
Decentralized Public Key Infrastructures

Christian Grothoff

Berner Fachhochschule

24.5.2024

Learning Objectives

Introduction to GnuPG

Advanced Cryptographic Primitives

Distributed Hash Tables
CAN
Chord
Kademlia

The GNU Name System

Key Revocation

Comparisson of Name Systems

Introduction to GNUnet

Part I: Introduction to GnuPG

PGP

▶ PGP can be used to encrypt and digitally sign files and e-mails.

▶ Data is at rest or transmitted unidirectionally. ⇒ No secure channel!

▶ PGP was published by Philip R. Zimmermann1 in the early 1990s.

▶ Got immediate NSA attention and encountered legal issues on its use of RSA
cryptography patents.

▶ PGP certificates are public key certificates with one or more identity labels tied to
it.

1http://www.philzimmermann.com/

http://www.philzimmermann.com/

GnuPG

▶ Free version of PGP, with library (libgcrypt)

▶ Provides common cryptographic primitives

▶ Provides implementation of OpenPGP ([4, 5, 3])
▶ Commonly used for:

▶ secure E-mail (authentication, encryption)
▶ encrypt files
▶ sign files — i.e. sources and binaries in Free Software distributions

PGP Certificate Overview

PGP Version identifies which version of PGP was used to create the key associated
with the certificate

Holder’s public key the public portion of your key pair, together with the algorithm of
the key: RSA or DSA (Digital Signature Algorithm)

Holder information this consists of ”identity” information about the user, such as their
name, user ID, photograph, and so on. . .

Holder digital signature also called a self-signature, this is the signature using the
corresponding private key of the public key associated with the certificate

Validity period the certificate’s start date/ time and expiration date/ time; indicates
when the certificate will expire

Preferred symmetric encryption algorithm indicates the encryption algorithm to which
the certificate owner prefers to have information encrypted. The
supported algorithms are CAST, IDEA, Triple-DES, AES, ...

PGP Certification
▶ One certificate may be signed by multiple entities (persons).

▶ Digital signatures may bind different user attributes to a certificate when verifying
the authenticity of that user.

Self signed
Sdkfj lk löklökSdkfj lk löklök
 ölkölkölk ölk lök ölkölkölk ölk lök
 ölk lk ölk lö ölk lk ölk lö
 kölkölkölk kölkölkölk
 ölcvklökölvköxlvk ölcvklökölvköxlvk
 ölvk ölk ölvk ölk
 ölckvölcxkv xölvk ölckvölcxkv xölvk
 lvkxölk oidoit oieu lvkxölk oidoit oieu
 toeiutoieut toeiutoieut
 oietue oituoei tueoi oietue oituoei tueoi
 tuepotiuetoieu toie tuepotiuetoieu toie

 utoitureoi utoitureoi

Staff ManagerSister Collaborator Tennis partner

User Identities
as private person as employee as club member

Signatures

Certificate

Signers

‚public key‘

People apply different methods to check authenticity before signing a key!

PGP Key Signing

3. Alice verifies
fingerprint.

2. Bob sends his certificate to
Alice

1. Bob creates a self-signed
certificate for himself.

4. Alice sends the encrypted
e-mail to Bob.

Trust on First Use (TOFU)

Another kind of direct trust security model:

▶ Client creates a trust relationship with a not-yet-trusted and unknown endpoint.

▶ The public key of the endpoint is not verified, but subsequent connections to the
same peer require the public key paired with other information of the service to
remain the same.

TOFU is typically used in SSH and in HTTP Public Key Pinning (HPKP).

The Web of Trust
Problem:

▶ Alice has certified many of her contacts and flagged some as trusted to check keys
well.

▶ Bob has been certified by many of his contacts.

▶ Alice has not yet certified Bob, but wants to securely communicate with him.

Solution:

▶ Find paths in the certification graph from Alice to Bob.

▶ If sufficient number of short paths exist certifying the same key, trust it.2

2Simplified, details later.

The Web of Trust
Problem:

▶ Alice has certified many of her contacts and flagged some as trusted to check keys
well.

▶ Bob has been certified by many of his contacts.

▶ Alice has not yet certified Bob, but wants to securely communicate with him.

Solution:

▶ Find paths in the certification graph from Alice to Bob.

▶ If sufficient number of short paths exist certifying the same key, trust it.2

2Simplified, details later.

The Web of Trust

The PGP Private Keyring

Stores private/public key pairs:

▶ timestamp

▶ key ID (indexed)

▶ public key

▶ encrypted private key (with passphrase)

▶ user ID (indexed)

The PGP Public Keyring

Stores public key pairs, certificate and trust status:

▶ timestamp

▶ key ID (indexed)

▶ public key

▶ user ID (indexed)
▶ owner trust:

▶ unknown user
▶ usually not trusted to sign
▶ usually trusted to sign
▶ always trusted to sign
▶ ultimately trusted (own key, only present in private key ring)

▶ signature(s)

▶ signature trust(s); copy of owner trust of the signer

▶ validity of public key

Key validity calculation

▶ if at least one signature trust is ultimate, then the validity of the key is 1
(complete)

▶ otherwise, a weighted sum of the signature trust values is computed:
▶ always trusted signatures has a weight of 1/x
▶ usually trusted signatures has a weight of 1/y

x , y are user-configurable parameters, default x = 1, y = 2.

