
Blockchains

Christian Grothoff

Berner Fachhochschule

3.6.2022

Learning Objectives

Blockchain

Name Systems: Background

Key Revocation

Homework (1/3)
The Otway-Ress protocol has a vulnerability described in
https://en.wikipedia.org/wiki/Otway-Rees. Explain how that vulnerabil-
ity is exploited.

https://en.wikipedia.org/wiki/Otway-Rees

Wikipedia...

I Gürgens and Peralta describe an attack which they name an arity attack. In this
attack the intruder intercepts the second message and replies to B using the two
ciphertexts from message 2 in message 3. In the absence of any check to prevent
it, M (or perhaps M,A,B) becomes the session key between A and B and is known
to the intruder.

I Cole describes both the Gürgens and Peralta arity attack and another attack in his
book Hackers Beware. In this the intruder intercepts the first message, removes
the plaintext A,B and uses that as message 4 omitting messages 2 and 3. This
leaves A communicating with the intruder using M (or M,A,B) as the session key.

Homework (2/3)

1. Verify that for any of the symmetric key establishment protocols the following
holds: If an attacker manages to compromise the long term keys at some point in
time, then he can decrypt all past sessions, assuming that he has recorded the key
establishment protocol messages.

2. Recapitulate the notion of known session-key attacks. Argue why the Kerberos
and the Otway-Ress protocol are secure against known session-key attacks.

Known Session Key Attack

Suppose Mallory is able to obtain the old session key K between Alice and Bob.
A protocol is vulnerable to a known session key attack if:

I Mallory can initiate a new session with Bob.

I Bob thinks he has a “new” session key K shared with Alice, but Alice does not
know the key, since she might have thrown away K after the previous session with
Bob.

I Mallory knows this session key K and communicates with Bob using K,
impersonating Alice

Kerberos

Homework (3/3)

1. Assume that an attacker can control the clocks of Alice, Bob, and the KDC,
respectively. Can you come up with any attacks on the Kerberos protocol?

2. Describe a man in the middle attack on the Diffie-Hellman protocol. Why does
the attack fail on the station to station protocol?

Station to station key agreement protocol

Common input: Z∗p and g ∈ Z∗p, and n such that g n ≡ 1 mod p

Alice Bob

1. xA∈∪[0, n − 1]

CERTB , sigB , yB

CERTA, yA
yA = gxA

sigA = sign(A‖B‖yA‖yB , SKA)

3. verify(A‖B‖yB‖yA, sigB , PKB)

2. xB∈∪[0, n − 1]

yB = gxB

4. yAB = y
xB

A

yAB = y
xA

B
A, sigA

sigB = sign(A‖B‖yB‖yA, SKB)

verify(A‖B‖yA‖yB , sigA, PKA)

Blockchain1

1Illustrations by Alexandra Dirksen, IAS, TUBS [1]

Blockchain

Blockchain

Blockchain

Blockchain

Blockchain

Blockchain

Blockchain

Blockchain

Blockchain

Advertised Blockchain “properties”

Immutability

Transparency

Decentralisation

Autonomy

Anonymity

Blockchain “properties”2

2These only hold with many significant caveats!

Immutability

Decentralisation

Transparency

Irreversibility

Anonymity

Autonomy

Who gets to append the next block?

Proof of Work

H¨

ª

n
s l

©

?

Proof of Work

H¨

ª

n
s l

©

?

ª
l

H

Proof of Work

H¨

ª

n
s l

©

?

ª

l
H

Proof of Work

H¨ n
s l

©

ª

ª

l
H

Proof of Work

Proof of Work

Break

Bitcoin for Payments

Bitcoin claims to be a payment system using a block chain:

I Public keys identify accounts, private keys used to send money from the account
into other accounts.

I Set of internally consistent transactions form block

I Each block includes a transaction creating fresh coins and transferring applicable
fees to block creator

I Difficulty adjusts to mining power to mine a block in ≈ 10 minutes

I Amount of coins created per block is exponentially decreasing

Bitcoin Payment flow (by W3C Payment Interest Group)
Bitcoin Payment Protocol (BIP70)

Invoice Database

Invoice Database

Payee Website

Payee Website

Bitcoin Network

Bitcoin Network

Payer Wallet

Payer Wallet

Payer (Browser)

Payer (Browser)

