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Learning objectives

What should we think about when building distributed systems?
What are typical attacks on decentralized systems?

Distributed Hash Tables
CAN
Chord
Kademlia

Routing in the Dark
Pitch Black

What are impossibly hard problems in distributed systems security?

Offline payments
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Part I: What should we think about when building distributed
systems?
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The 8 Fallacies of Distributed

Computing?

The network is reliable
Latency is zero

Bandwidth is infinite

The network is secure
Topology does not change
There is one administrator
Transport cost is zero

® N oW

The network is homogeneous

1 According to Peter Deutsch and James Gosling
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Self stabilization (Dijkstra 1974) [1]

> A system is self-stabilizing, if starting from any state, it is guaranteed
that the system will eventually reach a correct state (convergence).

> Given that the system is in a correct state, it is guaranteed to stay in a
correct state, provided that no fault happens (closure).

> Self-stabilization enables a distributed algorithm to recover from a
transient fault regardless of its nature.

Example: Spanning-tree Protocol from Networking!
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What are typical attacks on decentralized systems?
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Background:

> Ancient Greece: Sybils were prophetesses that prophesized under
the devine influence of a deity. Note: At the time of prophecy not the
person but a god was speaking through the lips of the sybil.

> 1973: Flora Rheta Schreiber published a book “Sybil” about a
woman with 16 separate personalities.
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The Sybil attack

The Sybil attack [3]:
> Insert a node multiple times into a network, each time with a
different identity
» Position a node for next step on attack:
> Attack connectivity of the network

> Attack replica set
» |n case of majority votes, be the majority!
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Defenses against Sybil Attacks

> Use authentication with trusted party that limits identity creation
> Use “external” identities (IP address, MAC, e-mail)

> Use “expensive” identities (solve computational puzzles, require
payment)
Douceur [3]: Without trusted authority to certify identities, no realistic
approach exists to completely stop the Sybil attack.
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Eclipse attack: Goal

> Separate a node or group of nodes from the rest of the network
> isolate peers (DoS, surveillance) or isolate data (censorship)

N
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Eclipse Attack: Techniques

» Use Sybil attack to increase number of malicious nodes
» Take over routing tables, peer discovery
= Details depend on overlay structure
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Eclipse Attack: Defenses

> Large number of connections

> Aggressive discovery (“continuous” bootstrap)
» Prefer long-lived connections / old peers

> Replication

>

Diverse neighbour selection (different IP subnets, geographic
locations)

> Audit neighbour behaviour (if possible)
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Poisoning Attacks

Nodes provide false information:
> wrong routing tables [4]
> wrong meta data
» wrong performance measurements
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Timing Attacks [13]

Nodes can:
> measure latency to determine origin of data
» delay messages
> send messages using particular timing patterns to aid correlation
» include wrong timestamps (or just have the wrong time set..))
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Part II: Distributed Hash Tables
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Distributed Hash Tables (DHTSs)

» Distributed index

» GET and PUT operations like a hash table

» JOIN and LEAVE operations (internal)

» Trade-off between JOIN/LEAVE and GET/PUT costs

» Typically use exact match on cryptographic hash for lookup
» Typically require overlay to establish particular connections
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DHTs: Key Properties

To know a DHT, you must know (at least) its:
» routing table structure
» lookup procedure
> join operation process
> |eave operation process
.. including expected costs (complexity) for each of these operations.
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A trivial DHTs: The Clique

> routing table: hash map of all peers
» |lookup: forward to closest peer in routing table

> join: ask initial contact for routing table, copy table, introduce us to
all other peers, migrate data we're closest to to us

> |eave: send local data to remaining closest peer, disconnect from all
peers to remove us from their routing tables

Complexity?
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A trivial DHTs: The Circle

> routing table: left and right neighbour in cyclic identifier space
» |lookup: forward to closest peer (left or right)

> join: lookup own peer identity to find join position, transfer data from
neighbour for keys we are closer to

> |eave: ask left and rigt neighbor connect directly, transfer data to
respective neighbour

Complexity?
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Additional Questions to ask

> Security against Eclipse attack?

> Survivability of DoS attack?

» Maintenance operation cost & required frequency?
» Latency? (# number of hops!)

