
BTI 4202: Centralized public-key infrastructures

Christian Grothoff

Berner Fachhochschule

3.5.2024

Learning Objectives

Public Key Infrastructures

Trust Issues in X.509

X.509 CA Alternatives

Digital Timestamping

Trust Agility

Part I: Public Key Infrastructures

Public Key Infrastructure (PKI)

Core problems:

▶ How can a user/application verify, if the private/public key
pair belongs to the claimed person or entity (e.g. a
web-server)?

▶ How does an application find the correct public key of a
certificate issuer?

Additional problems:

▶ How do we keep private keys safe?

▶ How do we distribute information if someone lost control over
their private key?

A PKI allows us to recognize which public key belongs to whom,
which manages certification, and establishes trust.

Public Key Infrastructure (PKI)

Core problems:

▶ How can a user/application verify, if the private/public key
pair belongs to the claimed person or entity (e.g. a
web-server)?

▶ How does an application find the correct public key of a
certificate issuer?

Additional problems:

▶ How do we keep private keys safe?

▶ How do we distribute information if someone lost control over
their private key?

A PKI allows us to recognize which public key belongs to whom,
which manages certification, and establishes trust.

Private vs. Public PKI

Private PKI:

▶ Created, operated and
maintained limited to private
organization only.

▶ Issues certificates for internal
purpose only. No trust
relationship to external
components, except cross-link
to other private PKI.

▶ Free in terms of PKI structure
and content of certificates.

▶ Use-cases: for User-Auth, VPN
or Enterprise WPA (RADIUS)

Public PKI:

▶ Well known, reachable, and
trusted on a more global
basis.

▶ Operated and maintained by
dedicated companies or by
governmental services.

▶ Per default known by popular
Internet applications.

▶ Example: X.509-Certificates
for TLS, ZertES-based user
certificates

The fairy tale of a global PKI

▶ Since the beginning of the asymmetric cryptography era the
ultimate “dream” has been to establish a global PKI

▶ Because “everybody” trusts the national post offices, one can
communicate securely with anyone else in the world.

▶ The inconvenient truth:
▶ There is no global PKI today, and (hopefully) there never will

be!
▶ It is even hard to build a national PKI, accepted by a majority

of application providers in one specific country!

The fairy tale of a global PKI

▶ Since the beginning of the asymmetric cryptography era the
ultimate “dream” has been to establish a global PKI

▶ Because “everybody” trusts the national post offices, one can
communicate securely with anyone else in the world.

▶ The inconvenient truth:
▶ There is no global PKI today, and (hopefully) there never will

be!
▶ It is even hard to build a national PKI, accepted by a majority

of application providers in one specific country!

The PKI Reality

Any PKI faces authority and trust issues:
▶ Who is authorized to issue a specific certificate?

▶ Which are the CA’s that claim authority to assign keys to
names?

▶ What makes them authoritative in respect to these names?

▶ How do they vet subjects?

▶ How are keys managed (by CA and subjects)?

A hierarchical trust model (trust in a forest of authorities) is still the
“best” solution we have today.

PKI Components: Terminology
End Entity (EE) Denotes denote end-users, devices (e.g., servers,

routers), or any other entity that can be identified in
the subject field of a public key certificate. End
entities typically consume PKI-related services.

Certification Authority (CA) Issue of certificates and (usually)
CRLs. In practice, often integrates administrative
functions of RAs and VAs.

Registration Authority (RA) Assumes administrative functions
from the CA, primarily EE registration. Can assist in
related areas (e.g. EE authentication, token
distribution, key generation, revocation reporting,
archiving of key pairs).

Validation Authority (VA) Responsible for providing information
on whether certificates are actually valid or not.

Repository Generic term used to denote any method for storing
certificates and CRLs so that they can be retrieved
by EEs.

Certificate Authorities (CAs)

CAs are the foundation of the PKI since they are the only compo-
nents that can issue certificates.

▶ CAs act as a trust anchors, and are thus high-security relevant
components. Their private keys must be kept in a particularly
secure environment.