Certificate Trust Models (Summary)

Direct Trust One trusts in a relationship between “public key” and “identity”, which it
has verified by itself only. The identity of the subject (owner) is proven
directly (personally).

Web of Trust One accepts/applies “public keys”, where the identity binding is
validated by others (persons or agents). One accepts other entities as
trustworthy authorities (indirect trust or recommended trust).

Hierarchical Trust One accepts/applies “public keys”, where the identity binding is
validated by a trustworthy authority.

See also: individualism, anarchism, authoritariansim.

Certificate Trust Models (Summary)

Direct Trust ▶ Zero-solution: public key must be exchanged over 2nd/private
channel or remain non-verifiable.

▶ Usable in limited scope. Key management is complex, legal
validity/liability not possible.

Web of Trust ▶ Flexible solution: One applies public keys validated by other entities.
▶ Usable in bigger scope (e.g. community). Key management less

complex using online key server. Legal validity/liability not possible.

Hierarchical Trust ▶ Strict solution: One applies public keys only if validated by a
“trustworthy” authority.

▶ Usable in national or even global scope. Key management still
complex but mostly done by experts. Legal validity/liability possible.

See also: individualism, anarchism, authoritariansim.

Using GnuPG

$ gpg --gen-key
$ gpg --export
$ gpg --import FILENAME
$ gpg --edit-key EMAIL
(gpg) fpr
(gpg) sign
(gpg) trust
$ gpg --clearsign FILENAME

Excercise: Explore

https://pgp.mit.edu

https://pgp.mit.edu

Break

Part II: Advanced Cryptographic Primitives

Homomorphic Encryption

E (x1 ⊕ x2) = E (x1)⊗ E (x2) (1)

Multiplicative Homomorphism: RSA & ElGamal

▶ Unpadded RSA (multiplicative):

E (x1) · E (x2) = xe1 x
e
2 = E (x1 · x2) (2)

▶ ElGamal:

E (x1) · E (x2) = (g r1 , x1 · hr1)(g r2 , x2 · hr2) (3)

= (g r1+r2), (x1 · x2)hr1+r2) (4)

= E (x1 · x2) (5)

Additive Homomorphism: Paillier

EK (m) : = gm · rn mod n2, (6)

DK (c) : =
(cλ mod n2)− 1

n
· µ mod n (7)

where the public key K = (n, g), m is the plaintext, c the ciphertext, n the product of
p, q ∈ P of equal length, and g ∈ Z∗

n2 . In Paillier, the private key is (λ, µ), which is
computed from p and q as follows:

λ : = lcm(p − 1, q − 1), (8)

µ : =

(
(gλ mod n2)− 1

n

)−1

mod n. (9)

Paillier offers additive homomorphic public-key encryption, that is:

EK (a)⊗ EK (b) ≡ EK (a+ b) (10)

for any public key K .

Fully homomorphic encryption

Additive:
E (A)⊕ E (B) = E (A+ B) (11)

and multiplicative:
E (A)⊗ E (B) = E (A · B) (12)

Known cryptosystems: Brakerski-Gentry-Vaikuntanathan (BGV), NTRU, Gentry-Sahai-
Waters (GSW).

Pairing-based cryptography

Let G1, G2 be two additive cyclic groups of prime order q, and GT another cyclic group
of order q (written multiplicatively). A pairing is an efficiently computable map e:

e : G1 × G2 → GT (13)

which satisfies e ̸= 1 and bilinearity:

∀a,b∈F∗
q
, ∀P∈G1,Q∈G2 : e (aP, bQ) = e (P,Q)ab (14)

Examples: Weil pairing, Tate pairing.

Hardness assumption

Computational Diffie Hellman:
g , g x , g y ⇒ g xy (15)

remains hard on G even given e.

Boneh-Lynn-Sacham (BLS) signatures [2]

Key generation:
Pick random x ∈ Zq

Signing:
σ := hx where h := H(m)

Verification:
Given public key g x :

e(σ, g) = e(h, g x) (16)

Why:

e(σ, g) = e(h, g)x = e(h, g x) (17)

due to bilinearity.

Boneh-Lynn-Sacham (BLS) signatures [2]

Key generation:
Pick random x ∈ Zq

Signing:
σ := hx where h := H(m)

Verification:
Given public key g x :

e(σ, g) = e(h, g x) (16)

Why:

e(σ, g) = e(h, g)x = e(h, g x) (17)

due to bilinearity.

