
FA K U LT Ä T F Ü R I N F O R M AT I K
Technische Universität München

Lehrstuhl für Netzarchitekturen und Netzdienste

Master’s Thesis in Informatics

L A R G E S C A L E D I S T R I B U T E D E VA L U AT I O N O F
P E E R - T O - P E E R P R O T O C O L S

Sree Harsha Totakura

FA K U LT Ä T F Ü R I N F O R M AT I K
Technische Universität München

Lehrstuhl für Netzarchitekturen und Netzdienste

Master’s Thesis in Informatics

L A R G E S C A L E D I S T R I B U T E D E VA L U AT I O N O F
P E E R - T O - P E E R P R O T O C O L S

V E RT E I LT E B E W E RT U N G V O N P E E R - T O - P E E R
P R O T O K O L L E N A U F

H Ö C H S T L E I S T U N G S R E C H N E R N

author : Sree Harsha Totakura
supervisor : Christian Grothoff, PhD (UCLA)

date : June 17, 2013

D E C L A R AT I O N

I assure the single handed composition of this master’s thesis only sup-
ported by declared resources.

Garching, June 17, 2013

Sree Harsha Totakura

v

A C K N O W L E D G E M E N T S

This thesis is made possible by collective efforts of many people. Firstly,
I thank my parents Yarlagadda Sri Devi and Totakura Sambasiva Rao for
bestowing confidence in me and supporting my studies in a foreign country.

Many thanks go to the Free and Secure Network Systems Group (FSNSG)
at TUM, Germany: Christian Grothoff, the project group leader for GNU’s
Framework for Secure Peer-to-Peer Networking (GNUnet), for his support
during my studies at TUM and guidance throughout this thesis; Matthias
Wachs for his efforts in improving the transport subsystem of GNUnet
and help in debugging various bugs encountered during the development
of GNUnet testbed; Maximillian Szengel for developing the profiler for
GNUnet REGEX application and initial emulations using testbed; Bartlomeij
Polot for extending the profiler and scaling up the REGEX emulations us-
ing testbed. I also thank Werner Koch whose recent code contributions to
the libgcrypt project indirectly improved the testbed’s performance signifi-
cantly.

Finally, I thank all the hackers and supporters of free software who con-
tribute to uphold an individual’s right to freedom and privacy in this age
of digital societies with growing censorship and surveillance. Their efforts
have helped and continue to help me and many others in many ways and
aspects of life.

vii

A B S T R A C T

Evaluations of Peer-to-Peer (P2P) protocols during the system’s design and
implementation phases are commonly done through simulation and emula-
tion respectively. While the current state-of-the-art simulation allows evalua-
tions with many millions of peers through the use of abstractions, emulation
still lags behind as it involves executing the real implementation at some
parts of the system. This difference in scales can make it hard to relate the
evaluations made created with simulation and emulation during the design
and implementation phases and can results in a limited evaluation of the
implementation, which may cause severe problems after deployment.

In this thesis, we build upon an existing emulator for P2P applications to
push the scales offered by emulation towards the limits set by simulation.
Our approach distributes and co-ordinates the emulation across many hosts.
Large deployments are possible by deploying hundreds or thousands of
peers on each host.

To address the varying needs of an experimenter and the range of avail-
able hardware, we make our approach scalable such that it can easily be
adapted to run evaluations on a single machine or a large group of hosts.
Specifically, the system automatically adjusts the number of overlapping op-
erations to the available resources efficiently using a feedback mechanism,
thus relieving the experimenter from the hassles of manual tuning.

We specifically target High Performance Computing (HPC) systems like
compute clusters and supercomputers and demonstrate how such systems
can be used for large scale emulations by evaluating two P2P applications
with deployment sizes up to 90k peers on a supercomputer.

ix

Z U S A M M E N FA S S U N G

Eine Bewertung von Peer-to-Peer (P2P) Protokollen wird in der Entwurfs-
und Implementierungsphase gemeinhin mittels Simulation in der Entwurfs-
und Emulation in der Implementierungsphase erreicht. Während aktuelle
Simulationsverfahren durch die Verwendung von Abstraktion die Bewer-
tung von Millionen einzelner Knoteninstanzen erlauben, hinkt die Ver-
wendung von Emulation an dieser Stelle hinterher, da bei der Verwen-
dung von Emulation die echte Implementierung der Applikation verwen-
det werden muss. Diese unterschiedlichen Größenordnungen können es
schwierig machen, Bewertungen, die während der Entwurfs- und Imple-
mentierungsphase entstanden sind, zu vergleichen. Weiterhin kann dies zu
einer eingeschränkten Bewertung der Implementierung führen, was im Fol-
genden schwerwiegende Probleme bei der produktiven Verwendung des
Systems haben kann.

Diese Arbeit baut auf einem existierenden Verfahren zur Emulation von
P2P Applikationen auf und verbessert dieses Verfahren soweit, dass das
vorgestellte Emulationsverfahren die bei der Verwendung von Simulation
möglichen Größenordnungen erreicht. Der vorgestellte Ansatz verteilt und
koordiniert den Emulationsvorgang über mehrere Rechnersysteme und er-
reicht die angestrebte Größenordnung durch die Emulation hunderter oder
tausender Instanzen der Anwendung auf einem einzelnen Rechner.

Um den unterschiedlichen Anforderungen des Anwenders und der
Vielzahl unterschiedlicher verfügbarer Hardware gerecht zu werden, wurde
das vorgestellte Verfahren so entwickelt, dass es leicht angepasst werden
kann um Bewertungen auf einem einzelnen System oder einer großen
Gruppe von Systemen auszuführen. Im Besonderen passt das System die
Anzahl der gleichzeitig ausgeführten Operationen auf die verfügbaren
Ressourcen an, was dem Anwender die Schwierigkeiten einer notwendigen
händischen Anpassung abnimmt.

Unser Augenmerk gilt im Besonderen der Verwendung auf High Perfor-
mance Computing (HPC)-ähnlichen Rechenclustern und Supercomputern
und wir demonstrieren, wie solche Systeme für eine Emulation von P2P An-
wendungen in großem Maßstab verwendet werden können. Hierzu stellen
wir eine auf einem Supercomputer erstellte Bewertung von zwei P2P An-
wendungen mit jeweils bis zu 90.000 teilnehmenden Instanzen vor.

xi

C O N T E N T S

1 introduction 1

2 background 3

2.1 Real-world Instrumentation & Testbeds 3

2.2 Simulation . 4

2.3 Emulation . 6

2.4 GNUnet architecture . 7

2.5 Distributed large scale emulator for P2P protocols 8

3 design 11

3.1 Instance isolation, configuration and co-ordination 11

3.2 Operation queues . 11

3.3 Adaptive bounded parallelism 14

3.4 Scalable Architecture . 16

3.5 Controlled shutdown & crash detection 18

3.6 Re-configuring peers . 18

4 implementation 19

4.1 Testbed architecture overview 19

4.2 Experiment start-up . 19

4.3 Running an experiment . 20

4.3.1 Overlay connections . 20

4.3.2 Accessing peers’ services 21

4.4 Normal and abnormal experiment termination 21

4.5 Optimisations . 22

4.5.1 Service sharing . 23

4.5.2 Testbed logging . 23

4.5.3 Peer identities in testbed 24

4.5.4 Emulating churn . 24

4.6 Convenience functions . 25

5 protocol evaluations 27

5.1 Evaluation Infrastructure . 27

5.1.1 Infiniband Cluster . 27

5.1.2 SuperMUC . 27

5.2 Experiments . 28

5.2.1 Testbed Performance . 28

5.2.2 Network Size Estimation 30

5.2.3 REGEX . 33

6 challenges with hpc systems 37

6.1 Resource allocation . 37

6.2 Resource access . 37

6.3 Emulation Start-up . 38

7 future work 39

7.1 Barriers . 39

7.2 Simulation of bandwidth, latency & loss 39

7.3 Simulating NAT and Firewalls 40

8 conclusion 41

xiii

xiv contents

bibliography 43

Appendix 49

a experiment drivers 51

a.1 NSE Driver . 51

a.1.1 service configuration . 51

a.1.2 Input options . 51

b miscellaneous 53

b.1 Unique configurations . 53

b.2 Supported Topologies . 53

c corrigenda 55

L I S T O F F I G U R E S

Figure 2.1 P2P evaluation methods 3

Figure 2.2 Architecture of the old GNUnet testbed 8

Figure 3.1 Marking an operation op as done 13

Figure 3.2 Deactivating an operation op 14

Figure 3.3 Adding an operation op into an operation queue q . . 15

Figure 3.4 Controller hierarchical architecture 17

Figure 3.5 Controllers use lateral links to establish peer connec-
tions across hosts. 17

Figure 5.1 Testbed resource utilisation 29

Figure 5.2 NSE evaluation on Infiniband Cluster 31

Figure 5.3 NSE evaluation on SuperMUC 33

Figure 5.4 Time to match strings with regular expressions 34

xv

L I S T O F TA B L E S

Table 3.1 States of an operation and corresponding list within
the operation queue . 12

Table 5.1 Profiling data from experiments when run on a Desk-
top with 2 cores and 4 GB memory 28

Table 5.2 Profiling data from experiments run on the Infini-
band cluster . 30

Table B.1 Variables modified by testbed in generated configu-
rations . 53

Table B.2 Supported overlay topologies 54

xvii

L I S T O F A L G O R I T H M S

1 Determining the parallelisation factor D 16

xix

G L O S S A RY

ACL Access control list. 53

API Application Programming Interface. 8, 19, 25

API Application Programming Interface. 7, 8, 19, 21,
24

ARM Automatic Restart Manager. 8

AS Autonomous System. 34, 35

CAIDA The Cooperative Association for Internet Data
Analysis. 34

CPU Central Processing Unit. 11, 12, 15, 22, 27, 30

DFA Deterministic Finite Automaton. 34

DHT Distributed Hash Table. 5, 34, 35

ECC Elliptic Curve Cryptography. 20

FIFO First in first out. 12

FSNSG Free and Secure Network Systems Group. vii

GNUnet GNU’s Framework for Secure Peer-to-Peer Net-
working. vii, 2, 7, 8, 19–21, 23, 24, 27, 28, 30, 32–34,
40

HPC High Performance Computing. ix, xi, 2, 14, 15, 18,
27, 37, 38, 41

IO Input/Output. 15, 23, 30

IP Internet Protocol. 34, 35, 53

IPC Inter-Process Communication. 7, 8, 12, 22, 24, 53

IPv4 Internet Protocol version 4. 40

LAN Local Area Network. 5

LRZ Leibniz Rechner Zentrum. 38

MPI Message Passing Interface. 37

NAT Network Address Translation. 40

NSE Network Size Estimation. 27, 30, 32, 51

xxi

xxii Glossary

OS Operating System. 7, 11, 12, 18

P2P Peer-to-Peer. ix, xi, 1–7, 19, 23, 24, 28, 30, 32–34,
40, 41

SSH Secure Shell. 37, 38

TCP Transmission Control Protocol. 7, 13

UDP User Datagram Protocol. 7

VPN Virtual Private Network. 34

WLAN Wireless Local Area Network. 5

1I N T R O D U C T I O N

Peer-to-Peer (P2P) networks are a special type of distributed system as con-
trol and ownership are typically decentralised. This further complicates the
design and implementation of P2P software: when a normal distributed sys-
tem fails to scale up to expectations, the software can be revised and an up-
dated revision be deployed quickly. With decentralised ownership and con-
trol, deploying system updates can be extremely costly and take decades. A
prime example for this is the ongoing switch from IPv4 to IPv6 [Leb09], high-
lighting the dangers of minor design flaws (here: the IPv4 address space) in
P2P networks.

Modern P2P networks are typically realised as overlay networks on
top of the existing Internet infrastructure. Today, we have different
applications based on such architectures offering anonymity (Tor [DMS],
Freenet [Cla+01]), electronic-cash (BitCoin [Nak08]), and content
distribution (Bittorrent [Coh08], Tribler [Zei+11]). The size of the resulting
networks range from thousands of peers to millions; their size often
being limited by the scalability of the respective architecture [Rit01], as
performance and thus user-experience can degrade with the size of the
network.

Thus, there exists an urgent need to evaluate the scalability of new P2P
designs before deployment to avoid (or at least reduce) the need for costly
updates later. Theoretical evaluations of protocols are useful to show that
a protocol cannot scale; however, showing that a particular implementation
does perform in practice requires experiments. Evaluating P2P protocols re-
quires experiments that assess the networks’ behaviour under conditions
such as churn (peers joining and leaving), malicious participants, and pos-
sibly various application-dependent usage patterns. For P2P overlay net-
works, different properties of the underlying Internet infrastructure might
also be of interest for such experiments.

P2P experiments can be classified into three types: simulation, emulation
and real-world instrumentation.

In simulation, the P2P system is abstracted into an executable model
which is then run and observed to obtain performance metrics. Simulations
can be useful to assess the scalability and security of the protocol during
the protocol’s initial development. However, as the actual P2P system is ab-
stracted, simulation cannot expose problems in a specific implementation.
As in our experience, implementations tend to have more flaws than theo-
retical designs, this limits the utility of using simulation as a tool for quality
assurance in the development of P2P systems.

On the other hand, evaluating P2P systems via real-world instrumentation
fails to provide an opportunity for reducing costly re-deployments (in the
case that flaws are discovered) as the real-world measurements can only
happen after the system has already been deployed. Still, such experiments
can deliver the most realistic data and they thus should be considered as
part of an overall system life cycle management approach.

This thesis documents an approach for evaluation of P2P protocols us-
ing emulation. In emulation, the actual P2P system is executed while the
underlying network infrastructure and the user behaviour are simulated. A

1

2 introduction

key challenge for emulators is to achieve scalability, as unlike simulators, the
complexity of the application is not reduced by abstraction. In this thesis, we
present our design and implementation of a distributed emulation method
that is expected to be able to carry out large scale emulations up to millions
of peers using modern High Performance Computing (HPC) systems.