▶ In a hierarchical system, a Root CA signs its own certificate
with its private key (self-signed) according to a specific
procedure.

▶ To update its own self-signed key a Root CA uses a
key-rollover procedure to renew Root CA’s key pair.

Baseline Requirements (BR)

In several statements a CA describes the practices employed to sup-
port its certification services. For this purpose the IETF published
templates in the form of a common RFC [3]:

▶ Certificate Practice Statement (CPS): a statement of the
practices which a certification authority employs in issuing
certificates.

▶ Certificate Policy (CP): a named set of rules that indicates
the applicability of a certificate to a particular community
and/or class of application with common security
requirements.

The CAB-Forum extended the requirements of a CA with the re-
lease of “Baseline Requirements for the Issuance and Management
of Publicly-Trusted Certificates”:

https://cabforum.org/baseline-requirements

https://cabforum.org/baseline-requirements

Registration Authorities (RAs)

▶ Roughly spoken: a registration location is where a user has to
be registered personally.

▶ Registration Authorities convert “real” identities into “digital”
identities.

▶ A Registration Authority needs to have experience with
unfailing identification of users.

Examples:

▶ Bank / post office

▶ Small meshed network of local agencies

▶ Human resources / personal office in a company

▶ IT service department

Idealized Issuance and Validation Process

RA

CA
VA

Keypair

EE

Authenticate/Sign Verifier
(Webserver/
Application)

Single-Level CA
▶ The Root CA signs directly certificates of EE
▶ Difficult to achieve different key policies → typically issues

all-purpose certificates (encryption, digital signature,
authentication)

⇒ Suitable for private CAs

Root
CA

self signed

End Entity Certificates issued directly by Root CA

Alice's
all purpose

Cert

Bob's
all purpose

Cert

Fred's
all purpose

Cert

Webserver
abc Cert

Webserver
xyz Cert

Notebook
XD3452

Cert

Multi-Level CA

▶ Multi-Level PKIs use a tree model with the root CA at the
top and Intermediate CAs (SubCAs, Signing CAs, Issuing
CAs) at intermediate levels.

▶ RootCA typically only signs ICA certificates and is in general
turned off and kept in safe environment.

▶ The SubCAs are signing and issuing EE certificates.
▶ Enables possibility to force specific key policies by issuing

certificates for restricted purposes only:
▶ Authentication (personal or machine certificates)
▶ Data Encryption
▶ Digital Signatures

Multi-Level CA

ICA 3

self signed

End Entity Certificates issued by intermediate CA‘s

Intermediate
CA‘s issued by

root CA
ICA 2ICA1

Root
CA

Alice's
Signature

Cert

Bob's
Signature

Cert

Alice's
Encryption

Cert

Bob's
Encryption

Cert

Webserver
abc
Cert

Webserver
xyz

Cert

▶ ICA1 issues user certificates for digital signature only

▶ ICA2 issues user certificates for data encryption only

▶ ICA3 issues certificates for Web servers only

▶ ICAx issues ...

Hierarchical Certificate Verification Process

Root CA
(RCA)

Intermediate CA (ICA)

End-Entity
(EE)

C
e

rti
fi

ca
ti

o
n

 P
at

h

Client App
e.g. Browser

▶ RCA explicitly trusted

▶ Delegates trust to ICA

▶ ICA binds EE to key

▶ Client checks delegation
chain

Certification Path Validation

[4] describes the algorithm for validating certificates, certification
path and certification policies. This gives an answer to the questions:

▶ Is a certificate signed by a recognized trust anchor (is the
certification path rooted in a trusted CA)

▶ Can the digital signature on the certificate be properly
verified?

▶ Is the certificate within its established validity period?

▶ Has the certificate not been revoked?

▶ Is the certificate being used in a manner that is consistent
with the certificate policies, name constraints, key usage, etc.?

The Certificate Lifecycle

Certification Onboarding and Issuing

Useful Life

Expiration

Update

Revocation

Key Generation by Certificate Authority (CA)

EE

CA
1.

