
BTI 4202: Security and Trust in Distributed Systems

Christian Grothoff

Berner Fachhochschule

13.5.2022

Risk Analysis

Learning objectives

Fallacies of distributed computing

Boyd’s theorem

CAP Theorem

Zooko’s Triangle

Self stabilization

Attacks and defenses

Distributed Hash Tables
CAN
Chord
Kademlia

Advanced Cryptographic Primitives

Secure Multiparty Computation

Bonus: Hardware

Part I: Security in Distributed Systems

The 8 Fallacies of Distributed Computing1

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology does not change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

1According to Peter Deutsch and James Gosling

Limits on authentication

Theorem (Boyd’s Theorem I)

“Suppose that a user has either a confidentiality channel to her, or an authentication
channel from her, at some state of the system. Then in the previous state of the
system such a channel must also exist. By an inductive argument, such a channel
exists at all previous states.”

Theorem (Boyd’s Theorem II)

“Secure communication between any two users may be established by a sequence of
secure key transfers if there is a trusted chain from each one to the other.”

Solution space: Zfone Authentication (ZRTP) [17]

Idea: combine human interaction proof and baby duck approach:

I A and B perform Diffie-Hellman exchange

I Keying material from previous sessions is used (duckling)

I Short Authentication String (SAS) is generated (hash of DH numbers)

I Both users read the SAS to each other, recognize voice

⇒ ZRTP foils standard man-in-the-middle attack.

CAP Theorem [9]

No distributed system can be consistent, available and partition tolerant at the same
time.

I Consistency: A read sees the changes made by all previous writes

I Availability: Reads and writes always succeed

I Partition tolerance: The system operates even when network connectivity between
components is broken

Blockchain Trilemma

Blockchains claim to achieve three properties:

I Decentralization: there are many participants, and each participant only needs to
have a small amount of resources, say O(c)

I Scalability: the system scales to O(n) > O(c) transactions

I Security: the system is secure against attackers with O(n) resources

The Blockchain trilemma is that one can only have two of the three.

Ryge’s Triangle

Ryge’s Triangle postulates three key management goals for a system associating cryp-
tographic keys with addresses or names:

I Non-interactive: the system should require no user interface

I Flexible: addresses/names can be re-used by other participants

I Secure: the system is secure against active attackers

Ryge’s triangle says that one can only have two of the three.

Zooko’s Triangle

Secure

Global Memorable

A name system can only fulfill two!

Zooko’s Triangle

Secure

Global MemorableHierarchical Registration

C
ry

pt
og

ra
ph

ic
 Id

en
tifi

er
s

Petnam
e System

s

DNS, “.onion” IDs and /etc/hosts/ are representative designs.

Zooko’s Triangle

Secure

Global MemorableHierarchical Registration

C
ry

pt
og

ra
ph

ic
 Id

en
tifi

er
s

Petnam
e System

s

 mnemonic
URLs

ce
rt

ifi
ca

te
s

SDSI

DNSSEC security is limited (adversary model!)

Self stabilization (Dijkstra 1974)

I A system is self-stabilizing, if starting from any state, it is guaranteed that the
system will eventually reach a correct state (convergence).

I Given that the system is in a correct state, it is guaranteed to stay in a correct
state, provided that no fault happens (closure).

I Self-stabilization enables a distributed algorithm to recover from a transient fault
regardless of its nature.

Example: Spanning-tree Protocol from Networking!

Sybil Attack

Background:

I Ancient Greece: Sybils were prophetesses that prophesized under the devine
influence of a deity. Note: At the time of prophecy not the person but a god was
speaking through the lips of the sybil.

I 1973: Flora Rheta Schreiber published a book “Sybil” about a woman with 16
separate personalities.

The Sybil Attack [8]:

I Insert a node multiple times into a network, each time with a different identity
I Position a node for next step on attack:

I Attack connectivity of the network
I Attack replica set
I In case of majority votes, be the majority.