Building on the recent work by Evans [EG11#1], this work represents an-
other step towards pushing emulation to the scales offered by simulation
and making the results from both approaches more comparable. Following
Evans’ approach, we use process-level isolation as a key lightweight method
to isolate multiple peers from each other on the same host, while also en-
abling the system to share certain (uncritical) resources among a group of
peers.

The key contributions of this thesis are: an adaptive bounded operation
queuing mechanism to automatically adapt the parallelism among opera-
tions according to the load on the system, a scalable distributed command-
and-control architecture for the emulation, a controlled shutdown mecha-
nism which ensures proper experiment termination regardless of the lo-
cation of the fault, and improved automated configuration generation by
probing for free ports.

The presented emulation method was implemented in GNU’s Frame-
work for Secure Peer-to-Peer Networking (GNUnet), offering various us-
ability improvements and simplified APIs over the previous testing infras-
tructure [EG11#1].

In this thesis, we demonstrate the capabilities of our method by running
various P2P benchmarks from the GNUnet system on a compute cluster
and the SuperMUC [Sup] supercomputer. Specifically, we conducted three
sets of experiments: setting up overlay networks with a particular topology,
which demonstrates the performance and scalability of our approach; decen-
tralised network size estimation [EPG12], which uses the result aggregation
and service sharing features of our system; and distributed matching of reg-
ular expressions [Sze12], which showcases emulations involving non-trivial
modelled user behaviour.

The rest of the thesis is organised as follows. Work related to evaluations
done through simulation, emulation and real-world instrumentation is dis-
cussed in Chapter 2. Chapter 3 describes the various design decisions that
have influenced the approach, while Chapter 4 describes issues faced during
implementation of the design and how they were resolved. A short descrip-
tion about the HPC systems which were used for conducting the experimen-
tal evaluations is presented in Chapter 6. Experimental evaluations of some
of the P2P applications carried out with the implemented approach are de-
scribed with their results in Chapter 5. Finally, Chapter 7 discusses some of
the shortcomings faced during the evaluations, ways to resolve them and
directions for future work.

2B A C K G R O U N D

We distinguish three methods for evaluating P2P applications, simulation,
emulation and real-world instrumentation. The system model shown in Fig-
ure 2.1 highlights the differences between these three methods.

In this model, the network layer represents the infrastructure enabling
communication among the peers. The application layer represents the be-
haviour of the P2P application; this is the layer which includes the new
components that are to be assessed by the experiment. Examples for inter-
actions between the application layer and the network layer include actions
such as sending a message to another peer for joining the overlay network
or receiving a search query from another peer. The user layer represents
the user’s behaviour while using the P2P application. Examples for interac-
tions between the user layer and the application layer include actions such
as starting and stopping the application, issuing search queries to the P2P
network and downloading data.

Application

User interactions

Network

(a) Instrumentation

Application

User interactions

Network

(b) Simulation

Application

User interactions

Network

(c) Emulation

Figure 2.1: P2P evaluation methods. Solid boxes indicate using real-world code and
systems whereas dashed boxes indicate the use of simulators which use
some abstraction over the real world. Arrows indicate interactions within
the system.

Methods to evaluate P2P applications differ in how they represent the
layers. Approaches using simulation abstract all three layers into some sim-
plified representation suitable for the respective simulator and gather eval-
uation data from the resulting execution. In real-world instrumentation, the
evaluation data is gathered by augmenting the network or application lay-
ers with additional monitoring logic. In emulation, experimental data is
obtained by modelling the user and network layers and observing the in-
teractions with the P2P application’s concrete implementation. This chapter
describes the state of the art for these methods.

2.1 real-world instrumentation & testbeds

Testbeds are widely used for testing and profiling of various distributed
applications and protocols. Testbeds range from a cluster of few hosts at a
research organisation to an interconnection of globally located hosts such as
PlanetLab [Chu+03]. Testbeds relate to the evaluation model as follows: at
the application layer, concrete implementations of the protocols are run; the
network layer is also realistic, for example in PlanetLab the actual Internet

3

4 background

is used. Depending on the experiment, the experimenter might passively
observe the actions of real-world users (as done, for example, in [HG11]) or
simulate user actions to trigger interesting events (as done, for example, in
[Isd+10]).

Thus, depending on the type and size, testbeds can produce realistic eval-
uations for networking experiments; however, unless real-world users are in-
cluded, the size of the experiments is typically rather limited. The problem
arises when accommodating large number of peers—most of the available
testbeds[Chu+03; Bol+06; Nit], comprise only of a few hundreds of nodes.
Once real-world users are incorporated in the experiment, deployment (and
redeployment) costs may rise dramatically and reproducibility suffers as
well: global scale testbeds such as PlanetLab provide an uncontrolled en-
vironment as they use the Internet to connect the individual nodes. The
outcome of an experiment performed these testbeds is thus affected by the
network conditions of the Internet at the time of the experiment execution.
Such testbeds thus cannot vouch for reproducibility of networking experi-
ments.

A recent advancement to address the uncontrolled topology and traffic be-
haviour of in PlanetLab is to create an overlay network above the Internet to
have a more controlled routing among PlanetLab nodes [Fre+12]. It is how-
ever, intentionally made, susceptible to the delays and looses experienced in
the Internet. One method to address scalability issues is the integration of
two or more testbeds for use in a single networking experiment [Mak+12].
Such efforts increase the number of nodes available and also extend the
capabilities of a testbed with those of the others.

Real-world instrumentation is also useful to showcase the real-world
trends of the Internet; however, this typically requires long-lived experi-
ments [Spr+06]. Due to the diversified node locations, such global-scale
testbeds are also sometimes used as a primary infrastructure for P2P sys-
tems [Rhe+05].

2.2 simulation

Taking the definition from [Ban+98], simulation is defined as “the imitation
of the operation of a real-world process or system over time”. The imitation is
possible by constructing a model of the process or system and observing the
interactions of the model within itself and with the external environment,
which is also typically represented by a model.

Simulations are used in a variety of fields such as physics, chemistry, biol-
ogy, warfare, meteorology, logistics and engineering. A significant property
of simulations is how the interactions change the state of the model. Simu-
lations involving continuous input from the environment (such as compu-
tational fluid dynamics) and continuous output from the model are called
continuous event simulations. Modelling for such simulations is commonly
done in the form of differential equations which act on the input events to
generate continuous output. The other major type of simulations are discrete
event simulations, where the input is in the form of discrete events (such as
in logistics or computer networks), and where the model has to generate a
discrete response.

The type of the simulation to use is dependent on the abstraction of the
model and the questions which are to be answered from the simulations. For
simulating the routing behaviour of a computer communication network
and to determine the average latency of messages, it is enough to model the

2.2 simulation 5

sending and receiving of messages at various nodes in the network as dis-
crete events and thus use discrete event simulation. If our aim is to observe
the physical layer properties and to simulate the attenuation of signals in
the network, the electrical properties of the transmission medium are typi-
cally modelled as a set of equations and continuous event simulation would
be more appropriate in this case.

For evaluating P2P protocols, we are typically interested in simulating
message routing among peers, per peer resource consumption, and network
characteristics such as latency and loss. These requirements can be satisfied
by constructing a discrete event simulation model of the underlying network
where sending and receiving packets are considered as discrete events.

There has been a considerable amount of research done in the field of
discrete event simulators for computer networks. Notable among the early
popular network simulators is the Network Simulator 2 (NS-2) [FV07]. Sim-
ulations are given to NS-2 as Tcl scripts which specify the topology in which
nodes are to be connected and the link properties, the traffic generators and
sinks, various queuing mechanisms and monitoring points. NS-2 also allows
simulation of custom protocols. For this a model of the protocol has to be
coded in C++.

While the NS-2 simulator is a generic network simulator, it has extensions
which can increase its scope to simulate a wide variety of networks — Local
Area Network (LAN), Wireless Local Area Network (WLAN) and satellite
links. Further extensions exist to simulate interconnection of different types
of networks and radio signal propagation for wireless networks.

As P2P systems share some basic functionality, efforts were made to build
simulators for P2P systems. Peersim [MJ09] is one such simulator developed
using Java. The protocols to be simulated are to be modelled in Java accord-
ing to the simulators exported interface.

OverSim [BHK07] and P2PSim [Li+05] improved support for unstruc-
tured and structured P2P overlay network protocols like Chord [Sto+03],
Kademlia [MM02], Pastry [RD01], Kelips [Gup+03] and Tapestry [Zha+04].
The motivation behind using this type of simulators is to compare the eval-
uations of existing overlay protocols after modifying some parts of their
functionality. OverSim is built using the OMNet++ [Var+01] discrete event
simulation framework; protocol modelling is done in C++ with the help of
interfaces exported from OMNet++. P2PSim is developed in C++ and re-
quires the protocols to be modelled as C++ classes.

Apart from the generic P2P network simulators, domain or application
specific P2P simulators are also available. These simulators ease the mod-
elling required for a generic P2P network simulator to simulate a given
P2P application. Examples for such simulators are ChunkSim [Kan+07] and
PlanetSim [PAGL09]. Chunksim is designed to simplify simulations of P2P
content distribution protocols. The authors of Chunksim claim that overlay
network details are typically irrelevant while studying content distribution
protocols. Using Chunksim, designers of such protocols can instead focus
on content distribution and peer selection strategies. PlanetSim supports in
addition to structured overlays such as Chord and Symphony [MBR+03] a
few P2P application layers such as Distributed Hash Table (DHT) and churn
models. Other examples for domain specific simulators are Shadow [JH11]
which is designed to simulate Tor [DMS], and P2PRealm [Kot+06] which is
designed to simulate P2P protocols based on neural networks. Since neural
networks require a time consuming training phase, P2PRealm focuses on
efficiency rather than packet level simulations.

6 background

Most of the P2P simulators discussed so far are not distributed; they are
run on a single host. Even though some of them achieve large scale simula-
tions (107 peers in the case of simple protocol simulations in Peersim[MJ09]),
scalability is further enhanced by using distributed P2P simulators. dPeer-
Sim [Din+08] is one such distributed P2P simulator developed by extending
PeerSim. These simulators run on multiple nodes and together with some
abstractions and assumptions derived from the domain knowledge of dis-
tributed systems, can achieve good simulation performance by sacrificing
some accuracy [Lin+05].

A comprehensive survey of available P2P simulators is published
in [Nai+07]. From the findings, it is to be noted that, no simulation model
seems to be broad enough to satisfy requirements of various research
groups who clearly often find it easier to create yet another simulator.

A key advantage of simulation is that the process or system in question
does not have to be implemented. Thus, simulation can be used as a cost
effective method to evaluate ideas before developing them. However, it suf-
fers from the modelling inaccuracies which often cause simulation to give
incorrect results or bad estimates [CFS09].

2.3 emulation

Emulation executes the real-world software at the heart of the experiment
while using simulation for user interactions and possibly the network layer.
This reduces inaccuracies when compared to simulation, as at least the
component under test is not abstracted. Emulation is commonly used for
networking experiments with network testbeds [Ben+06; Bol+06; Whi+02]
where real protocol implementations are run on different kinds of emulated
networks and devices.

The job of the emulation system is to enable the interaction between the
real-world software and the simulated environment. In particular, the emu-
lator specifies and provides an interface that the real-world application will
use for its execution.

Emulators resort to virtualisation to isolate components of the system that
are executed on the same hardware and to simulate realistic environmental
conditions, for example by creating communication latency between two
components that run on the same host. Different levels of virtualisation ex-
ist, which allows emulator designers to trade realism for efficiency. At the
operating system level, processes can be used to virtualise CPU and memory
resources; and process’ system calls can be intercepted to provide a virtu-
alised view of the operating system [Vah+02]. At the host level, physical
hardware can be virtualised so that multiple instances of entire operating
systems can run on the virtualised hardware. This gives stronger isolation,
unnecessitating the sharing of file systems and networking resources, but
involves higher overheads as a hypervisor has to enforce the separation be-
tween operating systems, which typically requires additional instructions
or hardware support. Hypervisors like Xen [Bar+03] are widely used for
employing host level virtualisation in P2P emulation experiments [Wei+11].

The overhead incurred due to host level virtualisation limits the scalabil-
ity of the emulation. This is addressed by some emulators [Hib+08; LHM10;
Han+12] by using lightweight forms of virtualisation through containers in
Linux, jails in BSD-style systems and zones in Solaris. This form of virtuali-
sation provides each guest its own file-system and virtual network interface

2.4 gnunet architecture 7

while sharing the same operating system kernel and thus avoiding the need
for an hypervisor in addition to the operating system.

Unlike simulation, emulation typically runs in real time and is thus con-
strained by the physical limits of the given resources. For example, the
fastest link bandwidth that can be emulated in an emulated network topol-
ogy is the fastest physical link connection provided by the physical network.
This limit can be overcome by emulators using Operating System (OS) level
virtualisation by slowing down the time of the virtual instances [Vis+09;
Gup+11; Gup+05].

Since most of the P2P applications are run as user program and often in
the background, they typically do not require exclusive access to network
resources. Also, since P2P protocols are designed to sustain network delays
and brief network outages, they can sustain reasonable levels of contention
for the shared network resources. Thus P2P application emulations do not
require the high realism and isolation offered by host level or OS level vir-
tualisation.

Taking advantage of these relaxed requirements allows P2P emulators to
achieve high scalability using the lightweight isolation offered by OS pro-
cesses, allowing the emulator to run multiple peers within the same operat-
ing system as processes. A key disadvantage of this method is that network
properties, such as latency and loss, need to be addressed manually, either
by intercepting system calls or by additional logic placed within the P2P
application.

