
NEXT
GENERATION
INTERNET
Distributed systems

Christian Grothoff

Bern University of Applied Sciences

6.03.2026



Learning objectives

What should we think about when building distributed systems?
What are typical attacks on decentralized systems?

Distributed Hash Tables
CAN
Chord
Kademlia

Routing in the Dark
Pitch Black

What are impossibly hard problems in distributed systems security?

Offline payments
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Part I: What should we think about when building distributed
systems?
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The 8 Fallacies of Distributed
Computing1

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology does not change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

1According to Peter Deutsch and James Gosling
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Self stabilization (Dijkstra 1974) [1]

▶ A system is self-stabilizing, if starting from any state, it is guaranteed
that the system will eventually reach a correct state (convergence).

▶ Given that the system is in a correct state, it is guaranteed to stay in a
correct state, provided that no fault happens (closure).

▶ Self-stabilization enables a distributed algorithm to recover from a
transient fault regardless of its nature.

Example: Spanning-tree Protocol from Networking!
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What are typical attacks on decentralized systems?
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Sybils

Background:
▶ Ancient Greece: Sybils were prophetesses that prophesized under

the devine influence of a deity. Note: At the time of prophecy not the
person but a god was speaking through the lips of the sybil.

▶ 1973: Flora Rheta Schreiber published a book “Sybil” about a
woman with 16 separate personalities.
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The Sybil attack

The Sybil attack [3]:
▶ Insert a node multiple times into a network, each time with a

different identity
▶ Position a node for next step on attack:

▶ Attack connectivity of the network
▶ Attack replica set
▶ In case of majority votes, be the majority!

Christian Grothoff NEXT , GENERATION , INTERNET 8



Defenses against Sybil Attacks

▶ Use authentication with trusted party that limits identity creation
▶ Use “external” identities (IP address, MAC, e-mail)
▶ Use “expensive” identities (solve computational puzzles, require

payment)
Douceur [3]: Without trusted authority to certify identities, no realistic
approach exists to completely stop the Sybil attack.
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Eclipse attack: Goal

▶ Separate a node or group of nodes from the rest of the network
▶ isolate peers (DoS, surveillance) or isolate data (censorship)
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Eclipse Attack: Techniques

▶ Use Sybil attack to increase number of malicious nodes
▶ Take over routing tables, peer discovery
⇒ Details depend on overlay structure
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Eclipse Attack: Defenses

▶ Large number of connections
▶ Aggressive discovery (“continuous” bootstrap)
▶ Prefer long-lived connections / old peers
▶ Replication
▶ Diverse neighbour selection (different IP subnets, geographic

locations)
▶ Audit neighbour behaviour (if possible)
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Poisoning Attacks

Nodes provide false information:
▶ wrong routing tables [4]
▶ wrong meta data
▶ wrong performance measurements
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Timing Attacks [13]

Nodes can:
▶ measure latency to determine origin of data
▶ delay messages
▶ send messages using particular timing patterns to aid correlation
▶ include wrong timestamps (or just have the wrong time set...)
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Part II: Distributed Hash Tables
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Distributed Hash Tables (DHTs)

▶ Distributed index
▶ GET and PUT operations like a hash table
▶ JOIN and LEAVE operations (internal)
▶ Trade-off between JOIN/LEAVE and GET/PUT costs
▶ Typically use exact match on cryptographic hash for lookup
▶ Typically require overlay to establish particular connections
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DHTs: Key Properties

To know a DHT, you must know (at least) its:
▶ routing table structure
▶ lookup procedure
▶ join operation process
▶ leave operation process

... including expected costs (complexity) for each of these operations.
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A trivial DHTs: The Clique

▶ routing table: hash map of all peers
▶ lookup: forward to closest peer in routing table
▶ join: ask initial contact for routing table, copy table, introduce us to

all other peers, migrate data we’re closest to to us
▶ leave: send local data to remaining closest peer, disconnect from all

peers to remove us from their routing tables

Complexity?
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A trivial DHTs: The Circle

▶ routing table: left and right neighbour in cyclic identifier space
▶ lookup: forward to closest peer (left or right)
▶ join: lookup own peer identity to find join position, transfer data from

neighbour for keys we are closer to
▶ leave: ask left and rigt neighbor connect directly, transfer data to

respective neighbour

Complexity?
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Additional Questions to ask

▶ Security against Eclipse attack?
▶ Survivability of DoS attack?
▶ Maintenance operation cost & required frequency?
▶ Latency? (̸= number of hops!)
▶ Data persistence?
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Content Addressable Network: CAN