 C
er

ti
fi

ca
te

 R
eq

ue
st

4.
 P

IN
 to

 a
cc

es
s

P
ri

va
te

K

ey

3.
 C

er
ti

fi
ca

te
 a

nd
Pr

iv
at

e
K

ey
 D

el
iv

er
y

Soft- or Hard-Token

2. Generate
Key-Pair

Hard-Token

Personal Security
Environment

Soft- or

⇒ May allow key escrow/backup by issuing CA

Legitimate Reasons for CA Key Backup/Recovery

▶ recovery of encrypted data after loss of access to private key
(e.g. forgotten password, employee has left company,
malfunctioning smart-card, corrupted disk (where private keys
are stored), . . .)

▶ processing of encrypted messages for policy enforcement (i.e.
by anti-virus) at the network perimeter

Key Escrow

▶ Key escrow is a means to rebuild cryptographic keys in case
the legitimate entity loses access to the data through a
disaster or accident.

▶ The key does not have to be released to anyone other than
the EE itself.

▶ However, key escrow may also be abused by a government for
surveillance purposes . . .

⇒ More in BTI 4201 in lecture on “Secret sharing and symmetric
key management”.

Key Generation by End-Entity (EE)

EE

CA
1.

 C
re

at
e

A
cc

ou
nt

fo
r

R
eg

is
tr

at
io

n

3.
 C

er
ti

fi
ca

te
S

ig
ni

ng
 R

eq
ue

st

4.
 C

er
ti

fi
ca

te
 D

el
iv

er
y

2. Generate
Key-Pair

Hard-Token

Soft- or

⇒ Key backup by EE only

Generating multiple key pairs per End-Entity

for authentication and
general signing

purposes

for encryption
purpose

for non-repudiation purpose
(qualified signature)

Person

▶ In a private PKI environment a
single multipurpose key pair
might be suitable.

▶ Public PKIs normally provide
multiple key pairs for different
applications.

▶ Multiple key pairs are often used
to support special policies for
distinct services.

Generating multiple key pairs per End-Entity

Dual or multiple key pairs are issued to enable the usage for different
purposes and to support special policies for various services.
Main reasons for multiple keys include:

▶ Different registration processes

▶ Restriction to certain policies and roles of EE

▶ Location of key generation and storage facility (e.g. must be
generated on a secure signature creation device (SSCD))

▶ Security aspects (qualified signature ↔ authentication) to
prevent challenge semantic attacks

▶ Backup and recovery policies

▶ Key history and archiving handling

Procedures after Key Expiration

1. Expired private keys used for encryption need to be accessible
even after the expiration or revocation of a certificate.
→ Long-term storage of expired private encryption keys!

2. Digitally signed documents have to be verifiable also after
the expiration or revocation of a certificate. All necessary
information used for the validation of a signature has to be
present for a long term period.
→ Long-term storage of expired public verification keys and
certificates.

Be aware: the use-case matters in both cases!

The Onboarding Process

▶ Crucial non-technical process in a PKI world.

▶ Dependent of the purpose and field of application of a
certificate this process may be automatically / simple up to
time consuming / complex.

▶ In a enterprise environment with a private PKI this is mostly
done automatically by an Identity Management System
(IdMS).

▶ For public PKI’s the range is very broad:
▶ Simple e-mail registration
▶ Identification by sending a copy of identification card
▶ Personal appearance up to a rigid vetting of the identity.

How to request a certificate from a PKI?

The main certificate request protocols are:

▶ The Public Key Cryptography Standard has defined a
Certification Request Syntax Standard (PKCS#10) in
combination with a secure channel (SSL/TLS) or the
Cryptography Message Syntax (PKCS#7).

▶ The Simple Certificate Enrollment Protocol (SCEP) Originally
specified by Cisco used for certificate auto-enrollment for
network devices. Today used by Mobile Device Management
solutions (MDM).

▶ Microsoft has specified a Auto-Enrollment process for Domain
integrated Entities.

▶ Auto-Enrollment specified by Microsoft used in AD. The
Certificate Request Message Format (CRMF) specified in RFC
4211 as part of the Certificate Management Protocol (CMP),
often used in parallel with PKCS#10.