The emulation system presented in this thesis uses this approach of
process-level isolation with additional logic placed within the P2P appli-
cation; we are building on the basic design used by [EG11#1] to emulate
large-scale P2P applications, which we will discuss in Section 2.5. While the
method is not specific to GNUnet, understanding the GNUnet architecture
is helpful to understand some of the nuances and specific design choices of
our design and implementation, which is why we will briefly review it next.

2.4 gnunet architecture

GNUnet is a framework for developing P2P applications. Peers in GNUnet
comprise of several processes called as services. Services are responsible for
providing a particular functionality and capability of a peer. For example,
the TRANSPORT service is responsible for making connections to other peers
through different transport mediums such as Transmission Control Protocol
(TCP) or User Datagram Protocol (UDP).

Controlling and accessing peers’ services is facilitated through respective
client Application Programming Interface (API). Service and their client
APIs use a client-server architecture with the service acting as a server and
the respective client API as a client. Services in GNUnet can thus depend on
other services’ functionality by accessing respective service’s client API. For
example, the CORE service provides encrypted connections to other peers.
It depends on the TRANSPORT service for providing the actual communica-
tion. Furthermore, the TRANSPORT service depends on the PEERINFO service
to remember the addresses of known peers through peer shutdowns.

A service’s client API implements the required Inter-Process Communica-
tion (IPC) routines needed for communication with the service along with
some other house-keeping routines. A service can be configured to use TCP
or UNIX domain sockets to listen for its client API’s IPC requests. The de-
tails are specified in a configuration file which the service accesses during

8 background

start-up. In this configuration, resources such as ports numbers (for tcp) and
file names (for IPC through UNIX sockets) are specified. The client-API then
uses the same configuration to determine the address where the correspond-
ing service is listening to connect to it.

Since a peer in GNUnet is made up of individual services, starting it
involves starting all of its services. The Automatic Restart Manager (ARM)

service of a peer undertakes the task of starting and stopping of the peer’s
services. During peer startup ARM starts the services which are marked
as default services in the peer’s configuration. ARM is also responsible for
stopping services when shutting down the peer. It can also start services on-
demand — services’ start-ups are delayed until requests for those services
arrive. Additionally, ARM monitors the services it started and restarts if any
of those service crash.

2.5 distributed large scale emulator for p2p protocols

An earlier version of the GNUnet system already used process-level isola-
tion for large-scale experiments using emulation [EG11#1]. The approach ex-
ploits GNUnet system architecture to start multiple peers on a given host. As
GNUnet is (largely) written in C, this allows the operating system to share
memory for application binaries and other non-writable process resources,
allowing the system to run thousands of peers on standard desktops.

Access to emulated peers is facilitated through a library which enables
the profiling driver program to control peers, specify which peers are to
be connected and modify the configurations of running peers. The library’s
Application Programming Interface (API) also supported high-level opera-
tions which could be used to control a group of peers, access services of
peers and specify a network topology according to which the peers were to
be connected. The architecture of the old testbed is shown in Figure 2.2.

OS

E
m
u
l
a
t
i
o
n

L
i
b
r
a
r
y

Profiling
Driver

starts

calls

gen
era

tes
config

uses

Peer B

CORE

TCP
GNUnet

WLANDV HTTPUDP
GNUnet GNUnet GNUnet GNUnet

TRANSPORT

DHT

SUPERVISOR

calls

s
t
a
r
t
s

generates

Peer A

CORE

TCP
GNUnet

WLANDV HTTPUDP
GNUnet GNUnet GNUnet GNUnet

TRANSPORT

DHT

SUPERVISOR

calls

starts

callss
t
a
r
t
s

config

uses

Figure 2.2: Architecture of the old GNUnet testbed (Figure from [EG11#1]).

While the profiling driver program and the emulation library are run on
a single host, the approach supports distributed emulation by deploying
peers on to different hosts. Connections to remote hosts are made through
SSH for starting and managing peers. This has become a bottleneck while
staring large number of peers on many hosts as the testing driver running
on a single host has to open many SSH connections. In many cases, the
operating system running the driver either runs out of source ports or hits
a per-user port or file-descriptor limit. Although the limits can be relaxed, it
still is a bottleneck as these resources are limited on any given host.

2.5 distributed large scale emulator for p2p protocols 9

Another limitation of the old implementation is that the bounds on the
number of parallel operations require manual tuning for each experiment.
Results in [EG11#1] show that the approach is scalable: it can run on devices
ranging from embedded computers to workstation class clusters. However,
this is achieved at the expense of tuning the various bounds based on a
host’s resources to get optimal performance. The old emulation system also
had serious troubles with clean experiment termination and error handling
and expected exclusive access to the target systems; in particular, it did not
tolerate ports being already in use for unrelated activities.

3D E S I G N

In this chapter we present our design for an infrastructure which we refer
in the remainder of this thesis as testbed to emulate large numbers of peers.
This design borrows ideas from the existing emulation method discussed
in Section 2.5 using a light-weight isolation technique. Key considerations
of this design are to support emulation on multiple hosts using a scalable
hierarchical architecture to control the emulation process, to utilise the hosts’
resources optimally using an adaptive mechanism to schedule operations,
fault detection and handling in the emulation process, and the ability to
modify peers’ behaviour at run-time.

3.1 instance isolation, configuration and co-ordination

In this design, we run multiple instances of an application on a single host
with each instance representing a peer. This requires isolation between the
instances to prevent instances from interfering with each other. Running
each instance as a process is beneficial since the OS provides isolation by vir-
tualisation of the Central Processing Unit (CPU) and memory. Further mech-
anisms are required for isolating peer-specific information and resources.

By generating a configuration with unique resources for each instance,
multiple instances can co-exist on the same host. On the other hand, shar-
ing of resources among a group of instances can be achieved by having a
common resource in all of the generated configurations.

An experiment driver program directs the control of the emulation to the
experiment controller. The driver dispatches operations to the controller to
create peers, start and stop peers, access peers’ services, and connect peers
to form an overlay network. These operations are then executed by the con-
troller which signals the driver about the operation’s success (with an op-
tional result) or failure. Additionally, the driver collects evaluation data from
the peers.

3.2 operation queues

An implication from desiring a scalable architecture is to make the testbed
utilise resources optimally. This is achieved by executing independent oper-
ations which can use the resources simultaneously in a parallel fashion to
reduce their overall execution delay.

The number of operations started in parallel is called the parallelisation
factor and directly impacts the load on the resources. A low parallelisation
factor may result in resources being under-utilised when compared to a
higher degree of parallelisation. This direct relationship, however, does not
imply that a high parallelisation factor achieves better performance. This
is due to that fact that with heavy parallelisation of operations, resources
can get over-utilised. With over-utilisation, overheads arise from resource
scheduling which degrade the overall performance. This is called thrashing.
For example, a single core processor can be best utilised by running two
processes which need CPU for only 50% of the time or by running a single
CPU-intensive process which needs 100% of CPU. If two CPU-intensive pro-

11

12 design

cesses are run in parallel, a kernel with round-robin scheduler has to share
the CPU between the processes by performing task switches which incurs
overhead. This overhead can have significant impact on system performance
if large number of processes are run in parallel as the scheduler has to do
many task switches. The problem of thrashing can be tackled by bounding
the parallelisation factor in the testbed.

Another concern with executing operations in parallel is that their re-
source consumption demand has to be limited to stay within bounds given
by the OS. For example, on most UNIX systems a process is by default lim-
ited to have a predefined number of file descriptors open. Handles for socket
communication, IPC and files all occupy a file descriptor. If a process hits
this limit, then the operating system will refuse open further file descrip-
tors. These restrictive measures by the OS can be fatal for an experiment
and hence the parallelisation factor has to be bounded in a way that the
parallel operations’ resource requirements are below the permissible limits.

Bounding the parallelisation factor can is realised in our design by em-
ploying operation queues — queues which allow a fixed number of opera-
tions to be active at any time. An operation queue is a quota-based First
in first out (FIFO) queue for a resource which limits the number of opera-
tions using this resource. The quota of an operation queue determines the
number of units of the resource that can be used simultaneously. Operation
queues have several lists in which operations are queued with their resource
demand depending on their current state. The relation between the current
state of an operation and its corresponding list is described in Table 3.1.

State list Description

Waiting Wait list The operation is waiting in the operation
queue’s wait list to be activated.

Activated Active list The resources required by the operation are
assigned and the operation is being exe-
cuted.

Finished – The operation has finished execution. The re-
sources assigned to it are unassigned from it
and the operation is destroyed.

Deactivated Inactive list The operation has finished execution, but its
resources are not unassigned.

Table 3.1: States of an operation and corresponding list within the operation queue

When a new operation is queued, the operation queue checks if it has
sufficient resources to meet the demand of the new operation, the operation
will be activated. If the operation queue has exhausted its quota, the opera-
tion is kept in the queue’s wait list. Here it stays until the other active jobs in
the queue reduce their resource requirements sufficiently to allow the queue
to satisfy the operation’s demands.

Once an operation is activated, the queue allocates the resources to the
operation and the available units of the resources are decreased by the op-
eration’s resource demand amount. The operation is then executed with the
requested resources. Once the operation is activated, it allocates its resources
and generates a result object which is returned to the experiment driver. Of-
ten, the result object relates to the requested resources and prevents them
from being used by other operations. The driver is expected to explicitly
mark the operation as done once it no longer requires the result object. The

3.2 operation queues 13

done (op)

release
op’s

resources

wait list
empty?

resources
available
for next

operation
n?

activate n

return

no

yes

yes

no

Figure 3.1: Marking an operation op as done

driver can also cancel an operation before it is activated, again by marking
it as done.

When an operation was activated and then marked as done (see Figure 3.1),
its resources are released and the available resource units of the operation
queue it is queued into is increased by the operation’s resource demand
amount. The operation queue will then try to activate other operations in
its wait list.

An another design decision to be considered is the re-usability of re-
sources. Often, operations have to open handles to resources before access-
ing them (e.g. opening a socket handle for a TCP connection) and may incur
some delay due to setup or overhead (delay due to TCP handshake). When
an operation using these resources is marked as done, it relinquishes them
by closing these handles. Latter operations in the same operation queue will
then have to open respective handles and thus incur a delay again. These
delays can be mitigated by having operations close the resource handles
on-demand. This can be realised by deactivating operations as shown in Fig-
ure 3.2 instead of marking them as done.

Upon deactivating an operation, its resources are not immediately re-
leased but it is moved to the operation queue’s inactive list. It stays there
until it is activated again or marked as done. The idea is that, when the
resource creation of a future request matches that of another recently deacti-
vated operation (e.g., another TCP connection is needed for the same service
in a situation where TCP streams can be re-used), the resource can simply
be reused by activating the deactivated operation instead of queuing a new
operation and performing the initialisation operations repeatedly. Naturally,
if the resource is to be used in a different way (e.g., for a TCP connection to
a different service) a new operation is queued instead of reusing an inactive
operation. At this point, if the quota of the operation queue is exhausted, the
queue then purges deactivated operations (by releasing their resources and
transitioning their state to done) until the new operation’s resource demand
can be satisfied.

14 design

deactivate (op)

add op to
inactive

list

wait list
empty?

mark op
as done

return

no

yes

Figure 3.2: Deactivating an operation op

Deactivated operations require further processing while adding new oper-
ations to an operation queue since the resources of the deactivated operation.
The control flow for this process is shown in the Figure 3.3.

Since an operation can require access to multiple resources, it is common
for it to be queued into multiple operation queues. In this case, the opera-
tion is activated once all the operation queues it is queued into have enough
available resources to meet the respective resource demands of the opera-
tion.

Another advantage of our operation queue design is that it can help avoid
duplicating an operations’ result objects. For example, consider the opera-
tion to fetch the configuration of a given peer. Upon its completion, the op-
eration’s result (the fetched configuration) stays valid until the operation is
marked as done. The experiment driver can thus avoid unnecessary memory
duplication by using this configuration directly as long as it is valid.

3.3 adaptive bounded parallelism

Having a bound on the parallelisation factor still has the risk that the con-
figured bound may trash low-end systems where frugal resource usage is
required. On the other hand, the configured bound may become too con-
servative for high-end systems which have more resources and can accom-
modate aggressive parallelisation. Thus, before starting an experiment, the
given system has to be assessed to find the optimal degree of parallelisation
which can then be used to bound parallelisation factor.

Such assessments are suitable for systems which are guaranteed to main-
tain the same number of resources between different runs of experiments.
Examples for such systems include single nodes and locally networked
small group of workstations. In such systems, resources are not allocated
dynamically in contrast to the HPC systems (e.g, compute clusters and su-
percomputers) which often require resource allocation prior to starting the
experiment. Assessing a bound for parallelisation factor for a group of re-

3.3 adaptive bounded parallelism 15

add (q, op)

quota ex-
hausted?

activate op

return

purge de-
activated?

add to
wait list

mark de-
activated

operations
as done

no

yes no

yes

Figure 3.3: Adding an operation op into an operation queue q

sources on HPC systems becomes tiring and overwhelming for an experi-
menter who typically allocates varying quantities of resources based on the
experiment’s requirements. To address these situations, the testbed has to fa-
cilitate automatic assessment of the parallelisation factor by considering the
quantity of resources available. This feature frees the experimenter from the
hassles of determining the parallelisation factor manually, even for systems
with fixed number of resources.

Additionally, depending on external factors (e.g., network congestion,
presence of other tasks accessing CPU or Input/Output (IO)) and also on
internal factors (e.g., load induced by the experiment or testbed itself), the
load on the system can vary dynamically. With a varying system load, a
static bound on the parallelisation factor assessed automatically or manually
cannot guarantee that the resources are used optimally without thrashing.
Hence, a mechanism is required to continuously adapt the parallelisation
factor such that the resources are used optimally.