» Data persistence?

m TALER
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Content Addressable Network: CAN

> routing table: neighbours
in d-dimensional torus
space

» lookup: forward to closest
peer

> join: lookup own peer os
identity to find join op Y
position, split quadrant oteno
(data areas) with existing
peer |
> |leave: assign quadrant
space to neighbour (s)
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Interesting CAN properties

» CAN can do range queries along < n dimensions
» CAN's peers have 2d connections (independent of network size)
» CAN routes in O(d{/n)
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» routing table: predecessor in circle
and at distance 2/, plus r successors

» lookup: forward to closest peer (peer 2
ID after key ID) po

> join: lookup own peer identity tofind ¢
join position, use neighbor to

L : e °
establish finger table, migrate data
from respective neighbour <
» leave: join predecessor with e Y @
°

successor, migrate data to respective
neighbour, periodic stabilization
protocol takes care of finger updates
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Interesting Chord properties

> Simple design

» log, N routing table size

» log, N lookup cost

> Asymmetric, inflexible routing tables

m TALER
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Kademlia

> routing table: 2160 buckets with k peers at XOR distance 2/

> lookup: iteratively forward to a peers from the “best” bucket, selected
by latency

> join: lookup own peer identity, populate table with peers from
iteration

> maintenance: when interacting with a peer, add to bucket if not full;
if bucket full, check if longest-not-seen peer is live first

> |eave: just drop out
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Interesting Kademlia properties

>
>
>
>
>
>

XOR is a symmetric metric: connections are used in both directions
a replication helps with malicious peers and churn

Iterative lookup gives initiator much control,

Lookup helps with routing table maintenance

Bucket size trade-off between routing speed and table size
Iterative lookup is a trade-off:

» good UDP (no connect cost, initiator in control)
» bad with TCP (very large number of connections)

m TALER
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Part lll: Routing in the Dark
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> Efficient fully decentralized routing in restricted-route topologies is
important:
» Friend-to-friend (F2F) networks (“darknets”)
» WiFi ad-hoc and sensor networks
» Unstructured networks

» Clarke & Sandberg claim to achieve O(log n) routing in the dark
(Freenet 0.7)

> |s this new routing protocol reasonably resistant against attacks?
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Freenet 101

Freenet is a 'anonymous’ peer-to-peer network

Overlay based on cyclic address space of size 232

Nodes have a constant set of connections (F2F)

All data identified by a key (modulo 232)

Data assumed to be stored at closest node

Routing uses depth-first traversal in order of proximity to key
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Routing in the Dark

» Small world network assumption

» Sparsely connected graph
» There exists a short path (O(log N)) between any pair of nodes
» Common real world phenomenon (Milgram, Watts & Strogatz)

> Freenet's routing algorithm attempts to find short paths

» Uses locations of nodes to determine proximity to target
» Uses swapping of locations to structure topology
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Swap Example
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Result of Swap
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Location Swapping

» Nodes swap locations to improve routing performance
» Each connected pair of nodes (a, b) computes:

Il [La—=Lol- TI [Lp—Lpl

(a,0)eE (b,p)eE
Pap = 1
= JLp—Lol- I ILa—Lpl ()
(a,0)eE (b,p)eE

» If Pqyp > 1 the nodes swap locations
» Otherwise they swap with probability Py p
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Routing of GET Requests

GET requests are routed based on peer locations and key:

1.
2.
3.

4.

Client initiates GET request
Request routed to neighbor with closest location to key

If data not found, request is forwarded to neighbors in order of
proximity to the key

Forwarding stops when data found, hops-to-live reaches zero or
identical request was recently forwarded (to avoid circular routing)

= Depth-first routing in order of proximity to key.
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PUT Requests

PUT requests are routed the same as GET requests:
1. Client initiates PUT requests
2. Request routed to neighbor closest to the key

3. If receiver has any peer whose location is closer to the key, request is
forwarded

4. If not, the node resets the hops-to-live to the maximum and sends
the put request to all of its’ neighbors

5. Routing continues until hops-to-live reaches zero (or node has seen
request already)

m TALER
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Put Example
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Put Example 1/3
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Put Example 2/3
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Put Example 3/3

IIIII
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How to attack this?
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Basic Idea for the Attack

» Freenet relies on a balanced distribution of node locations for data
storage

» Reducing the spread of locations causes imbalance in storage
responsibilities

» Peers cannot verify locations in swap protocol, including location(s)
they may receive

= use swap protocol to reduce spread of locations!

