
NEXT
GENERATION
INTERNET
Availability

Christian Grothoff

Berner Fachhochschule

4.4.2025



Learning objectives

How to architect systems for high-availability?

What are specific considerations for the network setup?

What are specific considerations for HTTP servers?

What are specific considerations for the application logic?

What are specific considerations for databases?

What are specific considerations for monitoring?

How to know your limits?

Christian Grothoff NEXT , GENERATION , INTERNET 2



How to architect systems for high-availability?

Christian Grothoff NEXT , GENERATION , INTERNET 3



High-availability principles

Use:
▶ redundancy at all levels:

▶ RAID (5, 1+1, 1+1+1), ECC RAM, redundant power supplies, ...
▶ redundant servers
▶ multiple power sources (grid, generator, battery, UPS)
▶ multiple data centers

▶ a layered architecture

Christian Grothoff NEXT , GENERATION , INTERNET 4



Horizontal distribution

Christian Grothoff NEXT , GENERATION , INTERNET 5



High-availability principles

▶ Know your (performance) targets and limits
▶ Know (monitor) your load (and availability)
▶ Know your interactions and dependencies

Christian Grothoff NEXT , GENERATION , INTERNET 6



Taler example
Merchant architecture

taler-merchant-httpd

E-commerce Frontend Backoffice

Postgres

REST API REST API

SQL

Christian Grothoff NEXT , GENERATION , INTERNET 7



Taler example
Bank architecture

Exchange

Nexus

Core Banking

Nginx

Postgres

Postgres

REST API

SQL

SQL

Internal REST API

EBICS/FinTS

Christian Grothoff NEXT , GENERATION , INTERNET 8



Taler example

Auditor architecture

Postgres (Auditor)

auditor-httpd auditor-SPA

auditor-helper(s)

Postgres (Exchange) Postgres (Replica)
sync

SQL

SQL

SQL

REST

Christian Grothoff NEXT , GENERATION , INTERNET 9



What are specific considerations for the network setup?

Christian Grothoff NEXT , GENERATION , INTERNET 10



Network setup for availability

▶ IPv4 + IPv6 dual stack: some users today are only on IPv4, others
only on IPv6

▶ Good data centers have multiple, redundant up-links via different
providers

▶ Data centers should have backups for everything: cooling, battery
power, fuel for on-site generators, etc.

▶ Even better are multiple data centers; data centers do burn...
▶ High-availability hosters monitor for disasters and migrate

operations out of dangerous areas

Christian Grothoff NEXT , GENERATION , INTERNET 11



DNS is critical
Microsoft learned the hard way, twice

Christian Grothoff NEXT , GENERATION , INTERNET 12



Firewalls?

▶ Firewalls add complexity, misconfiguration, hardware- and
software-failures can all harm availability

▶ Deep packet inspection firewalls parse all types of untrusted input,
and they must do so quickly and often with high priviledges; this is
one of the most problematic types of software one could ever use

▶ An attacker who successfully takes over your firewall does not merely
defeat this layer of security, but is now in a great position to monitor
your network.

⇒ Firewalls are dangerous.

Christian Grothoff NEXT , GENERATION , INTERNET 13



Good network access control

▶ First, only use IP if needed. UNIX domain sockets are faster and more
secure for inter-process communication on the same host! You can
also run HTTP over a UNIX domain socket.

▶ Second, if software does not support UNIX domain sockets, at least
binding to loopback (::1) should be widely supported. Use netstat
-npl to check which addresses local services are bound to.

▶ If network access is required but only from a particular host, maybe
a simple host-based firewall can be useful as an additional security
layer.

▶ Alternatively, use TLS and/or a Wireguard VPN to build a secure
tunnel. TLS client-certificates could be used to authenticate the
client.

Christian Grothoff NEXT , GENERATION , INTERNET 14



DNS and DNSSEC

▶ DNS with high TTL values improves caching and performance, but
may increase down-time for unplanned migrations to new IP
addresses

▶ Including multiple A/AAAA records and randomizing their order in
DNS responses can be used for load-balancing among front-end
servers

▶ DNSSEC is the only viable defense against DNS cache poisoining
attacks. Use it to ensure your users are not sent elsewhere by DNS!

Christian Grothoff NEXT , GENERATION , INTERNET 15



X.509 considerations

▶ Extended validation is largely useless, as users are very unlikely to
take note.

▶ Use HTTP Strict Transport Security (HSTS) to force clients to always
use HTTPS.

▶ Use tools like certspotter to detect TLS certificates issued for your
domain.

Christian Grothoff NEXT , GENERATION , INTERNET 16



Don’t be one of these guys...