Sybil Attack

Background:

I Ancient Greece: Sybils were prophetesses that prophesized under the devine
influence of a deity. Note: At the time of prophecy not the person but a god was
speaking through the lips of the sybil.

I 1973: Flora Rheta Schreiber published a book “Sybil” about a woman with 16
separate personalities.

The Sybil Attack [8]:

I Insert a node multiple times into a network, each time with a different identity
I Position a node for next step on attack:

I Attack connectivity of the network
I Attack replica set
I In case of majority votes, be the majority.

Defenses against Sybil Attacks

I Use authentication with trusted party that limits identity creation

I Use “external” identities (IP address, MAC, e-mail)

I Use “expensive” identities (solve computational puzzles, require payment)

Douceur: Without trusted authority to certify identities, no realistic approach exists to
completely stop the Sybil attack.

Eclipse Attack: Goal

I Separate a node or group of nodes from the rest of the network

I isolate peers (DoS, surveillance) or isolate data (censorship)

Eclipse Attack: Techniques

I Use Sybil attack to increase number of malicious nodes

I Take over routing tables, peer discovery

⇒ Details depend on overlay structure

Eclipse Attack: Defenses

I Large number of connections

I Replication

I Diverse neighbour selection (different IP subnets, geographic locations)

I Aggressive discovery (“continuous” bootstrap)

I Audit neighbour behaviour (if possible)

I Prefer long-lived connections / old peers

Poisoning Attacks

Nodes provide false information:

I wrong routing tables

I wrong meta data

I wrong performance measurements

Timing Attacks [14]

Nodes can:

I measure latency to determine origin of data

I delay messages

I send messages using particular timing patterns to aid correlation

I include wrong timestamps (or just have the wrong time set...)

Break

Part II: Distributed Hash Tables

Distributed Hash Tables (DHTs)

I Distributed index

I GET and PUT operations like a hash table

I JOIN and LEAVE operations (internal)

I Trade-off between JOIN/LEAVE and GET/PUT costs

I Typically use exact match on cryptographic hash for lookup

I Typically require overlay to establish particular connections

DHTs: Key Properties

To know a DHT, you must know (at least) its:

I routing table structure

I lookup procedure

I join operation process

I leave operation process

... including expected costs (complexity) for each of these operations.

A trivial DHTs: The Clique

I routing table: hash map of all peers

I lookup: forward to closest peer in routing table

I join: ask initial contact for routing table, copy table, introduce us to all other
peers, migrate data we’re closest to to us

I leave: send local data to remaining closest peer, disconnect from all peers to
remove us from their routing tables

Complexity?

A trivial DHTs: The Circle

I routing table: left and right neighbour in cyclic identifier space

I lookup: forward to closest peer (left or right)

I join: lookup own peer identity to find join position, transfer data from neighbour
for keys we are closer to

I leave: ask left and rigt neighbor connect directly, transfer data to respective
neighbour

Complexity?

Additional Questions to ask

I Security against Eclipse attack?

I Survivability of DoS attack?

I Maintenance operation cost & required frequency?

I Latency? (6= number of hops!)

I Data persistence?

Content Addressable Network: CAN

I routing table: neighbours in
d-dimensional torus space

I lookup: forward to closest peer

I join: lookup own peer identity
to find join position, split
quadrant (data areas) with
existing peer

I leave: assign quadrant space to
neighbour (s)

Interesting CAN properties

I CAN can do range queries along ≤ n dimensions

I CAN’s peers have 2d connections (independent of network size)

I CAN routes in O(d d
√
n)

Chord
I routing table: predecessor in

circle and at distance 2i , plus r
successors

I lookup: forward to closest peer
(peer ID after key ID)

I join: lookup own peer identity
to find join position, use
neighbor to establish finger
table, migrate data from
respective neighbour

I leave: join predecessor with
successor, migrate data to
respective neighbour, periodic
stabilization protocol takes care
of finger updates