1 Request checkout with Bitcoin

2 Generate Bitcoin address

3 Store invoice details

4 Basket Page with bitcoin: pay link

5 Click bitcoin: link

6 Wallet handles bitcoin: URL and extracts invoice URL

7 Request invoice

8 Get invoice details

9 Create PaymentDetails (Amount, Memo, Ref#, Pay URL)

10 Create PaymentRequest (Signed PaymentDetails)

11 PaymentRequest containing PaymentDetails

12 Confirm payment details?

13 Accept payment

14 Generate and sign payment

15 Signed payment

16 Submit payment

17 Payment ACK

18 Confirm payment is complete

loop [until payment is confirmed]

19 Latest confirmed transactions

The Value of Bitcoin

Mining

Mining requires:

I Learning pending transactions from peers

I Selecting a subset of of transactions which is valid (no double spending) by
computing current account balances against the entire history

I Finding a hash collision (with adaptive difficulty)

I Propagating the new block to other miners

Usually specialized systems are used for finding hash collisions.

Mining cost

Current average transaction value: ≈ 1000 USD

CAP & Bitcoin

Bitcoin is inconsistent:

I Conflicting blocks can be mined at the same time

I This can happen by accident, or on purpose!

I Coins could be spent twice, once on each fork of the chain!

I Longest chain is considered “valid”

I Original paper suggests to consider transaction confirmed only after at least 6
blocks past the transaction.

⇒ Bitcoin is not consistent.
⇒ Competitively long alternative chains void durability even after 6 blocks!

https://xkcd.com/2315/

https://xkcd.com/2315/

Bitcoin performance

I Privacy: all transactions happen in the clear in public view

I Latency: transactions take 1h to kind-of be confirmed

I Storage: grows linearly forever, no garbage collection

I Power: mining consumes more than the entire state of Denmark today

I Rate: Network handles at most about 7 transactions per second

I Accountability: use of public keys as addresses enables criminal use

⇒ Bitcoin fever lasting for years. Why?

Altcoins

I Dogecoin: same as Bitcoin, just named after a dog meme (an idea that is
obviously worth billions!)

I Zcash: uses ZKSNARKs3 to hide transactions (criminal activity on Bitcoin was
too low)

I Ethereum: run Turing-complete virtual machine logic in the blockchain to enable
“smart” contracts and arbitrary applications, not just payments (is “Accelerando”
an utopia or dystopia?)

Experimental designs promising to drastically improve performance (Bolt, Lightning)
have so far failed to deliver.

3≈ 1-15 minutes CPU time to create new transaction needed!

James Mickens on Blockchains

https://www.youtube.com/watch?v=15RTC22Z2xI (2018)

https://www.youtube.com/watch?v=15RTC22Z2xI

Case study: Private payments

“A company is developing new software for private payments. This will enable
its customers to transact with “complete” privacy (like cash). The solution
does not include backdoors, and thus the company cannot block payments to
support trade embargos or anti money laundering efforts.”

I Discuss virtues and vices affected.

I Does it make a difference if the software is Free Software developed by a
community instead of proprietary software from a company?

I Suppose the company added a feature to provide income transparency where the
state gets to see who receives funds (but not who made payments). Does this
change your assessment?

Break

Security Goals for Name Systems

I Query origin anonymity

I Data origin authentication and integrity protection

I Zone confidentiality

I Query and response privacy

I Censorship resistance

I Traffic amplification resistance

I Availability

Approaches Adding Cryptography to DNS

I DNSSEC

I DNSCurve

I DNS-over-TLS

I DNS-over-HTTPS

I RAINS

Case study: DoH

DNS is known to suffer from a lack of end-to-end integrity protections. As a result,
Chinese ”great firewall” DNS manipulation has been shown to impact name resolution
even in Europe.

“The IETF is standardizing DNS over HTTPS (DOH), where all DNS queries
are sent over the HTTPS protocol to some well-known HTTPS server (such as
Google’s 8.8.8.8 or Cloudflare’s 1.1.1.1). This will prevent local governments
from manipulating DNS traffic and improve the user’s privacy with respect
to their ISPs and governments. However, Google or Cloudflare will see the
DNS queries and replies of the users, and they must be expected to have
weak privacy policies and are subject to US law which includes secret rules and
court orders. The NSA has a history of snooping on (MORECOWBELL) and
manipulating (QUANTUMDNS) DNS traffic.”

Discuss virtues and vices affected.

Case study: RAINS

DNS is known to suffer from a lack of end-to-end integrity protections. As a result,
Chinese ”great firewall” DNS manipulation has been shown to impact name resolution
even in Europe.

“The ETH Zurich is developing a new name system called RAINS with a new
trust anchor operated by the regional Internet service provides, aka the local
Isolation Service Domain (ISD). RAINS does not change the privacy of DNS
(provides can continue to monitor traffic, all zone data becomes public) and
allows the local authorities to block Web sites to improve public safety and
enforce local laws (see also: ”Glücksspielgesetz in Switzerland”). At the same
time, foreign censorship efforts are less likely to be effective (unless they foreign
government forces the DNS authority to alter the authoritative records).”