▶ routing table: neighbours
in d-dimensional torus
space

▶ lookup: forward to closest
peer

▶ join: lookup own peer
identity to find join
position, split quadrant
(data areas) with existing
peer

▶ leave: assign quadrant
space to neighbour (s)
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Interesting CAN properties

▶ CAN can do range queries along ≤ n dimensions
▶ CAN’s peers have 2d connections (independent of network size)
▶ CAN routes in O(d d

√
n)
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Chord

▶ routing table: predecessor in circle
and at distance 2i, plus r successors

▶ lookup: forward to closest peer (peer
ID after key ID)

▶ join: lookup own peer identity to find
join position, use neighbor to
establish finger table, migrate data
from respective neighbour

▶ leave: join predecessor with
successor, migrate data to respective
neighbour, periodic stabilization
protocol takes care of finger updates
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Interesting Chord properties

▶ Simple design
▶ log2 n routing table size
▶ log2 n lookup cost
▶ Asymmetric, inflexible routing tables
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Kademlia

▶ routing table: 2160 buckets with k peers at XOR distance 2i

▶ lookup: iteratively forward to α peers from the “best” bucket, selected
by latency

▶ join: lookup own peer identity, populate table with peers from
iteration

▶ maintenance: when interacting with a peer, add to bucket if not full;
if bucket full, check if longest-not-seen peer is live first

▶ leave: just drop out
0 1

0 1
10 11

0 1
00 01

Connections
Route path
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Interesting Kademlia properties

▶ XOR is a symmetric metric: connections are used in both directions
▶ α replication helps with malicious peers and churn
▶ Iterative lookup gives initiator much control,
▶ Lookup helps with routing table maintenance
▶ Bucket size trade-off between routing speed and table size
▶ Iterative lookup is a trade-off:

▶ good UDP (no connect cost, initiator in control)
▶ bad with TCP (very large number of connections)
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Part III: Routing in the Dark
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Motivation

▶ Efficient fully decentralized routing in restricted-route topologies is
important:
▶ Friend-to-friend (F2F) networks (“darknets”)
▶ WiFi ad-hoc and sensor networks
▶ Unstructured networks

▶ Clarke & Sandberg claim to achieve O(logn) routing in the dark
(Freenet 0.7)

▶ Is this new routing protocol reasonably resistant against attacks?
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Freenet 101

▶ Freenet is a ’anonymous’ peer-to-peer network
▶ Overlay based on cyclic address space of size 232

▶ Nodes have a constant set of connections (F2F)
▶ All data identified by a key (modulo 232)
▶ Data assumed to be stored at closest node
▶ Routing uses depth-first traversal in order of proximity to key
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Routing in the Dark

▶ Small world network assumption
▶ Sparsely connected graph
▶ There exists a short path (O(log N)) between any pair of nodes
▶ Common real world phenomenon (Milgram, Watts & Strogatz)

▶ Freenet’s routing algorithm attempts to find short paths
▶ Uses locations of nodes to determine proximity to target
▶ Uses swapping of locations to structure topology
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Swap Example
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Result of Swap
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Location Swapping

▶ Nodes swap locations to improve routing performance
▶ Each connected pair of nodes (a,b) computes:

Pa,b :=

∏
(a,o)∈E

|La − Lo| ·
∏

(b,p)∈E
|Lb − Lp|∏

(a,o)∈E
|Lb − Lo| ·

∏
(b,p)∈E

|La − Lp|
(1)

▶ If Pa,b ≥ 1 the nodes swap locations
▶ Otherwise they swap with probability Pa,b
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Routing of GET Requests

GET requests are routed based on peer locations and key:
1. Client initiates GET request
2. Request routed to neighbor with closest location to key
3. If data not found, request is forwarded to neighbors in order of

proximity to the key
4. Forwarding stops when data found, hops-to-live reaches zero or

identical request was recently forwarded (to avoid circular routing)
⇒ Depth-first routing in order of proximity to key.
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GET 1/7
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GET 2/7
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GET 3/7
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GET 4/7
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GET 5/7
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GET 6/7
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GET 7/7