Interesting Chord properties

I Simple design

I log2 n routing table size

I log2 n lookup cost

I Asymmetric, inflexible routing tables

Kademlia
I routing table: 2160 buckets with k peers at XOR distance 2i

I lookup: iteratively forward to α peers from the “best” bucket, selected by latency
I join: lookup own peer identity, populate table with peers from iteration
I maintenance: when interacting with a peer, add to bucket if not full; if bucket

full, check if longest-not-seen peer is live first
I leave: just drop out

0 1

0 1
10 11

0 1
00 01

Connections
Route path

Interesting Kademlia properties

I XOR is a symmetric metric: connections are used in both directions

I α replication helps with malicious peers and churn

I Iterative lookup gives initiator much control,

I Lookup helps with routing table maintenance

I Bucket size trade-off between routing speed and table size
I Iterative lookup is a trade-off:

I good UDP (no connect cost, initiator in control)
I bad with TCP (very large number of connections)

Part III: Advanced Cryptographic Primitives

Homomorphic Encryption

E (x1 ⊕ x2) = E (x1)⊗ E (x2) (1)

Multiplicative Homomorphism: RSA & ElGamal

I Unpadded RSA (multiplicative):

E (x1) · E (x2) = xe1 x
e
2 = E (x1 · x2) (2)

I ElGamal:

E (x1) · E (x2) = (g r1 , x1 · hr1)(g r2 , x2 · hr2) (3)

= (g r1+r2), (x1 · x2)hr1+r2) (4)

= E (x1 · x2) (5)

Additive Homomorphism: Paillier

EK (m) : = gm · rn mod n2, (6)

DK (c) : =
(cλ mod n2)− 1

n
· µ mod n (7)

where the public key K = (n, g), m is the plaintext, c the ciphertext, n the product of
p, q ∈ P of equal length, and g ∈ Z∗n2 . In Paillier, the private key is (λ, µ), which is
computed from p and q as follows:

λ : = lcm(p − 1, q − 1), (8)

µ : =

(
(gλ mod n2)− 1

n

)−1
mod n. (9)

Paillier offers additive homomorphic public-key encryption, that is:

EK (a)⊗ EK (b) ≡ EK (a + b) (10)

for any public key K .

Fully homomorphic encryption

Additive:
E (A)⊕ E (B) = E (A + B) (11)

and multiplicative:
E (A)⊗ E (B) = E (A · B) (12)

Known cryptosystems: Brakerski-Gentry-Vaikuntanathan (BGV), NTRU, Gentry-Sahai-
Waters (GSW).

Pairing-based cryptography

Let G1, G2 be two additive cyclic groups of prime order q, and GT another cyclic group
of order q (written multiplicatively). A pairing is an efficiently computable map e:

e : G1 × G2 → GT (13)

which satisfies e 6= 1 and bilinearity:

∀a,b∈F∗q , ∀P∈G1,Q∈G2 : e (aP, bQ) = e (P,Q)ab (14)

Examples: Weil pairing, Tate pairing.

Hardness assumption

Computational Diffie Hellman:
g , g x , g y ⇒ g xy (15)

remains hard on G even given e.

Boneh-Lynn-Sacham (BLS) signatures [7]

Key generation:
Pick random x ∈ Zq

Signing:
σ := hx where h := H(m)

Verification:
Given public key g x :

e(σ, g) = e(h, g x) (16)

Why:

e(σ, g) = e(h, g)x = e(h, g x) (17)

due to bilinearity.

Boneh-Lynn-Sacham (BLS) signatures [7]

Key generation:
Pick random x ∈ Zq

Signing:
σ := hx where h := H(m)

Verification:
Given public key g x :

e(σ, g) = e(h, g x) (16)

Why:

e(σ, g) = e(h, g)x = e(h, g x) (17)

due to bilinearity.