Christian Grothoff NEXT . GENERATION . INTERNET 48



Attack Details

> |nitialize malicious nodes with a specific location

» If a node swaps with the malicious node, the malicious node resets
to the initial location (or one very close to it)

» This removes the “good” node location and replaces it with one of
the malicious nodes choosing

» Each time any node swaps with the malicious node, another location
is removed and replaced with a “bad” location

» Bad location(s) spread to other nodes through normal swapping
behavior

> Over time, the attacker creates large clusters of nodes around a few
locations
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Attack Example 1/11
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Attack Example 2/11
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Attack Example 3/11

@ 0.85
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Attack Example 4/11

@ 0.501
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Attack Example 5/11

@ 0.10
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Attack Example 6/11
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Attack Example 7/11
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Attack Example 8/11
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Attack Example 9/11

@
o
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0.503
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Attack Example 10/11
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Attack Example 11/11
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Attack Implementation

>
>
>
>

Malicious node uses Freenet’'s codebase with minor modifications
Attacker does not violate the protocol in a detectable manner
Malicious nodes behave as if they had a large group of friends

Given enough time, a single malicous node can spread bad locations
to most nodes

v

Using multiple locations for clustering increases the speed of
penetration

Christian Grothoff NEXT . GENERATION . INTERNET 61



Experimental Setup

» Created testbed with 800 Freenet nodes

» Topology corresponds to Watts & Strogatz small world networks
> Instrumentation captures path lengths and node locations

» Content is always placed at node with closest location

» Nodes have bounded storage space

m TALER
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Dispersion Example with 800 Nodes

NG| \'-—"/ Te --.o-"'..

IIIII
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Data Loss Example (2

attack nodes)

100

80

60

% data loss

40

20 |

' Average Loss over tlmé with Std. Dev. —+—

100 150 200

0 50
TALER L Time (in iterations of 90 seconds)
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Data Loss Example (4 Attack nodes)
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% data loss

100

80

60

40

20 |

' Average Loss over tlmé with Std. Dev. —+—

50 100 150 200
Time (in iterations of 90 seconds)
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Data Loss Example (8 Attack nodes)

100
' Average Loss over tlmé with Std. Dev. —+—

60

% data loss

20 |

0 50 100 150 200
TALER L Time (in iterations of 90 seconds)
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How to protect against this?

Check how frequently a node swaps similar locations?
Limit number of swaps with a particular peer?

>
>
» Determine a node is malicious because its’' location is too close?
» Periodically reset all node locations?

>

Secure multiparty computation for swaps?
In F2F networks, you can never be sure about the friends of your friends!

m TALER
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> Leave join churn

» Nodes are not constantly in the network
» They leave for some period of time and then come back into the
network

» Join leave churn
» Nodes join the network for a time, then disconnect permanently

» This also causes load imbalance similar to our attack
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Churn Example 1/13

LLLLL
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Churn Example 2/13
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Churn Example 3/13
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Churn Example 4/13
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Churn Example 5/13
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Churn Example 6/13

>
r
m
o
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Churn Example 7/13
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Churn Example 8/13
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Churn Example 9/13
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Churn Example 10/13
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Churn Example 11/13
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Churn Example 12/13

>
r
m
o
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Churn Example 13/13
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Created stable core of nodes

>
> Simulated join-leave churn, let network stabilize
» Ran exactly the native swap code
» Repeat n number of times

» Revealed drastic convergence to single location

m TALER
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> Freenet's routing algorithm is not robust

> Adversaries can easily remove most of the content

> Attack exploits location swap, where nodes trust each other
» Swap is fundamental to the routing algorithm

» Natural churn causes similar results
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Part IV: Hard Problems
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Ryge's Triangle

Ryge's Triangle postulates three key management goals for a system
associating cryptographic keys with addresses or names:

> Non-interactive: the system should require no user interface
» Flexible: addresses/names can be re-used by other participants
> Secure: the system is secure against active attackers

Ryge's triangle says that one can only have two of the three.
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Limits on authentication

Theorem (Boyd's Theorem )

“Suppose that a user has either a confidentiality channel to her, or an
authentication channel from her, at some state of the system. Then in
the previous state of the system such a channel must also exist. By an
inductive argument, such a channel exists at all previous states.”