0.90

0.10

0.60

0.30

0.25

0.45

0.85

0.40

Christian Grothoff NEXT , GENERATION , INTERNET 41



PUT Requests

PUT requests are routed the same as GET requests:
1. Client initiates PUT requests
2. Request routed to neighbor closest to the key
3. If receiver has any peer whose location is closer to the key, request is

forwarded
4. If not, the node resets the hops-to-live to the maximum and sends

the put request to all of its’ neighbors
5. Routing continues until hops-to-live reaches zero (or node has seen

request already)
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Put Example
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Put Example 1/3
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Put Example 2/3
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Put Example 3/3
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How to attack this?
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Basic Idea for the Attack

▶ Freenet relies on a balanced distribution of node locations for data
storage

▶ Reducing the spread of locations causes imbalance in storage
responsibilities

▶ Peers cannot verify locations in swap protocol, including location(s)
they may receive

⇒ use swap protocol to reduce spread of locations!
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Attack Details

▶ Initialize malicious nodes with a specific location
▶ If a node swaps with the malicious node, the malicious node resets

to the initial location (or one very close to it)
▶ This removes the “good” node location and replaces it with one of

the malicious nodes choosing
▶ Each time any node swaps with the malicious node, another location

is removed and replaced with a “bad” location
▶ Bad location(s) spread to other nodes through normal swapping

behavior
▶ Over time, the attacker creates large clusters of nodes around a few

locations
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Attack Example 1/11
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Attack Example 2/11
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Attack Example 3/11
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Attack Example 4/11
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Attack Example 5/11
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Attack Example 6/11
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Attack Example 7/11
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Attack Example 8/11
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Attack Example 9/11
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Attack Example 10/11
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Attack Example 11/11
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Attack Implementation

▶ Malicious node uses Freenet’s codebase with minor modifications
▶ Attacker does not violate the protocol in a detectable manner
▶ Malicious nodes behave as if they had a large group of friends
▶ Given enough time, a single malicous node can spread bad locations

to most nodes
▶ Using multiple locations for clustering increases the speed of

penetration
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Experimental Setup

▶ Created testbed with 800 Freenet nodes
▶ Topology corresponds to Watts & Strogatz small world networks
▶ Instrumentation captures path lengths and node locations
▶ Content is always placed at node with closest location
▶ Nodes have bounded storage space
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Dispersion Example with 800 Nodes
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Data Loss Example (2 attack nodes)
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Data Loss Example (4 Attack nodes)
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Data Loss Example (8 Attack nodes)
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How to protect against this?

▶ Check how frequently a node swaps similar locations?
▶ Limit number of swaps with a particular peer?
▶ Determine a node is malicious because its’ location is too close?
▶ Periodically reset all node locations?
▶ Secure multiparty computation for swaps?

In F2F networks, you can never be sure about the friends of your friends!
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Churn

▶ Leave join churn
▶ Nodes are not constantly in the network
▶ They leave for some period of time and then come back into the

network
▶ Join leave churn

▶ Nodes join the network for a time, then disconnect permanently
▶ This also causes load imbalance similar to our attack

Christian Grothoff NEXT , GENERATION , INTERNET 68



Churn Example 1/13
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Churn Example 2/13
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Churn Example 3/13
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Churn Example 4/13
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Churn Example 5/13
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Churn Example 6/13
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Churn Example 7/13
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Churn Example 8/13
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Churn Example 9/13
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Churn Example 10/13
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Churn Example 11/13
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Churn Example 12/13
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Churn Example 13/13
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Churn Simulation

▶ Created stable core of nodes
▶ Simulated join-leave churn, let network stabilize
▶ Ran exactly the native swap code
▶ Repeat n number of times
▶ Revealed drastic convergence to single location
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Conclusion

▶ Freenet’s routing algorithm is not robust
▶ Adversaries can easily remove most of the content
▶ Attack exploits location swap, where nodes trust each other
▶ Swap is fundamental to the routing algorithm
▶ Natural churn causes similar results
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Part IV: Hard Problems

Christian Grothoff NEXT , GENERATION , INTERNET 84



Ryge’s Triangle

Ryge’s Triangle postulates three key management goals for a system
associating cryptographic keys with addresses or names:
▶ Non-interactive: the system should require no user interface
▶ Flexible: addresses/names can be re-used by other participants
▶ Secure: the system is secure against active attackers

Ryge’s triangle says that one can only have two of the three.
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Limits on authentication

Theorem (Boyd’s Theorem I)
“Suppose that a user has either a confidentiality channel to her, or an
authentication channel from her, at some state of the system. Then in
the previous state of the system such a channel must also exist. By an
inductive argument, such a channel exists at all previous states.”