Fun with BLS

Given signature ⟨σ, g x⟩ on message h, we can blind the signature and public key g x :

e(σb, g) = e(h, g)xb = e(h, g xb) (18)

Thus σb is a valid signature for the derived public key (g x)b with blinding value b ∈ Zq.

Part III: Distributed Hash Tables

Distributed Hash Tables (DHTs)

▶ Distributed index

▶ GET and PUT operations like a hash table

▶ JOIN and LEAVE operations (internal)

▶ Trade-off between JOIN/LEAVE and GET/PUT costs

▶ Typically use exact match on cryptographic hash for lookup

▶ Typically require overlay to establish particular connections

DHTs: Key Properties

To know a DHT, you must know (at least) its:

▶ routing table structure

▶ lookup procedure

▶ join operation process

▶ leave operation process

... including expected costs (complexity) for each of these operations.

A trivial DHTs: The Clique

▶ routing table: hash map of all peers

▶ lookup: forward to closest peer in routing table

▶ join: ask initial contact for routing table, copy table, introduce us to all other
peers, migrate data we’re closest to to us

▶ leave: send local data to remaining closest peer, disconnect from all peers to
remove us from their routing tables

Complexity?

A trivial DHTs: The Circle

▶ routing table: left and right neighbour in cyclic identifier space

▶ lookup: forward to closest peer (left or right)

▶ join: lookup own peer identity to find join position, transfer data from neighbour
for keys we are closer to

▶ leave: ask left and rigt neighbor connect directly, transfer data to respective
neighbour

Complexity?

Additional Questions to ask

▶ Security against Eclipse attack?

▶ Survivability of DoS attack?

▶ Maintenance operation cost & required frequency?

▶ Latency? (̸= number of hops!)

▶ Data persistence?

Content Addressable Network: CAN

▶ routing table: neighbours in
d-dimensional torus space

▶ lookup: forward to closest peer

▶ join: lookup own peer identity
to find join position, split
quadrant (data areas) with
existing peer

▶ leave: assign quadrant space to
neighbour (s)

Interesting CAN properties

▶ CAN can do range queries along ≤ n dimensions

▶ CAN’s peers have 2d connections (independent of network size)

▶ CAN routes in O(d d
√
n)

Chord
▶ routing table: predecessor in

circle and at distance 2i , plus r
successors

▶ lookup: forward to closest peer
(peer ID after key ID)

▶ join: lookup own peer identity
to find join position, use
neighbor to establish finger
table, migrate data from
respective neighbour

▶ leave: join predecessor with
successor, migrate data to
respective neighbour, periodic
stabilization protocol takes care
of finger updates

Interesting Chord properties

▶ Simple design

▶ log2 n routing table size

▶ log2 n lookup cost

▶ Asymmetric, inflexible routing tables

Kademlia
▶ routing table: 2160 buckets with k peers at XOR distance 2i

▶ lookup: iteratively forward to α peers from the “best” bucket, selected by latency
▶ join: lookup own peer identity, populate table with peers from iteration
▶ maintenance: when interacting with a peer, add to bucket if not full; if bucket

full, check if longest-not-seen peer is live first
▶ leave: just drop out

0 1

0 1
10 11

0 1
00 01

Connections
Route path

Interesting Kademlia properties

▶ XOR is a symmetric metric: connections are used in both directions

▶ α replication helps with malicious peers and churn

▶ Iterative lookup gives initiator much control,

▶ Lookup helps with routing table maintenance

▶ Bucket size trade-off between routing speed and table size
▶ Iterative lookup is a trade-off:

▶ good UDP (no connect cost, initiator in control)
▶ bad with TCP (very large number of connections)

Part IV: The GNU Name System (RFC 9498)

The GNU Name System (GNS) [8, 6]

P2P Network

Alice’s GNS Service
Alice’s NSS
.gnu = Palice

Carols’s GNS Service

Bob’s GNS Service
Bob’s NSS

.gnu = Pbob

DHT

Palice zone database
bob PKEY Pbob

www A 203.0.113.13

Pbob zone database
carol PKEY Pcarol

www A 203.0.113.54

Pcarol zone database
www A 203.0.113.34

www.Palice?

A 203.0.113.13

www.carol.bob.Palice?

A 203.0.113.34

G
E
T
(H

(c
ar
ol
,
P
b
o
b
))

E
(P
KE
Y
P
ca
ro
l)

G
E
T
(H

(w
w
w
,
P
ca
ro
l)
)

E
(A

20
3.
0.
11
3.
34
)

www.Pbob?

A 203.0.113.54

P
U
T

(H
(w

w
w
,
P
b
o
b),

E
(A

203.0.113.54))

P
U
T

(H
(carol,

P
b
o
b),

E
(PKEY

P
caro

l))

PUT (H(www, Pcarol),
E(A 203.0.113.34))

The GNU Name System3

Properties of GNS

▶ Decentralized name system with secure memorable names

▶ Delegation used to achieve transitivity

▶ Also supports globally unique, secure identifiers

▶ Achieves query and response privacy

▶ Provides alternative public key infrastructure

▶ Interoperable with DNS

3Joint work with Martin Schanzenbach, Matthias Wachs and Bernd Fix

Zone Management: like in DNS

Name resolution in GNS

Local Zone:

www A 5.6.7.8

Bob Bob's webserver

KBob
pub

KBob
priv

▶ Bob can locally reach his webserver via www.gns.alt

Secure introduction

Bob Builder, Ph.D.

