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Part I: Security in Distributed Systems



The 8 Fallacies of Distributed Computing1

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology does not change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

1According to Peter Deutsch and James Gosling



Limits on authentication

Theorem (Boyd’s Theorem I)

“Suppose that a user has either a confidentiality channel to her, or an authentication
channel from her, at some state of the system. Then in the previous state of the
system such a channel must also exist. By an inductive argument, such a channel
exists at all previous states.”

Theorem (Boyd’s Theorem II)

“Secure communication between any two users may be established by a sequence of
secure key transfers if there is a trusted chain from each one to the other.”



Solution space: Zfone Authentication (ZRTP) [17]

Idea: combine human interaction proof and baby duck approach:

I A and B perform Diffie-Hellman exchange

I Keying material from previous sessions is used (duckling)

I Short Authentication String (SAS) is generated (hash of DH numbers)

I Both users read the SAS to each other, recognize voice

⇒ ZRTP foils standard man-in-the-middle attack.



CAP Theorem [9]

No distributed system can be consistent, available and partition tolerant at the same
time.

I Consistency: A read sees the changes made by all previous writes

I Availability: Reads and writes always succeed

I Partition tolerance: The system operates even when network connectivity between
components is broken



Blockchain Trilemma

Blockchains claim to achieve three properties:

I Decentralization: there are many participants, and each participant only needs to
have a small amount of resources, say O(c)

I Scalability: the system scales to O(n) > O(c) transactions

I Security: the system is secure against attackers with O(n) resources

The Blockchain trilemma is that one can only have two of the three.



Ryge’s Triangle

Ryge’s Triangle postulates three key management goals for a system associating cryp-
tographic keys with addresses or names:

I Non-interactive: the system should require no user interface

I Flexible: addresses/names can be re-used by other participants

I Secure: the system is secure against active attackers

Ryge’s triangle says that one can only have two of the three.



Zooko’s Triangle

Secure

Global Memorable

A name system can only fulfill two!
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Self stabilization (Dijkstra 1974)

I A system is self-stabilizing, if starting from any state, it is guaranteed that the
system will eventually reach a correct state (convergence).

I Given that the system is in a correct state, it is guaranteed to stay in a correct
state, provided that no fault happens (closure).

I Self-stabilization enables a distributed algorithm to recover from a transient fault
regardless of its nature.

Example: Spanning-tree Protocol from Networking!



Sybil Attack

Background:

I Ancient Greece: Sybils were prophetesses that prophesized under the devine
influence of a deity. Note: At the time of prophecy not the person but a god was
speaking through the lips of the sybil.

I 1973: Flora Rheta Schreiber published a book “Sybil” about a woman with 16
separate personalities.

The Sybil Attack [8]:

I Insert a node multiple times into a network, each time with a different identity
I Position a node for next step on attack:

I Attack connectivity of the network
I Attack replica set
I In case of majority votes, be the majority.
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Defenses against Sybil Attacks

I Use authentication with trusted party that limits identity creation

I Use “external” identities (IP address, MAC, e-mail)

I Use “expensive” identities (solve computational puzzles, require payment)

Douceur: Without trusted authority to certify identities, no realistic approach exists to
completely stop the Sybil attack.



Eclipse Attack: Goal

I Separate a node or group of nodes from the rest of the network

I isolate peers (DoS, surveillance) or isolate data (censorship)



Eclipse Attack: Techniques

I Use Sybil attack to increase number of malicious nodes

I Take over routing tables, peer discovery

⇒ Details depend on overlay structure



Eclipse Attack: Defenses

I Large number of connections

I Replication

I Diverse neighbour selection (different IP subnets, geographic locations)

I Aggressive discovery (“continuous” bootstrap)

I Audit neighbour behaviour (if possible)

I Prefer long-lived connections / old peers



Poisoning Attacks

Nodes provide false information:

I wrong routing tables

I wrong meta data

I wrong performance measurements



Timing Attacks [14]

Nodes can:

I measure latency to determine origin of data

I delay messages

I send messages using particular timing patterns to aid correlation

I include wrong timestamps (or just have the wrong time set...)



Break



Part II: Distributed Hash Tables



Distributed Hash Tables (DHTs)

I Distributed index

I GET and PUT operations like a hash table

I JOIN and LEAVE operations (internal)

I Trade-off between JOIN/LEAVE and GET/PUT costs

I Typically use exact match on cryptographic hash for lookup

I Typically require overlay to establish particular connections



DHTs: Key Properties

To know a DHT, you must know (at least) its:

I routing table structure

I lookup procedure

I join operation process

I leave operation process

... including expected costs (complexity) for each of these operations.