Theorem (Boyd's Theorem 1)

“Secure communication between any two users may be established by
a sequence of secure key transfers if there is a trusted chain from each
one to the other.”
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Solution space: Zfone

Authentication (ZRTP) [18]

Idea: combine human interaction proof and baby duck approach:
> A and B perform Diffie-Hellman exchange
> Keying material from previous sessions is used (duckling)
> Short Authentication String (SAS) is generated (hash of DH numbers)
» Both users read the SAS to each other, recognize voice
= ZRTP foils standard man-in-the-middle attack.
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https://xkcd.com/2315/

I KNOW IT'S HARD TO
Focus RIGHT NOW, BUT
WE SHOULD TRY TO
FINISH TESTING THE DB.

v GF'—IHHH,
OKAY.

THE SYSTEM NEEDS To
GUARANTEE EVENTUAL
CONSISTENCY.

I MERN,
IT DOES.
\

Christian Grothoff

EVENTUAL CONSISTENCY 15
GUARANTEED BY THE ZND
LAW OFI‘ THERMODYNAMICS.
SOONER OR LATER
THIS WILL ALL BE A
UNIFORM HEAT BATH.

!
MAXIMUM
ENTROPY.

=

MAXIMUM ENTROPY
MEANS NO USEFUL
WORK (AN BE DONE!

IM GETTING A HEAD
START BY DOING NO
USEFUL \JORK NVOL

\

I

[
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The CAP theorem [7]

No distributed system can be consistent, available and partition tolerant
at the same time.
» Consistency: A read sees the changes made by all previous writes
> Availability: Reads and writes always succeed
» Partition tolerance: The system operates even when network
connectivity between components is broken

Partition Tolerance
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An informal proof

Consider two nodes of a partitioned system storing a variable X. The
system processes write (1) and read (2) requests:

% User @
& %

Node A + Node B

In this case, the distributed system has two options:
> |t can fail at one of the requests, breaking the system'’s availability, or

> |t can execute both requests, returning a stale value from the read
request and breaking the system’s consistency

m TALER
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The PACELC theorem extends the CAP theorem:

» In case of network partitioning (P) in a distributed computer system
one has to choose between
» availability (A) and
» consistency (C),

> else (E), even when the system is running normally in the absence of
partitions, one has to choose between

» latency (L) and
» consistency (C)

Basically, even in the absence of partitioning, a trade-off between
consistency and latency exists.
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Digital offline payments ...

.. are incompatible with the CAP theorem

» Offline capabilities are often cited as a requirement for digital
payments by central banks

> All implementations must either use restrictive hardware elements
and/or introduce counterparty risk.

= Permanent offline features weaken a digital payment solution
(privacy, security)
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Digital offline payments ...

.. are incompatible with the CAP theorem

» Offline capabilities are often cited as a requirement for digital
payments by central banks

> All implementations must either use restrictive hardware elements
and/or introduce counterparty risk.

= Permanent offline features weaken a digital payment solution
(privacy, security)

Nevertheless, the ECB claims that the offline Digital Euro will work:
» Offline (partitioned from the Internet), and
> Transitive (A pays B, then B pays C, etc. — all while offline)
» with full cash-like privacy/anonymity for participants
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Heise Forum: Posting 43921013

“EZB: Digitaler Euro benotigt Secure Element des iPhones” —Heise.

“Ohne L6sung des Single-Spending-Problems wird das nichts”:
“Im klassischen Geldverkehr gibt es ja das Problem, dass man
jeden Euro nur einmal ausgeben kann. Das ist einer der grof3en
Nachteile von Bargeld. Eine digitale Wahrung hatte den grof3en
Vorteil, dass man jeden Euro mehrfach ausgeben kénnte, und
somit mehr Geld erschaffen kénnte. Das ware der groBe Vorteil
gegenlber Bargeld und Kartenzahlungen. So lange das nicht
geht, ist es im Prinzip wie DRM, ein Versuch, mit viel Aufwand,
irgendwie die Zeit zurlick zu drehen um alte Geschdftsmodelle
1:1 am Leben zu erhalten.” -Casandro
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Hardware to the rescue?
Only if history has nothing to teach us!

