
BTI 4202: Secure channels

Christian Grothoff

Berner Fachhochschule

27.3.2026

Learning Objectives

Symmetric key establishment protocols

Real-world use of cryptographic primitives (exercise)

Secure channels

Example: Attack on CBC Stateful IV

TLS

Beyond TLS

MIME

S/MIME

Homework

References

Part I: Symmetric key establishment protocols

Key Establishment Security goals

The basic security goals of key establishment are:

▶ Key secrecy: Session keys must not be known by anyone else
than Alice, Bob (and maybe some trusted third party).
Mallory must not learn anything about session keys.

▶ Authenticity: One party can be assured about the identity of
the other party it shares the session key with. That is, Alice
knows that she has session key with Bob.

▶ Freshness of keys: Mallory must not be able to replay old
session keys.

Protocols

▶ Key establishment is realized by using protocols whereby a
shared secret becomes available to two or more parties, for
subsequent cryptographic use.

▶ Until now, we have been discussing non-interactive crypto
primitives, in the following we look at crypto protocols.

▶ It is even harder to design secure protocols, than designing
non-interactive primitives. In fact, there is a long list of
protocols designed by famous (and not so famous)
cryptographers that were found to be flawed.

Session keys

▶ Key establishment protocols result in shared secrets which are
typically called (or used to derive) session keys.

▶ Ideally, a session key is an ephemeral secret, i.e., one whose
use is restricted to a short time period such as a single
telecommunications connection (or session), after which all
trace of it is eliminated.

▶ Motivation for ephemeral keys includes the following:

1. To limit available ciphertext (under a fixed key) for
cryptanalytic attack;

2. To limit exposure, with respect to both time period and
quantity of data, in the event of (session) key compromise;

3. To avoid long-term storage of a large number of distinct secret
keys by creating keys only when actually required;

4. To create independence across communications sessions or
applications.

Classification of key establishment methods

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Private channels

▶ Let us informally refer to a private channel as an authentic
and confidential channel.

▶ Exchange of secret keys on a USB stick
▶ Pre-installation of keys on a company laptop

▶ Symmetric key distribution is impossible without private
channels.

▶ Private channels are, loosely speaking, “complicated”,
“inefficient”, “expensive”.

▶ The goal in the following is to:

▶ Reduce the number of private channels required to
exchange keys.

▶ Use an initial private channel today to exchange a secret
key that they may use tomorrow for establishing a secure
channel over an insecure link .

Neumann-Stubblebine

1. Alice sends A,RA to Bob.

2. Bob sends B,RB ,EB(A,RA,TB) to Trent, where TB is a
timestamp and EB uses a key Bob shares with Trent.

3. Trent generates random session key K and sends
EA(B,RA,K ,TB),EB(A,K ,TB),RB to Alice where EA uses a
key Alice shares with Trent.

4. Alice decrypts and confirms that RA is her random value. She
then sends to Bob EB(A,K ,TB),EK (RB).

5. Bob extracts K and confirms that TB and RB have the same
value as in step 2.

Denning-Sacco

1. Alice sends A,B to Trent

2. Trent sends Alice ST (B,KB),ST (A,KA)

3. Alice sends Bob EB(SA(K ,TA)),ST (B,KB),ST (A,KA)

4. Bob decrypts, checks signatures and timestamps

Wide-Mouth Frog protocol

Wide-Mouth Frog protocol

The wide-mouth frog protocol has some conceptual shortcomings:

▶ Assumes synchronized clocks between the parties to achieve
freshness.

▶ Although having synchronized clocks seems to be
straight-forward, this is actually not the case.

▶ Synchronized clocks under normal conditions is indeed
easy (you have that in Windows, Linux...).

▶ Synchronized clocks under attack is much harder: you
need to have another protocol that securely synchronizes
clocks.

▶ But as soon as clock synchronization becomes security
relevant, you can bet that it gets attacked.

▶ Bob must trust Alice that she correctly generates the session
key.

Needham-Schroeder protocol

Needham-Schroeder protocol

▶ Needham is one of the IT security pioneers. Protocol was
conceived in 1978 and is one of the most widely studied
security protocols ever.

▶ Removes timestamps and introduces nonces to achieve
freshness.

▶ The session keys are generated by TTP in on the previous
slide, thus removes problem of Wide-Mouth Frog protocol.

▶ Protocol is insecure against known session key attacks.
Adversary who gets session key can replay the last three
messages and impersonate A to B.

▶ The reason for this problem is that B does not know
whether the session key is fresh.

▶ This vulnerability was discovered only some times after
the protocol was published. Thus, even the smartest and
most experienced people can fail to design secure crypto
protocols.

Kerberos

Kerberos

▶ Developed at MIT around 1987, made it into Windows 2000,
and is still used as the authentication / key establishment /
authorization mechanism within Windows.

▶ Quite similar to Needham-Schroeder, but removes weakness
against known session key attacks using synchronized clocks.

▶ Shorter than Needham-Schroeder: only 4 messages instead of
5.