Christian Grothoff NEXT , GENERATION , INTERNET 17



What are specific considerations for HTTP servers?

Christian Grothoff NEXT , GENERATION , INTERNET 18



HTTP service considerations

▶ Cache-control is your friend, both for performance and to make
CDNs effective against DDoS.

▶ Ensure your applications enable caching with long durations and
good ETags whenever possible.

▶ Defending against a DDoS requires enough bandwidth and
computational power to handle requests. You can get bandwidth
from a CDN for resources that can be cached. Make sure you have
enough computational resources to handle non-cachable requests!

▶ Scalable system architecture is key: ideally you can add resources
only for the duration of the DDoS.

▶ In addition or as an alternative to DNS-based load balancing, HTTP(S)
reverse proxies can also be used for load balancing.

Christian Grothoff NEXT , GENERATION , INTERNET 19



Benchmarking

▶ Simplistic benchmarks like ab or h2load mostly measure your HTTP
server, which is rarely the bottleneck.

▶ Good benchmarking requires generating realistic load across your
API. So use your actual client applications, or at least derive traffic
patterns from real-world load on your system.

▶ It is also useful to do a worst-case analysis, trying to find out what
the most expensive requests are, especially in case an attacker tries
to take you down based on those.

Christian Grothoff NEXT , GENERATION , INTERNET 20



What are specific considerations for the application logic?

Christian Grothoff NEXT , GENERATION , INTERNET 21



Scaling application logic

▶ Vertical scaling (using multiple CPU cores) is the obvious solution for
improving application scalability.

▶ Multi-threading significantly increases application complexity, and
also does not work for horizontal scaling. Thus, it should be used
rarely (such as for expensive cryptographic operations) if at all!

▶ Using multiple processes (one per core) is marginally more
expensive, but much simpler, works for vertical and horizontal
scaling, and generally more secure!

Christian Grothoff NEXT , GENERATION , INTERNET 22



Architect for least priviledge

▶ Software engineers often debate between micro-services and
monoliths. Both are wrong!

▶ Monoliths are bad because they tightly couple too many business
concerns.

▶ Micro-services are bad because they are too simple and thus require
complex orchestration.

⇒ Instead, architect for least priviledge: if a business concern requires
specific rights distinct from other business concerns, that is a good
reason to move it into a separate component!

Christian Grothoff NEXT , GENERATION , INTERNET 23



Taler example
Exchange architecture

httpd secmod-{rsa,cs}secmod-eddsa

Postgres aggregatorcloser

transfer wirewatchNexus

Christian Grothoff NEXT , GENERATION , INTERNET 24



Minor havoc should be mandatory...

▶ Havoc is a technique where faults are regularly injected into a system
to ensure programmers develop fault-tolerant software

▶ systemd can and should be used to limit service process lifetimes (to
say 1h). This prevents minor memory leaks and memory
fragmentation issues from becoming relevant in production.
Postgres also does not like long-lived client connections.

▶ Ensure to configure systemd to auto-restart services (also good after
crashes).

Christian Grothoff NEXT , GENERATION , INTERNET 25



Taler’s fork-close-systemd-listen trick

▶ Systemd can listen on a socket and pass the already open listen
socket to an application process. This has the advantage that the
listen socket remains open (and the kernel answers SYN packets)
even if the application process is briefly down.

▶ When a Taler service is asked (SIGTERM) to terminate, it closes its
listen socket(s), forks and the child continues to handle active clients
and exits once those requests are finished. The original process exits
immediately.

Christian Grothoff NEXT , GENERATION , INTERNET 26



What are specific considerations for databases?

Christian Grothoff NEXT , GENERATION , INTERNET 27



Database performance

▶ Database performance is largely determined by writing good
queries that make good use of indices.

▶ Indices can also be expensive. Learn about partial indices.
▶ When using a separate database host, and especially when sharding,

the latency to the database can matter. Here, using stored
procedures instead of multiple SQL statements can minimize
performance issues arising from latency.

Christian Grothoff NEXT , GENERATION , INTERNET 28



Database versioning

▶ Database schema will evolve over time as application requirements
change

▶ Database versioning should be used to track the current state of the
database schema.

▶ The database version should be stored within the database itself
and updated with the transaction that does the schema migration.

▶ https://www.depesz.com/2010/08/22/versioning/ has code for a good
simple approach.