A trivial DHTs: The Clique

I routing table: hash map of all peers

I lookup: forward to closest peer in routing table

I join: ask initial contact for routing table, copy table, introduce us to all other
peers, migrate data we’re closest to to us

I leave: send local data to remaining closest peer, disconnect from all peers to
remove us from their routing tables

Complexity?



A trivial DHTs: The Circle

I routing table: left and right neighbour in cyclic identifier space

I lookup: forward to closest peer (left or right)

I join: lookup own peer identity to find join position, transfer data from neighbour
for keys we are closer to

I leave: ask left and rigt neighbor connect directly, transfer data to respective
neighbour

Complexity?



Additional Questions to ask

I Security against Eclipse attack?

I Survivability of DoS attack?

I Maintenance operation cost & required frequency?

I Latency? ( 6= number of hops!)

I Data persistence?



Content Addressable Network: CAN

I routing table: neighbours in
d-dimensional torus space

I lookup: forward to closest peer

I join: lookup own peer identity
to find join position, split
quadrant (data areas) with
existing peer

I leave: assign quadrant space to
neighbour (s)



Interesting CAN properties

I CAN can do range queries along ≤ n dimensions

I CAN’s peers have 2d connections (independent of network size)

I CAN routes in O(d d
√
n)



Chord
I routing table: predecessor in

circle and at distance 2i , plus r
successors

I lookup: forward to closest peer
(peer ID after key ID)

I join: lookup own peer identity
to find join position, use
neighbor to establish finger
table, migrate data from
respective neighbour

I leave: join predecessor with
successor, migrate data to
respective neighbour, periodic
stabilization protocol takes care
of finger updates



Interesting Chord properties

I Simple design

I log2 n routing table size

I log2 n lookup cost

I Asymmetric, inflexible routing tables



Kademlia
I routing table: 2160 buckets with k peers at XOR distance 2i

I lookup: iteratively forward to α peers from the “best” bucket, selected by latency
I join: lookup own peer identity, populate table with peers from iteration
I maintenance: when interacting with a peer, add to bucket if not full; if bucket

full, check if longest-not-seen peer is live first
I leave: just drop out

0 1

0 1
10 11

0 1
00 01

Connections
Route path



Interesting Kademlia properties

I XOR is a symmetric metric: connections are used in both directions

I α replication helps with malicious peers and churn

I Iterative lookup gives initiator much control,

I Lookup helps with routing table maintenance

I Bucket size trade-off between routing speed and table size
I Iterative lookup is a trade-off:

I good UDP (no connect cost, initiator in control)
I bad with TCP (very large number of connections)



Part III: Advanced Cryptographic Primitives



Homomorphic Encryption

E (x1 ⊕ x2) = E (x1)⊗ E (x2) (1)



Multiplicative Homomorphism: RSA & ElGamal

I Unpadded RSA (multiplicative):

E (x1) · E (x2) = xe1 x
e
2 = E (x1 · x2) (2)

I ElGamal:

E (x1) · E (x2) = (g r1 , x1 · hr1)(g r2 , x2 · hr2) (3)

= (g r1+r2), (x1 · x2)hr1+r2) (4)

= E (x1 · x2) (5)



Additive Homomorphism: Paillier

EK (m) : = gm · rn mod n2, (6)

DK (c) : =
(cλ mod n2)− 1

n
· µ mod n (7)

where the public key K = (n, g), m is the plaintext, c the ciphertext, n the product of
p, q ∈ P of equal length, and g ∈ Z∗n2 . In Paillier, the private key is (λ, µ), which is
computed from p and q as follows:

λ : = lcm(p − 1, q − 1), (8)

µ : =

(
(gλ mod n2)− 1

n

)−1
mod n. (9)

Paillier offers additive homomorphic public-key encryption, that is:

EK (a)⊗ EK (b) ≡ EK (a + b) (10)

for any public key K .



Fully homomorphic encryption

Additive:
E (A)⊕ E (B) = E (A + B) (11)

and multiplicative:
E (A)⊗ E (B) = E (A · B) (12)

Known cryptosystems: Brakerski-Gentry-Vaikuntanathan (BGV), NTRU, Gentry-Sahai-
Waters (GSW).