Address: Country, Street Name 23
Phone: 555-12345
Mobile: 666-54321
Mail: bob@H2R84L4JIL3G5C

▶ Bob gives his public key to his friends, possibly via QR code

Delegation

▶ Alice learns Bob’s public key

▶ Alice creates delegation to zone KBob
pub under label bob

▶ Alice can reach Bob’s webserver via www.bob.gns.alt

Name Resolution

Bob
Alice

DHT

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

Name Resolution

Bob
Alice

DHTPUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

Name Resolution

www.bob.gnu.alt ?

1

Bob
 Alice

DHT

PUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

Name Resolution

www.bob.gnu.alt ?

1

Bob
 Alice

DHT

'bob'?

2

PUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

Name Resolution

www.bob.gnu.alt ?

1

Bob
 Alice

DHT

'bob'?

23 PKEY 8FS7!

PUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

Name Resolution

www.bob.gnu.alt ?

1

Bob
 Alice

DHT

'bob'?

23 PKEY 8FS7!

8FS7-www?

4PUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

Name Resolution

www.bob.gnu.alt ?

1

Bob
 Alice

DHT

'bob'?

23 PKEY 8FS7!

8FS7-www?

4

A 5.6.7.8!

5

PUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

GNS as PKI (via DANE/TLSA)

Privacy Issue: DHT

www.bob.gnu.alt ?

1

Bob
 Alice

DHT

'bob'?

23 PKEY 8FS7!

8FS7-www?

4

A 5.6.7.8!

5

PUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

Query Privacy: Terminology

G generator in ECC curve, a point

o size of ECC group, o := |G |, o prime

x private ECC key of zone (x ∈ Zo)

P public key of zone, a point P := xG

l label for record in a zone (l ∈ Zo)

RP,l set of records for label l in zone P

qP,l query hash (hash code for DHT lookup)

BP,l block with encrypted information for label l
in zone P published in the DHT under qP,l

Query Privacy: Cryptography

Publishing records RP,l as BP,l under key qP,l

h : = H(l ,P) (19)

d : = h · x mod o (20)

BP,l : = Sd(EHKDF (l ,P)(RP,l)), dG (21)

qP,l : = H(dG) (22)

Searching for records under label l in zone P

h : = H(l ,P) (23)

qP,l : = H(hP) = H(hxG) = H(dG) ⇒ obtain BP,l (24)

RP,l = DHKDF (l ,P)(BP,l) (25)

Query Privacy: Cryptography

Publishing records RP,l as BP,l under key qP,l

h : = H(l ,P) (19)

d : = h · x mod o (20)

BP,l : = Sd(EHKDF (l ,P)(RP,l)), dG (21)

qP,l : = H(dG) (22)

Searching for records under label l in zone P

h : = H(l ,P) (23)

qP,l : = H(hP) = H(hxG) = H(dG) ⇒ obtain BP,l (24)

RP,l = DHKDF (l ,P)(BP,l) (25)

Using cryptographic identifiers

▶ Zone are identified by a public key

▶ “alice.bob.PUBLIC-KEY” is perfectly legal in GNS!

⇒ Globally unique identifiers

Break

Key Revocation

▶ Certificate Revocation Lists (X.509)

▶ Online Certificate Status Protocol (OCSP)

▶ OCSP stapling (TLS)

▶ Publish revocation in blockchain?

▶ Controlled flooding

Key Revocation

▶ Certificate Revocation Lists (X.509)

▶ Online Certificate Status Protocol (OCSP)

▶ OCSP stapling (TLS)

▶ Publish revocation in blockchain?

▶ Controlled flooding

Key Revocation via Controlled Flooding

▶ Revocation message signed with private key that is to be revoked

▶ Flooded on all links in (P2P) overlay, stored forever

▶ Expensive proof-of-work used to limit DoS-potential

▶ Proof-of-work can be calculated ahead of time

▶ Revocation messages can be computed and stored off-line if desired

▶ Efficient set reconciliation used when peers connect

Efficient Set Union

▶ Alice and Bob have sets A and B

▶ The sets are very large

▶ . . . but their symmetric difference δ = |(A− B) ∪ (B − A)| is small

▶ Now Alice wants to know B − A (the elements she’s missing)

▶ . . . and Bob A− B (the elements he’s missing)

▶ How can Alice and Bob do this efficiently?
▶ w.r.t. communication and computation

Simplistic Solution

▶ Naive approach: Alice sends A to Bob, Bob sends B − A back to Alice

▶ . . . and vice versa.