Christian Grothoff NEXT , GENERATION , INTERNET 29

https://www.depesz.com/2010/08/22/versioning/


Least priviledge ...
... also applies to databases

▶ GRANT only the required rights to each DB client
▶ In particular, schema updates should probably only be done by the

DB owner

Christian Grothoff NEXT , GENERATION , INTERNET 30



Postgres as a pub-sub service

user

user

table

table

pg_notify

pg_notify

subscriber

subscriber

LISTEN
Subscriber has an
ongoing connection to
Postgres with LISTEN.

insert

trigger

NOTIFY.message

Christian Grothoff NEXT , GENERATION , INTERNET 31



Postgres as a pub-sub service
Implementation concerns

▶ In some programming languages, LISTEN must be done in a
separate database connection.

▶ NOTIFY and LISTEN are very high performance operations.
▶ NOTIFY is transactional, so notification is guaranteed.
▶ LISTEN and NOTIFY are great mechanisms for inter-process

communication between multiple processes that use the same
database!

Christian Grothoff NEXT , GENERATION , INTERNET 32



Database backups
Synchronous vs. asynchronous replication

Synchronous:
Client Master Slave

SET

SET

ACK
ACK

Asynchronous:
Client Master Slave

SET

SETACK

ACK

Christian Grothoff NEXT , GENERATION , INTERNET 33



What are specific considerations for monitoring?

Christian Grothoff NEXT , GENERATION , INTERNET 34



Network monitoring

Monitor at least:
▶ IP connectivity
▶ DNS resolution
▶ Service availability

and if possible from external infrastructure.

Automatically notify staff of incidents.

Christian Grothoff NEXT , GENERATION , INTERNET 35



Monitoring latency

Application latency is often best monitored at the HTTP reverse proxy:
▶ reverse proxies widely support logging request latency
▶ the most interesting information – which endpoint – is available
▶ network latency to the client is excluded, which is good as it is

usually outside of your control
▶ no need to send telemetry data from the client (less bandwidth,

more reliable, simpler architecture, better for privacy)

Christian Grothoff NEXT , GENERATION , INTERNET 36



Application-specific monitoring

▶ Design your applications to enable monitoring.
▶ Log ERRORS if interventions are urgent, WARNINGS if investigations

are in order.
▶ Have counters for key events.
▶ Export application-specific performance metrics.

Christian Grothoff NEXT , GENERATION , INTERNET 37



Monitor for slow queries

▶ Use “slow query” logging of your database to detect problematic
queries and then ANALYZE them.

▶ Query optimizers can be fickle: a query may perform well at first, but
then due to changes in database-internal metrics a query optimizer
may switch to a much worse execution plan.

Christian Grothoff NEXT , GENERATION , INTERNET 38



System-level monitoring

On each host, you want to monitor:
▶ System load (CPU load, memory utilization, disk utilization, disk IO

load, bandwidth)
▶ Running processes (total, application specific services, state)
▶ Core dumps / crashes
▶ Other metrics (depending on your application)

Christian Grothoff NEXT , GENERATION , INTERNET 39



Visualize
A picture is more than 1000 data points

▶ Plot your data. This is the only way to quickly spot problems.
▶ Create dashboards. You will need to not just plot individual data

points, but also spot correlations.
▶ Combine data sources: host, network, application monitoring;

logging, performance metrics
⇒ Use tools like Grafana or https://nagios.org or Zabbix

Christian Grothoff NEXT , GENERATION , INTERNET 40

https://nagios.org


Example dashboard



How to know your limits?

Christian Grothoff NEXT , GENERATION , INTERNET 42



Microbenchmarks

▶ Microbenchmarks give you a critical upper bound on system
performance.

▶ If your database takes 300ms per query and does at most 20
queries in parallel, what is your maximum transaction rate?

▶ If a transaction requires 50 kilobytes of bandwidth and you have 1
GB/s, what is your maximum transaction rate?

▶ https://bench.cr.yp.to/ provides extensive benchmarks for
cryptographic primitives. Study it to know how fast your
cryptographic routines will be!

Christian Grothoff NEXT , GENERATION , INTERNET 43

https://bench.cr.yp.to/


Burn your systems

Before going into production, burn your systems:
▶ memtest86+ (RAM)
▶ stress (CPU, RAM)
▶ stress-ng (CPU, RAM)
▶ lookbusy (CPU, RAM, disk)
▶ pgbench (CPU, RAM, disk)
▶ Blender-benchmark (GPU)

Christian Grothoff NEXT , GENERATION , INTERNET 44



Grid’5000 [1]

▶ Large-scale flexible testbed
▶ 800 nodes with total 15’000

cores
▶ Bare metal deployments
▶ Fully customizable software

stack

Christian Grothoff NEXT , GENERATION , INTERNET 45



Platform Access
jFed - Java-based GUI and CLI

Christian Grothoff NEXT , GENERATION , INTERNET 46



Running an experiment

Allocate Experiment (jFed)

3.