In our design, the bound on the parallelisation factor is determined adap-
tively by statistically comparing the average operation completion time (t)
of the currently active operations with the set of averages of previous opera-
tions’ completion times (T). The parallelisation factor (D) is adapted accord-
ing to the heuristics described in the following algorithm:

With the above mechanism, testbed continuously probes the system if it
can handle the varying D by having equally many active operations. If the
system coped well with the given D, t is reduced which leads to an increase
in D. This continues until the system is fully utilised and the overhead in-
volved in parallelisation begins to dominate. At this point, the thrashing
is realised by testbed from the increased t and D is reduced until t starts
to decrease. This approach of using statistical analysis over the operation
completion times has the advantage that it considers the utilisation of all
resources required for the operations implicitly—any contention in any of
the resources will prolong operation completion times.

Due to the computational effort involved in calculating the statistical val-
ues over of set of averages previous operations’ completion times (T), T ’s

16 design

ALGORITHM 1: Determining the parallelisation factor D
Require:
t: the average completion time of the current set of active operations
T : the list of averages of previous operations’ completion times
n: the current number of elements in T
M: the maximum number of elements that can be in T
if t 6 avg(T) then
D← 2D

else if t 6 (avg(T) + σ(T)) then
D← D+ 1

else if t 6 (avg(T) + 2σ(T)) then
D← D− 1

else if t > (avg(T) + 2σ(T)) then
D← D/2

end if
if 0 = rand(D) then

if M = n then
T ← T \ head(T)

end if
T ← append(T , t)

end if
return D

size is bounded by having newer values replace older values. A new con-
cern arises from this setting: when D is increased, the completion times of
the increased number of operations will flush out the older values from T

quickly as there are many of them now. This results in T having more better
values quickly than before, which will make the heuristics linearly increase
D when it could be doubled. Also, upon a slight increase in t, it results in
quickly reducing D. Neither of these behaviours are desired as they fluc-
tuate D frequently. For this reason, T is updated with new values with a
probability of 1/D to limit the flushing of T when D increases.

3.4 scalable architecture

One of the goals for the testbed is to be able to run distributed experiments
on a wide variety of platforms – from desktop machines to compute clusters
of different sizes and supercomputers. A characteristic difference among
these platforms is the number of hosts they have. While an approach with
centralised architecture [EG11#1] is well suited for distributing emulation
among small number of nodes, the centralised components become a bottle-
neck with large number of nodes.

We address this issue by distributing the management of emulation
among multiple hosts along with the emulation. This is done by starting
a controller on each of these hosts which supervise the emulation locally on
their respective hosts. The controllers are connected with each other in a hi-
erarchical master-slave architecture with the experiment driver connecting
to the master controller as shown in Figure 3.4. The hierarchical arrange-
ment aids scaling as it allows for abstracting branches of the hierarchy by
placing intermediate slave controllers. It also allows for the master controller
to control an unlimited number of slave controllers which is not possible if
the slave controllers are to be directly connected to the master controller (as

3.4 scalable architecture 17

there is a limit on the number of connections a single process is allowed to
have open at the same time).

The controllers manage the emulation by forwarding the operations dis-
patched by the driver to either all controllers or to the controller responsible
for executing the operation. Upon termination of the emulation, the con-
trollers clean up any local state associated with the emulation and signal
the result.

Experiment Driver

Master controller

Hierarchical link
Lateral link

Slave controller

Slave controller

Slave controller

Figure 3.4: Controller hierarchical architecture

In addition to supporting hierarchical links between controllers, the de-
sign supports lateral links to be established between any two controllers.
Lateral links serve as an optimisation to reduce load at the more centralised
controllers situated high in the hierarchy when executing operations which
require two controllers to coordinate. An example for such operations is the
operation which attempts to establish a connection between two peers. If the
two peers happen to be on the same host, the host’s controller will solely act
upon the operation. In case the peers are running on different hosts, their
respective controllers co-ordinate to negotiate a connection by exchanging
the peers’ addresses by establishing a lateral link. These interactions are
illustrated in Figure 3.5

While establishing a lateral link, it is important to establish them on-
demand as it relives the controllers to establish them during start-up. This
has the advantage that the controllers do not have to spend time at start up
establishing these links and hence quickly start the experiment.

Controller

Host

Peers

Host

Peers

Controller

manages manages

Lateral link

Overlay connections

Figure 3.5: Controllers use lateral links to establish peer connections across hosts.

18 design

Since a lateral link involves a network connection it utilises a file descrip-
tor – a critical resource since the OS has defined limits on the number of
open file descriptors. For this reason, opening a lateral link has to be re-
alised by a corresponding operation which has to be queued in the opera-
tion queue (Section 3.2) for the number of open file descriptors. This helps
to keep a check on the number of file descriptors opened by a controller.
Also, the corresponding operation queue logic can be used to achieve some
efficiency by reusing lateral connections as described in Section 3.2.

3.5 controlled shutdown & crash detection

To shutdown the experiment or in the case of an error while running the
experiment, it is required for the testbed to provide a ability to shutdown
the experiment in a controlled manner. The experiment driver initiates the
shutdown by sending a shutdown signal to the controller hierarchy. Upon
receiving the shutdown signal, the controllers stop the peers, destroy any
state associated with them and propagate the shutdown signal to further
controllers below in the hierarchy. It should be noted that a controller does
not terminate while controllers further down the hierarchy (or any of their
peers) are running. Instead, the controller waits until all of its child con-
trollers are shutdown. This ensures that the shutdown call in the experiment
driver waits until all controllers are shutdown successfully. Any prolonged
delay during the shutdown can then be attributed to a faulty peer which
refused to terminate and if such faulty situation arises such peer can be eas-
ily located and debugged by following the shutdown-waiting branch of the
controller tree.

Controlled shutdown also proves useful while working with systems with
reservation based usage schedulers. Most of the HPC systems fall under this
category which require the experimenter to obtain a reservation prior to ex-
ecuting experiments. While some systems support extending reservations
dynamically such requests can be denied. In such case, the systems signal
the experimenter’s processes to shutdown after the reservation has expired.
A controlled shutdown ensures that the experiment driver terminates only
when all peers are shutdown. This helps the driver to collect valuable data
generated while the peers are shutting down. Without a controlled shut-
down such data would get lost when the experiment driver is aborted.

An another desired feature is the ability to shutdown gracefully an ex-
periment when one of the controllers in the tree crashes resulting in an in-
valid experiment. This ability is invaluable when working with reservations
where compute time is accounted for. Leaving a failed experiment running
until the reservation expires would result in wasted resources.

3.6 re-configuring peers

Experiments may require peer behaviour to be changed while running the
experiment. An example for such a scenario is described in [EG11#2] where
benign peers had to be reconfigured to be made malicious.

To re-configure a peer, the driver generates a new configuration and
passes it to the controller hierarchy. The controllers distribute the new con-
figuration to the controller running the respective peer which updates the
peer’s configuration.

4I M P L E M E N TAT I O N

We implemented the design approaches for our emulation method in the
GNUnet testbed as a part of the GNUnet P2P framework. With the testbed
an experimenter can evaluate P2P protocols by implementing them as peer
services in GNUnet and developing an experiment driver program which
interfaces with the testbed library for experiment setup and control.

In this chapter we describe the architectural overview of the testbed, how
an experimenter can create and run evaluations, and some techniques to
optimise emulation runs.

4.1 testbed architecture overview

The implementation of the testbed is divided into the following parts:

• testbed API: is a library used by the experiment driver programs as
an interface for the testbed to control the emulation. It provides the
functions for managing the testbed and the peers. Testbed manage-
ment functions enable setting up a testbed controller hierarchy as de-
scribed in Section 3.4 by starting controllers and connecting them. Peer
management functions enable creating, starting and stopping of peers,
fetching a given peer’s configuration and identity information, estab-
lishing overlay connections between two given peers and accessing
peers’ services. These functions issue the respective operations to the
testbed: create peer, start peer, stop peer, overlay connect, get info, service
connect. Additionally, the testbed API also provides convenience func-
tions to connect a given set of peers in some particular topology, gather
statistics from a given set of peers and to quickly setup the testbed on
a given set of hosts.

• testbed service: is the controller which is started on every host to man-
age the distributed emulation. Controllers running on different hosts
are connected to each other to form the controller hierarchy. The con-
trollers in the hierarchy manage the operations generated from the
testbed API by forwarding them to the corresponding controller.

• testbed helper: is a program to start the testbed service on remote hosts
and to perform local state cleanup if the controller crashes.

4.2 experiment start-up

The experiment driver starts an emulation by launching the testbed helper
program using the testbed API on the hosts provided to run the experiment.
In addition the driver provides the helper with a configuration template
used by the helper to generate unique configurations for the controllers.
These unique configurations ensure that the controllers run without re-
source conflicts (for example, listen ports). Once a controller is successfully
started on a host, further controllers can be started by this controller. This is
done similarly by starting the helper programs on respective hosts to form
a hierarchy as described in 3.4.

19

20 implementation

The helper programs are started on given hosts through a remote shell;
ssh is used by default but this choice can be changed by the experimenter.
The testbed API and the helper communicate through the helper program’s
standard input through which the configuration template is read by the
helper and standard output through which the generated configuration is
sent back to the experiment driver.

Peers are created by the experiment driver by issuing create peer opera-
tions. While creating a peer, the driver has to provide a template config-
uration and the host where the peer has to be created. The operation is
forwarded to the controller running on that host. The controller creates the
peer by generating a unique configuration based on the template configura-
tion. The generated configuration is placed into a unique directory which is
used to isolate the peer from other peers.

Since the testbed uses process-level isolation, the generated configuration
for a peer must not have conflicting system resources such as already in use
network sockets. This is supported by generating an unique configuration
for each peer by modifying possibly conflicting variables in it with unique
and non-conflicting values. For example, port numbers for peer’s services
in the generated configuration are only assigned if they are not used yet. As-
signed ports are then marked by the controller so that they are not assigned
again. The configuration variables that are used to isolate a peer’s services
in the current code scope of GNUnet are listed in Appendix Table B.1.

Along with the configuration, creation of a peer requires assigning a
hostkey. Peers in GNUnet derive their identity from their respective hostkeys
and need them for communicating with other peers. A hostkey of a peer
consists of a cryptographic public/private key pair and is generated by the
peer upon start up if it is not present. The current implementation of the
GNUnet uses Elliptic Curve Cryptography (ECC) to generate and use these
hostkeys.

As observed in [EG11#1], the hostkey generation is computationally ex-
pensive and incurs a significant cost if a hostkey has to be generated for
all peers in the testbed. For this reason, following the approach suggested
in [EG11#1], the hostkeys are pre-computed and assigned to the peers upon
their creation by copying the pre-computed hostkeys into the peers’ unique
directories.

Once the peers are created the driver can run them by issuing the start peer
operation which causes the peer’s controller to start GNUnet’s ARM service of
the peer. The ARM service, described in Section 2.4, starts the peer’s services.
After starting a peer, the driver may shutdown it with the stop peer operation
which causes the peer’s controller to kill the ARM service of the peer. When
terminating, the ARM service causes the peer’s services to shut down.

4.3 running an experiment

After peers are started, the driver can interact with the peers to connect
them in a topology, connect to services of peers and gather data from them.
The following subsections describe these operations in details.

4.3.1 Overlay connections

Connections between given two peers are established through the overlay
connect operation. The operation establishes a undirected overlay connection
between two given peers A and B by connecting peer B to peer A.

4.4 normal and abnormal experiment termination 21

In GNUnet, establishing overlay connections involves peers exchanging
identity and address information in messages called HELLO messages. The
work-flow of the operation using GNUnet’s CORE service and TRANSPORT

service is summarised below:

1. Connect to the CORE service of A to get its identity and to register a peer
connect callback through which new peer connections to A are notified

2. Connect to the TRANSPORT service of A and acquire its HELLO

3. Connect to the TRANSPORT service of B and offer it A’s HELLO

4. Ask the TRANSPORT service of B to connect to A

5. Wait until B’s connection to A is notified through the peer connect call-
back

If A and B are controlled by the same controller the work-flow is handled
solely by this controller. However, if peers are distributed among various
controllers, the above work-flow has to be split across the controllers. In
such cases, controllers forward the request to the controller of A which then
connects to the controller of B by establishing a lateral link to complete the
overlay connect operation. The controller of B then takes the tasks associated
with B in the work-flow.

The controller forwarding an overlay connect request also takes care that
controller of A is aware of B’s controller. This is essential since the controller
of A has to connect to the controller of B via a lateral links. The lateral links
are established using operation queues as described in Section 3.4.

4.3.2 Accessing peers’ services

In GNUnet a peer’s service is accessed through the respective client API
as described in Section 2.4. Accessing a service requires the configuration
of the peer. Since the configuration of a peer is modified to be unique by
the respective controller process, the service connect operation fetches the
configuration from the controller which created the peer. The testbed API
then provides this configuration to the experiment driver which can use the
respective service’s client API to connect to the peer’s service. This entire
process is managed using operation queues to limit the number of sockets
in use and to re-use sessions (especially their respective TCP connections) if
possible.

4.4 normal and abnormal experiment termination

Once the evaluations are completed, the driver may terminate the emulation
by sending a termination signal to testbed. It is also possible that a compo-
nent causes the experiment to terminate abnormally, for example because a
host experienced hardware problems. In this case, the termination process
must initiated by the neighbours of the respective faulty component in the
controller hierarchy. Thus, all control channels used among the controllers
(and from controllers to peers) must enable bi-directional sensing. If either
side of the channel dies, the other side must then trigger a system-wide
shutdown, signalling the failure up and down the hierarchy to all other
components.

The components involved in managing the shutdown include: (1) the ex-
periment driver; (2) the testbed helper, which is started via remote shell and

22 implementation

thus senses and signals using the respective network connection; (3) con-
trollers which are started by the testbed helpers and use IPC signals; and (4)
the ARM service of a peer which manages the peer’s services (also via IPC
signals).