The Certificate Management Protocol (CMP) [2]

CMP is an Internet protocol specified to manage X.509 digital cer-
tificates within a PKI:

▶ A CMP client is able to communicate with a PKI Service to
request, revoke, suspend and resume certificates.

▶ CMP messages are ASN.1/DER encoded and are usually
encapsulated in HTTP(S) messages.

▶ CMP is supported by several libraries: cryptlib, EJBCA,
OpenSSL, BouncyCastle, ...

Automatic Certificate Management Environment (ACME)

ACME allows setting up a HTTPS server and automatically obtain
a browser-trusted certificate, without any human intervention.

▶ Runs a certificate management agent on the Web server →
e.g. Certbot

▶ Issues Domain Validated (DV) certificates for Web servers only

▶ Certificates have a lifetime of 90 days

https://letsencrypt.org/how-it-works/

https://letsencrypt.org/how-it-works/

Downside of the Trust-list Model

▶ There are hundreds (!) of “trusted” Root CAs installed in the
OS/Browser.
▶ There are hundreds of browser-accepted Root CAs and an

unknown number of subordinate ICAs
▶ Each of them can break TLS/X.509 security
▶ It does not matter how good your CA is — the only thing that

matters is the worst CA of them all!

▶ The set of trusted Root CA’s must be protected against
malicious modification.

▶ The set of trusted Root CAs must be updated
▶ automatically (MS, Apple, ...),
▶ or on next release (Mozilla, others).

▶ Who decides which CA’s are trusted?

We assume software vendors can establish trustworthy CAs!

Part II: Trust Issues in X.509

Certificate validation is hard

▶ BERserk was a catastrophic failure in the certificate validation
of the NSS library (used by Firefox / Chrome)

▶ Most TLS libraries had a chain validation issue at some point

Let’s assume TLS is correct and correctly implemented...

Certificate validation is hard

▶ BERserk was a catastrophic failure in the certificate validation
of the NSS library (used by Firefox / Chrome)

▶ Most TLS libraries had a chain validation issue at some point

Let’s assume TLS is correct and correctly implemented...

X.509 CA challenges

▶ Must trust a CA
▶ Which one?
▶ What is it trusted to do?

▶ Certificate bindings must be correct
▶ Which John Smith is this?
▶ Who authorizes attributes in a certificate?
▶ How long are these values valid?
▶ What process is used to verify the key holder?

Legal Aspects

For what is a CA liable?

▶ Certificate policies (CP) define rights, duties and obligations
of each party in a PKI

▶ These documents usually have a legal effect
▶ The CP should be publicly exposed by CAs on their Web site

and include:
▶ Registration procedures
▶ Revocation procedures
▶ Liability issues

Are CAs trustworthy?

▶ Any public CA can issue certificates for any domain name
without obtaining permissions.

▶ Who are these organizations, which we allow to issue
certificates with little supervision?

▶ Most public CAs follow political and economic interests.

Furthermore, RCAs signed certificates of Intermediate CAs (ICA)
with no constraints. A study (2013) in the wild revealed:

▶ 19 Root CAs signed ≈ 15’430 ICAs

▶ Only 94 ICAs ware owned by the signing CA organizations!

CA issues all the time
▶ June 2013: ANSSI issues certs for Google
▶ March 2014: India CCA intermediate compromised and issued

certs for Yahoo and Google
▶ Feb 2015: Superfish / Privdog / Komodia breaking certificate

authentication
▶ March 2015: Comodo cert for live.fi through

hostmaster@live.fi
▶ March 2015: Same thing for xs4all
▶ March 2015: Google found bad certs issued by MCS Holdings

/ CNNICa
▶ CNNIC issued intermediate certificate to Egyptian company

MCS Holdings
▶ MCS used it in a Man-in-the-Middle-TLS-Proxy in violation of

policy

▶ April 2015: Google and Mozilla remove CNNIC

There where many more Root CA incidents in the past:

http://wiki.cacert.org/Risk/History

http://wiki.cacert.org/Risk/History

Domain Validation via E-Mail

▶ Domain Validation: CA sends mail to defined aliases (admin,
administrator, webmaster, hostmaster, postmaster, see
Baseline Requirements)

▶ If you offer E-Mail you must make sure that nobody can
register such an address

▶ One can argue if this is sane system, but it is documented
(Baseline Requirements)

▶ live.fi / xs4all.nl issues were their fault

Certificate Revocation

▶ Sometimes it is necessary to immediately block usage of a
certificate before its expiration date.