Station to station key agreement protocol

Common input: Z∗
p and g ∈ Z∗

p, and n such that gn ≡ 1 mod p

Alice Bob

1. xA∈∪[0, n − 1]

CERTB , sigB , yB

CERTA, yA
yA = gxA

sigA = sign(A‖B‖yA‖yB , SKA)

3. verify(A‖B‖yB‖yA, sigB , PKB)

2. xB∈∪[0, n − 1]

yB = gxB

4. yAB = y
xB

A

yAB = y
xA

B
A, sigA

sigB = sign(A‖B‖yB‖yA, SKB)

verify(A‖B‖yA‖yB , sigA, PKA)

▶ The protocol above is a simplified version of the STS protocol
to illustrate the idea of authenticating messages with public
keys.

▶ For a detailed spec refer to http://en.wikipedia.org/

wiki/Station-to-Station_protocol

http://en.wikipedia.org/wiki/Station-to-Station_protocol
http://en.wikipedia.org/wiki/Station-to-Station_protocol

Station to station key agreement protocol

▶ The “station to station protocol” is the DH protocol made
secure against MIM attacks:

▶ The idea is simple: Alice and Bob basically sign all the
messages they exchange in the Diffie - Hellman protocol.

▶ The “exchange of authenticated signing keys” is done
using certificates.

▶ Station to station protocol is the basis for the practically
important IKE (Internet Key Exchange protocol).

▶ The bottom line is: one cannot establish authenticated keys
without bootstrapping the system using an “exterior
authentication mechanism” (e.g., without first establishing
public key certificates for Alice and Bob).

RSA key transport

https://www.theinquirer.net/inquirer/news/2343117/

ietf-drops-rsa-key-transport-from-ssl

https://www.theinquirer.net/inquirer/news/2343117/ietf-drops-rsa-key-transport-from-ssl
https://www.theinquirer.net/inquirer/news/2343117/ietf-drops-rsa-key-transport-from-ssl

Lessons Learned

▶ Do not try to be too clever, over-optimization is often the
cause for vulnerabilities

▶ Which optimizations you can do (and which optimization
actually matter) depends on your assumptions (adversary
model, system capabilities)

▶ Which protocol to use depends on your performance goals and
communications capabilities (all-to-all communication, trusted
party, latency, bandwidth and computational constraints)

Real-world symmetric encryption

Part II: Real-world symmetric encryption

GCM encryption

Counter0

Enck

Counter1

Enck

Counter2

Enck

incr incr

Ciphertext1 Ciphertext2

multH

multH

Plaintext1 Plaintext2

multHAuth Data1

multH

Auth Tag

len(A)||len(C)

Example: AES256 GCM (encrypt.c)

char key[256/8], iv[96/8];

char plaintext[] = "Hello world";

char ciphertext[sizeof (plaintext)];

gcry_cipher_hd_t cipher;

gcry_cipher_open (&cipher, GCRY_CIPHER_AES256,

GCRY_CIPHER_MODE_GCM, 0);

gcry_cipher_setkey (cipher, key, sizeof (key));

gcry_cipher_setiv (cipher, iv, sizeof (iv));

gcry_cipher_encrypt (cipher,

ciphertext, sizeof (ciphertext),

plaintext, sizeof (plaintext));

gcry_cipher_close (cipher);

Example: AES256 GCM (decrypt.c)

char key[256/8], iv[96/8];

char plaintext[1024];

char ciphertext[sizeof (plaintext)];

gcry_cipher_hd_t cipher;

size_t plen = read (STDIN_FILENO,

ciphertext, sizeof (ciphertext));

gcry_cipher_open (&cipher, GCRY_CIPHER_AES256,

GCRY_CIPHER_MODE_GCM, 0);

gcry_cipher_setkey (cipher, key, sizeof (key));

gcry_cipher_setiv (cipher, iv, sizeof (iv));

gcry_cipher_decrypt (cipher,

plaintext, plen,

ciphertext, plen);

gcry_cipher_close (cipher);

Handling partial reads (decrypt.c)

char plaintext[1024];

size_t plen = 0;

while (1) {

ssize_t inlen = read (STDIN_FILENO,

&ciphertext[plen],

sizeof (ciphertext) - plen);

if (-1 == inlen) {

fprintf (stderr,

"Failed to read input\n");

return 1;

}

if (0 == inlen)

break;

plen += inlen;

}

Part III: Secure Channels

Overview

▶ By secure channel we refer to a logical channel running on top
of some insecure link (typically the Internet) that provides

▶ Confidentiality
▶ Integrity and authenticity
▶ Message freshness

▶ Secure channels are probably one of the most important
applications of crypto in the real world.

▶ Many well known secure network protocols such as TLS/SSL,
VPNs, IPSec, WPA etc but also application specific (e.g.,
secure VoIP), and proprietary protocols (maybe Skype?) make
use of secure channels.

▶ Essentially all these protocols build upon the basic ideas we
discuss in the following.