Fun with BLS

Given signature 〈σ, g x〉 on message h, we can blind the signature and public key g x :

e(σb, g) = e(h, g)xb = e(h, g xb) (18)

Thus σb is a valid signature for the derived public key (g x)b with blinding value b ∈ Zq.

Part IV: Secure Multiparty Computation

Secure Multiparty Computation (SMC)

I Alice und Bob haben private Daten ai and bi .

I Alice und Bob führen ein Protokoll aus und berechnen gemeinsam f (ai , bi).

I Nur einer von beiden lernt das Ergebnis (i.d.R.)

Adversary models

Honest but curious

Dishonest and curious

Secure Multiparty Computation: Scalar Product

I Original idea by Ioannids et al. in 2002 [11] (use: (a− b)2 = a2 − 2ab + b2)

I Refined by Amirbekyan et al. in 2007 (corrected math) [3]

I Now providing protocol with practical extensions (negative numbers, small
numbers, set intersection).

Preliminaries

I Alice has public key A and input map mA : MA → Z.

I Bob has public key B and input map mB : MB → Z.

I We want to calculate ∑
i∈MA∩MB

mA(i)mB(i) (19)

I We first calculate M = MA ∩MB .

I Define ai := mA(i) and bi := mB(i) for i ∈ M.

I Let s denote a shared static offset.

Network Protocol

I Alice transmits EA(s + ai) for i ∈ M to Bob.

I Bob creates two random permutations π and π′ over the elements in M, and a
random vector ri for i ∈ M and sends

R : = EA(s + aπ(i))⊗ EA(s − rπ(i) − bπ(i)) (20)

= EA(2 · s + aπ(i) − rπ(i) − bπ(i)), (21)

R ′ : = EA(s + aπ′(i))⊗ EA(s − rπ′(i)) (22)

= EA(2 · s + aπ′(i) − rπ′(i)), (23)

S : =
∑

(ri + bi)
2, (24)

S ′ : =
∑

r2i (25)

Decryption (1/3)

Alice decrypts R and R ′ and computes for i ∈ M:

aπ(i) − bπ(i) − rπ(i) = DA (R)− 2 · s, (26)

aπ′(i) − rπ′(i) = DA

(
R ′
)
− 2 · s, (27)

which is used to calculate

T : =
∑
i∈M

a2i (28)

U : = −
∑
i∈M

(aπ(i) − bπ(i) − rπ(i))
2 (29)

U ′ : = −
∑
i∈M

(aπ′(i) − rπ′(i))
2 (30)

Decryption (2/3)
She then computes

P : = S + T + U

=
∑
i∈M

(bi + ri)
2 +

∑
i∈M

a2i +

(
−
∑
i∈M

(ai − bi − ri)
2

)
=
∑
i∈M

(
(bi + ri)

2 + a2i − (ai − bi − ri)
2
)

= 2 ·
∑
i∈M

ai (bi + ri).

P ′ : = S ′ + T + U ′

=
∑
i∈M

r2i +
∑
i∈M

a2i +

(
−
∑
i∈M

(ai − ri)
2

)
=
∑
i∈M

(
r2i + a2i − (ai − ri)

2
)

= 2 ·
∑
i∈M

ai ri .

Decryption (3/3)

Finally, Alice computes the scalar product using:

P − P ′

2
=
∑
i∈M

ai (bi + ri)−
∑
i∈M

ai ri =
∑
i∈M

aibi . (31)

Computing Discrete Logarithms

Who said calculating DLOG was hard?

Computing Discrete Logarithms

Baby Steps

Giant Steps

ECC Version2

Let Alice’s secret value be a. Alice sends to Bob (gi , hi) = (g ri , g ria+ai) with random
values ri for i ∈ M.
Bob answers with:(∏

i∈M
gbi
i ,
∏
i∈M

hbii

)
=

(∏
i∈M

gbi
i ,

(∏
i∈M

gbi
i

)a

g
∑

i∈M aibi

)

Alice can then calculate:(∏
i∈M

gbi
i

)−a
·

(∏
i∈M

gbi
i

)a

· g
∑

i∈M aibi = g
∑

i∈M aibi .