For IPC signals, signalling is usually done via UNIX pipes instead of us-
ing POSIX signals as those are not available for Windows. The pipes are
created when the helper and controllers are started. For the helper process,
the pipe is created from the helper’s stdin and stdout, effectively binding
those streams to the network connection from the remote shell. This ensures
that the remote shell (which is used to start the testbed helper process on
remote hosts) terminates after the respective helper process has shut down.
Similarly, termination from the driver is initiated by sending a termination
signal via the control pipe to the testbed helper process running the master
controller. The driver then waits for the master controller process to termi-
nate.

Upon noticing the termination signal, the testbed helper process passes
the termination signal to the controller it is running and waits for it to ter-
minate. At this point, the controller receiving the termination signal will
initiate shutdown by passing the termination signal to controllers further
down in the hierarchy. This is done by sending a shutdown message to their
respective testbed helper processes. Each controller will then wait for the
slave controllers to be terminated and then terminates itself.

As part of the shutdown routine, a controller also stops all running peers
which are created by it. Peers are stopped by sending termination signal
to their respective ARM services. The ARM service then passes the signal to
running service processes and waits until they are terminated before termi-
nating itself.

Since a controller waits for all its peers’ ARM processes and its slave con-
trollers to terminate before terminating itself, the master controller termi-
nates only after all the controllers in the hierarchy have terminated. As a
result, any misbehaving peer whose processes do not terminate after getting
the termination signal block the peer’s controller and the whole controller
chain up to the master controller from terminating. These processes can then
be easily found and inspected (by attaching a debugger) by following the
blocked controller chain from the master controller.

Termination resulting from a crash in the driver or hardware failure is
handled by the helper process of the master controller. The helper process
monitors its connection from the driver and initiates shutdown when the
pipe is closed. Similarly, when a controller crashes, the connection from its
helper process and those to the helper processes started by the controller on
the remote hosts are broken. Broken connections are detected and the respec-
tive remote processes then immediately begin to propagate the termination
up and down the hierarchy by signalling their controllers to shutdown. This
minimises the chance that processes continue to run out of control regard-
less of the location of the failure.

4.5 optimisations

In this section we describe some of the techniques to optimise the exper-
iments. They help to ease the resources requirements: memory and CPU
requirements can be lowered by reducing the number of services run per
peer by sharing redundant services among multiple peers; load on the file
systems can be reduced by aggregating the data locally. Furthermore, we de-

4.5 optimisations 23

scribe how peers in the testbed are passed a unique number to individualise
their run-time behaviour and how churn can be efficiently emulated.

4.5.1 Service sharing

The GNUnet architecture as described in Section 2.4 allows peers to share
services for reasons of efficiency, reduced usage of memory and other re-
sources (such as disk storage and ports), aggregation of data, co-ordination,
etc.

The shared services are not associated with any peer or a hostkey. For
this reason, only services which do not depend on other services can be
shared; logic which is peer-specific has to be implemented as a non-shared
peer service. For example, consider the PEERINFO service which stores the
addresses of known peers. A peer writes addresses of new peers it learns
about in the network to PEERINFO service and use these addresses to connect
to other peers. PEERINFO thus has no P2P-specific logic and hence can be
typically shared with other peers.

Service sharing is supported by testbed through configuration variable
SHARED_SERVICES under the TESTBED section in the controller’s configura-
tion. This variable is set by the experimenter in the configuration used to
start testbed. The variable’s value specification allows for sharing multiple
services through the following format: <service:share> [<service:share> [...]].
Here service represents the name of the service to be shared and share rep-
resents the number of peers among which the service has to be shared. For
example, the specification

SHARED_SERVICES = testbed-logger:1000 peerinfo:500 resolver:500

causes the services PEERINFO and RESOLVER to be shared among every 500

peers and the TESTBED-LOGGER service to be shared among every 1000 peers.
Note that sharing of services is available among peers started on the same
host; sharing of services among peers running on different hosts is not ad-
visable due to the resulting network overhead and thus not supported by
the current implementation.

4.5.2 Testbed logging

Experiment data generated by peers can be logged to files or databases
for further analysis. These files or databases may exist locally on the hosts
where the peers are running or on a remote host. Aggregating this measure-
ment data involves merging the files and poses a challenge during large
scale evaluations: opening too many individual files on a host may saturate
the IO subsystem; if a database is used, it may not accept the required num-
ber of open connections. Also, most of the HPC systems suitable for large
scale evaluations have a shared file system across all hosts and writing to
it may involve network communication which will saturate the network a
large number of files are opened.

For these reasons, it is advisable to group the experiment data from a
group of peers and store it locally. For example, peers in groups of 10 can be
configured to write to a file instead of each writing to an individual file. This
approach, however, would require some co-ordination among peers to deter-
mine which shared file is to be accessed by which peer. Such co-ordination
is provided by testbed for ease of use through the TESTBED-LOGGER service,
which should be configured as a shared service to realise the performance

24 implementation

gains from sharing file operations with multiple peers. The service receives
measurement data from the peers through IPC and writes them to a file.
Peers’ services send this data through the TESTBED-LOGGER API.

4.5.3 Peer identities in testbed

Often, it is required for peers in an experiment to know their identity in
the experiment to differentiate their run-time behaviour. As an example,
consider the REGEX experiments (Section 5.2.3) where each peer has to pub-
lish unique data. This data are stored in multiple files, one per peer in the
experiment. Now, to answer the question “which file’s data should a peer
publish”, the peer needs to know its identity in the testbed. While GNUnet
has peer identities which are the SHA-512 hash of their respective public
keys, it is useful to assign a unique, small sequentially assigned number for
each peer created in the testbed. This information can be included as part
of the configuration template while creating peers. However, while using
the convenience functions (Section 4.6) the creation of the peers is implic-
itly done by convenience function and the flexibility of providing a separate
configuration template for each peer is lost.

To address this requirement, testbed writes a unique peer number to the
configuration of each peer in the option PEERID of the TESTBED section. The
peer can then read this value through its configuration.

4.5.4 Emulating churn

A given P2P protocol can be affected by churn in the underlying P2P net-
work. Thus, it is desirable to observe the functionality and measure the
performance of the protocol by subjecting it to varying amounts of churn.

Emulation of churn can be done by stopping and starting some peers in
the testbed. However, this approach has a drawback: the restarted peers will
have to re-establish overlay connections to existing peers to be a part of the
network. This is not a problem for protocols which implement a mechanism
to automatically connect to known peers. However, re-establishing a partic-
ular topology that existed prior to the peer’s shutdown would be somewhat
inefficient, as the testbed driver would have to remember the previous state
precisely and then re-initiate the key exchange protocols for the connections
which were cut when the peer was stopped.

For GNUnet, the CORE service has a feature that enables a hack that can
make experiments with churn much more efficient — and easier to code.
In GNUnet, there is not a simple notion of peers being “connected”. As
GNUnet consists of many services, connectivity between peers is defined
per service. Specifically, the CORE service only notifies higher layers about
connections to other peers if those other peers run the same services. When
a service other than the CORE or TRANSPORT services of a peer are stopped,
the peer stays CORE-connected to its neighbouring peers. However, the CORE

service of the peer will notify the CORE services of neighbouring peers that a
service has been stopped. The CORE services of neighbouring peer will then
notify each of their relevant services that a neighbour has “disconnected”.
Similarly, when a service on a peer is started, the CORE service of that peer
will send notifications to its neighbour which will then notify their respec-
tive services that a new peer has “connected”.

Thus, the problem of emulating churn can sometimes be addressed by
stopping merely the service under test without the peer closing CORE and

4.6 convenience functions 25

TRANSPORT-level connections to its neighbours. Then, to emulate a peer join-
ing the network, the service implementing the protocol of interest is simply
restarted, in which case the original neighbour connections will be retained
by the CORE service.

4.6 convenience functions

It is common for most experiments to create peers, start them and connect
them in some overlay topology before proceeding with the actual experi-
ment. This phase of an experiment is termed as test start-up. Similarly, when
the experiment is completed, the peers have to be stopped and destroyed.
This phase is called test tear-down.

Since the start-up and tear-down phases are required for all experiments,
the testbed API provides convenience functions to simplify the experiment
driver’s code to set up the experiment.

As part of the start-up phase the API provides functions
GNUNET_TESTBED_run() and GNUNET_TESTBED_test_run(). As input, these
functions take parameters and a configuration from where some values are
read and does the following:

1. Check if the given set of hosts can start the testbed controllers. This is
done by checking if the hosts are remotely accessible and the testbed
controller is available in the PATH environmental variable;

2. Start a master controller on the first host;

3. Have the master controller start slave controllers on the remaining
hosts;

4. Create peers by distributing them equally across all slave controllers;

5. Start peers on all slave controllers;

6. If an overlay topology is specified in the given config-
uration, it is passed to another convenience function
GNUNET_TESTBED_overlay_configure_topology() to connect
the peers;

7. Schedule a task to be run when the experiment driver signals to tear-
down the test. This task will shutdown running peers and cleans up
the unique directories used to isolate peers.

These functions signal their completion by calling a callback function they
take as a parameter. The experiment driver can then start its interactions
with the peers as part of the experiment. Upon completion of the experi-
ment, the experiment driver can signal the functions to initiate tear-down
by calling GNUNET_SCHEDULER_shutdown() which will trigger the task sched-
uled by the functions to execute during tear-down.

Note that if only one host is given to the above functions, all peer specific
operations are executed on that host under a single master controller. No
slave controllers will be started.

The function GNUNET_TESTBED_overlay_configure_topology() attempts
to connect a given set of peers in a given overlay topology. It uses the func-
tion GNUNET_TESTBED_overlay_connect() to establish an overlay connection
between two peers. It supports peers to be connected in the topologies given
in Table B.2.

26 implementation

The file describing a topology in which peers are to be connected must
adhere to the following format: Each line must begin with the target peer
number (peers being numbered from [0,n) where n is the total number of
peers in the testbed). This must be followed by a colon (‘:’) and a list of
origin peer numbers separated by ‘|’. All white space characters (except for
newline characters) is ignored. The API will then try to connect each origin
peer to the target peer.

For example, a file containing:

1:2|3

3:4|0

0:2

will result in 5 overlay connections [2 → 1], [3 → 1], [4 → 3], [0 → 3],
and [2 → 0].

5P R O T O C O L E VA L U AT I O N S

In this thesis we used HPC systems to scale our emulations as they have
many hosts which are connected by a high bandwidth network. We con-
ducted the experiments described in this Chapter on an Infiniband Clus-
ter [Inf] and the SuperMUC supercomputer [Sup]. On the cluster we ran
small (1k peers) to medium (40k peers) size evaluations and a tiny partition
(30 hosts) of SuperMUC was used to run large scale (90k peers) evaluations.
In this chapter we describe briefly the architecture of these systems and
the experiments conducted to evaluate the performance of the testbed and
the protocol evaluations of the GNUnet’s Network Size Estimation (NSE)
approach and its REGEX library.

5.1 evaluation infrastructure

5.1.1 Infiniband Cluster

For the evaluations, we used 29 hosts from the cluster, each with 4 pro-
cessor cores. All the hosts have 8GB of memory except for 3 hosts which
have 16GB of memory. Although the hosts are connected with an Infiniband
network, we used the gigabit Ethernet network of the hosts for network
communications in our emulations as GNUnet does not support Infiniband
communication and IPoIB [Kas06] is not available on the cluster hosts. Data
is synchronised among the hosts through a shared file system. The cluster
is used with exclusive access — users who want to run an experiment in
the cluster submit a reservation specifying the hosts they want to use by
choosing a time interval in which the hosts are free. The reservation is then
displayed on the reservation system’s web page which shows the time inter-
vals in which the hosts are reserved. Other users are expected to refer this
web page before submitting a reservation and only use the hosts during
their reservation interval.

The number of peers we are able to emulate on this cluster is limited to
40k peers for meaningful experiments due to the limited computing power.
However, during the experiments evaluating the performance of the testbed,
we are able to start 60k peers as these experiments do not have CPU inten-
sive application logic apart from establishing overlay connections among
the peers.

5.1.2 SuperMUC

The SuperMUC supercomputer is made up of over 9400 hosts which are di-
vided into 19 groups called islands. The islands are further divided into 18

thin-node islands and 1 fat-node island. Thin-node islands have 512 hosts
each and each host has 16 processor cores and 32GB of main memory. The
Fat node-island has 205 hosts each with 40 processor cores and 256GB of
main memory. Nodes in an island are connected with gigabit Ethernet and
high speed Infiniband network. Islands are connected in a fat-tree [Lei85]
topology interconnection network. As in the case with the Infiniband clus-

27

28 protocol evaluations

ter, since GNUnet does not support communication over Infiniband, our
emulation uses the Ethernet network for its communications.

Compute tasks on the SuperMUC are submitted as batch jobs with a de-
scription specifying details such as the number of hosts required for ex-
ecuting the job, the maximum execution duration of the job, etc. The job
scheduler executes the queued job when the sufficient hosts are available.

Considering security and the primary goal to run parallel programs, ssh
is disabled on the thin-node islands. This prevents us from starting the con-
trollers through ssh. Hence we were restricted to the fat-node island from
which we used a tiny partition of 30 hosts for our evaluations.

5.2 experiments

In all the experiments where the emulation is distributed, the testbed is
setup with the following hierarchy: the experiment driver and the master
controller started by the driver are placed on a single host. Further con-
trollers are started by the master controller on the remaining hosts. The
master controller acts a supervising controller and distributes the opera-
tions from the driver. Thus, the driver controls the testbed solely through
the master controller.

5.2.1 Testbed Performance

To measure the performance of testbed in starting evaluations of various
peer sizes, we conducted experiments on a workstation class machine, a
server class machine and the Infiniband cluster. For experiments on work-
station and the server class machines, the driver and the controller are run
on the same host.

In these experiments, we measured the time taken to create peers, start
them and make random overlay connections among them. We consider an
overlay connection successful if the peers are connected within a timeout
interval, if the timeout interval has expired the connection is considered as
failed. Failed connections are retired 3 times before giving up.

