
BTI 4202: Secure messaging and channels

Christian Grothoff

Berner Fachhochschule

17.5.2024



Learning Objectives

TLS

Example Vulnerability: The Insecurity of WEP

MIME

S/MIME

Asynchronous bidirectional secure channels

References



Part I: TLS



TLS is everywhere



TLS versions

1994 SSL v2
1995 SSL v3
1999 TLS v1.0
2006 TLS v1.1
2008 TLS v1.2
2018 TLS v1.3



TLS overview

Session key



TLS Protocol Stack

HTTP FTP SMTP

TLS

TCP

IP

Record Protocol

Handshake
protocol

Cipher Change
protocol

Alert
protocol

Maximum record payload is 16kB.



Why Records?

Why not encrypt data in constant stream as we write to TCP?

▶ Where would we put the MAC?

▶ If at the end, we get no integrity until all data is processed!

▶ Most applications process/display data incrementally!

Records allow us to:

▶ Break stream into series of records

▶ Each record carries a MAC

▶ Receiver can act on record as it arrives!



Why Records?

Why not encrypt data in constant stream as we write to TCP?

▶ Where would we put the MAC?

▶ If at the end, we get no integrity until all data is processed!

▶ Most applications process/display data incrementally!

Records allow us to:

▶ Break stream into series of records

▶ Each record carries a MAC

▶ Receiver can act on record as it arrives!



Attacks on records

Attacker could re-order or replay records!

▶ Put sequence number into MAC.

Attacker could truncate TCP stream!

▶ Use record types.

▶ Have special record type to indicate end of stream.



Attacks on records

Attacker could re-order or replay records!

▶ Put sequence number into MAC.

Attacker could truncate TCP stream!

▶ Use record types.

▶ Have special record type to indicate end of stream.



Attacks on records

Attacker could re-order or replay records!

▶ Put sequence number into MAC.

Attacker could truncate TCP stream!

▶ Use record types.

▶ Have special record type to indicate end of stream.



Protocol and Software

▶ TLS protocol is way too complex

▶ Many implementations in use

▶ Vulnerabilities in protocol design and implementations



Attacks on TLS and implementations

2011 BEAST
2012 CRIME
2013 BREACH, Lucky Thirteen
2014 Heartbleed, BERserk, POODLE
2015 FREAK, Logjam, MACE, RSA-CRT, Mar Mitzvah
2016 SLOTH, DROWN
2017 ROBOT
2018 CVE-2018-0488, CVE-2018-1000151



No news for cryptographers

Rivest: DSA weakness (1992) Playstation 3 broken (2010),
Mining Ps and Qs (2012)

Dobbertin: MD5 weak (1996),
Wang: MD5 collission, SHA1 weak
(2004/2005)

MD5 CA attack (2008), Flame
(2012), SLOTH (2016)

Lenstra: RSA-CRT weakness (1996) RSA-CRT attack (2015)

Bleichenbacher: Million Message at-
tack (1998)

DROWN (2016)

Biehl: Fault attacks on ECC (2000) Invalid curve attacks (2015)

Fluhrer/McGrew: RC4 biases (2000) RC4 TLS attacks (2013-2016),
Bar Mitzvah (2016)

Vaudenay: Padding Oracle (2002) Lucky Thirteen (2013)

Bard: Implicit IV vuln (2004) BEAST (2011)

Bleichenbacher: Signature forgery
(2004)

BERserk (2014), ROBOT
(2017)



Security is hard

”In order to defend against this attack, implementations MUST
ensure that record processing time is essentially the same whether
or not the padding is correct. [...] This leaves a small timing
channel, since MAC performance depends to some extent on the
size of the data fragment, but it is not believed to be large

enough to be exploitable, due to the large block size of existing
MACs and the small size of the timing signal.” (TLS 1.2, RFC

5246, 2008)



Modes

▶ Many SSL/TLS modes built “authenticted encryption” by
combining authentication and encryption

▶ Many attacks would have been avoided by using primitive that
implements both in one, such as AES-GCM or
ChaCha20-Poly1305

▶ Anything using ECB, CBC, CFB, OFB, CTR is likely broken

▶ GCM needs a nonce ⇒ another major failure mode



Primitives

SSL started with many primitives we now know consider insecure:

▶ RC4

▶ SHA1

▶ MD5

▶ 1024 bit DH with fixed parameters

▶ “export” ciphers



Deprecation

Evolution is slow as deprecation blocks connections:

▶ What percentage of clients is it OK to block?