Copy Image to Grid'5000

2.

Build Image (Kameleon)

1.

Christian Grothoff NEXT , GENERATION , INTERNET 47



Experiment architecture

Zone: perf.taler.

Loki

Promtail

Monitoring Node DNS Node

Syslog

Prometheus
 Exporters

External Node

Christian Grothoff NEXT , GENERATION , INTERNET 48



Performance
Various payment systems

Bitcoin

4 TPS

PayPal

193 TPS

Visa

1’667 TPS

e-Krona [5] (Sweden)

100 TPS

e-CNY [4] (China)

10’000 TPS

Project Hamilton [2]
(MIT)

1’700’000 TPS

Know your requirements when benchmarking!

Christian Grothoff NEXT , GENERATION , INTERNET 49



Performance: Future Work

Open issues:
▶ Compile SQL stored procedures to C
▶ Create realistic Taler benchmarks
▶ Systematic performance evaluation of all endpoints
▶ Best-available cryptographic primitive evaluation
▶ CBOR-support in the backend
▶ Real-time auditor parallelization

Christian Grothoff NEXT , GENERATION , INTERNET 50



References I

Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric
Desprez, Emmanuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre,
David Margery, Nicolas Niclausse, Lucas Nussbaum, Olivier Richard,
Christian Pérez, Flavien Quesnel, Cyril Rohr, and Luc Sarzyniec.
Adding virtualization capabilities to the Grid’5000 testbed.
In Cloud Computing and Services Science, volume 367, pages 3–20.
Springer International Publishing, 2013.

Christian Grothoff NEXT , GENERATION , INTERNET 51



References II

Jim Cunha, Robert Bench, James Lovejoy, Cory Fields, Madars Virza,
Tyler Frederick, David Urness, Kevin Karwaski, Anders Brownworth,
Neha Narula.
Project hamilton phase 1 a high performance payment processing
system designed for central bank digital currencies.
Technical report, Federal Reserve Bank of Boston and Massachusetts
Institute of Technology Digital Currency Initiative, Feb 2022.
Available at https://www.bostonfed.org/-/media/Documents/
Project-Hamilton/Project-Hamilton-Phase-1-Whitepaper.pdf
[05.05.2022].

Christian Grothoff NEXT , GENERATION , INTERNET 52

https://www.bostonfed.org/-/media/Documents/Project-Hamilton/Project-Hamilton-Phase-1-Whitepaper.pdf
https://www.bostonfed.org/-/media/Documents/Project-Hamilton/Project-Hamilton-Phase-1-Whitepaper.pdf


References III

Ananya Kunar.
A report card on china’s central bank digital currency: the e-cny, Jan
2022.
Available at https://www.atlanticcouncil.org/blogs/econographics/
a-report-card-on-chinas-central-bank-digital-currency-the-e-cny/
[05.05.2022].

Christian Grothoff NEXT , GENERATION , INTERNET 53

https://www.atlanticcouncil.org/blogs/econographics/a-report-card-on-chinas-central-bank-digital-currency-the-e-cny/
https://www.atlanticcouncil.org/blogs/econographics/a-report-card-on-chinas-central-bank-digital-currency-the-e-cny/


References IV

People’s Bank of China.
Progress of research & development of e-cny in china.
Technical report, People’s Bank of China, Jul 2021.
Available at http://www.pbc.gov.cn/en/3688110/3688172/4157443/
4293696/2021071614584691871.pdf [05.05.2022].

Sveriges Riskbank.
e-krona pilot phase 2.
Technical report, Sveriges Riskbank, Apr 2022.
Available at https://www.riksbank.se/globalassets/media/rapporter/
e-krona/2022/e-krona-pilot-phase-2.pdf [05.05.2022].

Christian Grothoff NEXT , GENERATION , INTERNET 54

http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/2021071614584691871.pdf
http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/2021071614584691871.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2022/e-krona-pilot-phase-2.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2022/e-krona-pilot-phase-2.pdf


Acknowledgements

Co-funded by the European Union (Project 101135475). Co-funded by SERI (HEU-Projekt 101135475-TALER).

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union.

Neither the European Union nor the granting authority can be held responsible for them.

Christian Grothoff NEXT , GENERATION , INTERNET 55


	How to architect systems for high-availability?
	What are specific considerations for the network setup?
	What are specific considerations for HTTP servers?
	What are specific considerations for the application logic?
	What are specific considerations for databases?
	What are specific considerations for monitoring?
	How to know your limits?
	References