Theorem (Boyd’s Theorem II)
“Secure communication between any two users may be established by
a sequence of secure key transfers if there is a trusted chain from each
one to the other.”
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Solution space: Zfone
Authentication (ZRTP) [18]

Idea: combine human interaction proof and baby duck approach:
▶ A and B perform Diffie-Hellman exchange
▶ Keying material from previous sessions is used (duckling)
▶ Short Authentication String (SAS) is generated (hash of DH numbers)
▶ Both users read the SAS to each other, recognize voice

⇒ ZRTP foils standard man-in-the-middle attack.
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https://xkcd.com/2315/

Christian Grothoff NEXT , GENERATION , INTERNET 88

https://xkcd.com/2315/


The CAP theorem [7]

No distributed system can be consistent, available and partition tolerant
at the same time.
▶ Consistency: A read sees the changes made by all previous writes
▶ Availability: Reads and writes always succeed
▶ Partition tolerance: The system operates even when network

connectivity between components is broken
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An informal proof

Consider two nodes of a partitioned system storing a variable X. The
system processes write (1) and read (2) requests:

In this case, the distributed system has two options:
▶ It can fail at one of the requests, breaking the system’s availability, or
▶ It can execute both requests, returning a stale value from the read

request and breaking the system’s consistency
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PARELC

The PACELC theorem extends the CAP theorem:
▶ In case of network partitioning (P) in a distributed computer system

one has to choose between
▶ availability (A) and
▶ consistency (C),

▶ else (E), even when the system is running normally in the absence of
partitions, one has to choose between
▶ latency (L) and
▶ consistency (C)

Basically, even in the absence of partitioning, a trade-off between
consistency and latency exists.
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Digital offline payments ...
... are incompatible with the CAP theorem

▶ Offline capabilities are often cited as a requirement for digital
payments by central banks

▶ All implementations must either use restrictive hardware elements
and/or introduce counterparty risk.

⇒ Permanent offline features weaken a digital payment solution
(privacy, security)

Nevertheless, the ECB claims that the offline Digital Euro will work:
▶ Offline (partitioned from the Internet), and
▶ Transitive (A pays B, then B pays C, etc. — all while offline)
▶ with full cash-like privacy/anonymity for participants
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Heise Forum: Posting 43921013

“EZB: Digitaler Euro benötigt Secure Element des iPhones” –Heise.
“Ohne Lösung des Single-Spending-Problems wird das nichts”:

“Im klassischen Geldverkehr gibt es ja das Problem, dass man
jeden Euro nur einmal ausgeben kann. Das ist einer der großen
Nachteile von Bargeld. Eine digitale Währung hätte den großen
Vorteil, dass man jeden Euro mehrfach ausgeben könnte, und
somit mehr Geld erschaffen könnte. Das wäre der große Vorteil
gegenüber Bargeld und Kartenzahlungen. So lange das nicht
geht, ist es im Prinzip wie DRM, ein Versuch, mit viel Aufwand,
irgendwie die Zeit zurück zu drehen um alte Geschäftsmodelle
1:1 am Leben zu erhalten.” –Casandro
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Hardware to the rescue?
Only if history has nothing to teach us!

Feb 2017 [17]

Mar, Jun 2020 [23, 24]

Aug 2017 [22]

Dec 2017 [2]

May, Aug 2016 [8, 16, 26]

Aug 2019 [14]

Oct 2019 [15]

Jun 2020 [12]

Sep 2022 [10]

Mar 2023 [5]
Sep 2024 [20]

Feb 2023 [19] Oct 2024 [6]

Aug 2023 [21]

Apr 2023 [11] Aug 2024 [25]

2015 2020 2025
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Would secure hardware suffice?

Not only TCP teaches us:

In any communication, someone must have the last word.
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https://xkcd.com/2315/
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GNU Taler vs. Twint

When can we fix this?
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Offline payments
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Digitaler Euro — Offline?

Many central banks today demand offline capabilities for CBDCs.
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A Scenario
God is offline, but customer pays online
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Typical Payment Process
All equivalent: Twint, PayPal, AliPay, PayTM

(C) Twint, 2023
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Secure Payment ...
Everything green?
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Exploit “Code”
Programming optional
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“Customers” love Twint ...
Daily non-business for shops

Christian Grothoff NEXT , GENERATION , INTERNET 104



Partially Offline Payments with GNU
Taler [9]

PoS

PoS key
PoS ID
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Digital
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PoS key
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Amount
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