Assuming
∑

i∈M aibi is sufficiently small, then Alice can compute the scalaproduct by
solving the DLP.

2Joint work with Tanja Lange

Performance Evaluation (AMD Threadripper 1950)

Length RSA-2048 ECC-220 ECC-228

25 4 s 0.1 s 4.2 s

50 8 s 0.1 s 4.3 s

100 10 s 0.2 s 4.3 s

200 19 s 0.2 s 4.3 s

400 35 s 0.3 s 4.3 s

800 74 s 0.4 s 4.5 s

800 1234 kb 65 kb 65 kb

The pre-calculation of ECC-228 is ×16 more expensive than for ECC-220 as the table is
set to have size

√
n.

Part V: Hardware (Bonus)

DRAM

DRAM stands for Dynamic Random Access Memory. Each DRAM cell holds one bit of
information.

DRAM Cell [6]

Each capacitor in a DRAM cell holds a specific charge. For example 1 Volt representing
the bit value of 1 and 0 Volt corresponding to the bit value of 0.

DRAM Modules
The cells are arranged into rows:

DRAM Cell Matrix [10]

Refresh

As the electric charge decays, it must be periodically refreshed. There are two main
methods in which the memory is refreshed. One is the Distributed refresh and the other
one is a Burst refresh. [5]

DRAM Refreshrate [5]

Rowhammer: Attack idea

Below is sample code on how to perform the hammering of the Rowhammer attack:

a t t a c k l o o p :
mov (addr X) , %r a x // r e a d t he row X
mov (addr Y) , %r b x // r e a d t he row Y
c l f l u s h (addr X) // f l u s h X from cache
c l f l u s h (addr Y) // f l u s h Y from cache
jmp a t t a c k l o o p

In this code sniped addr X and addr Y are our aggressor rows. The values from the
aggressor rows are read in an alternating fashion in order to prevent a value to be stored
and read from the row buffer rather than actually accessing and reading from the rows
in memory.

Without refresh, bits can flip
The plot below shows the direct correlation between the refresh rate and the number of
bit flips that were induced.

Number of errors occuring when the refresh intervall is increased [12]

As the refresh interval is increased along the x axis the number of errors grows expo-
nentially.

DRAM capacitors are not all the same
Often times the retention rate of a capacitor is not persistent over a reboot. The
retention rate of a capacitor is dependent on how much charge their neighbouring cells
leak.

DRAM charge leak [4]

Smaller is not always better

The Rowhammer attack was not feasible before 2010, it was only after the density of
cells on a DRAM chip reached a certain threshold that Rowhammer became a feasible
attack:

DRAM Density [12] DRAM Density [2]

Hitting the RAM hard
The graph shows the correlation between the number of row activation of the aggressor
row and the number of induced errors (bit flips).

Number of a row activations relative to the amount of induced errors [12]

Privilege escalation with Rowhammer

In [1] a 7 step approach is presented to perform a privilege escalation:

1. Allocate a large chunk of memory.

2. Search for a locations prone to flipping.

3. Check if they fall into the ”right spot” in a page table entry (PTE) for allowing
the exploit.

4. Return that particular area of memory to the operating system.

5. Force the OS to re-use the memory for PTEs by allocating massive quantities of
address space.

6. Cause a bit to flip in a PTE resulting in the PTE pointing to a different PTE.

7. Abuse the R/W access to all of the physical memory.

Attack illustration

(a) Location of PTEs [1] (b) Modified PTE [1]

Rowhammer “implementations”

Classification of Rowhammer attacks [15]

Follow-up Research

I ECCploit [16]: Rowhammer for ECC Memory

I RAMbleed [13]: read the content of a memory row without ever accessing it

RAMBleed page configuration [13]

References I

Exploiting the dram rowhammer bug to gain kernel privileges.
https://www.blackhat.com/docs/us-15/materials/
us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.
pdf.