▶ Communication cost: O(|A|+ |B|) :(
▶ Ideally, we want to do it in O(δ).

▶ First improvement: Don’t send elements of A and B, but send/request hashes.
Still does not improve complexity :(

▶ We need some more fancy data structure!

Bloom Filters

Constant size data structure that “summarizes” a set.

Operations:

d = NewBF (size) Create a new, empty bloom filter.

Insert(d , e) Insert element e into the BF d .

b = Contains(d , e) Check if BF d contains element e.
b ∈ {“Definitely not in set”, “Probably in set”}

BF: Insert

0

0

0

0

0

0

0

HElement #1 H(Element #1) = (2, 3, 7)

BF: Insert

0

1

1

0

0

0

1

HElement #1 H(Element #1) = (2, 3, 7)

BF: Insert

0

1

1

0

0

0

1

HElement #2
H(Element #1) = (2, 3, 7)
H(Element #2) = (1, 3, 5)

BF: Insert

1

1

1

0

1

0

1

HElement #2
H(Element #1) = (2, 3, 7)
H(Element #2) = (1, 3, 5)

BF: Membership Test

1

1

1

0

1

0

1

HElement #3
H(Element #1) = (2, 3, 7)
H(Element #2) = (1, 3, 5)

BF: Membership Test (false positive)

1

1

1

0

1

0

1

HElement #4
H(Element #1) = (2, 3, 7)
H(Element #2) = (1, 3, 5)

Counting Bloom Filters

BF where buckets hold a positive integer.

Additional Operation:

Remove(d , e) Remove element from the CBF d .

⇒ False negatives when removing a non-existing element.

Invertible Bloom Filters

Similar to CBF, but

▶ Allow negative counts

▶ Additionaly store (XOR-)sum of IDs (IDSUM) in each bucket.

▶ Additionaly store (XOR-)sum of hashes (XHASH) in each bucket.

Additional Operations:

(e, r) = Extract(d) Extract an element ID (e) from the IBF d , with result code
r ∈ {left, right, done, fail}

d ′ = SymDiff (d1, d2) Create an IBF that represents the symmetric difference of d1
and d2.

IBF: Insert Element #1

0 0000 00

0 0000 00

0 0000 00

0 0000 00

0 0000 00

0 0000 00

0 0000 00

HElement

H(Element #1) 7→ (2, 3, 7)
H ′(Element #1) 7→ 4242 (ID)
H ′′(4242) 7→ 13

IBF: Insert Element #1

0 0000 00

1 4242 13

1 4242 13

0 0000 00

0 0000 00

0 0000 00

1 4242 13

HElement

H(Element #1) 7→ (2, 3, 7)
H ′(Element #1) 7→ 4242 (ID)
H ′′(4242) 7→ 13

IBF: Insert Element #2

0 0000 00

1 4242 13

1 4242 13

0 0000 00

0 0000 00

0 0000 00

1 4242 13

HElement

H(Element #2) = (1, 3, 5)
H ′(Element #2) = 0101 (ID)
H ′′(0101) 7→ 41

IBF: Insert Element #2

1 0101 41

1 4242 13

2 4343 52

0 0000 00

1 0101 41

0 0000 00

1 4242 13

HElement

H(Element #2) = (1, 3, 5)
H ′(Element #2) = 0101 (ID)
H ′′(0101) 7→ 41

Symmetric Difference on IBFs

We can directly compute the symmetric difference without extraction.

▶ Subtract counters

▶ XOR of IDSUM and XHASH values

IBF: Extract

1 0101 41

1 4242 13

2 4343 52

0 0000 00

1 0101 40

0 0000 00

-1 4242 13

pure

pure

impure

impure

pure

▶ |counter | = 1 ∧ H ′′(IDSUM) = XHASH ⇔
pure

▶ Impure bucket ⇒ potential decoding failure

▶ Pure bucket ⇒ extractable element ID

▶ Extraction ⇒ more pure buckets
(hopefully/probably)

▶ Less elements ⇒ more chance for pure buckets

The Set Union Protocol [7]

1. Create IBFs

2. Compute SymDiff

3. Extract element IDs

▶ Amount of communication and computation only depends on δ, not |A|+ |B| :)
▶ How do we choose the initial size of the IBF?

▶ ⇒ Do difference estimation first!

Difference Estimation

▶ We need an estimator that’s accurate for small differences

▶ Turns out we can re-use IBFs for difference estimation:

1. Alice and Bob create fixed number of constant-size IBFs by sampling their set.
The collection of IBFs is called a Strata Estimator (SE).
▶ Stratum 1 contains 1/2 of all elements
▶ Stratum 2 contains 1/4 of all elements
▶ Stratum n contains 1/(2n) all elements

2. Alice receives Bob’s strata estimator

3. Alice computes SEdiff = SymDiff (SEAlice,SEBob)
▶ by pair-wise SymDiff of all IBFs in the SE

4. Alice estimates the size of SEdiff .

Strata Estimator

IBF 1

IBF 2

IBF 3

IBF 4

Strata Estimator

IBF 1

IBF 2

IBF 3

3

Strata Estimator

IBF 1

IBF 2

IBF 3

3

7

Strata Estimator

IBF 1

IBF 2

IBF 3

3

7

??