▶ It is also possible to get it wrong, e.g., the WEP protocol has
a series of security flaws.

Secure channel

Secure channel - Secure send

s ecu r e−send (m , kE , kM) {

STATIC msgsnt := 1

IF (msgsnt ≥ MAXMSGS) THEN RETURN ⊥

c := ENC (kE ,m)

m̃ := msgsnt||LENGTH(c)||c

t := MAC (kM , m̃)

SEND(m̃||t)

msgsnt := msgsnt + 1

}

Secure channel - Secure receive

s ecu r e−r e c e i v e (C , kE , kM) {

STATIC msgrcvd := 0

(msgsnt, len, c , t) = PARSE (C)

IF (t ̸= MAC (kM ,msgsnt||len||c)) THEN RETURN ⊥

IF (msgsnt ⩽ msgrcvd) THEN RETURN ⊥

m := DEC (kE , c)

msgrcvd := msgsnt

RETURN m

}

Remarks

▶ The freshness property based on counters guarantees the
following: If m1,m2, . . . ,mn denote the messages send using
secure-send(), then secure-receive() can guarantee that the
messages m1,m2, . . . ,mn being received are subsequence of
the messages sent.

▶ Counters give no timing guarantees, i.e., the adversary
Mallory can delay messages at will.

▶ Timing guarantees can be achieved using

▶ Time-stamps
▶ Challenges

▶ No security protocol can prevent Mallory from discarding
messages.

▶ MACs provide not just integrity protection but also
authenticity , as discussed earlier.

▶ Further reading material: Chapter 8 in Practical Cryptography
by Schneier & Ferguson.

Remarks

▶ Typically, secure-send() and secure-receive() are run by both
parties using a secure channel.

▶ Each party will have an independent key-pair (enc & MAC).

▶ In practice, one introduces the notion of a session (e.g.,
e-banking). Consists of a session ID in the header, which
allows the receiver to look-up session state (keys, counters
etc.) when receiving a message.

▶ Generally better is the use of authenticated encryption, where
the block-cipher mode guarantees confidentiality and integrity.

▶ For more info see last week’s slides on AES-GCM and http:

//en.wikipedia.org/wiki/Authenticated_encryption

http://en.wikipedia.org/wiki/Authenticated_encryption
http://en.wikipedia.org/wiki/Authenticated_encryption

Part IV: An Attack on CBC with Stateful IV

Attacking CBC stateful IV (1/5)1

Goal: confirm “Kimberly” was sent!

Attacking CBC stateful IV (2/5)

Setup: Get oracle to encrypt “Kimberly”:

Given random CBC residue, this does not help.

Attacking CBC stateful IV (3/5)

CBC residue is XORed with input, get rid of it first using predicted
IV:

Attacking CBC stateful IV (4/5)

Then add the residue from the original encryption:

Attacking CBC stateful IV (5/5)

Now confirm the output matches:

If output matches, original text was “Kimberly”.

Summary

For CBC, if an attacker can:

▶ guess the plaintext corresponding to any ciphertext block they
have seen before, and

▶ can predict a future IV, and

▶ can submit a suitable message to be encrypted with that IV,

then they can verify their guess.

Is this attack an issue?

▶ Requires guessing the entire block

▶ Requires access to encryption oracle

▶ Block size is say 8 bytes, so 2256 trials

BEAST (2011) made this attack practical by shifting each unknown
plaintext byte to a position in the block just after 7 bytes of known
plaintext.

Is this attack an issue?

▶ Requires guessing the entire block

▶ Requires access to encryption oracle

▶ Block size is say 8 bytes, so 2256 trials

BEAST (2011) made this attack practical by shifting each unknown
plaintext byte to a position in the block just after 7 bytes of known
plaintext.

Part V: TLS

TLS is everywhere

TLS versions

1994 SSL v2
1995 SSL v3
1999 TLS v1.0
2006 TLS v1.1
2008 TLS v1.2
2018 TLS v1.3

TLS overview

Session key

TLS Protocol Stack

HTTP FTP SMTP

TLS

TCP

IP

Record Protocol

Handshake
protocol

Cipher Change
protocol

Alert
protocol

Maximum record payload is 16kB.

Why Records?

Why not encrypt data in constant stream as we write to TCP?

▶ Where would we put the MAC?

▶ If at the end, we get no integrity until all data is processed!

▶ Most applications process/display data incrementally!

Records allow us to:

▶ Break stream into series of records

▶ Each record carries a MAC

▶ Receiver can act on record as it arrives!

Why Records?

Why not encrypt data in constant stream as we write to TCP?

▶ Where would we put the MAC?

▶ If at the end, we get no integrity until all data is processed!

▶ Most applications process/display data incrementally!

Records allow us to:

▶ Break stream into series of records

▶ Each record carries a MAC

▶ Receiver can act on record as it arrives!

Attacks on records

Attacker could re-order or replay records!

▶ Put sequence number into MAC.

Attacker could truncate TCP stream!