▶ What percentage of servers is it OK to block?

▶ Many middleboxes require insecure versions!

▶ If old versions are supported, downgrade attacks are possible!



Origins of Complexity

1. We have a version negotiation mechanism

2. Servers have broken TLS implementations on version
negotiation

3. Browsers implement workaround (“protocol dance”)

4. Workaround introduces security issue (downgrade)

5. Workaround for security issue introduced by workaround gets
standardized.



TLS Usability

To use TLS securely, you need at least:

▶ Secure implementation

▶ Secure protocol configuration (cipher suite)

▶ X.509 certificate(s)

▶ Tell client you support TLS: Strict-Transport-Security
header

▶ Secure certificate chains against bad CA:
▶ HTTP Public Key Pinning (HPKP)
▶ Certificate Patrol
▶ Certificate Transparency (CT)



Security by Default?

You wish:

SSLProtocol -SSLv2 -SSLv3 -TLSv1 TLSv1.1 +TLSv1.2

SSLHonorCipherOrder on

SSLCompression off

SSLCipherSuite ECDHE-ECDSA-AES256-GCM-SHA384:\

ECDHE-RSA-AES256-GCM-SHA384:ECDH-RSA-AES256-\

GCM-SHA384:ECDH-ECDSA-AES256-GCM-SHA384:ECDH\

-RSA-RC4-SHA:RC4-SHA:TLSv1:!AES128:!3DES:!CA\

MELLIA:!SSLv2:HIGH:MEDIUM:!MD5:!LOW:!EXP:!NUL\

L:!aNULL

It is 2022 and our TLS configurations still look like this!



Security by Default?

You wish:

SSLProtocol -SSLv2 -SSLv3 -TLSv1 TLSv1.1 +TLSv1.2

SSLHonorCipherOrder on

SSLCompression off

SSLCipherSuite ECDHE-ECDSA-AES256-GCM-SHA384:\

ECDHE-RSA-AES256-GCM-SHA384:ECDH-RSA-AES256-\

GCM-SHA384:ECDH-ECDSA-AES256-GCM-SHA384:ECDH\

-RSA-RC4-SHA:RC4-SHA:TLSv1:!AES128:!3DES:!CA\

MELLIA:!SSLv2:HIGH:MEDIUM:!MD5:!LOW:!EXP:!NUL\

L:!aNULL

It is 2022 and our TLS configurations still look like this!



The Future

TLS 1.3



TLS 1.3

▶ Attempt to break away from attack-patch-attack-patch design
cycle

▶ Research community more involved

⇒ Formal security proofs (value?)

▶ Protocol differs significantly from previous versions

▶ Still lots of extensions, lots of modes

▶ Client still begins negotiation with ClientHello



TLS 1.3: Full Handshake



TLS 1.3: Abbreviated Handshake



TLS 1.3: 0.5 RTT Handshake



TLS 1.3

▶ Also deprecates many insecure ciphers

▶ Again has downgrade attack problem

▶ Still uses X.509 certificates

To check the maturity of your configuration, seek inspiration from

https://observatory.mozilla.org/

https://observatory.mozilla.org/


Example: bfh.ch



Example: grothoff.org



Part II: Insecurity of WEP



Homework: WEP Insecurity

Read the article “Intercepting Mobile Communications: The Insecu-
rity of 802.11” until section 4.2. For each of the attacks, decryption
(section 3), message modification (section 4.1) and message injec-
tion (section 4.2) explain:

▶ How does the attack work?