Since no P2P protocol is evaluated in these experiments, we configured
the peers to only run the minimal set of services required to establish con-
nections to other peers. The measurements are shown in Tables 5.1 and 5.2.

Peers Time to # Connections # Connections # Failed

created start a peer per second connections

500 18 ms 2000 15.625 0

500 18 ms 4000 17.31 0

1000 22 ms 3000 20.94 0

1000 21 ms 4000 16 0

Table 5.1: Profiling data from experiments when run on a Desktop with 2 cores and
4 GB memory

These experiments showcase our approach discussed in Section 3.3 for
adapting the degree of parallelism according to the system load. We col-
lected the monitoring data logged by the testbed controllers on the hosts of
the Infiniband cluster for an experiment involving 40k peers and 100k over-
lay connections. Data from each host is plotted with a colour and is shown
in Figures 5.1.

5.2 experiments 29

 0

 10

 20

 30

 40

 50

 60

 70

 80

00 01 02 03 04 05 06 07

%
 o

f
C

P
U

 u
se

d

Time (min)

(a) CPU consumption

 0

 10

 20

 30

 40

 50

 60

 70

00 01 02 03 04 05 06 07

%
 o

f
m

a
in

 m
e
m

o
ry

 u
se

d

Time (min)

(b) Memory consumption

 0

 0.5

 1

 1.5

 2

 2.5

 3

00 01 02 03 04 05 06 07

%
 o

f
d

is
k

 I
/O

 u
se

d

Time (min)

(c) Disk IO load

Figure 5.1: Resource consumption of testbed on 29 hosts of the Infiniband cluster
while setting up an evaluation run with 40k peers and 100k random con-
nections among them. Data recorded from each host is drawn with a
unique colour.

30 protocol evaluations

Peers Time to # Connections # Connections # Failed

created start a peer per second connections

1000 0.063 ms 1008 77.53 0

10000 0.3462 ms 10000 93.45 1

10000 0.3458 ms 40000 341.88 1

40000 1.225 ms 40000 291.97 2

40000 1.2 ms 100000 335.57 8

60000 1.35 ms 120000 307.69 11

Table 5.2: Profiling data from experiments run on the Infiniband cluster

Note that in Figure 5.1.a, the node exhibiting the initial spike at 30 sec.
is the host running the master controller and the driver. The peculiar be-
haviour when compared to other hosts is due to the driver compressing the
configuration templates as part of the create peer operation. The demand for
CPU on this host is remains low after creating peers as no peers are started
on it. Consequently, the memory demand for this host is also less as shown
in Figure 5.1.b. For the rest of the nodes, the initial spike in both CPU and
memory demand is due to starting of peers. The following fluctuating pat-
tern for CPU demand is due to adaptive parallelism; towards the end, the
observed steep fall starting signifies the completion of overlay topology and
the end of the experiment.

The continuous increase in memory demand while establishing overlay
connections is attributed to the increase in the state information each peer
maintains for each of its neighbours. The difference in the memory demand
among hosts is due to hosts having different amounts of main memory and
to the different amounts of free memory at the start of the experiment.

Observing the demand for disk IO shown in Figure 5.1.c, the peek in de-
mand on all hosts at the beginning of the experiment is due to the controllers
creating peer directories with their configurations and host keys. After cre-
ating the peers, no further demand is present as IO operations are disabled
in the peers’ services for this experiment.

While experiments were planned to evaluate testbed performance on Su-
perMUC, but due to a recent security incident we were not able to run these.

Comparing with the results published in [EG11#1], our implementation
lags behind in terms of number of overlay connections established per sec-
ond. This can be attributed to the differences in the hardware used for eval-
uations and the recent code changes in GNUnet. It should also be noted
that our implementation achieves the demonstrated performance without
requiring any manual tuning.

5.2.2 Network Size Estimation

NSE protocols are used to find the total number of peers participating in a
given P2P system. Size estimations from these protocols can help applica-
tions and other protocols perform better [EG11#2] [Eug+03]. The quality of
the estimation protocol is determined by the accuracy of its prediction and
other factors such as keeping the number of interactions (messages trans-
ferred) and computation load to a minimum; resistance to manipulation by
adversaries is also desired.

The NSE protocol demonstrated in [EPG12] is one such approach which
maintains a good size estimate while keeping the total number of ex-

5.2 experiments 31

 1

 10

 100

 1000

 10000

 100000

 1e+06

00:00 10:00 20:00 30:00 40:00 50:00 00:00 10:00

N
u

m
b

e
r

o
f

p
e
e
rs

Time (mm:ss)

Estimated peers
Actual peers

(a) Size estimation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 500 1000 1500 2000 2500 3000 3500 4000 4500

#
 M

e
ss

a
g

e
s

e
x
c
h

a
n

g
e
d

 i
n

 1
m

s

Time (secs)

NSE messages

(b) NSE messages exchanged

Figure 5.2: NSE evaluations of 20000 peers on the Infiniband cluster. The step sizes
are 20000, 20000, 5000, 5000, 10000, 10000 with step interval of 11 minutes

32 protocol evaluations

changed messages low. All peers calculate the size estimate in several
rounds by flooding a message from a peer whose identity is closest to a
key generated from current time. This approach differs from other NSE
algorithms [Mas+06] [Kos+05] by requiring all peers to participate in the es-
timation and hence be able to have a uniform value of estimation. To defend
against Sybil attacks, the approach requires a proof-of-work to be done be-
fore participating in the network estimation rounds. As a proof-of-work the
peers have to find an integer whose hash has to match a globally configured
number of bits of the peer’s identity.

This approach is implemented in GNUnet as the NSE service. A peer’s NSE
service provides size estimation to other services of the peer. This service
requires the CORE service to provide application-level encrypted connections
to the NSE services running on neighbouring peers. Additionally, TRANSPORT
and PEERINFO, services are required to provide connections to other peers
and information about known peers respectively.

In these experiments, network size estimates from the NSE services of var-
ious peers are evaluated by starting and stopping peers during the evalu-
ation run. Along with these values, the distribution of the total number of
NSE protocol messages communicated between the peers in a fixed time
interval is also of interest. It helps to evaluate how much traffic the pro-
tocol generates in the P2P network. This data is generated in the form of
a time stamp which is logged to the TESTBED-LOGGER by every NSE service
whenever it sends or receives a protocol message.

To expedite the emulation run, the round interval for the NSE services is
reduced and the number of bits required for the proof-of-work computation
are set to 0. Additionally, the services PEERINFO and TESTBED-LOGGER are
configured as shared services. The corresponding configuration is given in
Appendix A.1.1.

The driver for these experiments uses the convenience functions described
in Section 4.6 to setup the controller hierarchy, create and start peers, con-
nect them in an overlay topology. To emulate churn, the experiment is di-
vided into steps with each step specifying the number of peers that should
be run when the step is active. The idea is to get the network estimates
during these steps and see how they change with a change in the number
of running peers. Additional input options for the driver are shown in the
Appendix A.1.2.

Once the testbed is ready, the driver connects to the NSE service of a given
number of peers. These peers are chosen depending on the total number
of peers running in a given step. The driver logs the size estimations from
these peers’ services until a given step interval has passed. It then proceeds
to the next step by either starting or stopping the NSE services of peers to
emulate churn as described in Section 4.5.4 to equal the total number peers
required for that round.

We evaluated the NSE service on the Infiniband cluster and on 30 hosts of
SuperMUC. On the cluster evaluations are conducted with up to 20k peers
connected in a small world topology (Appendix B.2). The evaluation results
are shown in Figure 5.2.

On the SuperMUC, with 30 nodes we were able to evaluate up to 90k
peers (Figure 5.3) connected in a scale free topology (Appendix B.2). The in-
correct low estimates from some peers may be due to the scale free topology;
with 90k peers, some peers may have too many neighbours and hence drop
connections from new peers who may remain unconnected. As a result, the
overall network graph is not connected; the data suggests that the scale free

5.2 experiments 33

 1

 10

 100

 1000

 10000

 100000

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10

N
u

m
b

e
r

o
f

p
e
e
rs

Time (mm:ss)

Estimated peers
Actual peers

(a) Size estimation

 0

 100

 200

 300

 400

 500

 600

 700

0 200 400 600 800 1000 1200 1400 1600 1800 2000

#
 M

e
ss

a
g

e
s

e
x
c
h

a
n

g
e
d

 i
n

 1
m

s

Time (secs)

NSE messages

(b) NSE messages exchanged

Figure 5.3: NSE evaluations of 90000 peers on 30 nodes of SuperMUC. The step sizes
are 90000, 50000 with step interval of 30 seconds

topology created a network with at least four partitions. Thus, in the future,
we might want to adapt the rules for the construction of scale-free graphs
to ensure a connected graph even if peers exceed their connection limits.

5.2.3 REGEX

The REGEX application [Sze12] implemented in GNUnet provides distributed
evaluation of regular expressions. It can be used for capability discovery
among peers in the P2P network. Peers advertise their capabilities as a regu-
lar expressions using the REGEX application. Other peers searching for these
capabilities will express them as a string to the REGEX application which tests
if any of the published regular expressions match it. If a match is found, the
peer which advertised the matching expressions is considered to have one
of the capabilities expressed in the queried string.

34 protocol evaluations

The REGEX application uses a DHT for storing the advertised regular ex-
pressions and matching them. When peers advertise their capabilities as a
regular expression, the REGEX application constructs a Deterministic Finite
Automaton (DFA) from the given expressions with the accepting states con-
taining information about the peers’ identity. It then publishes each state of
the DFA and its transition edges in the DHT. Consequently, searching for
peers with capabilities expressed as a regular expression is accomplished by
looking up the starting state corresponding to the start of the given string
in the DHT and iteratively looking-up in the DHT and following the transi-
tions to other states until an accepting state is reached.

Evaluations of the REGEX application were conducted in [Sze12] with emu-
lation using the testbed. The motivation for these experiments is to achieve
Internet routing independently in a P2P overlay: peers offering access to
an Autonomous System (AS) (effectively acting as a border gateway) adver-
tise their Internet Protocol (IP)-prefixes as regular expressions. Access to the
hosts in the AS can be achieved by running the VPN-EXIT application at the
gateways peers. The VPN-EXIT application allows tunnelling of Virtual Pri-
vate Network (VPN) traffic in GNUnet overlay. Thus, routing to a host in
a given AS can be implemented by looking up the IP address (expressed
as a string) of the destination host through the REGEX application and then
tunnelling the traffic to the gateway peer.

The experiments are evaluated by advertising IP-prefixes obtained from
The Cooperative Association for Internet Data Analysis (CAIDA) as regu-
lar expressions and matching the strings that represent the IP address with
them; tunnelling of VPN traffic is not considered. At each peer, the adver-
tising of the IP-prefix is done by a daemon which is started as one of the
peer’s service. The daemon reads the AS IP-prefix data from a flat-file to de-
termine the regular expression it has to advertise based on its unique peer
number (see Section 4.5.3 for how peer identities are implemented).

After a peer has advertised its regular expression, a random peer starts
searching for the advertiser by matching a string which is described by the
advertised regular expression. The second peer waits for a small interval for
the DHT to propagate the published regular expression’s state information.
The search is deemed successful by the second peer if the given regular

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

%
 o

f
m

a
tc

h
e
d

 s
tr

in
g

s

Search duration in seconds

1,000 peers
2,000 peers
4,000 peers

Figure 5.4: Time to match strings with regular expressions

5.2 experiments 35

expression can be traversed by the selected peer until its accepting state
before a timeout interval.

Since advertising a regular expression induces load on the DHT, the time
at which a peer advertises its AS IP-prefix data is crucial – if all peers adver-
tise at the same time the system may get thrashed and become unresponsive.
However, advertising sequentially will slow the evaluation and may cause
resource under-utilisation. For this reason, the advertisements are started in
parallel but with a bound on their parallelism.

Evaluations for the REGEX were made on the Infiniband cluster. Due to the
requirement for running the DHT service and additional REGEX application
logic at each peer, evaluation sizes of up to 4000 peers were possible. In
these evaluations we measured the time taken to match a string after its
corresponding regular expression is published. The peers in the evaluations
are connected in a random graph topology with each peer having 40 random
connections. The evaluation results of the REGEX application are shown in
Figure 5.4.

6C H A L L E N G E S W I T H H P C S Y S T E M S

In the previous chapter we demonstrated our emulation method by run-
ning evaluations on HPC systems: the Infiniband cluster [Inf] and the Su-
perMUC [Sup] supercomputer. These systems are designed to run parallel
programs developed either using OpenMP [DM98] or Message Passing In-
terface (MPI) [GLS99] libraries and are shared among multiple users by re-
serving exclusive accesses to partitions of the system. The workload from
users is either managed manually by the users (through a reservation sys-
tem as in the case of the Infiniband cluster) or by a scheduler as in the case of
SuperMUC. The presence of this scheduler poses unique challenges for re-
source allocation, access and job execution since the testbed has to interface
with the scheduler for setting up and starting emulation runs. We describe
these challenges in detail and the resolution strategies used to address them
in the following sections.

6.1 resource allocation

The simple resource allocation for the Infiniband cluster allows for an ex-
perimenter to manually specify the hosts to use for emulation when her
reservation begins. However, on the SuperMUC, resource allocation is han-
dled by a scheduler which requires an user to submit the evaluation runs
as jobs. The scheduler executes the job by running the binary specified in
the job’s description when the required number of hosts are available in the
system. This means that the specific set of hosts allocated by the scheduler
for a job are determined dynamically for each job. Hence, the testbed cannot
be configured to use a predefined list of hosts.