▶ A revocation request allows an EE (or issuing CA) to revoke a
still valid certificate.

▶ The CA must publish the revocation subsequently on a
specific infrastructure

▶ Two realization concepts:
▶ Black-lists via Certificate Revocation List (CRL) [4], and
▶ White-lists via Online Certificate Status Protocol (OCSP) [10]

Certificate revocation lists (CRLs) [4]

CA must maintain and publish a list
of all revoked (but not expired) cer-
tificates. Revocation reasons include:

▶ Users private key was
compromised (e.g. user lost
private key)

▶ Content of certificate has
changed (e.g. user has left
enterprise)

algorithm
parameters
algorithm

parameters

Issuer NameIssuer Name

This Update DateThis Update Date

Next Update DateNext Update Date

User certificate serial # revocation
date

User certificate serial # revocation
date

.

.

.

.

.

.

User certificate serial # revocation
date

User certificate serial # revocation
date

Signature
algorithm
identifier

Revoked
certificate

Signature

Revoked
certificate

Certificate Revocation List

algorithm
parameters
encrypted

algorithm
parameters
encrypted

Online Certificate Status Protocol (OCSP) [10]

Client-Server Architecture (uses port 80):

Clients: Check certificate status online by a OCSP
Responder, can ask multiple certificates per query

Responder: Replies with a signed message using a certificate with
extension:

extendedKeyUsage = OCSPSigning

Information per certificate:

▶ good

▶ revoked

▶ unknown (e.g. certificate outdated)

Signed responses may be stored/cached.

Drawbacks of OCSP

Performance and resource issues:
▶ OCSP may provide significant cost to a CA:

▶ High traffic website may generate huge volume of OCSP
requests.

▶ OCSP slows down browsing, since it requires the client to
contact a third party (the CA) to confirm the validity of each
certificate that it encounters.

▶ Privacy:
▶ OCSP checking potentially leaks user privacy information to

third party online OCSP service.

▶ User (in)decision:
▶ If OCSP response fails, user often is challenged by

incomprehensible options ...

OCSP Stapling in TLS

OCSP stapling in TLS mitigates these problems:

▶ The certificate holder queries the OCSP server itself at regular
intervals to obtain a signed time-stamped OCSP response.

▶ When browser of the client attempt to connect to the site,
this response is included (”stapled”) within the TLS
handshake (ServerHello extension).

▶ The TLS client must explicitly request OCSP information as
part of the ClientHello message

Revocation in practice

▶ Browsers use insecure soft-fail mode (in the past?)

▶ Chrome and Firefox distribute their own blocklists, but they
don’t scale

▶ OCSP stapling could help, but needs a mechanism to indicate
its use (muststaple draft)

(https://blog.apnic.net/2019/01/15/is-the-web-ready-for-ocsp-must-staple/, 2019)

https://blog.apnic.net/2019/01/15/is-the-web-ready-for-ocsp-must-staple/

Revocation in practice

▶ Browsers use insecure soft-fail mode (in the past?)

▶ Chrome and Firefox distribute their own blocklists, but they
don’t scale

▶ OCSP stapling could help, but needs a mechanism to indicate
its use (muststaple draft)

(https://blog.apnic.net/2019/01/15/is-the-web-ready-for-ocsp-must-staple/, 2019)

https://blog.apnic.net/2019/01/15/is-the-web-ready-for-ocsp-must-staple/

Man in the Middle Proxies

▶ Superfish: Created a TLS Man in the Middle Proxy, private
key was static and part of the Software (Komodia)

▶ Privdog: Just disabled TLS verification completely (Privdog is
founded by the CEO of Comodo)

▶ Several Antiviruses do the same. Not fully broken, but all
decrease the security of TLS

▶ This is not directly a problem of CAs or TLS

Part III: X.509 CA Alternatives

How to identify black sheeps?