▶ Why does it work (i.e., what are the flaws that make the
attack possible)?



Part III: Background: MIME



Message Handling System (X.400)

UA

MS

UA

MHS

1 MTA

MTA

MTA
2

MTA

MTS

MTA

A

MTA

MS

MTA

UA

UA

MTA

3

UA

MS

5

B

4

MTA

MTA



Message Structure

Envelope

Content
Body

Header

Body Part



Simple Mail Transfer Protocol (SMTP) [6]

▶ client-server over reliable transport

▶ content is the object to be delivered to the recipient

▶ envelope is the information needed to transmit/deliver

Evolution: [6] → [5] → [4, 10]



SMTP Message Format [1]

[1] defines the format and some semantics of SMTP messages.

▶ Everything is 7-bit US-ASCII

▶ 1000 characters per line at most.

▶ Header lines (from:, to:, cc:), blank line, body.

Example:

Date: Tue, 16 Jan 2007 10:37:17 (EST)

From: "Alice" <alice@bfh.ch>

To: bob@bfh.ch

Subject: Test

Dear Bob, ...

Evolution: [1] → [7] → [8]



The Received Header

The message delivery path can be traced back due to the Received:
header information.

Received: from smtpd-extern.it-sec.com

by mail.bfh.ch

with ESMTP

id AAA6373

for <someone@bfh.ch>;

Wed, 23 Feb 2022 14:51:18 +0100

Received: from smtp-proxy.it-sec.com

by smtpd-extern.it-sec.com

with SMTP

id OAA22551

for <someone@bfh.ch>;

Wed, 23 Feb 2022 14:51:02 +0100 (MET)

Received: from smtpd-intern.it-sec.com

by smtp-proxy.it-sec.com

with SMTP

Wed, 23 Feb 2022 14:50:54 +0100

Received: by smtpd-intern.it-sec.com

with SMTP

id <FHD9K7RK>;

Wed, 23 Feb 2022 14:50:34 +0100



Problems with RFC 822

▶ binary files must be converted into ASCII (various schemes
emerged (e.g. UUencode))

▶ text data may include non-7-bit ASCII characters (e.g.
German text)

▶ MTAs may do strange things:
▶ reject messages over a certain size
▶ delete, add, or reorder CR and LF characters
▶ truncate or wrap lines longer than 76 characters
▶ remove trailing white space (tabs and spaces)
▶ pad lines in a message to the same length
▶ convert tab characters into multiple spaces



Content-Transfer-Encoding

The problem of encoding is solved by several encoding schemes
which encode arbitrary bytes (0–255) into 7-Bit-ASCII:

▶ “Q”-Encoding (Quoted-Printable)

▶ “B”-Encoding (Base64)

▶ ... and others

To know which one, the encoding is specified in a MIME Header:

Content-Type: image/gif

Content-Transfer-Encoding: base64



Quoted-Printable

Each 8-Bit value is replaced with 3 ASCII characters [2]:

▶ 1. character: “=”

▶ 2. character: 1st 4 Bits will be replaced with 0..F

▶ 3. character: 2nd 4 Bits will be replaced with 0..F

Examples:

\ö" (ASCII 246, hex F6) is replaced with =F6

\€\ (ASCII 128, hex 80) is replaced with =80

If applied to e-mail messages, only the bytes which are in the range of
ASCII 128–256 are replaced: “Jörg Järman wohnt in Bümpliz” will
lead to “J=F6rg J=E4rman wohnt in B=FCmpliz”. This encoding
is suitable if the values between ASCII 128–256 appear rarely.



Multipurpose Internet Mail Extensions (MIME)

MIME defines message header fields, a number of content formats
(standardized representation of multi-media contents) and transfer
encodings that protect the content from alteration by the mail trans-
fer system.