SAMSUNG intel A3\ MicracHip arm
Dec 2017 [2] Mar, Jun 2020 [23, 24] Sep 2022 [10] Aug 2023 [21]
I I
arm AMDZ1 intel
May, Aug 2016 [8, 16, 26] Oct 2019 [15] Apr 2023 [11] Aug 2024 [25]
I | | ll | I | | | J | I )
I | | | I T 1 | | 1
2015 2 I02 0 2025
arm Atmel intel AMDA
Aug 2017 [22] Jun 2020 [12] Feb 2023 [19] Oct 2024 [6]

nuvoTon

Sep 2024 [20]

mmmmmm

|
Qualcomm | |AMDZV
TRUSTONIC woawe | | Aug 2019 [14]

Feb 2017 [17]

Mar 2023 [5]
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Would secure hardware suffice?

Recieve Anythinge

TmEoUT Host A Al Host B
Send RSTL| N/ Ack
close
send AT ACK
Send ACK>
CLOSE, Send FiNo» R
CLosE, Send FiN>
BT F) e AT i ACK
Send ACK > CLOSE, Send FINo>
Recieve ACKe-
) CLOSING
Reciee VA N Recieve ACKe-
TAST-ACK AC
FIN-WAIT-2 K
Recieve FiNe MEWAT] TIMEOUT 2MsL t

Send ACK—> MSL= Max. Segment Lifetime
2 min according to STD7
(configurable)
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Would secure hardware suffice?

Recieve Anythinge

TIMEOUT
Send RST-|

Recieve SYN¢
Send SYN/ACK

cLosE

Host A Host B
send RST->

CLOSEWAIT FIN / ACK
CLOSE, Send FINo>
Recieve ACKe-
Reciove ACKe
dAde TAST-ACK AC
FIN-WAIT-2 K
Recieve FINc MEWAT] TIMEOUT 2MsL t

Send ACK—> MSL= Max. Segment Lifetime
2 min according to STD7

Not only TCP teaches us:

ACK—>

s¢
ESTABLISHED

CLOSE, Send FIN-»

CLOSE, Send FIN—>

FIN-WAIT-1

Recieve FIN—

Recieve FINC]
Send ACK->

Recieve ACK«-

Recieve FIN/AC}
¢

(configurable)

In any communication, someone must have the last word.
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https://xkcd.com/2315/

I KNOW IT'S HARD TO
Focus RIGHT NOW, BUT
WE SHOULD TRY TO
FINISH TESTING THE DB.

v GF'—IHHH,
OKAY.

THE SYSTEM NEEDS To
GUARANTEE EVENTUAL
CONSISTENCY.

I MERN,
IT DOES.
\
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GUARANTEED BY THE ZND
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!
MAXIMUM
ENTROPY.

=

MAXIMUM ENTROPY
MEANS NO USEFUL
WORK (AN BE DONE!

IM GETTING A HEAD
START BY DOING NO
USEFUL \JORK NVOL

\

I

[
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When can we fix this?
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Offline payments
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Digitaler Euro — Offline?

Many central banks today demand offline capabilities for CBDCs.
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Digitaler Euro — Offline?

Many central banks today demand offline capabilities for CBDCs.

SAMSUNG intel @Ml:nncmn arm
Dec 2017 [2] Mar, Jun 2020 [23, 24] Sep 2022 [10] Aug 2023 [21]
I
arm AMDZ1 intel
May, Aug 2016 [8, 16, 26] Oct 2019 [15] Apr 2023 [11] Aug 2024 [25]

N

|2015 IZOIZO 2025
arm Atmel intel AMDA1
Aug 2017 [22] Jun 2020 [12] Feb 2023 [19] Oct 2024 [6]
| | |
Qualcomw g, | | AMDZU nuvoTon infineon
TRUSTONIC E‘wﬁ Aug 2019 [14] B2 Microsoft vmware Cafineon

Sep 2024 [20]

Feb 2017 [17] Mar 2023 [5]
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A Scenario
God is offline, but customer pays online
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Typical Payment Process
All equivalent: Twint, PayPal, AliPay, PayTM

(C) Twint, 2023

Christian Grothoff NEXT . GENERATION . INTERNET 101



Secure Payment ...

Everything green?

m TALER

9

Payment was succesful

CHF 25.00
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Exploit “Code”

Programming optional

9

Payment was succesful
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“Customers’” love Twint ...

Daily non-business for shops

m TALER

9

Payment was succesful

CHF 50.00
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Partially Offline Payments with GNU

Taler [9]

Customer Merchant Backend

7D I -
PoS key
Pos ID
Pos ID

optional optional

Amount Amount

PoS ID, [Amount]?

Contract

Payment
OTP(PoS key) OTP(PoS key)

P}

OTP code
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