▶ Use record types.

▶ Have special record type to indicate end of stream.

Attacks on records

Attacker could re-order or replay records!

▶ Put sequence number into MAC.

Attacker could truncate TCP stream!

▶ Use record types.

▶ Have special record type to indicate end of stream.

Attacks on records

Attacker could re-order or replay records!

▶ Put sequence number into MAC.

Attacker could truncate TCP stream!

▶ Use record types.

▶ Have special record type to indicate end of stream.

Protocol and Software

▶ TLS protocol is way too complex

▶ Many implementations in use

▶ Vulnerabilities in protocol design and implementations

Attacks on TLS and implementations

2011 BEAST
2012 CRIME
2013 BREACH, Lucky Thirteen
2014 Heartbleed, BERserk, POODLE
2015 FREAK, Logjam, MACE, RSA-CRT, Mar Mitzvah
2016 SLOTH, DROWN
2017 ROBOT
2018 CVE-2018-0488, CVE-2018-1000151

No news for cryptographers

Rivest: DSA weakness (1992) Playstation 3 broken (2010),
Mining Ps and Qs (2012)

Dobbertin: MD5 weak (1996),
Wang: MD5 collission, SHA1 weak
(2004/2005)

MD5 CA attack (2008), Flame
(2012), SLOTH (2016)

Lenstra: RSA-CRT weakness (1996) RSA-CRT attack (2015)

Bleichenbacher: Million Message at-
tack (1998)

DROWN (2016)

Biehl: Fault attacks on ECC (2000) Invalid curve attacks (2015)

Fluhrer/McGrew: RC4 biases (2000) RC4 TLS attacks (2013-2016),
Bar Mitzvah (2016)

Vaudenay: Padding Oracle (2002) Lucky Thirteen (2013)

Bard: Implicit IV vuln (2004) BEAST (2011)

Bleichenbacher: Signature forgery
(2004)

BERserk (2014), ROBOT
(2017)

Security is hard

”In order to defend against this attack, implementations MUST
ensure that record processing time is essentially the same whether
or not the padding is correct. [...] This leaves a small timing
channel, since MAC performance depends to some extent on the
size of the data fragment, but it is not believed to be large

enough to be exploitable, due to the large block size of existing
MACs and the small size of the timing signal.” (TLS 1.2, RFC

5246, 2008)

Modes

▶ Many SSL/TLS modes built “authenticted encryption” by
combining authentication and encryption

▶ Many attacks would have been avoided by using primitive that
implements both in one, such as AES-GCM or
ChaCha20-Poly1305

▶ Anything using ECB, CBC, CFB, OFB, CTR is likely broken

▶ GCM needs a nonce ⇒ another major failure mode

Primitives

SSL started with many primitives we now know consider insecure:

▶ RC4

▶ SHA1

▶ MD5

▶ 1024 bit DH with fixed parameters

▶ “export” ciphers

Deprecation

Evolution is slow as deprecation blocks connections:

▶ What percentage of clients is it OK to block?

▶ What percentage of servers is it OK to block?

▶ Many middleboxes require insecure versions!

▶ If old versions are supported, downgrade attacks are possible!

Origins of Complexity

1. We have a version negotiation mechanism

2. Servers have broken TLS implementations on version
negotiation

3. Browsers implement workaround (“protocol dance”)

4. Workaround introduces security issue (downgrade)

5. Workaround for security issue introduced by workaround gets
standardized.

TLS Usability

To use TLS securely, you need at least:

▶ Secure implementation

▶ Secure protocol configuration (cipher suite)

▶ X.509 certificate(s)

▶ Tell client you support TLS: Strict-Transport-Security
header

▶ Secure certificate chains against bad CA:
▶ HTTP Public Key Pinning (HPKP)
▶ Certificate Patrol
▶ Certificate Transparency (CT)

Security by Default?

You wish:

SSLProtocol -SSLv2 -SSLv3 -TLSv1 TLSv1.1 +TLSv1.2

SSLHonorCipherOrder on

SSLCompression off

SSLCipherSuite ECDHE-ECDSA-AES256-GCM-SHA384:\

ECDHE-RSA-AES256-GCM-SHA384:ECDH-RSA-AES256-\

GCM-SHA384:ECDH-ECDSA-AES256-GCM-SHA384:ECDH\

-RSA-RC4-SHA:RC4-SHA:TLSv1:!AES128:!3DES:!CA\

MELLIA:!SSLv2:HIGH:MEDIUM:!MD5:!LOW:!EXP:!NUL\

L:!aNULL

It is 2022 and our TLS configurations still look like this!

Security by Default?

