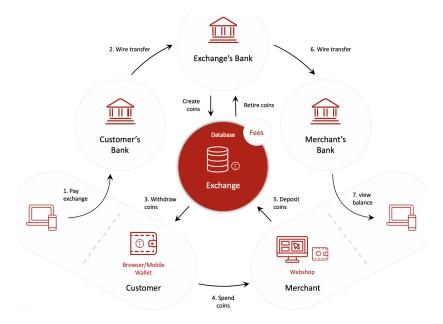
Digital cash, made socially responsible.

(Taler)

Privacy-Preserving, Practical, Taxable, Free Software, Efficient

What is Taler?

https://taler.net/en/features.html


Taler is

- ▶ a Free/Libre software *payment system* infrastructure project
- ... with a surrounding software ecosystem
- ... and a company (Taler Systems S.A.) and community that wants to deploy it as widely as possible.

However, Taler is

- not a currency
- not a long-term store of value
- not a network or instance of a system
- not decentralized
- not based on proof-of-work or proof-of-stake
- not a speculative asset / "get-rich-quick scheme"

Taler: Payment System Architecture

The Taler Software Ecosystem

https://taler.net/en/docs.html

Taler is based on modular components that work together to provide a complete payment system:

Exchange: Service provider for digital cash

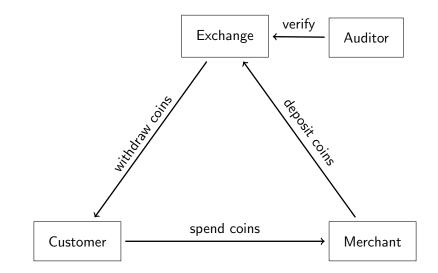
- Core exchange software (cryptography, database)
- Air-gapped key management, real-time auditing
- LibEuFin: Modular integration with banking systems

Merchant: Integration service for existing businesses

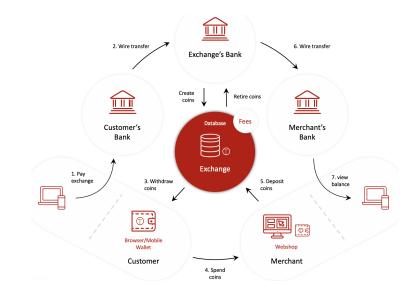
- Core merchant backend software (cryptography, database)
- Back-office interface for staff
- Frontend integration (E-commerce, Point-of-sale)
- ▶ Wallet: Consumer-controlled applications for e-cash
 - Multi-platform wallet software (for browsers & mobile phones)
 - Wallet backup storage providers
 - Anastasis: Recovery of lost wallets based on secret splitting

Taler: Unique Regulatory Features for CBs

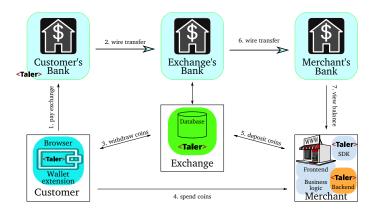
https://www.snb.ch/en/mmr/papers/id/working_paper_2021_03


- Central bank issues digital coins equivalent to issuing cash
 monetary policy remains under CB control
- Architecture with consumer accounts at commercial banks
 ⇒ no competition for commercial banking (S&L)
 - \Rightarrow CB does not have to manage KYC, customer support
- ► Withdrawal limits and denomination expiration ⇒ protects against bank runs and hoarding
- Income transparency and possibility to set fees
 additional insights into economy and new policy options
- Revocation protocols and loss limitations
 ⇒ exit strategy and handles catastrophic security incidents
- Privacy by cryptographic design not organizational compliance
 CB cannot be forced to facilitate mass-surveillance

Design goals for the GNU Taler Payment System


GNU Taler must ...