Discuss virtues and vices affected.

Break

Namecoin

Let’s just put the records into the Blockchain!

Or rather, put the public key of the owner and signed updates into it.

And let’s have some expiration rules.

Namecoin

Let’s just put the records into the Blockchain!

Or rather, put the public key of the owner and signed updates into it.

And let’s have some expiration rules.

Namecoin

Let’s just put the records into the Blockchain!

Or rather, put the public key of the owner and signed updates into it.

And let’s have some expiration rules.

Case study: Namecoin

DNS is known to suffer from a lack of end-to-end integrity protections. As a result,
Chinese ”great firewall” DNS manipulation has been shown to impact name resolution
even in Europe.

“Namecoin establishes a new name system on the blockchain (where thus zone
data is also public), but where public authorities cannot block information.
Queries are performed against a local copy of the blockchain and thus also
private. There is no WHOIS, so the owner of a name can also be anonymous.
However, Namecoin uses much more bandwidth and energy as blockchain pay-
ments are used for registration and name resolution. Names are registered
on a first-come, first-served basis. Trademarks, copyrights anti-fraud or anti-
terrorism judgements cannot be used to force owners of names to relinquish
names.”

Discuss virtues and vices affected.

Ethereum Name System4

Let’s have a smart contract in the Blockchain manage naming!

Blockchain contains smart contract and data who controls which name.

Contract allocates names under .eth using auctions.

4https://ens.domains/

https://ens.domains/

Ethereum Name System5

5https://ens.domains/

https://ens.domains/

Break

Key Revocation

I Certificate Revocation Lists (X.509)

I Online Certificate Status Protocol (OCSP)

I OCSP stapling (TLS)

I Publish revocation in blockchain?

I Controlled flooding

Key Revocation via Controlled Flooding

I Revocation message signed with private key that is to be revoked

I Flooded on all links in (P2P) overlay, stored forever

I Efficient set reconciliation used when peers connect

I Expensive proof-of-work used to limit DoS-potential

I Proof-of-work can be calculated ahead of time

I Revocation messages can be computed and stored off-line if desired

Efficient Set Union
(based on “What’s the difference? Efficient Set Reconciliation without Prior Context” [2])

I Alice and Bob have sets A and B

I The sets are very large

I . . . but their symmetric difference δ = |(A− B) ∪ (B − A)| is small

I Now Alice wants to know B − A (the elements she’s missing)

I . . . and Bob A− B (the elements he’s missing)

I How can Alice and Bob do this efficiently?
I w.r.t. communication and computation

Bad Solution

I Naive approach: Alice sends A to Bob, Bob sends B − A back to Alice

I . . . and vice versa.

I Communication cost: O(|A|+ |B|) :(
I Ideally, we want to do it in O(δ).

I First improvement: Don’t send elements of A and B, but send/request hashes.
Still does not improve complexity :(

I We need some more fancy data structure!

Bloom Filters

Constant size data structure that “summarizes” a set.

Operations:

d = NewBF (size) Create a new, empty bloom filter.

Insert(d , e) Insert element e into the BF d .

b = Contains(d , e) Check if BF d contains element e.
b ∈ {“Definitely not in set”, “Probably in set”}

BF: Insert

0

0

0

0

0

0

0

HElement #1 H(Element #1) = (2, 3, 7)

BF: Insert

0

1

1

0

0

0

1

HElement #1 H(Element #1) = (2, 3, 7)

BF: Insert

0

1

1

0

0

0

1

HElement #2
H(Element #1) = (2, 3, 7)
H(Element #2) = (1, 3, 5)

BF: Insert

1

1

1

0

1

0

1

HElement #2
H(Element #1) = (2, 3, 7)
H(Element #2) = (1, 3, 5)

BF: Membership Test

1

1

1

0

1

0

1

HElement #3
H(Element #1) = (2, 3, 7)
H(Element #2) = (1, 3, 5)

BF: Membership Test (false positive)

1

1

1

0

1

0

1

HElement #4
H(Element #1) = (2, 3, 7)
H(Element #2) = (1, 3, 5)

Counting Bloom Filters

BF where buckets hold a positive integer.

Additional Operation:

Remove(d , e) Remove element from the CBF d .

⇒ False negatives when removing a non-existing element.

Invertible Bloom Filters

Similar to CBF, but

I Allow negative counts

I Additionaly store (XOR-)sum of hashes in buckets.