MIME Header Fields

▶ Mandatory fields
▶ MIME-Version
▶ Content-Type
▶ Content-Transfer-Encoding

▶ Optional fields
▶ Content-ID
▶ Content-Description



MIME Content Types

▶ Tells recipient UA about appropriate way to deal with content,
e.g., how to present to the user

▶ Syntax:

Content-Type: <type>/<subtype> <; parameters>

▶ Initial set of seven top-level media types:1

▶ five discrete types: text, image, audio, video, application
▶ two composite types: message, multipart

▶ Extensible – new media types may be registered with the
IANA by procedure in [3]

S/MIME uses “application” and “multipart” types.



Example: Singlepart MIME Message

From: Alice@bfh.ch

To: Bob@bfh.ch

Subject: Test message 1

Mime-Version: 1.0

Content-Type: text/plain;

charset="us ascii"

Content-Transfer-Encoding: 7bit

This is a MIME test message that

is sent from Alice to Bob



Example: Multipart MIME Message

From: ...

Mime-Version: 1.0

Content-Type: multipart/mixed;

boundary=boundary_1

"This is a multi-part message in MIME format.

Content-Type: text/plain;

charset="ISO-8859-1"

Content-Transfer-Encoding: 7bit

Dear customer, here is our new software release V 1.2

--boundary_1

Content-Type: application/octet-stream;

name="Software.zip"

Content-Transfer-Encoding: base64

Content-Disposition: attachment;

filename="Software.zip"

UEsDBBQAAAAIAMZLZDNsFrjHRAoAAHMWAAAKAAAAbWVpZXM1LnBkZu1Y...



Part IV: S/MIME



S/MIME

▶ RSA Security Inc. developed S/MIME as a specification for
digitally signed and/or encrypted and enveloped data in
accordance to MIME message formats based on a Public Key
Cryptography Standard (PKCS)

▶ The protocol specification was named Secure Multipurpose
Internet Mail Extensions (S/MIME)

▶ Most MUAs support S/MIME natively



The PKCS#7 Standard

▶ PKCS#7 defines cryptographic enhancements to data for
signatures and encryption purpose.

▶ PKCS#7 has no type to do both sign and encrypt.

▶ Instead nesting is used to do both: Usually: first sign, then
encrypt the result

▶ The IETF Cryptographic Message Syntax (CMS) is superset
of PKCS#7.



PKCS#7 and S/MIME

▶ S/MIME is the standard to include PKCS#7 objects as MIME
“attachments”.

▶ Content-types:
▶ Multipart/Signed
▶ Application/PKCS7-Signature
▶ Application/PKCS7-MIME

▶ The content-transfer-encoding is base64



S/MIME History

▶ 1995: S/MIME version 1 has been specified and officially
published by RSA Security, Inc.

▶ 1998: S/MIME version 2 has been updated in RFC 2311 and
RFC 2312.

▶ 1999: The work was continued in the IETF S/MIME Mail
Security (S/MIME) WG and resulted in S/MIME Version 3
specified in RFCs 2633.

▶ 2004: S/MIME Version is 3.1 (updated in RFC 3851).

▶ 2010: S/MIME Version is 3.2 (updated in RFC 5751).

▶ 2019: S/MIME Version is 4.0 (updated in RFC 8551).



S/MIME Processing

MIME

entity

PKCS

object

S/MIME

entity
S/MIME
processing

Base64
encoding

▶ Initial S/MIME processing produces a PKCS (Public Key
Cryptography Standard) object.

▶ PKCS object includes information needed for processing by
recipient as well as the content.

▶ But PKCS objects are in binary format, hence needs further
base64 encoding to produce final result MIME object of
S/MIME content-type.

▶ Recipient performs steps in reverse.