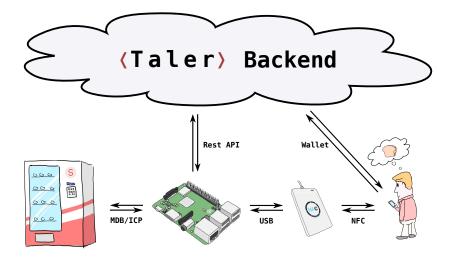
- 1. ... be implemented as **free software**.
- 2. ... protect the **privacy of buyers**.
- 3. ... must enable the state to **tax income** and crack down on illegal business activities.
- 4. ... prevent payment fraud.
- 5. ... only disclose the minimal amount of information necessary.
- 6. ... be usable.
- 7. ... be efficient.
- 8. ... avoid single points of failure.
- 9. ... foster **competition**.


Taler Overview

Architecture of Taler

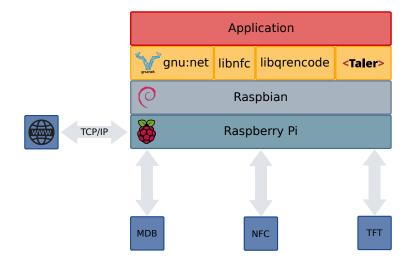
Architecture of Taler

 \Rightarrow Convenient, taxable, privacy-enhancing, & resource friendly!


Usability of Taler

https://demo.taler.net/

- 1. Install Web extension.
- 2. Visit the bank.demo.taler.net to withdraw coins.
- 3. Visit the shop.demo.taler.net to spend coins.


Example: The Taler Snack Machine²

Integration of a MDB/ICP to Taler gateway. Implementation of a NFC or QR-Code to Taler wallet interface.

²By M. Boss and D. Hofer

Software architecture for the Taler Snack Machine

User story: Install App on Android³

³https://wallet taler net/

User story: Withdraw e-cash

User story: Use machine!

CBDC Initiatives and Taler

Many initiatives are currently at the level of requirements discussion:

- ECB: Report on a Digital Euro / Eurosystem report on the public consultation on a Digital Euro
- Bank of England: Just initiated a task force

Taler can serve as the foundation for a bearer-based retail CBDC.

- Taler replicates physical cash rather than bank deposits
- Taler has unique design principles and regulatory features that align with CBDC requirements
- ECB survey has identified privacy as a primary requirement of end users

Taler: Unique Regulatory Features for CBs

https://www.snb.ch/en/mmr/papers/id/working_paper_2021_03

- Central bank issues digital coins equivalent to issuing cash
 monetary policy remains under CB control
- Architecture with consumer accounts at commercial banks
 ⇒ no competition for commercial banking (S&L)
 - \Rightarrow CB does not have to manage KYC, customer support
- ► Withdrawal limits and denomination expiration ⇒ protects against bank runs and hoarding
- Income transparency and possibility to set fees
 additional insights into economy and new policy options
- Revocation protocols and loss limitations
 ⇒ exit strategy and handles catastrophic security incidents
- Privacy by cryptographic design not organizational compliance
 CB cannot be forced to facilitate mass-surveillance

Requirements: Online vs. Offline CBDC

https://taler.net/papers/euro-bearer-online-2021.pdf

- Offline capabilities are often cited as a requirement for CBDC
- All implementations must either use restrictive hardware elements and/or introduce counterparty risk.
- ⇒ Permanent offline features weaken a CBDC solution (privacy, security)
- ⇒ Introduces unwarranted competition for physical cash (endangers emergency-preparedness).

We recommend a tiered approach:

- 1. Online-first, bearer-based CBDC
- 2. (Optional:) Limited offline mode for network outages
- 3. Physical cash for emergencies (power outage, catastrophic cyber incidents)

Taxability

We say Taler is taxable because:

- Merchant's income is visible from deposits.
- Hash of contract is part of deposit data.
- State can trace income and enforce taxation.

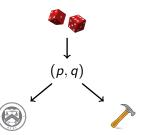
Taxability

We say Taler is taxable because:

- Merchant's income is visible from deposits.
- Hash of contract is part of deposit data.
- State can trace income and enforce taxation.