You wish:

SSLProtocol -SSLv2 -SSLv3 -TLSv1 TLSv1.1 +TLSv1.2

SSLHonorCipherOrder on

SSLCompression off

SSLCipherSuite ECDHE-ECDSA-AES256-GCM-SHA384:\

ECDHE-RSA-AES256-GCM-SHA384:ECDH-RSA-AES256-\

GCM-SHA384:ECDH-ECDSA-AES256-GCM-SHA384:ECDH\

-RSA-RC4-SHA:RC4-SHA:TLSv1:!AES128:!3DES:!CA\

MELLIA:!SSLv2:HIGH:MEDIUM:!MD5:!LOW:!EXP:!NUL\

L:!aNULL

It is 2022 and our TLS configurations still look like this!

The Future

TLS 1.3

TLS 1.3

▶ Attempt to break away from attack-patch-attack-patch design
cycle

▶ Research community more involved

⇒ Formal security proofs (value?)

▶ Protocol differs significantly from previous versions

▶ Still lots of extensions, lots of modes

▶ Client still begins negotiation with ClientHello

TLS 1.3: Full Handshake

TLS 1.3: Abbreviated Handshake

TLS 1.3: 0.5 RTT Handshake

TLS 1.3

▶ Also deprecates many insecure ciphers

▶ Again has downgrade attack problem

▶ Still uses X.509 certificates

To check the maturity of your configuration, seek inspiration from

https://www.ssllabs.com/ssltest/

https://www.ssllabs.com/ssltest/

Example: bfh.ch

Example: admin.ch

Part VI: Extended Security Objectives for Secure Channels

Forward secrecy

What happens if your private key is compromised
to your past communication data?

Asynchronous forward secrecy: SCIMP

Idea of Silence Circle’s SCIMP:

Replace key with its own hash.

▶ New key in zero round trips!

▶ Forward secrecy!

Future secrecy

Suppose your regain control over your system.
What happens with your future communication data?

Repudiation vs. non-repudiation

▶ Digital signatures allow proving that someone said something

▶ Alice may be happy to authenticate to Bob, but not to Eve or
Mallory!

▶ Bob may turn “evil” and use Alice’s statements against her
later

⇒ Signatures may provide too much (authentication and
non-repudiation)

Off-the-record (OTR) protocols allow repudiation

Repudiation vs. non-repudiation

▶ Digital signatures allow proving that someone said something

▶ Alice may be happy to authenticate to Bob, but not to Eve or
Mallory!

▶ Bob may turn “evil” and use Alice’s statements against her
later

⇒ Signatures may provide too much (authentication and
non-repudiation)

Off-the-record (OTR) protocols allow repudiation

OTR (Idea)

SA(TA) (1)

SB(TB) (2)

HKDF (DH(TA,TB)) (3)

OTR (Real)

The OTR protocol protects the above KX by wrapping it inside
another ephemeral key exchange:

K1 : = DH(T 1
A||T 1

B) (4)

EK1(SA(T
2
A)) (5)

EK1(SB(T
2
B)) (6)

K2 : = HKDF (DH(T 2
A,T

2
B)) (7)

(8)

To achieve forward secrecy, OTR keeps rolling out new keys T i
A,B .

To improve deniability, OTR publishes the old MAC keys once the
conversation progresses.

Is OTR deniable?

Both parties still have proof that they communicated: SX (TX)!

Is OTR deniable?

Both parties still have proof that they communicated: SX (TX)!

3DH (Trevor Perrin)

A: K = HKDF (DH(Ta,TB)||DH(Ta,B)||DH(a,TB))
B: K = HKDF (DH(TA,Tb)||DH(TA, b)||DH(A,Tb))

A Message from God (Dominic Tarr)

With 3DH, what happens if Alice’s private key (a, Ta) is
compromised?

M: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))
A: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))

A Message from God (Dominic Tarr)

With 3DH, what happens if Alice’s private key (a, Ta) is
compromised?

M: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))
A: K = HKDF (DH(Ta,TG)||DH(Ta,G)||DH(a,TG))

Static keys vs. ephemeral keys

Diffie-Hellman with:

▶ static keys allow authenticated encryption without signatures

▶ ephemeral keys protect against replay attacks and provide
forward secrecy

Axolotl / Signal Protocol

Part VII: Background: MIME

Message Handling System (X.400)

UA

MS

UA

MHS

1 MTA

MTA

MTA
2

MTA

MTS

MTA

A

MTA

MS

MTA

UA

UA

MTA

3

UA

MS

5

B

4

MTA

MTA

Message Structure

Envelope

Content
Body

Header

Body Part

Simple Mail Transfer Protocol (SMTP) [6]

▶ client-server over reliable transport

▶ content is the object to be delivered to the recipient

▶ envelope is the information needed to transmit/deliver

Evolution: [6] → [5] → [4, 10]

SMTP Message Format [1]

[1] defines the format and some semantics of SMTP messages.

▶ Everything is 7-bit US-ASCII

▶ 1000 characters per line at most.

▶ Header lines (from:, to:, cc:), blank line, body.

Example:

Date: Tue, 16 Jan 2007 10:37:17 (EST)

From: "Alice" <alice@bfh.ch>

To: bob@bfh.ch

Subject: Test

Dear Bob, ...