Estimation

IBF 1

IBF 2

IBF 3

??

??

7

3 Estimate set size difference as 24·3+23·7
2 .

The näıve IBF Protocol

1. Alice sends SEAlice to Bob

2. Bob estimates the set difference δ

3. Bob computes IBFBob for size δ and sends it to Alice

4. Alice computes IBFAlice

5. Alice computes IBFdiff = SymDiff (IBFAlice, IBFBob)

6. Alice extracts element IDs from IBFdiff .
▶ b = left ⇒ Send element to to Bob
▶ b = right ⇒ Send element request to to Bob
▶ b = fail ⇒ Send larger IBF (double the size) to Bob, go to (3.) with switched roles
▶ b = done ⇒ We’re done . . .

The Complete Protocol

Implementation Performance: Tuning required!

GNS Summary

▶ Interoperable with DNS

▶ Globally unique identifiers with “.PUBLIC-KEY”

▶ Delegation allows using zones of other users

▶ Trust paths explicit, trust agility

▶ Simplified key exchange compared to Web-of-Trust

▶ Privacy-enhanced queries, censorship-resistant

▶ Reliable revocation using flooding with proof-of-work

Privacy summary

Method D
ef
en
se
ag
ai
ns
t M

iT
M

Zo
ne
pr
iva
cy

Pr
iva
cy
vs
.
ne
tw
or
k

Pr
iva
cy
vs
.
op
er
at
or

Tr
affi
c
am
pl
ifi
ca
tio
n
re
sis
ta
nc
e

Ce
ns
or
sh
ip
re
sis
ta
nc
e

Ea
se
of
m
ig
ra
tio
n

DNS ✗ ✓ ✗ ✗ ✗ ✗ ✓

DNSSEC ✓ ✗ ✗ ✗ ✗ ✗ ✗∗

DNSCurve ✓ ✓ ✓ ✗ ✓ ✗ ✗

DNS-over-TLS ✓ n/a ✓ ✗ ✓ ✗ ✗

Namecoin ✓ ✗ ✓ ✓ ✓ ✓ ✗

RAINS ✓ ✗ ✓ ✗ ✓ ✗ ✗

GNS ✓ ✓ ✓ ✓ ✓ ✓ ✗
∗EDNS0

Key management summary

Su
ita
bl
e
fo
r p
er
so
na
l u
se

M
em
or
ab
le

D
ec
en
tra
lis
ed

M
od
er
n
cr
yp
to
gr
ap
hy

Un
de
rs
ta
nd
ab
le

Ex
po
se
s
m
et
ad
at
a

Tr
an
sit
ive

DNS ✗ ✓ ✗ ✗ ✗ ✗ ✓

DNSSEC ✗ ✓ ✗ ✗ ✗ ✗ ✓

DNSCurve ✗ ✓ ✗ ✓ ✗ ✗ ✓

DNS-over-TLS ✗ ✓ ✗ ✗ ✗ ✗ ✓

TLS-X.509 ✗ ✓ ✗ ✗ ✗ ✗ ✓

Web of Trust ✓ ✗ ✓ ✗ ✗ ✗ ✓

TOFU ✓ ✗ ✓ ✓ ✓ ✗

Namecoin ✗ ✓ ✗ ✓ ✓ ✗ ✓

RAINS ✗ ✓ ✗ ✓ ✓ ✗ ✓

GNS ✓ ✓ ✓ ✓ ✓ ✓ ✓

Case study: GNS

DNS is known to suffer from a lack of end-to-end integrity protections. As a result,
Chinese ”great firewall” DNS manipulation has been shown to impact name resolution
even in Europe.

“The GNU Name System (GNS) establishes a new name system using cryptog-
raphy where zone data, queries and replies are private. The use of a distributed
hash table (DHT) implies that resolution costs are comparable to those of DNS.
However, states and ISPs cannot monitor or block queries, limiting their ability
to protect the public from malicious Web sites. Names are not globally unique,
allowing multiple anonymous users to lay claim to the same name. However,
the system includes some well-known mappings by default, which users are
unlikely to change. Trademarks, copyrights anti-fraud or anti-terrorism judge-
ments can only be enforced against those well-known mappings, which users
are able to bypass.”

Discuss virtues and vices affected.

Conclusion

DNS globalist
DNSSEC authoritarian
Namecoin libertarian (US)
RAINS nationalist
GNS anarchist

In which world do you want to live?