This problem also often applies implicitly for parallel programs devel-
oped with OpenMP or MPI libraries, which address it by reading the al-
located hosts from a host-file. The host-file is created by the parallel envi-
ronment execution wrapper executing the parallel program. Examples for
such parallel environment execution wrappers are mpiexec1, mpirun2 and
poe3. These wrappers interface with the scheduler to determine the allo-
cated nodes where they start multiple instances of the parallel program. The
instances of the parallel program then establish connections among them-
selves by using the host-file as a database to determine their locations.

Taking the same approach as parallel program, this problem is addressed
by starting the experiment driver as a parallel program through one of the
parallel environment execution wrapper available on the SuperMUC. The
testbed then reads the hosts-file and starts the emulation on the allocated
nodes.

6.2 resource access

Once the allocated hosts are determined, testbed needs to access them using
Secure Shell (SSH) to start the controllers. However, due to security reasons

1 http://linux.die.net/man/1/mpiexec
2 http://linux.die.net/man/1/mpirun
3 http://www-03.ibm.com/systems/software/parallel/

37

http://linux.die.net/man/1/mpiexec
http://linux.die.net/man/1/mpirun
http://www-03.ibm.com/systems/software/parallel/

38 challenges with hpc systems

and to avoid misuse SSH access between the allocated nodes is restricted
in the SuperMUC. We also observed such restriction on other HPC systems
like the Leibniz Rechner Zentrum (LRZ) compute cluster.

Currently, the problem was addressed by requesting the administration of
SuperMUC to permit SSH access which has granted it to us within the hosts
of the single fat-node island. This dependency on SSH should be made op-
tional and further communication mechanisms which are widely supported
in HPC systems (for example, OpenMPI messaging) ought to be added to
testbed.

6.3 emulation start-up

When the experiment driver is started as a parallel program through a par-
allel environment execution wrapper, the wrapper starts multiple instances
of the driver program on the allocated nodes. Since, we only require one
instance of the driver all other instances need to be terminated, else they
start multiple testbeds and hence multiple evaluations which overloads the
system.

This is addressed by having a helper program which is developed as a par-
allel program using OpenMPI to start a single instance of the driver. Since
the helper program uses OpenMPI, its instances can determine a leader
among themselves when multiple of them are started by the parallel envi-
ronment execution wrappers. A single instance of the driver is then started
by the leader, whereas the other instances terminate.

7F U T U R E W O R K

During the experiments, we came up with additional features that would
make emulations more efficient. We describe these in this chapter as direc-
tions for future work.

7.1 barriers

In the experiments conducted in Chapter 5, the experiment driver termi-
nates an experiment upon its completion. Determining the completion of an
experiment is trivial in these experiments as the experiment’s control flow
is entirely implemented in the driver logic. Some experiments may, however,
benefit from distributing the control flow among the peers. For example, in
a planned experiment involving the GNUnet file-sharing application peers
can be given some autonomy to publish and download files chosen ran-
domly from a given set. This makes the control flow logic simpler at the
experiment driver as the driver does not require to control actions at each
peer. It also helps to parallelise the control flow — multiple peers may pub-
lish and download simultaneously. On the other hand, as the control flow
is now distributed, determining the completion of the experiment requires
extra co-ordination among the peers.

The required co-ordination is similar to the barrier synchronisation
method used in parallel programming where threads executing in parallel
are blocked when they their control flow reaches a barrier; their execution
is resumed when the barrier is crossed i.e. when all or a predefined number
of threads reach a barrier [TY86].

Implementing support for barrier co-ordination in the testbed helps exper-
iments with control flow distributed among peers to determine experiment
completion efficiently: the control flow of peers is blocked upon reaching a
barrier marking its completion; once all peers’ control flow reaches the same
barrier, the driver can initiate the next stage of the experiment. Thus, the
barrier synchronisation allows for the experiments with distributed control
flow to be divided into steps where transitions between steps are guarded
by barriers. This ensures that all peers’ control flow is synchronised during
the starting of each step.

The type of barriers described so far block the control flow until the con-
trol flows of all peers cross the barriers. Another type of barriers called
fuzzy barriers [Gup89] allows applications to separate signalling that they
are done with a particular phase from the blocking operation that prevents
the system from executing code that requires the previous phase to be com-
pleted by all other activities. This type of barrier, which would in particular
allow a peer to continue to serve requests from other peers in the current
phase, would likely be the most appropriate type for an enhanced testbed
API.

7.2 simulation of bandwidth , latency & loss

Since our approach simulates the underlay network without simulating net-
work characteristics such as link bandwidth, latency and data loss, fidelity

39

40 future work

of the evaluations remains affected as the connections between peers are not
subjected to the effects observed in real networks.

The loss in fidelity can thus be mitigated by simulating the underlay net-
work with the aforementioned network characteristics observed in real net-
works. However, as the isolation required for separating peers’ processes in
our approach does not virtualise the network interfaces, but shares them
among the peers’ processes, the network interfaces cannot be configured
to simulate network characteristics of a underlay link between two peers
without effecting the underlay links between other peers. Thus, support for
simulating bandwidth, latency and loss is to be handled in the overlay net-
work. This subjects the traffic to similar effects observed at the underlay
network as the overlay links are established on top of underlay links.

Support for simulating network characteristics at the overlay links is re-
cently provided in GNUnet by the TRANSPORT service. This support has to be
configured by the testbed to allow the creation of overlay links in emulations
with more realistic network characteristics.

Additionally, tools to gather the network characteristics from real net-
works should be developed. Such tools would profile real networks to gen-
erate network profiles comprising of the characteristics observed in the real
world. These network profiles could then be used in emulations to simulate
realistic network conditions.

7.3 simulating nat and firewalls

A consequence of exhausting Internet Protocol version 4 (IPv4) addresses
spaces in the Internet is the presence of Network Address Translation (NAT)
gateways. When a user runs a P2P application in networks with these gate-
ways, connections from the peers outside the user’s network to the user’s
peer are often restricted by the gateways although connections from the
user’s peer to peers outside the network may succeed. We refer to this abil-
ity of a peer to be able to be connected freely by other peers as the underlay
visibility of that peer. In networks with NAT gateways, the underlay visibility
of a peer is often restricted to the peers present in the same network.

Support for hiding a peer’s underlay visibility is recently provided by the
TRANSPORT service. This is implemented using a blacklist which determines
which incoming connections a peer should accept. However, underlay vis-
ibility is not yet simulated using in testbed as the underlay network is a
full mesh which allows for any two peers in the testbed to be connected. A
future version of the testbed should support simulating underlay visibility
using the functionality offered by the TRANSPORT service.

8C O N C L U S I O N

In this thesis we have demonstrated how emulation of P2P protocols can be
scaled by taking an approach to distribute the emulation among multiple
hosts and making the approach adapt the number of parallel operations
automatically to fit the given experiment. We demonstrated that our method
prevents the hosts from thrashing and facilitate running the evaluations at
reasonable speed without manual tuning on a wide variety of systems.

From the experiments, we have shown that HPC systems are suitable can-
didates for large scale emulation of P2P networks. Given the distributed
nature of P2P systems, the only obstacle to scaling experiments on such
systems is the management of the experiment itself. By distributing the con-
trol, going as far as making each node execute an individualised profile for
the external interactions of the system, we show that the experiments can
scale — within the limitations of the P2P protocol and the efficiency of the
implementation under test.

41

B I B L I O G R A P H Y

[BA99] A.-L. Barabási and R. Albert. “Emergence of scaling in random
networks”. In: science 286.5439 (1999), pp. 509–512.

[Ban+98] J. Banks et al. Handbook of simulation. Wiley Online Library,
1998.

[Bar+03] P. Barham et al. “Xen and the art of virtualization”. In: ACM
SIGOPS Operating Systems Review 37.5 (2003), pp. 164–177.

[Ben+06] T. Benzel et al. “Experience with DETER: a testbed for security
research”. In: Testbeds and Research Infrastructures for the Devel-
opment of Networks and Communities, 2006. TRIDENTCOM 2006.
2nd International Conference on. 2006, 10 pp.–388.

[BHK07] I. Baumgart, B. Heep and S. Krause. “OverSim: A Flexible
Overlay Network Simulation Framework”. In: IEEE Global In-
ternet Symposium, 2007. 2007, pp. 79–84.

[Bol+06] R. Bolze et al. “Grid’5000: A Large Scale And Highly Reconfig-
urable Experimental Grid Testbed”. In: International Journal of
High Performance Computing Applications 20.4 (2006), pp. 481–
494. eprint: http://hpc.sagepub.com/content/20/4/481.full.
pdf+html.

[CFS09] R. Chertov, S. Fahmy and N. B. Shroff. “Fidelity of network
simulation and emulation: A case study of TCP-targeted de-
nial of service attacks”. In: ACM Trans. Model. Comput. Simul.
19.1 (Jan. 2009), 4:1–4:29.

[Chu+03] B. Chun et al. “PlanetLab: an overlay testbed for broad-
coverage services”. In: SIGCOMM Comput. Commun. Rev. 33.3
(July 2003), pp. 3–12.

[Cla+01] I. Clarke et al. “Freenet: A Distributed Anonymous Informa-
tion Storage and Retrieval System”. English. In: Designing Pri-
vacy Enhancing Technologies. Ed. by H. Federrath. Vol. 2009. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg,
2001, pp. 46–66.

[Coh08] B. Cohen. The BitTorrent protocol specification. 2008.

[Din+08] T. T. A. Dinh et al. “Large Scale Distributed Simulation of
p2p Networks”. In: Parallel, Distributed and Network-Based Pro-
cessing, 2008. PDP 2008. 16th Euromicro Conference on. 2008,
pp. 499–507.

[DM98] L. Dagum and R. Menon. “OpenMP: an industry standard API
for shared-memory programming”. In: Computational Science
Engineering, IEEE 5.1 (1998), pp. 46–55.

[DMS] R Dingledine, N Mathewson and P Syverson. TOR: the onion
router. Tor Project/EFF. https://www.torproject.org/.

[EG11#1] N. S. Evans and C. Grothoff. “Beyond Simulation: Large-Scale
Distributed Emulation of P2P Protocols”. In: 4th Workshop on
Cyber Security Experimentation and Test (CSET 2011). USENIX
Association. San Francisco, California: USENIX Association,
2011.

43

http://hpc.sagepub.com/content/20/4/481.full.pdf+html
http://hpc.sagepub.com/content/20/4/481.full.pdf+html
https://www.torproject.org/

44 bibliography

[EG11#2] N. Evans and C. Grothoff. “R5n: Randomized recursive rout-
ing for restricted-route networks”. In: Network and System Se-
curity (NSS), 2011 5th International Conference on. IEEE. 2011,
pp. 316–321.

[EPG12] N. Evans, B. Polot and C. Grothoff. “Efficient and secure de-
centralized network size estimation”. In: NETWORKING 2012.
Springer, 2012, pp. 304–317.

[ER61] P. Erdos and A. Rényi. “On the evolution of random graphs”.
In: Bull. Inst. Internat. Statist 38.4 (1961), pp. 343–347.

[Eug+03] P. T. Eugster et al. “Lightweight probabilistic broadcast”. In:
ACM Trans. Comput. Syst. 21.4 (Nov. 2003), pp. 341–374.

[Fre+12] C. Freire et al. “Automated Deployment and Customization
of Routing Overlays on Planetlab”. In: Testbeds and Research In-
frastructure. Development of Networks and Communities. Ed. by T.
Korakis, M. Zink and M. Ott. Vol. 44. Lecture Notes of the In-
stitute for Computer Sciences, Social Informatics and Telecom-
munications Engineering. Springer Berlin Heidelberg, 2012,
pp. 240–255.

[FV07] K. Fall and K. Varadhan. “The network simulator (ns-2)”. In:
URL: http://www. isi. edu/nsnam/ns (2007).

[GLS99] W. Gropp, E. L. Lusk and A. Skjellum. Using MPI-: Portable
Parallel Programming with the Message Passing Interface. Vol. 1.
MIT press, 1999.

[Gup+03] I. Gupta et al. “Kelips: Building an efficient and stable P2P
DHT through increased memory and background overhead”.
In: Peer-to-Peer Systems II. Springer, 2003, pp. 160–169.

[Gup+05] D. Gupta et al. “To infinity and beyond: time warped network
emulation”. In: Proceedings of the twentieth ACM symposium on
Operating systems principles. SOSP ’05. Brighton, United King-
dom: ACM, 2005, pp. 1–2.

[Gup+11] D. Gupta et al. “DieCast: Testing Distributed Systems with an
Accurate Scale Model”. In: ACM Trans. Comput. Syst. 29.2 (May
2011), 4:1–4:48.

[Gup89] R. Gupta. “The fuzzy barrier: a mechanism for high speed syn-
chronization of processors”. In: ACM SIGARCH Computer Ar-
chitecture News. Vol. 17. 2. ACM. 1989, pp. 54–63.

[Han+12] N. Handigol et al. “Reproducible network experiments using
container based emulation”. In: Proc. CoNEXT (2012).

[HG11] M. Herrmann and C. Grothoff. “Privacy-Implications of
Performance-Based Peer Selection by Onion-Routers: A
Real-World Case Study Using I2P”. In: Privacy Enhancing
Technologies. Ed. by S. Fischer-Hübner and N. Hopper.
Vol. 6794. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 155–174.

[Hib+08] M. Hibler et al. “Large-scale Virtualization in the Emulab Net-
work Testbed”. In: USENIX Annual Technical Conference. Ed. by
R. Isaacs and Y. Zhou. USENIX Association, 2008, pp. 113–128.

[Inf] Infiniband cluster at LRR-TUM. http://www.lrr.in.tum.de/
Par/arch/infiniband/.

http://www.lrr.in.tum.de/Par/arch/infiniband/
http://www.lrr.in.tum.de/Par/arch/infiniband/

bibliography 45

[Isd+10] T. Isdal et al. “Privacy-preserving P2P data sharing with
OneSwarm”. In: ACM SIGCOMM Computer Communication
Review. Vol. 40. 4. ACM. 2010, pp. 111–122.