Understanding and overcoming challenges of dram refresh.
https://people.inf.ethz.ch/omutlu/pub/mutlu˙dram-refresh˙
extreme-scale-computing14.pdf.

Artak Amirbekyan and Vladimir Estivill-castro.
A new efficient privacypreserving scalar product protocol.
In in Proc. of AusDM ’07, pages 209–214.

Nikolaos Athanasios Anagnostopoulos, Stefan Katzenbeisser, John A. Chandy, and
Fatemeh Tehranipoor.
An overview of dram-based security primitives.
Cryptography 2018, Volume 2(7), July 2018.

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_dram-refresh_extreme-scale-computing14.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_dram-refresh_extreme-scale-computing14.pdf

References II

Balasubramanya Bhat and Frank Mueller.
Making dram refresh predictable.
Real-Time Syst., 47(5):430–453, September 2011.

blackandwhitecomputer.
blackandwhitecomputer.
https://blackandwhitecomputer.blogspot.com/2012/03/
reading-writing-operation-of-dram.html, March 2012.
Accessed on 2019-05-26.

Dan Boneh, Ben Lynn, and Hovav Shacham.
Short signatures from the weil pairing.
In Advances in Cryptology – ASIACRYPT ’01, LNCS, pages 514–532. Springer,
2001.

https://blackandwhitecomputer.blogspot.com/2012/03/reading-writing-operation-of-dram.html
https://blackandwhitecomputer.blogspot.com/2012/03/reading-writing-operation-of-dram.html

References III

John Douceur.
The Sybil Attack.
In Proceedings of the 1st International Peer To Peer Systems Workshop (IPTPS
2002), March 2002.

Seth Gilbert and Nancy Lynch.
Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant
web services.
SIGACT News, 33(2):51–59, June 2002.

Glogger.
Dram ece385 illustrative example.
https://upload.wikimedia.org/wikipedia/commons/3/3d/
Square˙array˙of˙mosfet˙cells˙read.png, February 2007.
Accessed on 2019-05-26.

https://upload.wikimedia.org/wikipedia/commons/3/3d/Square_array_of_mosfet_cells_read.png
https://upload.wikimedia.org/wikipedia/commons/3/3d/Square_array_of_mosfet_cells_read.png

References IV

Ioannis Ioannidis, Ananth Grama, and Mikhail J. Atallah.
A secure protocol for computing dot-products in clustered and distributed
environments.
In 31st International Conference on Parallel Processing (ICPP 2002), 20-23 August
2002, Vancouver, BC, Canada, pages 379–384. IEEE Computer Society, 2002.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping bits in memory without accessing them: An experimental study of dram
disturbance errors, June 2014.

Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom.
Rambleed: Reading bits in memory without accessing them, 2020.

Brian N. Levine, Michael K. Reiter, Chenxi Wang, and Matthew K. Wright.
Timing attacks in low-latency mix-based systems.
In Proceedings of Financial Cryptography (FC ’04), pages 251–265, February 2004.

References V

Xiaoxuan Lou, Fan Zhang, Zheng Leong Chua, Zhenkai Liang, Yueqiang Cheng,
and Yajin Zhou.
Understanding rowhammer attacks through the lens of a unified reference
framework, 2019.

Cojocar Lucian, Razavi Kaveh, Giuffrida Cristiano, and Bos Herbert.
Exploiting correcting codes: On the effectiveness of ecc memory against
rowhammer attacks, 2019.

Laurianne McLaughlin.
Philip zimmermann on what’s next after pgp.
IEEE Security & Privacy, 4(1):10–13, 2006.

	Fallacies of distributed computing
	Boyd's theorem
	CAP Theorem
	Zooko's Triangle
	Self stabilization
	Attacks and defenses
	Distributed Hash Tables
	CAN
	Chord
	Kademlia

	Advanced Cryptographic Primitives
	Secure Multiparty Computation
	Bonus: Hardware