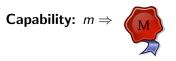
Limitations:

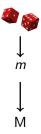
- withdraw loophole
- sharing coins among family and friends


We use a few ancient constructions:

- Cryptographic hash function (1989)
- Blind signature (1983)
- Schnorr signature (1989)
- Diffie-Hellman key exchange (1976)
- Cut-and-choose zero-knowledge proof (1985)

But of course we use modern instantiations.


Exchange setup: Create a denomination key (RSA)


- 1. Pick random primes p, q.
- 2. Compute n := pq, $\phi(n) = (p-1)(q-1)$
- 3. Pick small $e < \phi(n)$ such that $d := e^{-1} \mod \phi(n)$ exists.
- 4. Publish public key (e, n).

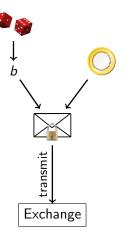
Merchant: Create a signing key (EdDSA)

- pick random m mod o as private key
- \blacktriangleright *M* = *mG* public key

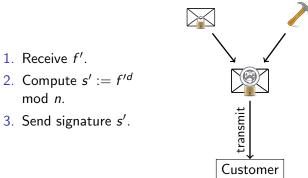
Customer: Create a planchet (EdDSA)

 Pick random c mod o private key

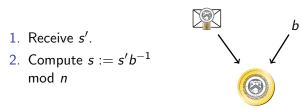
•
$$C = cG$$
 public key

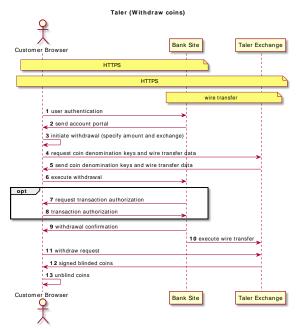


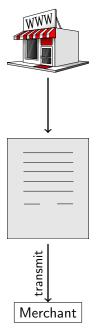
Capability: $c \Rightarrow$

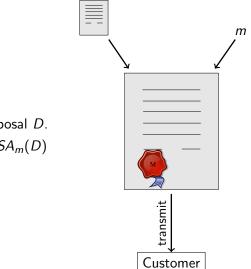


Customer: Blind planchet (RSA)

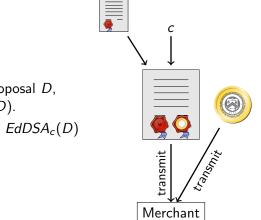

- 1. Obtain public key (e, n)
- 2. Compute f := FDH(C), f < n.
- 3. Pick blinding factor $b \in \mathbb{Z}_n$
- 4. Transmit $f' := fb^e$ mod n


Exchange: Blind sign (RSA)


Customer: Unblind coin (RSA)


Withdrawing coins on the Web

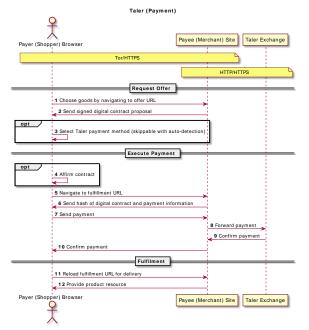
Customer: Build shopping cart



Merchant: Propose contract (EdDSA)

- 1. Complete proposal D.
- 2. Send *D*, $EdDSA_m(D)$

Customer: Spend coin (EdDSA)

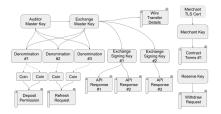

- 1. Receive proposal D, $EdDSA_m(D)$.
- 2. Send s, C, $EdDSA_c(D)$

Merchant and Exchange: Verify coin (RSA)

$$s^e \stackrel{?}{\equiv} FDH(C) \mod n$$

Payment processing with Taler

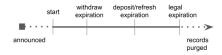
Exchange has *another* online signing key W = wG:


Sends $EdDSA_w(M, H(D), FDH(C))$ to the merchant.

This signature means that M was the *first* to deposit C and that the exchange thus must pay M.