Because its hard to prevent the issuance of forged certificates...

... we must give power to the public to detect malicious EEs with
faked certificates.

⇒ For browsers able to verify certificates, several alternative or ad-
ditional ways have been proposed.

Alternative 1: DNSSEC/DANE

DNS-based Authentication of Named Entities (DANE).

https://tools.ietf.org/html/rfc6698

DANE will not provide you any security today.

It is very uncertain if it will ever do that.

https://tools.ietf.org/html/rfc6698

Alternative 1: DNSSEC/DANE

DNS-based Authentication of Named Entities (DANE).

https://tools.ietf.org/html/rfc6698

DANE will not provide you any security today.

It is very uncertain if it will ever do that.

https://tools.ietf.org/html/rfc6698

DNSSEC — too many pieces

For DNSSEC to work you need:

▶ A signed root

▶ A signed Top Level Domain

▶ A domain broker that supports DNSSEC

▶ A DNS operator that supports DNSSEC

▶ A client that verifies DNSSEC

Only if you have all five you have security.

Working DNSSEC deployment is near zero

▶ DNSSEC propaganda: ”xx % of all TLDs are signed”, ”there
are already XX.XXX signed domains”

▶ Completely irrelevant statements

▶ Cryptographic signatures are not worth anything if nobody is
checking them

▶ Once you enable checking, you find out signatures are invalid

▶ Even if they are valid today, that may not be true after key
rollover

▶ Same issue as with TLS: How many users are you willing to
burn?

⇒ Client deployment of DNSSEC is very close to zero

DNSSEC client

▶ So how exactly does a client verify DNSSEC signatures?
(Most common today: Not at all)

▶ DNSSEC verification happens in the DNS resolver — but
clients usually do not have full DNS resolvers

DNSSEC client

▶ Should we trust our providers? (No!)

▶ Should operating systems ship DNS resolvers?

▶ Should applications ship their own DNS resolvers?

▶ Not clear how DNSSEC should be deployed on clients!

So what is DANE?

▶ Idea of DANE: If we already have a secure DNS through
DNSSEC we can add certificate information to the DNS

▶ The problem: We do not have working DNSSEC

▶ Building something on top of something that does not work is
pointless

▶ Also, to secure DNS, IETF proposed putting DNS-over-TLS

Does anyone see a chicken-and-egg problem here?

Alternative 2: HTTP Public Key Pinning (HPKP)

▶ Webpage sends a header with hashes of public keys for the
browser to pin

▶ Browser stores these hashes

▶ Always needs at least two keys - because you need to be able
to change your certificates in the future

▶ Adds a “Trust on First Use” (ToFU) protection

https://www.owasp.org/index.php/Certificate_and_

Public_Key_Pinning

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

HTTP Public Key Pinning (HPKP)

HPKP header:

Public-Key-Pins: max-age=31536000;

pin-sha256="HD3EpAqgxJWKGiSuuXPyipmL33IwYlwhLUgF1gKYOuc=";

pin-sha256="dwUkkREEnv6pEtNJoRzlBHJm3IlUvPhgy0mdYFOM6V8=";

includeSubDomains; report-uri="/hpkp.php"

▶ Browser pins the two hashes for [max-age] seconds

▶ report-uri is unimplemented today

HPKP deployment

▶ HPKP is supported by Chrome/Chromium and Firefox

▶ Needed for deployment: Software change in browsers and
configuration change on servers

▶ Large webpages have pre-loaded pins in the browsers

HPKP: Only for HTTPS

▶ One big drawback: It is only for the Web

▶ As HPKP is implemented via HTTP headers it does not work
on other protocols

▶ There is a proposal called TACK to do something similar on
the TLS layer

HPKP Warning

HPKP improves confidentiality, but can be dangerous to availability:

▶ If you loose your keys you may lock out your visitors!