Evolution: [1] → [7] → [8]

The Received Header

The message delivery path can be traced back due to the Received:
header information.

Received: from smtpd-extern.it-sec.com

by mail.bfh.ch

with ESMTP

id AAA6373

for <someone@bfh.ch>;

Wed, 23 Feb 2022 14:51:18 +0100

Received: from smtp-proxy.it-sec.com

by smtpd-extern.it-sec.com

with SMTP

id OAA22551

for <someone@bfh.ch>;

Wed, 23 Feb 2022 14:51:02 +0100 (MET)

Received: from smtpd-intern.it-sec.com

by smtp-proxy.it-sec.com

with SMTP

Wed, 23 Feb 2022 14:50:54 +0100

Received: by smtpd-intern.it-sec.com

with SMTP

id <FHD9K7RK>;

Wed, 23 Feb 2022 14:50:34 +0100

Problems with RFC 822

▶ binary files must be converted into ASCII (various schemes
emerged (e.g. UUencode))

▶ text data may include non-7-bit ASCII characters (e.g.
German text)

▶ MTAs may do strange things:
▶ reject messages over a certain size
▶ delete, add, or reorder CR and LF characters
▶ truncate or wrap lines longer than 76 characters
▶ remove trailing white space (tabs and spaces)
▶ pad lines in a message to the same length
▶ convert tab characters into multiple spaces

Content-Transfer-Encoding

The problem of encoding is solved by several encoding schemes
which encode arbitrary bytes (0–255) into 7-Bit-ASCII:

▶ “Q”-Encoding (Quoted-Printable)

▶ “B”-Encoding (Base64)

▶ ... and others

To know which one, the encoding is specified in a MIME Header:

Content-Type: image/gif

Content-Transfer-Encoding: base64

Quoted-Printable

Each 8-Bit value is replaced with 3 ASCII characters [2]:

▶ 1. character: “=”

▶ 2. character: 1st 4 Bits will be replaced with 0..F

▶ 3. character: 2nd 4 Bits will be replaced with 0..F

Examples:

\ö" (ASCII 246, hex F6) is replaced with =F6

\€\ (ASCII 128, hex 80) is replaced with =80

If applied to e-mail messages, only the bytes which are in the range of
ASCII 128–256 are replaced: “Jörg Järman wohnt in Bümpliz” will
lead to “J=F6rg J=E4rman wohnt in B=FCmpliz”. This encoding
is suitable if the values between ASCII 128–256 appear rarely.

Multipurpose Internet Mail Extensions (MIME)

MIME defines message header fields, a number of content formats
(standardized representation of multi-media contents) and transfer
encodings that protect the content from alteration by the mail trans-
fer system.

MIME Header Fields

▶ Mandatory fields
▶ MIME-Version
▶ Content-Type
▶ Content-Transfer-Encoding

▶ Optional fields
▶ Content-ID
▶ Content-Description

MIME Content Types

▶ Tells recipient UA about appropriate way to deal with content,
e.g., how to present to the user

▶ Syntax:

Content-Type: <type>/<subtype> <; parameters>

▶ Initial set of seven top-level media types:2

▶ five discrete types: text, image, audio, video, application
▶ two composite types: message, multipart

▶ Extensible – new media types may be registered with the
IANA by procedure in [3]

S/MIME uses “application” and “multipart” types.

Example: Singlepart MIME Message

From: Alice@bfh.ch

To: Bob@bfh.ch

Subject: Test message 1

Mime-Version: 1.0

Content-Type: text/plain;

charset="us ascii"

Content-Transfer-Encoding: 7bit

This is a MIME test message that

is sent from Alice to Bob

Example: Multipart MIME Message

From: ...

Mime-Version: 1.0

Content-Type: multipart/mixed;

boundary=boundary_1

"This is a multi-part message in MIME format.

Content-Type: text/plain;

charset="ISO-8859-1"

Content-Transfer-Encoding: 7bit

Dear customer, here is our new software release V 1.2

--boundary_1

Content-Type: application/octet-stream;

name="Software.zip"

Content-Transfer-Encoding: base64

Content-Disposition: attachment;

filename="Software.zip"

UEsDBBQAAAAIAMZLZDNsFrjHRAoAAHMWAAAKAAAAbWVpZXM1LnBkZu1Y...

Part VIII: S/MIME

S/MIME

▶ RSA Security Inc. developed S/MIME as a specification for
digitally signed and/or encrypted and enveloped data in
accordance to MIME message formats based on a Public Key
Cryptography Standard (PKCS)

▶ The protocol specification was named Secure Multipurpose
Internet Mail Extensions (S/MIME)

▶ Most MUAs support S/MIME natively

The PKCS#7 Standard

▶ PKCS#7 defines cryptographic enhancements to data for
signatures and encryption purpose.

▶ PKCS#7 has no type to do both sign and encrypt.

▶ Instead nesting is used to do both: Usually: first sign, then
encrypt the result

▶ The IETF Cryptographic Message Syntax (CMS) is superset
of PKCS#7.