Additional Operations:

(e, r) = Extract(d) Extract an element (e) from the IBF d , with result code
r ∈ {left, right, done, fail}

d ′ = SymDiff (d1, d2) Create an IBF that represents the symmetric difference of d1

and d2.

IBF: Insert

0 0000

0 0000

0 0000

0 0000

0 0000

0 0000

0 0000

HElement
H(Element #1) = (2, 3, 7)
H ′(Element #1) = 4242

IBF: Insert

0 0000

1 4242

1 4242

0 0000

0 0000

0 0000

1 4242

HElement
H(Element #1) = (2, 3, 7)
H ′(Element #1) = 4242

IBF: Insert

0 0000

1 4242

1 4242

0 0000

0 0000

0 0000

1 4242

HElement

H(Element #1) = (2, 3, 7)
H ′(Element #1) = 4242
H(Element #2) = (1, 3, 5)
H ′(Element #2) = 0101

IBF: Insert

1 0101

1 4242

2 4343

0 0000

1 0101

0 0000

1 4242

HElement

H(Element #1) = (2, 3, 7)
H ′(Element #1) = 4242
H(Element #2) = (1, 3, 5)
H ′(Element #2) = 0101

IBF: Extract

1 0101

1 4242

2 4343

0 0000

1 0101

0 0000

1 4242

pure bucket

I Pure bucket ⇒ extractable element
hash

I Extraction ⇒ more pure buckets
(hopefully/probably)

I Less elements ⇒ more chance for pure
buckets

Symmetric Difference

We can directly compute the symmetric difference without extraction.

I Subtract counts

I XOR hashes

The Set Union Protocol [3]

1. ⇒ Create IBFs

2. Compute SymDiff

3. Extract element hashes

I Amount of communication and computation only depends on δ, not |A|+ |B| :)
I How do we choose the initial size of the IBF?

I ⇒ Do difference estimation first!

Difference Estimation

I We need an estimator that’s accurate for small differences

I Turns out we can re-use IBFs for difference estimation:

1. Alice and Bob create fixed number of constant-size IBFs by sampling their set.
The collection of IBFs is called a Strata Estimator (SE).
I Stratum 1 contains 1/2 of all elements
I Stratum 2 contains 1/4 of all elements
I Stratum n contains 1/(2n) all elements

2. Alice receives Bob’s strata estimator

3. Alice computes SEdiff = SymDiff (SEAlice,SEBob)
I by pair-wise SymDiff of all IBFs in the SE

4. Alice estimates the size of SEdiff .

Strata Estimator

IBF 3

IBF 2

IBF 1

IBF 0

Strata Estimator

IBF 3

IBF 2

IBF 1

IBF 0

3

Strata Estimator

IBF 3

IBF 2

IBF 1

IBF 0

3

7

Strata Estimator

IBF 3

IBF 2

IBF 1

IBF 0

3

7

??

Estimation

IBF 3

IBF 2

IBF 1

IBF 0

3

7

?? Estimate as (3 + 7) · 24.
(Number of extracted hashes scaled by
expected number of elements in the
remaining IBFs)

The Complete Protocol

1. Alice sends SEAlice to Bob

2. Bob estimates the set difference δ

3. Bob computes IBFBob with size δ and sends it to Alice

4. Alice computes IBFAlice

5. Alice computes IBFdiff = SymDiff (IBFAlice, IBFBob)

6. Alice extracts element hashes from IBFdiff .
I b = left ⇒ Send element to to Bob
I b = right ⇒ Send element request to to Bob
I b = fail ⇒ Send larger IBF (double the size) to Bob, go to (3.) with switched roles
I b = done ⇒ We’re done . . .

References

Alexandra Dirksen.
A blockchain picture book.
https:
//media.ccc.de/v/35c3-9573-a˙blockchain˙picture˙book), 12
2018.

David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese.
What’s the difference?: Efficient set reconciliation without prior context.
SIGCOMM Comput. Commun. Rev., 41(4):218–229, August 2011.

Elias Summermatter and Christian Grothoff.
Byzantine fault tolerant set reconciliation.
https://datatracker.ietf.org/doc/html/
draft-summermatter-set-union, 1 2021.

https://media.ccc.de/v/35c3-9573-a_blockchain_picture_book)
https://media.ccc.de/v/35c3-9573-a_blockchain_picture_book)
https://datatracker.ietf.org/doc/html/draft-summermatter-set-union
https://datatracker.ietf.org/doc/html/draft-summermatter-set-union

	Blockchain
	Name Systems: Background
	Key Revocation
	References