S/MIME Enveloped Data

RecipientInfo

E

E

S/MIME body:

Base64 encoded
PKCS object

S/MIME header
Recipient’s 
Public Key

Session 
Key K

MIME 
Entity

Base64 
encoding

EnvelopedData PKCS 
Object

EncryptedKey

Encrypted
ContentInfo

EncryptedContent



S/MIME Signed Data

Sign

Sender’s 
Private 

Key

SignedData
PKCS object

Hash

MIME 
Entity

MIME Entity

Signature and Hash

Signature and Hash 
algorithm

SignerInfo and 
Signer’s Cert

S/MIME body:

Base64 encoded
PKCS object

S/MIME header

Base64 
encoding



S/MIME Multipart/Signed Data

Sign

Sender’s 
Private Key

Signature
PKCS object

Hash

MIME 
Entity

MIME Entity

Signature and Hash

Signature and Hash 
algorithm

SignerInfo and 
Signer’s Cert

S/MIME header

Base64 
encoding

MIME Object

S/MIME body:

Base64 encoded
PKCS object



Cryptographic Message Syntax Content Types

▶ Enveloped data (application/pkcs7-mime;
smime-type=enveloped-data)

▶ AuthEnveloped data (application/pkcs7-mime; smime-type =
authEnveloped-data) [9]

▶ Signed data (application/pkcs7-mime; smime-type =
signed-data)
▶ Content + signature in one object, encoded using base64
▶ Content + signature in two objects → Clear-Signed Data

(multipart/signed)

Signed and enveloped data can be nested in any order!



Efail(.de)

▶ Exploits vulnerabilities in the OpenPGP and S/MIME
standards to reveal the plaintext of encrypted emails.

▶ Abuses active content of HTML emails, for example externally
loaded images or styles, to exfiltrate plaintext through
requested URLs.

▶ Attacker first needs access to the encrypted emails, modifies it
and sends this modified encrypted email to the victim.

▶ The victim’s email client decrypts the email and loads external
content, thus exfiltrating the plaintext to the attacker.



Efail Direct exfiltration



Part V: Asynchronous Bidirectional Secure Channels



Reminder: Forward secrecy

What happens if your private key is compromised
to your past communication data?



Asynchronous forward secrecy: SCIMP

Idea of Silence Circle’s SCIMP:

Replace key with its own hash.

▶ New key in zero round trips!

▶ Forward secrecy!



Future secrecy

Suppose your regain control over your system.
What happens with your future communication data?



Axolotl / Signal Protocol



References I

D. Crocker.
STANDARD FOR THE FORMAT OF ARPA INTERNET
TEXT MESSAGES.
RFC 822 (Internet Standard), August 1982.
Obsoleted by RFC 2822, updated by RFCs 1123, 2156, 1327,
1138, 1148.

N. Freed and N. Borenstein.
Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies.
RFC 2045 (Draft Standard), November 1996.
Updated by RFCs 2184, 2231, 5335, 6532.

N. Freed, J. Klensin, and J. Postel.
Multipurpose Internet Mail Extensions (MIME) Part Four:
Registration Procedures.
RFC 2048 (Best Current Practice), November 1996.
Obsoleted by RFCs 4288, 4289, updated by RFC 3023.



References II

J. Klensin.
Simple Mail Transfer Protocol.
RFC 5321 (Draft Standard), October 2008.
Updated by RFC 7504.

J. Klensin (Ed.).
Simple Mail Transfer Protocol.
RFC 2821 (Proposed Standard), April 2001.
Obsoleted by RFC 5321, updated by RFC 5336.

J. Postel.
Simple Mail Transfer Protocol.
RFC 821 (Internet Standard), August 1982.
Obsoleted by RFC 2821.



References III

P. Resnick (Ed.).
Internet Message Format.
RFC 2822 (Proposed Standard), April 2001.
Obsoleted by RFC 5322, updated by RFCs 5335, 5336.

P. Resnick (Ed.).
Internet Message Format.
RFC 5322 (Draft Standard), October 2008.
Updated by RFC 6854.

J. Schaad, B. Ramsdell, and S. Turner.
Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 4.0 Message Specification.
RFC 8551 (Proposed Standard), April 2019.



References IV

J. Yao (Ed.) and W. Mao (Ed.).
SMTP Extension for Internationalized Email Addresses.
RFC 5336 (Experimental), September 2008.
Obsoleted by RFC 6531.