PKCS#7 and S/MIME

▶ S/MIME is the standard to include PKCS#7 objects as MIME
“attachments”.

▶ Content-types:
▶ Multipart/Signed
▶ Application/PKCS7-Signature
▶ Application/PKCS7-MIME

▶ The content-transfer-encoding is base64

S/MIME History

▶ 1995: S/MIME version 1 has been specified and officially
published by RSA Security, Inc.

▶ 1998: S/MIME version 2 has been updated in RFC 2311 and
RFC 2312.

▶ 1999: The work was continued in the IETF S/MIME Mail
Security (S/MIME) WG and resulted in S/MIME Version 3
specified in RFCs 2633.

▶ 2004: S/MIME Version is 3.1 (updated in RFC 3851).

▶ 2010: S/MIME Version is 3.2 (updated in RFC 5751).

▶ 2019: S/MIME Version is 4.0 (updated in RFC 8551).

S/MIME Processing

MIME

entity

PKCS

object

S/MIME

entity
S/MIME
processing

Base64
encoding

▶ Initial S/MIME processing produces a PKCS (Public Key
Cryptography Standard) object.

▶ PKCS object includes information needed for processing by
recipient as well as the content.

▶ But PKCS objects are in binary format, hence needs further
base64 encoding to produce final result MIME object of
S/MIME content-type.

▶ Recipient performs steps in reverse.

S/MIME Enveloped Data

RecipientInfo

E

E

S/MIME body:

Base64 encoded
PKCS object

S/MIME header
Recipient’s
Public Key

Session
Key K

MIME
Entity

Base64
encoding

EnvelopedData PKCS
Object

EncryptedKey

Encrypted
ContentInfo

EncryptedContent

S/MIME Signed Data

Sign

Sender’s
Private

Key

SignedData
PKCS object

Hash

MIME
Entity

MIME Entity

Signature and Hash

Signature and Hash
algorithm

SignerInfo and
Signer’s Cert

S/MIME body:

Base64 encoded
PKCS object

S/MIME header

Base64
encoding

S/MIME Multipart/Signed Data

Sign

Sender’s
Private Key

Signature
PKCS object

Hash

MIME
Entity

MIME Entity

Signature and Hash

Signature and Hash
algorithm

SignerInfo and
Signer’s Cert

S/MIME header

Base64
encoding

MIME Object

S/MIME body:

Base64 encoded
PKCS object

Cryptographic Message Syntax Content Types

▶ Enveloped data (application/pkcs7-mime;
smime-type=enveloped-data)

▶ AuthEnveloped data (application/pkcs7-mime; smime-type =
authEnveloped-data) [9]

▶ Signed data (application/pkcs7-mime; smime-type =
signed-data)
▶ Content + signature in one object, encoded using base64
▶ Content + signature in two objects → Clear-Signed Data

(multipart/signed)

Signed and enveloped data can be nested in any order!

Efail(.de)

▶ Exploits vulnerabilities in the OpenPGP and S/MIME
standards to reveal the plaintext of encrypted emails.

▶ Abuses active content of HTML emails, for example externally
loaded images or styles, to exfiltrate plaintext through
requested URLs.

▶ Attacker first needs access to the encrypted emails, modifies it
and sends this modified encrypted email to the victim.

▶ The victim’s email client decrypts the email and loads external
content, thus exfiltrating the plaintext to the attacker.

Efail Direct exfiltration

Part IX: Homework

Homework: WEP Insecurity

Read the article “Intercepting Mobile Communications: The Insecu-
rity of 802.11” until section 4.2. For each of the attacks, decryption
(section 3), message modification (section 4.1) and message injec-
tion (section 4.2) explain:

▶ How does the attack work?

▶ Why does it work (i.e., what are the flaws that make the
attack possible)?

Additionally, see the assignment (PDF) on the Otway-Rees protocol.

References I

D. Crocker.
STANDARD FOR THE FORMAT OF ARPA INTERNET
TEXT MESSAGES.
RFC 822 (Internet Standard), August 1982.
Obsoleted by RFC 2822, updated by RFCs 1123, 2156, 1327,
1138, 1148.

N. Freed and N. Borenstein.
Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies.
RFC 2045 (Draft Standard), November 1996.
Updated by RFCs 2184, 2231, 5335, 6532.

N. Freed, J. Klensin, and J. Postel.
Multipurpose Internet Mail Extensions (MIME) Part Four:
Registration Procedures.
RFC 2048 (Best Current Practice), November 1996.
Obsoleted by RFCs 4288, 4289, updated by RFC 3023.

References II

J. Klensin.
Simple Mail Transfer Protocol.
RFC 5321 (Draft Standard), October 2008.
Updated by RFC 7504.

J. Klensin (Ed.).
Simple Mail Transfer Protocol.
RFC 2821 (Proposed Standard), April 2001.
Obsoleted by RFC 5321, updated by RFC 5336.