Part V: Introduction to GNUnet

Internet Design Goals, David Clark, 1988

1. Internet communication must continue despite loss of networks or
gateways.

2. The Internet must support multiple types of communications service.

3. The Internet architecture must accommodate a variety of networks.

4. The Internet architecture must permit distributed management of its resources.

5. The Internet architecture must be cost effective.

6. The Internet architecture must permit host attachment with a low level of effort.

7. The resources used in the internet architecture must be accountable.

Where We Are

Where We Are

Example 1: Collateral Damage

Example 1: Collateral Damage

Example 1: Collateral Damage

Why should you care?

If you are ...

▶ ... of any importance in the world, or

▶ ... a system or network administrator, or

▶ ... a security researcher, or

▶ ... in this room, or

▶ ... mistaken for any of the above,

then you are probably a target.

Why should you care?

If you are ...

▶ ... of any importance in the world, or

▶ ... a system or network administrator, or

▶ ... a security researcher, or

▶ ... in this room, or

▶ ... mistaken for any of the above,

then you are probably a target.

So what if they listen to my calls?

▶ Kompromat — and you do not get to decide what is bad!

▶ Self-censorship

▶ Loss of business

▶ No privacy ⇒ No free press ⇒ No liberal democracy

▶ Security services also get you drunk, encourage you to drive, arrest you for
drunken driving and then ask you for your customer data.

So what if they listen to my calls?

▶ Kompromat — and you do not get to decide what is bad!

▶ Self-censorship

▶ Loss of business

▶ No privacy ⇒ No free press ⇒ No liberal democracy

▶ Security services also get you drunk, encourage you to drive, arrest you for
drunken driving and then ask you for your customer data.

Example 2: Owning the Network

Example 2: Owning the Network

Example 2: Owning the Network (Video)

The Internet is Broken

Administrators have power.

Power attracts Mexican drug cartels.

Adversary model: Mexican drug cartel

▶ They took your family, and will brutally kill them if you do not give them what
they want.

▶ Under these circumstances, you must still not be able to assist, and the public
system design must make that clear.

▶ Thus, the cartel has nothing to gain from abducting your family and will not
bother with it.

System administrators are targets of such an adversary.

Design Choices for a Civil Network!

Internet Design Goals (David Clark, 1988)

1. Internet communication must continue despite
loss of networks or gateways.

2. The Internet must support multiple types of
communications service.

3. The Internet architecture must accommodate a
variety of networks.

4. The Internet architecture must permit distributed
management of its resources.

5. The Internet architecture must be cost effective.

6. The Internet architecture must permit host
attachment with a low level of effort.

7. The resources used in the internet architecture
must be accountable.

GNUnet Design Goals

1. GNUnet must be implemented as free software.

2. The GNUnet must only disclose the minimal amount of
information necessary.

3. The GNUnet must be decentralised and survive Byzantine
failures in any position in the network.

4. The GNUnet must make it explicit to the user which entities
must be trustworthy when establishing secured communications.

5. The GNUnet must use compartmentalization to protect
sensitive information.

6. The GNUnet must be open and permit new peers to join.

7. The GNUnet must be self-organizing and not depend on
administrators.

8. The GNUnet must support a diverse range of applications and
devices.

9. The GNUnet architecture must be cost effective.

10. The GNUnet must provide incentives for peers to contribute
more resources than they consume.

Let’s Implement It!

Internet

Google

DNS/X.509

TCP/UDP

IP/BGP

Ethernet

Phys. Layer

GNUnet

Applications

GNU Name System

CADET (Axolotl+SCTP)

R5N DHT

CORE (OTR)

HTTPS/TCP/WLAN/...

Let’s Implement It!

Internet

Google

DNS/X.509

TCP/UDP

IP/BGP

Ethernet

Phys. Layer

GNUnet

Applications

GNU Name System

CADET (Axolotl+SCTP)

R5N DHT

CORE (OTR)

HTTPS/TCP/WLAN/...

Let’s Implement It!

Internet

Google

DNS/X.509

TCP/UDP

IP/BGP

Ethernet

Phys. Layer

GNUnet

Applications

GNU Name System

CADET (Axolotl+SCTP)

R5N DHT

CORE (OTR)

HTTPS/TCP/WLAN/...

Let’s Implement It!

Internet

Google

DNS/X.509

TCP/UDP

IP/BGP

Ethernet

Phys. Layer

GNUnet

Applications

GNU Name System

CADET (Axolotl+SCTP)

R5N DHT

CORE (OTR)

HTTPS/TCP/WLAN/...

Let’s Implement It!

Internet

Google

DNS/X.509

TCP/UDP

IP/BGP

Ethernet

Phys. Layer

GNUnet

Applications

GNU Name System

CADET (Axolotl+SCTP)

R5N DHT

CORE (OTR)

HTTPS/TCP/WLAN/...

Let’s Implement It!

Internet

Google

DNS/X.509

TCP/UDP

IP/BGP

Ethernet

Phys. Layer

GNUnet

Applications

GNU Name System

CADET (Axolotl+SCTP)

R5N DHT

CORE (OTR)

HTTPS/TCP/WLAN/...

Let’s Implement It!