▶ Needs careful planning of key management.

https://blog.qualys.com/ssllabs/2016/09/06/

is-http-public-key-pinning-dead

https://blog.qualys.com/ssllabs/2016/09/06/is-http-public-key-pinning-dead
https://blog.qualys.com/ssllabs/2016/09/06/is-http-public-key-pinning-dead

Alternative 3: Certificate Transparency [9]

▶ Public logs with all certs in them

▶ Certificate can contain log proof confirming that it has been
added to a log

▶ When a browser sees a certificate that is not in the log it can
raise alarm

▶ Certificate Transparency runs in soft-fail mode, it cannot
prevent misuse

▶ But it makes it hard to use malicious certificates without
being noticed

https://www.certificate-transparency.org

https://www.certificate-transparency.org

Alternative 4: Certification Authority Authorization (CAA)

▶ CAA tells the client which CA is allowed for a domain

▶ Relies on DNS(SEC) security

▶ The configured CA must also still be trustworthy

Alternative 5: HTTP Strict Transport Security (HSTS)

▶ HSTS tells the browser to mark a page as HTTPS only for a
defined timeframe

▶ Further prevents stripping attacks

▶ You can even pre-load your webpage as HTTPS only into
Chrome and Firefox

HSTS attack through NTP

▶ HSTS protects a page for a defined timeframe

▶ System time is considered trustworthy, but it is not!

▶ Delorean-Attack circumvents HSTS with NTP

▶ NTP provides no security (solutions: tlsdate, openntpd)

Part IV: Digital Timestamping

Motivation

A “trustworthy time” is crucial for a PKI.

▶ CAs should issue/revoke certificates based on a trustworthy
time. This service is mandatory for accredited CAs issuing
advanced or qualified certificates.

▶ A trustworthy timestamp should be added every time a user
“digitally signs” a document to achieve a higher level of legal
probative value.

If the content of a document is additionally digitally time-stamped
by a trustworthy DTS, it makes time of creation provable in the
future.

Timestamp Protocol (TSP) [1]

Within a companyWithin a company Time-stamping Authority (TSA)Time-stamping Authority (TSA)

0011...10101

compute
hash

data

0011...10101

send hash to TSA

+
compute

hash

timestamp

1011...11001 sign hash
with private
key of TSA

Signed hash
concatenated

with timestamp

+

send back to
requestor

1011...11001

store

Part V: Trust Agility

Guiding questions “SSL and the Future of Authenticity”

▶ What is fundamentally wrong with the current CA model?

▶ What is the idea of “trust agility”, and is it reasonable?

▶ Understand the notion of “perspectives”. Evaluate strengths
and weaknesses of the perspective model.

Interlude: SSL and the Future of Authenticity

BlackHat 2011

References I

C. Adams, P. Cain, D. Pinkas, and R. Zuccherato.
Internet X.509 Public Key Infrastructure Time-Stamp Protocol
(TSP).
RFC 3161 (Proposed Standard), August 2001.
Updated by RFC 5816.

C. Adams, S. Farrell, T. Kause, and T. Mononen.
Internet X.509 Public Key Infrastructure Certificate
Management Protocol (CMP).
RFC 4210 (Proposed Standard), September 2005.
Updated by RFC 6712.

S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu.
Internet X.509 Public Key Infrastructure Certificate Policy and
Certification Practices Framework.
RFC 3647 (Informational), November 2003.

References II

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley,
and W. Polk.
Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile.
RFC 5280 (Proposed Standard), May 2008.
Updated by RFC 6818.

C. Evans, C. Palmer, and R. Sleevi.
Public Key Pinning Extension for HTTP.
RFC 7469 (Proposed Standard), April 2015.

P. Hallam-Baker and R. Stradling.
DNS Certification Authority Authorization (CAA) Resource
Record.
RFC 6844 (Proposed Standard), January 2013.

References III

J. Hodges, C. Jackson, and A. Barth.
HTTP Strict Transport Security (HSTS).
RFC 6797 (Proposed Standard), November 2012.

P. Hoffman and J. Schlyter.
The DNS-Based Authentication of Named Entities (DANE)
Transport Layer Security (TLS) Protocol: TLSA.
RFC 6698 (Proposed Standard), August 2012.
Updated by RFCs 7218, 7671.