Without this, an evil exchange could renege on the deposit confirmation and claim double-spending if a coin were deposited twice, and then not pay either merchant!

Online keys


- The exchange needs d and w to be available for online signing.
- The corresponding public keys W and (e, n) are certified using Taler's public key infrastructure (which uses offline-only keys).

What happens if those private keys are compromised?

Denomination key (e, n) compromise

- An attacker who learns d can sign an arbitrary number of illicit coins into existence and deposit them.
- Auditor and exchange can detect this once the total number of deposits (illicit and legitimate) exceeds the number of legitimate coins the exchange created.
- At this point, (e, n) is revoked. Users of unspent legitimate coins reveal b from their withdrawal operation and obtain a refund.
- The financial loss of the exchange is *bounded* by the number of legitimate coins signed with *d*.
- \Rightarrow Taler frequently rotates denomination signing keys and deletes d after the signing period of the respective key expires.

Online signing key W compromise

- An attacker who learns w can sign deposit confirmations.
- Attacker sets up two (or more) merchants and customer(s) which double-spend legitimate coins at both merchants.
- The merchants only deposit each coin once at the exchange and get paid once.
- The attacker then uses w to fake deposit confirmations for the double-spent transactions.
- The attacker uses the faked deposit confirmations to complain to the auditor that the exchange did not honor the (faked) deposit confirmations.

The auditor can then detect the double-spending, but cannot tell who is to blame, and (likely) would presume an evil exchange, forcing it to pay both merchants.

Break

Giving change

It would be inefficient to pay EUR 100 with 1 cent coins!

- Denomination key represents value of a coin.
- Exchange may offer various denominations for coins.
- Wallet may not have exact change!
- Usability requires ability to pay given sufficient total funds.

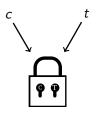
Giving change

It would be inefficient to pay EUR 100 with 1 cent coins!

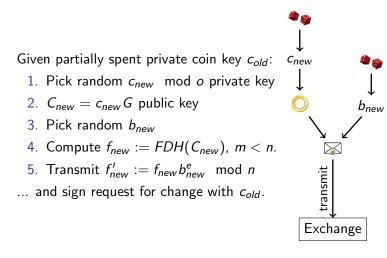
- Denomination key represents value of a coin.
- Exchange may offer various denominations for coins.
- Wallet may not have exact change!
- Usability requires ability to pay given sufficient total funds.
- Key goals:
 - maintain unlinkability
 - maintain taxability of transactions

Giving change

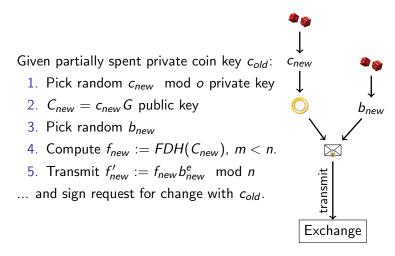
It would be inefficient to pay EUR 100 with 1 cent coins!


- Denomination key represents value of a coin.
- Exchange may offer various denominations for coins.
- Wallet may not have exact change!
- Usability requires ability to pay given sufficient total funds.
- Key goals:
 - maintain unlinkability
 - maintain taxability of transactions

Method:


- Contract can specify to only pay *partial value* of a coin.
- Exchange allows wallet to obtain *unlinkable change* for remaining coin value.

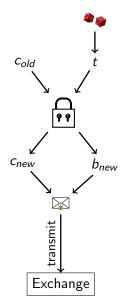
Diffie-Hellman (ECDH)


- 1. Create private keys *c*, *t* mod *o*
- 2. Define C = cG
- 3. Define T = tG
- 4. Compute DH cT = c(tG) = t(cG) = tC

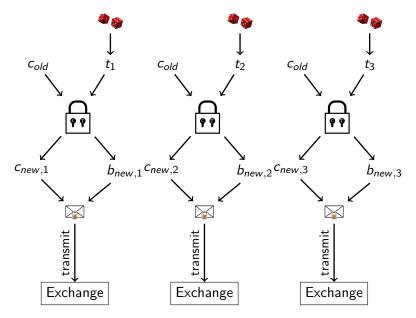
Strawman solution

Strawman solution

Problem: Owner of c_{new} may differ from owner of c_{old} !