Further reading I

▶ How broken is TLS?
http://media.ccc.de/browse/conferences/eh2014/

EH2014_-_5744_-_de_-_shack-seminarraum_-_

201404201530_-_wie_kaputt_ist_tls_-_hanno.html

▶ POODLE bites again https://www.imperialviolet.org/

2014/12/08/poodleagain.html

▶ TLS 1.2 / RFC 5246
https://www.ietf.org/rfc/rfc5246.txt

▶ Encrypt-then-MAC / RFC 7366
https://tools.ietf.org/html/rfc7366

▶ RC4 attacks 2013 http://www.isg.rhul.ac.uk/tls/

▶ RC4 attacks 2015 IMAP / HTTP Basic Auth
http://www.isg.rhul.ac.uk/tls/RC4mustdie.html

▶ RC4 Bar Mitzvah attack http:

//www.crypto.com/papers/others/rc4_ksaproc.pdf

http://media.ccc.de/browse/conferences/eh2014/EH2014_-_5744_-_de_-_shack-seminarraum_-_201404201530_-_wie_kaputt_ist_tls_-_hanno.html
http://media.ccc.de/browse/conferences/eh2014/EH2014_-_5744_-_de_-_shack-seminarraum_-_201404201530_-_wie_kaputt_ist_tls_-_hanno.html
http://media.ccc.de/browse/conferences/eh2014/EH2014_-_5744_-_de_-_shack-seminarraum_-_201404201530_-_wie_kaputt_ist_tls_-_hanno.html
https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://www.ietf.org/rfc/rfc5246.txt
https://tools.ietf.org/html/rfc7366
http://www.isg.rhul.ac.uk/tls/
http://www.isg.rhul.ac.uk/tls/RC4mustdie.html
http://www.crypto.com/papers/others/rc4_ksaproc.pdf
http://www.crypto.com/papers/others/rc4_ksaproc.pdf


Further reading II

▶ POODLE
https://www.openssl.org/~bodo/ssl-poodle.pdf

▶ Dancing protocols, POODLEs and other tales from TLS
https:

//blog.hboeck.de/archives/858-Dancing-protocols,

-POODLEs-and-other-tales-from-TLS.html

▶ BERserk http://www.intelsecurity.com/

advanced-threat-research/berserk.html

▶ BERserk PoC https://github.com/FiloSottile/BERserk

▶ Bleichenbacher Signature Forgery 2006
https://www.ietf.org/mail-
archive/web/openpgp/current/msg00999.html

▶ miTLS - formally verified http://www.mitls.org/

▶ ocaml-tls https://github.com/mirleft/ocaml-tls

https://www.openssl.org/~bodo/ssl-poodle.pdf
https://blog.hboeck.de/archives/858-Dancing-protocols,-POODLEs-and-other-tales-from-TLS.html
https://blog.hboeck.de/archives/858-Dancing-protocols,-POODLEs-and-other-tales-from-TLS.html
https://blog.hboeck.de/archives/858-Dancing-protocols,-POODLEs-and-other-tales-from-TLS.html
http://www.intelsecurity.com/advanced-threat-research/berserk.html
http://www.intelsecurity.com/advanced-threat-research/berserk.html
https://github.com/FiloSottile/BERserk
http://www.mitls.org/
https://github.com/mirleft/ocaml-tls


Further reading III

▶ Quote on gmail TLS performance
https://www.imperialviolet.org/2010/06/25/

overclocking-ssl.html

▶ Ring Learning With Errors / post-quantum key exchange
http:

//www.douglas.stebila.ca/research/papers/bcns15

▶ SPHINCS / post quantum signatures
http://sphincs.cr.yp.to/

▶ Qualys SSL Labs Test
https://www.ssllabs.com/ssltest/

https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
http://www.douglas.stebila.ca/research/papers/bcns15
http://www.douglas.stebila.ca/research/papers/bcns15
http://sphincs.cr.yp.to/
https://www.ssllabs.com/ssltest/

	TLS
	Example Vulnerability: The Insecurity of WEP
	MIME
	S/MIME
	Asynchronous bidirectional secure channels
	References