Pairing-based cryptography

Let G1, G2 be two additive cyclic groups of prime order q, and GT another cyclic group
of order q (written multiplicatively). A pairing is an efficiently computable map e:

e : G1 × G2 → GT (13)

which satisfies e 6= 1 and bilinearity:

∀a,b∈F∗q , ∀P∈G1,Q∈G2 : e (aP, bQ) = e (P,Q)ab (14)

Examples: Weil pairing, Tate pairing.



Hardness assumption

Computational Diffie Hellman:
g , g x , g y ⇒ g xy (15)

remains hard on G even given e.



Boneh-Lynn-Sacham (BLS) signatures [7]

Key generation:
Pick random x ∈ Zq

Signing:
σ := hx where h := H(m)

Verification:
Given public key g x :

e(σ, g) = e(h, g x) (16)

Why:

e(σ, g) = e(h, g)x = e(h, g x) (17)

due to bilinearity.
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Fun with BLS

Given signature 〈σ, g x〉 on message h, we can blind the signature and public key g x :

e(σb, g) = e(h, g)xb = e(h, g xb) (18)

Thus σb is a valid signature for the derived public key (g x)b with blinding value b ∈ Zq.



Part IV: Secure Multiparty Computation



Secure Multiparty Computation (SMC)

I Alice und Bob haben private Daten ai and bi .

I Alice und Bob führen ein Protokoll aus und berechnen gemeinsam f (ai , bi ).

I Nur einer von beiden lernt das Ergebnis (i.d.R.)



Adversary models

Honest but curious

Dishonest and curious



Secure Multiparty Computation: Scalar Product

I Original idea by Ioannids et al. in 2002 [11] (use: (a− b)2 = a2 − 2ab + b2)

I Refined by Amirbekyan et al. in 2007 (corrected math) [3]

I Now providing protocol with practical extensions (negative numbers, small
numbers, set intersection).



Preliminaries

I Alice has public key A and input map mA : MA → Z.

I Bob has public key B and input map mB : MB → Z.

I We want to calculate ∑
i∈MA∩MB

mA(i)mB(i) (19)

I We first calculate M = MA ∩MB .

I Define ai := mA(i) and bi := mB(i) for i ∈ M.

I Let s denote a shared static offset.



Network Protocol

I Alice transmits EA(s + ai ) for i ∈ M to Bob.

I Bob creates two random permutations π and π′ over the elements in M, and a
random vector ri for i ∈ M and sends

R : = EA(s + aπ(i))⊗ EA(s − rπ(i) − bπ(i)) (20)

= EA(2 · s + aπ(i) − rπ(i) − bπ(i)), (21)

R ′ : = EA(s + aπ′(i))⊗ EA(s − rπ′(i)) (22)

= EA(2 · s + aπ′(i) − rπ′(i)), (23)

S : =
∑

(ri + bi )
2, (24)

S ′ : =
∑

r2i (25)



Decryption (1/3)

Alice decrypts R and R ′ and computes for i ∈ M:

aπ(i) − bπ(i) − rπ(i) = DA (R)− 2 · s, (26)

aπ′(i) − rπ′(i) = DA

(
R ′
)
− 2 · s, (27)

which is used to calculate

T : =
∑
i∈M

a2i (28)

U : = −
∑
i∈M

(aπ(i) − bπ(i) − rπ(i))
2 (29)

U ′ : = −
∑
i∈M

(aπ′(i) − rπ′(i))
2 (30)



Decryption (2/3)
She then computes

P : = S + T + U

=
∑
i∈M

(bi + ri )
2 +

∑
i∈M

a2i +

(
−
∑
i∈M

(ai − bi − ri )
2

)
=
∑
i∈M

(
(bi + ri )

2 + a2i − (ai − bi − ri )
2
)

= 2 ·
∑
i∈M

ai (bi + ri ).

P ′ : = S ′ + T + U ′

=
∑
i∈M

r2i +
∑
i∈M

a2i +

(
−
∑
i∈M

(ai − ri )
2

)
=
∑
i∈M

(
r2i + a2i − (ai − ri )

2
)

= 2 ·
∑
i∈M

ai ri .



Decryption (3/3)

Finally, Alice computes the scalar product using:

P − P ′

2
=
∑
i∈M

ai (bi + ri )−
∑
i∈M

ai ri =
∑
i∈M

aibi . (31)



Computing Discrete Logarithms

Who said calculating DLOG was hard?