J. Postel.
Simple Mail Transfer Protocol.
RFC 821 (Internet Standard), August 1982.
Obsoleted by RFC 2821.

References III

P. Resnick (Ed.).
Internet Message Format.
RFC 2822 (Proposed Standard), April 2001.
Obsoleted by RFC 5322, updated by RFCs 5335, 5336.

P. Resnick (Ed.).
Internet Message Format.
RFC 5322 (Draft Standard), October 2008.
Updated by RFC 6854.

J. Schaad, B. Ramsdell, and S. Turner.
Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 4.0 Message Specification.
RFC 8551 (Proposed Standard), April 2019.

References IV

J. Yao (Ed.) and W. Mao (Ed.).
SMTP Extension for Internationalized Email Addresses.
RFC 5336 (Experimental), September 2008.
Obsoleted by RFC 6531.

Further reading I

▶ How broken is TLS?
http://media.ccc.de/browse/conferences/eh2014/

EH2014_-_5744_-_de_-_shack-seminarraum_-_

201404201530_-_wie_kaputt_ist_tls_-_hanno.html

▶ POODLE bites again https://www.imperialviolet.org/

2014/12/08/poodleagain.html

▶ TLS 1.2 / RFC 5246
https://www.ietf.org/rfc/rfc5246.txt

▶ Encrypt-then-MAC / RFC 7366
https://tools.ietf.org/html/rfc7366

▶ RC4 attacks 2013 http://www.isg.rhul.ac.uk/tls/

▶ RC4 attacks 2015 IMAP / HTTP Basic Auth
http://www.isg.rhul.ac.uk/tls/RC4mustdie.html

▶ RC4 Bar Mitzvah attack http:

//www.crypto.com/papers/others/rc4_ksaproc.pdf

http://media.ccc.de/browse/conferences/eh2014/EH2014_-_5744_-_de_-_shack-seminarraum_-_201404201530_-_wie_kaputt_ist_tls_-_hanno.html
http://media.ccc.de/browse/conferences/eh2014/EH2014_-_5744_-_de_-_shack-seminarraum_-_201404201530_-_wie_kaputt_ist_tls_-_hanno.html
http://media.ccc.de/browse/conferences/eh2014/EH2014_-_5744_-_de_-_shack-seminarraum_-_201404201530_-_wie_kaputt_ist_tls_-_hanno.html
https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://www.ietf.org/rfc/rfc5246.txt
https://tools.ietf.org/html/rfc7366
http://www.isg.rhul.ac.uk/tls/
http://www.isg.rhul.ac.uk/tls/RC4mustdie.html
http://www.crypto.com/papers/others/rc4_ksaproc.pdf
http://www.crypto.com/papers/others/rc4_ksaproc.pdf

Further reading II

▶ POODLE
https://www.openssl.org/~bodo/ssl-poodle.pdf

▶ Dancing protocols, POODLEs and other tales from TLS
https:

//blog.hboeck.de/archives/858-Dancing-protocols,

-POODLEs-and-other-tales-from-TLS.html

▶ BERserk http://www.intelsecurity.com/

advanced-threat-research/berserk.html

▶ BERserk PoC https://github.com/FiloSottile/BERserk

▶ Bleichenbacher Signature Forgery 2006
https://www.ietf.org/mail-
archive/web/openpgp/current/msg00999.html

▶ miTLS - formally verified http://www.mitls.org/

▶ ocaml-tls https://github.com/mirleft/ocaml-tls

https://www.openssl.org/~bodo/ssl-poodle.pdf
https://blog.hboeck.de/archives/858-Dancing-protocols,-POODLEs-and-other-tales-from-TLS.html
https://blog.hboeck.de/archives/858-Dancing-protocols,-POODLEs-and-other-tales-from-TLS.html
https://blog.hboeck.de/archives/858-Dancing-protocols,-POODLEs-and-other-tales-from-TLS.html
http://www.intelsecurity.com/advanced-threat-research/berserk.html
http://www.intelsecurity.com/advanced-threat-research/berserk.html
https://github.com/FiloSottile/BERserk
http://www.mitls.org/
https://github.com/mirleft/ocaml-tls

Further reading III

▶ Quote on gmail TLS performance
https://www.imperialviolet.org/2010/06/25/

overclocking-ssl.html

▶ Ring Learning With Errors / post-quantum key exchange
http:

//www.douglas.stebila.ca/research/papers/bcns15

▶ SPHINCS / post quantum signatures
http://sphincs.cr.yp.to/

▶ Qualys SSL Labs Test
https://www.ssllabs.com/ssltest/

https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
http://www.douglas.stebila.ca/research/papers/bcns15
http://www.douglas.stebila.ca/research/papers/bcns15
http://sphincs.cr.yp.to/
https://www.ssllabs.com/ssltest/

	Symmetric key establishment protocols
	Real-world use of cryptographic primitives (exercise)
	Secure channels
	Example: Attack on CBC Stateful IV
	TLS
	Beyond TLS
	MIME
	S/MIME
	Homework
	References