B. Laurie, A. Langley, and E. Kasper.
Certificate Transparency.
RFC 6962 (Experimental), June 2013.

References IV

S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin,
and C. Adams.
X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol - OCSP.
RFC 6960 (Proposed Standard), June 2013.

J. Schaad.
Internet X.509 Public Key Infrastructure Certificate Request
Message Format (CRMF).
RFC 4211 (Proposed Standard), September 2005.

Further reading I

▶ Google on CNNIC
http://googleonlinesecurity.blogspot.com/2015/03/

maintaining-digital-certificate-security.html

▶ Mozilla on CNNIC https://blog.mozilla.org/security/

2015/04/02/distrusting-new-cnnic-certificates/

▶ live.fi bad cert https://technet.microsoft.com/en-us/
library/security/3046310

▶ xs4all bad cert
https://raymii.org/s/blog/How_I_got_a_valid_SSL_

certificate_for_my_ISPs_main_website.html

▶ OCSP muststaple https://tools.ietf.org/html/
draft-hallambaker-muststaple-00

▶ Superfish https:

//noncombatant.org/2015/02/21/superfish-round-up/

http://googleonlinesecurity.blogspot.com/2015/03/maintaining-digital-certificate-security.html
http://googleonlinesecurity.blogspot.com/2015/03/maintaining-digital-certificate-security.html
https://blog.mozilla.org/security/2015/04/02/distrusting-new-cnnic-certificates/
https://blog.mozilla.org/security/2015/04/02/distrusting-new-cnnic-certificates/
https://technet.microsoft.com/en-us/library/security/3046310
https://technet.microsoft.com/en-us/library/security/3046310
https://raymii.org/s/blog/How_I_got_a_valid_SSL_certificate_for_my_ISPs_main_website.html
https://raymii.org/s/blog/How_I_got_a_valid_SSL_certificate_for_my_ISPs_main_website.html
https://tools.ietf.org/html/draft-hallambaker-muststaple-00
https://tools.ietf.org/html/draft-hallambaker-muststaple-00
https://noncombatant.org/2015/02/21/superfish-round-up/
https://noncombatant.org/2015/02/21/superfish-round-up/

Further reading II
▶ Privdog https://blog.hboeck.de/archives/

865-Software-Privdog-worse-than-Superfish.html

▶ Why not DNS records (Ryan Sleevi)
https://lists.w3.org/Archives/Public/

public-webappsec/2014Dec/0264.html

▶ DNSSEC is dead (Alex Stamos) http://www.slideshare.
net/astamos/appsec-is-eating-security

▶ Against DNSSEC (Thomas Ptacek) http:
//sockpuppet.org/blog/2015/01/15/against-dnssec/

▶ SSL Strip
http://www.thoughtcrime.org/software/sslstrip/

▶ HSTS Preload https://hstspreload.appspot.com/

▶ Bypassing HTTP Strict Transport Security
https://www.blackhat.com/docs/eu-14/materials/

eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.

pdf

https://blog.hboeck.de/archives/865-Software-Privdog-worse-than-Superfish.html
https://blog.hboeck.de/archives/865-Software-Privdog-worse-than-Superfish.html
https://lists.w3.org/Archives/Public/public-webappsec/2014Dec/0264.html
https://lists.w3.org/Archives/Public/public-webappsec/2014Dec/0264.html
http://www.slideshare.net/astamos/appsec-is-eating-security
http://www.slideshare.net/astamos/appsec-is-eating-security
http://sockpuppet.org/blog/2015/01/15/against-dnssec/
http://sockpuppet.org/blog/2015/01/15/against-dnssec/
http://www.thoughtcrime.org/software/sslstrip/
https://hstspreload.appspot.com/
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf

Further reading III

▶ Delorean NTP MitM
https://github.com/PentesterES/Delorean

https://github.com/PentesterES/Delorean

	Public Key Infrastructures
	Trust Issues in X.509
	X.509 CA Alternatives
	Digital Timestamping
	Trust Agility
	References