Customer: Transfer key setup (ECDH)

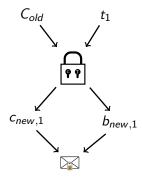
Given partially spent private coin key cold:

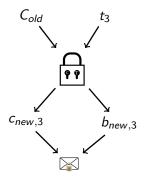

- 1. Let $C_{old} := c_{old} G$ (as before)
- 2. Create random private transfer key t mod o
- 3. Compute T := tG
- 4. Compute

$$X := c_{old}(tG) = t(c_{old}G) = tC_{old}$$

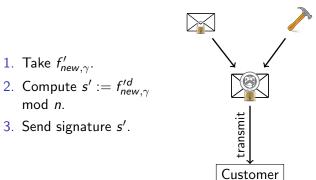
- 5. Derive c_{new} and b_{new} from X
- 6. Compute $C_{new} := c_{new} G$
- 7. Compute $f_{new} := FDH(C_{new})$
- 8. Transmit $f'_{new} := f_{new} b^e_{new}$

Cut-and-Choose



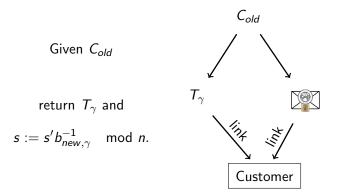

Exchange: Choose!

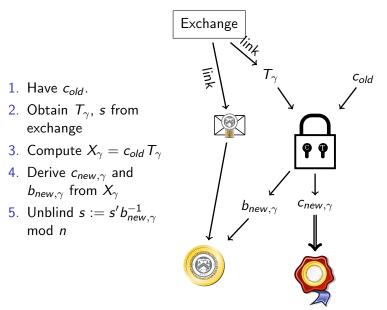
Exchange sends back random $\gamma \in \{1, 2, 3\}$ to the customer.


Customer: Reveal

1. If $\gamma = 1$, send t_2 , t_3 to exchange 2. If $\gamma = 2$, send t_1 , t_3 to exchange 3. If $\gamma = 3$, send t_1 , t_2 to exchange Exchange: Verify ($\gamma = 2$)




Exchange: Blind sign change (RSA)


Customer: Unblind change (RSA)

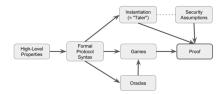
Exchange: Allow linking change

Customer: Link (threat!)

Refresh protocol summary

Customer asks exchange to convert old coin to new coin

- Protocol ensures new coins can be recovered from old coin
- \Rightarrow New coins are owned by the same entity!


Thus, the refresh protocol allows:

- To give unlinkable change.
- To give refunds to an anonymous customer.
- To expire old keys and migrate coins to new ones.
- ► To handle protocol aborts.

Transactions via refresh are equivalent to sharing a wallet.

Summary

- We can design protocols that fail *soft*.
- GNU Taler's design limits financial damage even in the case private keys are compromised.
- GNU Taler does:
 - Gives change, can provide refunds
 - Integrates nicely with HTTP, handles network failures
 - High performance
 - Free Software
 - Formal security proofs

GNU Taler: Next Steps

Implementation still needs:

- Demonstration Taler can sustain 100k transactions/second
- Wallet-to-wallet payments
- Payments with zero-knowledge age verification
- Payments via smart watch
- Improved design and usability for illiterate and innumerate users
- Internationalization => https://weblate.taler.net/

Porting to more platforms (Web shops, iOS, ...)

 Regulatory approval (withdraw and deposit limits, KYC/AML process validation)

Visions

- Be paid to read advertising, starting with spam
- Give welfare without intermediaries taking huge cuts
- Forster regional trade via regional currencies
- Eliminate corruption by making all income visible
- Stop the mining by making crypto-currencies useless for anything but crime

References