Computing Discrete Logarithms



Baby Steps



Giant Steps



ECC Version2

Let Alice’s secret value be a. Alice sends to Bob (gi , hi ) = (g ri , g ria+ai ) with random
values ri for i ∈ M.
Bob answers with:(∏

i∈M
gbi
i ,
∏
i∈M

hbii

)
=

(∏
i∈M

gbi
i ,

(∏
i∈M

gbi
i

)a

g
∑

i∈M aibi

)

Alice can then calculate:(∏
i∈M

gbi
i

)−a
·

(∏
i∈M

gbi
i

)a

· g
∑

i∈M aibi = g
∑

i∈M aibi .

Assuming
∑

i∈M aibi is sufficiently small, then Alice can compute the scalaproduct by
solving the DLP.

2Joint work with Tanja Lange



Performance Evaluation (AMD Threadripper 1950)

Length RSA-2048 ECC-220 ECC-228

25 4 s 0.1 s 4.2 s

50 8 s 0.1 s 4.3 s

100 10 s 0.2 s 4.3 s

200 19 s 0.2 s 4.3 s

400 35 s 0.3 s 4.3 s

800 74 s 0.4 s 4.5 s

800 1234 kb 65 kb 65 kb

The pre-calculation of ECC-228 is ×16 more expensive than for ECC-220 as the table is
set to have size

√
n.



Part V: Hardware (Bonus)



DRAM

DRAM stands for Dynamic Random Access Memory. Each DRAM cell holds one bit of
information.

DRAM Cell [6]

Each capacitor in a DRAM cell holds a specific charge. For example 1 Volt representing
the bit value of 1 and 0 Volt corresponding to the bit value of 0.



DRAM Modules
The cells are arranged into rows:

DRAM Cell Matrix [10]



Refresh

As the electric charge decays, it must be periodically refreshed. There are two main
methods in which the memory is refreshed. One is the Distributed refresh and the other
one is a Burst refresh. [5]

DRAM Refreshrate [5]



Rowhammer: Attack idea

Below is sample code on how to perform the hammering of the Rowhammer attack:

a t t a c k l o o p :
mov ( addr X ) , %r a x // r e a d t he row X
mov ( addr Y ) , %r b x // r e a d t he row Y
c l f l u s h ( addr X ) // f l u s h X from cache
c l f l u s h ( addr Y ) // f l u s h Y from cache
jmp a t t a c k l o o p

In this code sniped addr X and addr Y are our aggressor rows. The values from the
aggressor rows are read in an alternating fashion in order to prevent a value to be stored
and read from the row buffer rather than actually accessing and reading from the rows
in memory.



Without refresh, bits can flip
The plot below shows the direct correlation between the refresh rate and the number of
bit flips that were induced.

Number of errors occuring when the refresh intervall is increased [12]

As the refresh interval is increased along the x axis the number of errors grows expo-
nentially.



DRAM capacitors are not all the same
Often times the retention rate of a capacitor is not persistent over a reboot. The
retention rate of a capacitor is dependent on how much charge their neighbouring cells
leak.

DRAM charge leak [4]



Smaller is not always better

The Rowhammer attack was not feasible before 2010, it was only after the density of
cells on a DRAM chip reached a certain threshold that Rowhammer became a feasible
attack:

DRAM Density [12] DRAM Density [2]



Hitting the RAM hard
The graph shows the correlation between the number of row activation of the aggressor
row and the number of induced errors (bit flips).

Number of a row activations relative to the amount of induced errors [12]



Privilege escalation with Rowhammer

In [1] a 7 step approach is presented to perform a privilege escalation:

1. Allocate a large chunk of memory.

2. Search for a locations prone to flipping.

3. Check if they fall into the ”right spot” in a page table entry (PTE) for allowing
the exploit.

4. Return that particular area of memory to the operating system.

5. Force the OS to re-use the memory for PTEs by allocating massive quantities of
address space.

6. Cause a bit to flip in a PTE resulting in the PTE pointing to a different PTE.

7. Abuse the R/W access to all of the physical memory.



Attack illustration

(a) Location of PTEs [1] (b) Modified PTE [1]



Rowhammer “implementations”

Classification of Rowhammer attacks [15]



Follow-up Research

I ECCploit [16]: Rowhammer for ECC Memory

I RAMbleed [13]: read the content of a memory row without ever accessing it

RAMBleed page configuration [13]
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