Internet

Google

DNS/X.509

TCP/UDP

IP/BGP

Ethernet

Phys. Layer

GNUnet

Applications

GNU Name System

CADET (Axolotl+SCTP)

R5N DHT

CORE (OTR)

HTTPS/TCP/WLAN/...

Let’s Implement It!

Internet

Google

DNS/X.509

TCP/UDP

IP/BGP

Ethernet

Phys. Layer

GNUnet

Applications

GNU Name System

CADET (Axolotl+SCTP)

R5N DHT

CORE (OTR)

HTTPS/TCP/WLAN/...

A real peer: Dependencies

fs

dht

core

datastore mesh

ats

blocknse datacache

peerinfo

hello

transport

exit

tun

vpn

regex

pt

dns

dv

set

gns

namestore

nat fragmentation

topology hostlist

consensus

A GNUnet Service is a Process

▶ If all subsystems are used, GNUnet would currently use ≈ 40 processes (services
and daemons)

▶ user interfaces increase this number further

▶ systemd-like gnunet-service-arm starts them

▶ services are manipulated using the respective command-line tool

⇒ gnunet-arm -s starts GNUnet

Applications (being) built using GNUnet

▶ Anonymous and non-anonymous file-sharing

▶ IPv6–IPv4 protocol translator and tunnel

▶ GNU Name System: censorship-resistant replacement for DNS

▶ Conversation: secure, decentralised VoIP

▶ SecuShare, a social networking application

▶ GNU Taler: privacy-preserving payments

▶ ...

A Pattern of Hope

Spy Program Target Defense Started

FTM/TRACFIN SWIFT/VISA/etc. DigiCash/GNU Taler 1990

TREASUREMAP Internet (all) Freenet/GNUnet/Tor 2000

HACIENDA vuln. TCP service Port Knocking 2000

BULLRUN/DUAL EC DRBG PRNG (backdoor) n/a 2004

BULLRUN/LONGHAUL TLS/IPSEC (keys) OTR/AXOLOTL 2004

MJOLNIR Long-path in Tor Tor 0.2.3.11 2007

PRISM US big data corps SecuShare 2009

MORECOWBELL DNS GNU Name System 2012

.

Exercise

apt-get install git autoconf automake autopoint gettext
apt-get install libunistring-dev libgnutls28-dev
apt-get install openssl gnutls-bin libtool libltdl-dev
apt-get install libcurl-gnutls-dev libidn11-dev
apt-get install libsqlite3-dev libjansson-dev libpq-dev
$ git clone git://git.gnunet.org/libmicrohttpd
$ git clone git://git.gnunet.org/gnunet
$ git clone git://git.gnunet.org/gnunet-gtk
$ for n in libmicrohttpd gnunet gnunet-gtk do;

cd $n ; ./bootstrap ; ./configure --prefix=$HOME ...
make install
cd ..

done

Exercise

$ gnunet-arm -s # launch peer
$ gnunet-namestore-gtk # configure your GNS zone
$ gnunet-gns # command-line resolution
$ gnunet-gns-proxy # launch SOCKS proxy
$ firefox # configure browser to use proxy

References I

D. Atkins, W. Stallings, and P. Zimmermann.
PGP Message Exchange Formats.
RFC 1991 (Informational), August 1996.
Obsoleted by RFC 4880.

Dan Boneh, Ben Lynn, and Hovav Shacham.
Short signatures from the weil pairing.
In Advances in Cryptology – ASIACRYPT ’01, LNCS, pages 514–532. Springer,
2001.

J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer.
OpenPGP Message Format.
RFC 4880 (Proposed Standard), November 2007.
Updated by RFC 5581.

References II

J. Callas, L. Donnerhacke, H. Finney, and R. Thayer.
OpenPGP Message Format.
RFC 2440 (Proposed Standard), November 1998.
Obsoleted by RFC 4880.

M. Elkins, D. Del Torto, R. Levien, and T. Roessler.
MIME Security with OpenPGP.
RFC 3156 (Proposed Standard), August 2001.

M. Schanzenbach, C. Grothoff, and B. Fix.
The gnu name system.
RFC 9498, RFC Editor, November 2023.

Elias Summermatter and Christian Grothoff.
Byzantine fault tolerant set reconciliation.
https://datatracker.ietf.org/doc/html/
draft-summermatter-set-union, 1 2021.

https://datatracker.ietf.org/doc/html/draft-summermatter-set-union
https://datatracker.ietf.org/doc/html/draft-summermatter-set-union

References III

Matthias Wachs, Martin Schanzenbach, and Christian Grothoff.
A censorship-resistant, privacy-enhancing and fully decentralized name system.
In 13th International Conference on Cryptology and Network Security (CANS
2014), pages 127–142, 2014.

	Introduction to GnuPG
	Advanced Cryptographic Primitives
	Distributed Hash Tables
	CAN
	Chord
	Kademlia

	The GNU Name System
	Key Revocation
	Comparisson of Name Systems
	Introduction to GNUnet