[JH11] R. Jansen and N. Hooper. Shadow: Running Tor in a box for ac-
curate and efficient experimentation. Tech. rep. DTIC Document,
2011.

[Kan+07] J. Kangasharju et al. “ChunkSim: simulating peer-to-peer con-
tent distribution”. In: Proceedings of the 2007 spring simulaiton
multiconference - Volume 1. SpringSim ’07. Norfolk, Virginia: So-
ciety for Computer Simulation International, 2007, pp. 25–32.

[Kas06] V. Kashyap. “IP over InfiniBand (IPoIB) Architecture”. In:
(2006).

[Kos+05] D. Kostoulas et al. “Decentralized Schemes for Size Estimation
in Large and Dynamic Groups”. In: Network Computing and Ap-
plications, Fourth IEEE International Symposium on. 2005, pp. 41–
48.

[Kot+06] N. Kotilainen et al. “P2PRealm - peer-to-peer network simula-
tor”. In: Computer-Aided Modeling, Analysis and Design of Com-
munication Links and Networks, 2006 11th International Workshop
on. 2006, pp. 93–99.

[Leb09] M. Leber. “Global IPv6 Deployment Progress Report”. In: Hur-
ricane Electric,[Online] (2009).

[Lei85] C. Leiserson. “Fat-trees: Universal networks for hardware-
efficient supercomputing”. In: Computers, IEEE Transactions
on C-34.10 (1985), pp. 892–901.

[LHM10] B. Lantz, B. Heller and N. McKeown. “A network in a laptop:
rapid prototyping for software-defined networks”. In: Proceed-
ings of the 9th ACM SIGCOMM Workshop on Hot Topics in Net-
works. Hotnets-IX. Monterey, California: ACM, 2010, 19:1–19:6.

[Li+05] J. Li et al. “A performance vs. cost framework for evaluating
DHT design tradeoffs under churn”. In: INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. Proceedings IEEE. Vol. 1. 2005, 225–236 vol. 1.

[Lin+05] S. Lin et al. “Simulating large-scale P2P systems with the
WiDS toolkit”. In: Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems, 2005. 13th IEEE Interna-
tional Symposium on. 2005, pp. 415–424.

[Mak+12] N. Makris et al. “Cross-Testbed Experimentation Using the
Planetlab-NITOS Federation”. In: Testbeds and Research Infras-
tructure. Development of Networks and Communities. Ed. by T.
Korakis, M. Zink and M. Ott. Vol. 44. Lecture Notes of the In-
stitute for Computer Sciences, Social Informatics and Telecom-
munications Engineering. Springer Berlin Heidelberg, 2012,
pp. 373–376.

[Mas+06] L. Massoulié et al. “Peer counting and sampling in overlay net-
works: random walk methods”. In: Proceedings of the twenty-
fifth annual ACM symposium on Principles of distributed comput-
ing. PODC ’06. Denver, Colorado, USA: ACM, 2006, pp. 123–
132.

46 bibliography

[MBR+03] G. S. Manku, M. Bawa, P. Raghavan, et al. “Symphony: Dis-
tributed hashing in a small world”. In: Proceedings of the 4th
USENIX Symposium on Internet Technologies and Systems. Vol. 4.
2003, pp. 10–10.

[MJ09] A. Montresor and M. Jelasity. “PeerSim: A scalable P2P sim-
ulator”. In: Peer-to-Peer Computing, 2009. P2P ’09. IEEE Ninth
International Conference on. 2009, pp. 99–100.

[MM02] P. Maymounkov and D. Mazieres. “Kademlia: A peer-to-peer
information system based on the xor metric”. In: Peer-to-Peer
Systems. Springer, 2002, pp. 53–65.

[Nai+07] S. Naicken et al. “The state of peer-to-peer simulators and
simulations”. In: SIGCOMM Comput. Commun. Rev. 37.2 (Mar.
2007), pp. 95–98.

[Nak08] S. Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”.
In: Consulted 1 (2008), p. 2012.

[Nit] NITOS Wireless Testbed - Network Implementation Testbed Labora-
tory. http://nitlab.inf.uth.gr/NITlab/index.php/testbed.

[PAGL09] J. Pujol-Ahullo and P. Garcia-Lopez. “PlanetSim: An extensible
simulation tool for peer-to-peer networks and services”. In:
Peer-to-Peer Computing, 2009. P2P ’09. IEEE Ninth International
Conference on. 2009, pp. 85–86.

[RD01] A. Rowstron and P. Druschel. “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer sys-
tems”. In: Middleware 2001. Springer. 2001, pp. 329–350.

[Rhe+05] S. Rhea et al. “OpenDHT: a public DHT service and its uses”.
In: SIGCOMM Comput. Commun. Rev. 35.4 (Aug. 2005), pp. 73–
84.

[Rit01] J. Ritter. Why gnutella can’t scale. no, really. 2001.

[Spr+06] N. Spring et al. “Using PlanetLab for network research: myths,
realities, and best practices”. In: SIGOPS Oper. Syst. Rev. 40.1
(Jan. 2006), pp. 17–24.

[Sto+03] I. Stoica et al. “Chord: a scalable peer-to-peer lookup protocol
for internet applications”. In: Networking, IEEE/ACM Transac-
tions on 11.1 (2003), pp. 17–32.

[Sup] SuperMUC: Petascale System at Leibniz-Rechenzentrum. https:
//www.lrz.de/services/compute/supermuc/. 2012.

[Sze12] M. Szengel. “Decentralized Evaluation of Regular Expressions
for Capability Discovery in Peer-to-Peer Networks”. Masters.
Garching bei Muenchen: Technische Universitaet Muenchen,
2012, p. 100.

[TY86] P. Tang and P.-C. Yew. “Processor self-scheduling for multiple-
nested parallel loops”. In: Proceedings of the 1986 international
conference on parallel processing. 1986, pp. 528–535.

[Vah+02] A. Vahdat et al. “Scalability and accuracy in a large-scale net-
work emulator”. In: SIGOPS Oper. Syst. Rev. 36.SI (Dec. 2002),
pp. 271–284.

[Var+01] A. Varga et al. “The OMNeT++ discrete event simulation sys-
tem”. In: Proceedings of the European Simulation Multiconference
(ESM’2001). Vol. 9. sn. 2001.

http://nitlab.inf.uth.gr/NITlab/index.php/testbed
https://www.lrz.de/services/compute/supermuc/
https://www.lrz.de/services/compute/supermuc/

bibliography 47

[Vis+09] K. Vishwanath et al. “ModelNet: Towards a datacenter emu-
lation environment”. In: Peer-to-Peer Computing, 2009. P2P ’09.
IEEE Ninth International Conference on. 2009, pp. 81–82.

[Wei+11] E. Weingärtner et al. “Slicetime: A platform for scalable and ac-
curate network emulation”. In: Proceedings of the 8th USENIX
conference on Networked systems design and implementation.
USENIX Association. 2011, pp. 19–19.

[Whi+02] B. White et al. “An integrated experimental environment for
distributed systems and networks”. In: SIGOPS Oper. Syst. Rev.
36.SI (Dec. 2002), pp. 255–270.

[Zei+11] N. Zeilemaker et al. “Tribler: Search and stream”. In: Peer-to-
Peer Computing (P2P), 2011 IEEE International Conference on.
2011, pp. 164–165.

[Zha+04] B. Y. Zhao et al. “Tapestry: A resilient global-scale overlay for
service deployment”. In: Selected Areas in Communications, IEEE
Journal on 22.1 (2004), pp. 41–53.

A P P E N D I X

49

AE X P E R I M E N T D R I V E R S

a.1 nse driver

a.1.1 service configuration

[nse]

PORT = 12114

ACCEPT_FROM = 127.0.0.1; 10.0.0.0/8;

UNIXPATH = /tmp/test-nse-service-nse.unix

BINARY = gnunet-service-nse

AUTOSTART = NO

INTERVAL = 3 s

WORKBITS = 0

PROOFFILE = $SERVICEHOME/nse.proof

a.1.2 Input options

Input parameters for the NSE experiment driver (Section 5.2.2):

totakura@nautophone:~/repos/gnunet/src/nse$./gnunet-nse-profiler --help

nse-profiler

Measure quality and performance of the NSE service.

Arguments mandatory for long options are also mandatory for short options.

-C, --connections=COUNT limit to the number of connections to NSE

services, 0 for none

-c, --config=FILENAME use configuration file FILENAME

-d, --details=FILENAME name of the file for writing connection

information and statistics

-H, --hosts=FILENAME name of the file with the login information for

the testbed

-h, --help print this help

-L, --log=LOGLEVEL configure logging to use LOGLEVEL

-l, --logfile=LOGFILE configure logging to write logs to LOGFILE

-o, --output=FILENAME name of the file for writing the main results

-p, --peers=NETWORKSIZESPECNumber of peers to run in each round, separated

by commas

-V, --verbose be verbose (print progress information)

-v, --version print the version number

-w, --wait=DELAY delay between rounds

Report bugs to gnunet-developers@gnu.org.

GNUnet home page: http://www.gnu.org/software/gnunet/

General help using GNU software: http://www.gnu.org/gethelp/

51

BM I S C E L L A N E O U S

b.1 unique configurations

The variables of interest while generating unique configuration from config-
uration template are shown in Table B.1

Variable Description

SERVICEHOME The working directory of the peer’s service. This variable
is present for every service of the peer

PORT The port number on which the peer’s service has to listen.
This variable is modified if the given configuration tem-
plate has it specified for a service. The actual port num-
ber to use is determined at run time by querying for an
unused port

UNIXPATH The path to the UNIX socket through which a service can
be accessed. This serves as an alternative to IP-based IPC
for local clients trying to access the service

ACCEPT_FROM This variable serves as an ACL to determine which hosts
can access the services of the peer. The value for this vari-
able, if present in the template configuration, will be ap-
pended with the IP address of the host running the ex-
periment driver. If the variable is not found in template
configuration then it is set to the IP address of the host
running the experiment driver

Table B.1: Variables modified by testbed in generated configurations

The variable SERVICEHOME is generated by appending the local peer num-
ber to a temporary directory. For example, if /tamp/gnunet-testbed is the
temporary directory, the SERVICEHOME for the first peer created will be set to
/tmp/gnunet-testbed/0.

The variable PORT is set to free port number. A port is determined to be
free if a IP listen socket can be opened on it. Ports assigned to a configuration
are marked as used in a bitmap which is consulted later to find the next port
number to check.

The variable UNIXPATH is set by appending SERVICEHOME with the name of
the service. For example, the CORE service of a peer which is created after
the first peer is set to have UNIXPATH as $SERVICEHOME/core.sock.

b.2 supported topologies

The following are the overlay topologies supported by the convenience func-
tions:

53

54 miscellaneous

Topology Description

Clique All peers are connected to each other.

Line Peers are connected in a line, one after another.

Ring Line topology with an additional link between the
last peer and the first peer

2D-torus Peers are connected to form a two dimensional torus
topology.

Erdos-Renyi Peers are connected randomly [ER61]. This topology
takes an argument specifying how many random con-
nections are to be made

Small-world Peers are connected in a 2D-torus topology with
some additional random connections among peers.
This topology takes an argument specifying how
many random connections are to be made.

Small-world ring Peers are connected in a ring topology with some ad-
ditional random connections among peers. This topol-
ogy takes an argument specifying how many random
connections are to be made.

Scale-free Peer connections are made by observing the power-
law distribution and hence the generated topol-
ogy resemble closely the topologies present in na-
ture [BA99].

File Peers are connected according to the data given
through a file.

Table B.2: Supported overlay topologies

CC O R R I G E N D A

The following errors were corrected in this thesis after its publication:

• The deployment size of the evaluations carried out on the Super-
MUC is mentioned as 150k peers at multiple places. While we have
attempted this peer deployment, due to an unknown error we were
not able to gather the evaluation data. Hence, multiple references to
150k peer deployment size has been changed to 90k in the Abstract
and pages 27, 32 and 33. Additionally, the Figure 5.3 also incorrectly
mentions the step sizes as 150000, 90000 which do not correspond to
the presented graph. The corrected step size is 90000, 50000. — 27. July
2013

55

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	1 Introduction
	2 Background
	2.1 Real-world Instrumentation & Testbeds
	2.2 Simulation
	2.3 Emulation
	2.4 GNUnet architecture
	2.5 Distributed large scale emulator for P2P protocols

	3 Design
	3.1 Instance isolation, configuration and co-ordination
	3.2 Operation queues
	3.3 Adaptive bounded parallelism
	3.4 Scalable Architecture
	3.5 Controlled shutdown & crash detection
	3.6 Re-configuring peers

	4 Implementation
	4.1 Testbed architecture overview
	4.2 Experiment start-up
	4.3 Running an experiment
	4.3.1 Overlay connections
	4.3.2 Accessing peers' services

	4.4 Normal and abnormal experiment termination
	4.5 Optimisations
	4.5.1 Service sharing
	4.5.2 Testbed logging
	4.5.3 Peer identities in testbed
	4.5.4 Emulating churn

	4.6 Convenience functions

	5 Protocol Evaluations
	5.1 Evaluation Infrastructure
	5.1.1 Infiniband Cluster
	5.1.2 SuperMUC

	5.2 Experiments
	5.2.1 Testbed Performance
	5.2.2 Network Size Estimation
	5.2.3 REGEX

	6 Challenges with HPC systems
	6.1 Resource allocation
	6.2 Resource access
	6.3 Emulation Start-up

	7 Future Work
	7.1 Barriers
	7.2 Simulation of bandwidth, latency & loss
	7.3 Simulating NAT and Firewalls

	8 Conclusion
	Bibliography
	Appendix
	A Experiment Drivers
	A.1 NSE Driver
	A.1.1 service configuration
	A.1.2 Input options

	B Miscellaneous
	B.1 Unique configurations
	B.2 Supported Topologies

	C Corrigenda

